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Abstract

Multistable shells have been recently proposed as an effective solution to design morphing
structures. We describe a class of shallow shells which are bistable after one of their sides,
initially curved, is clamped along a flat line. Supposing the shell being assembled as a composite
laminate, we show how the anisotropy of the material can influence the multistable behaviour
and the robustness of stable configurations. Specifically, we focus on orthotropic laminated
shells using the polar method for a complete representation of the anisotropic elastic properties.
Two experimental prototypes have been produced and tested to validate our analytical and
numerical results.
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1. Introduction

One of the emerging challenges in structural engineering is to design structures able to
face quite different operating conditions. This goal can be achieved by resorting to morphing
structures i.e. structures capable of updating their geometric configuration in order to satisfy
some performance requirements. Even if morphing structures are becoming more widespread
in some areas of structural engineering (see [5, 16]), much remains to be done to properly
design and implement this kind of systems.

Morphing structures can be realized by means of multistable shells, i.e elastic surfaces that
exhibit more than one equilibrium configuration. These configurations can then be maintained
without applying external actions. Since actuation is required only to switch between the
alternative stable states and it could be realized with a limited actuation force (e.g. by trig-
gering instability phenomena, or by exploiting displacement amplifications due to geometrical
nonlinearities), multistable shells turn out to be a cheap way to get structural systems capable
of considerable shape change.

Multistability in shells stems from a complex interplay between geometric nonlinearities and
elastic properties, and it can be achieved in various ways combining initial natural curvatures
of the shell and curvatures induced by pre-stresses (such as plastic deformations or multi-
physical couplings [11]). Moreover, multistability is highly sensitive to boundary conditions
and the anisotropy of the constitutive material can play an important role [23]. The global
stability scenario, the number of the stable equilibrium configurations, their shapes and their
’robustness’, depends on such choices and should be completely known to properly design the
morphing system. However stable states usually have quite different shapes and the transition
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between them may be realized by following different load paths: in this sense, finite-element
analysis serves little purpose to depict such global stability scenario, whilst reduced shell models
with few degrees of freedom are much more useful.

For shallow shells, as the ones commonly used in technological applications, the nonlinear
(generalized) von Kármán shell model [25] can be chosen as ’parent’ model. Then, the discrete
model can be generated by reducing the parent model to a low-dimensional subspace by means
of a careful selection of admissible configurations. Indeed, an effective reduction should globally
preserve the multi-well elastic energy of the parent model, see [17, 23, 24].

Despite the relevance of boundary conditions, most of the literature studies deal with shells
completely free on their sides, see for instance [4, 6, 7, 13, 15, 17, 23], and only few address the
design of multistable constrained shells [8, 14]. In [1] the authors used the reduction procedure
proposed in [24] to infer a three-degrees-of-freedom reduced model capable of predicting the
multistable behavior of pseudo-conical cantilever orthotropic shells. They identified two com-
pact disjoint regions in the plane of shell initial curvatures corresponding to bistable shells after
clamping, thus opening the way to a more general approach to the design and optimization of
multistable shells.

In the present work, we consider the initial geometry of the natural stress-free configuration
and the elastic properties of the shell as the only means to induce bistability, excluding other
sources of multistability such as inelastic pre-stresses. We use the same model as in [1] to
investigate how the material anisotropic elastic properties affect the multistability of clamped
shells.

Specifically we tailor the anisotropic elastic behaviour of the constitutive material of the
shell using composite laminates, where the combination of ply angles in a layup allows to cover
a wide range of elastic parameters and anisotropic behaviours. In order to better understand
the influence of anisotropy, we employ the polar method [22, 20] which makes it possible to
express tensors in plane elasticity in terms of invariant quantities. For an orthotropic laminate
with a given base ply material, one can describe the elastic properties in terms of only three
polar parameters, two invariants elastic moduli and an angle that represents the direction of the
principal orthotropy axis. As such, the polar method allows to clearly highlight the influence
of the anisotropic behaviour of laminates on the multistability scenarios.

For sake of simplicity, we choose two initial geometries for the shell natural configuration
and we consider uncoupled quasi-homogeneous orthotropic laminates [19]. We detect the re-
gions in the plane of the polar moduli corresponding to shells which turn out to be bistable
after clamping; moreover, we investigate the influence of the polar moduli on the shapes of the
clamped stable configurations and on the energetic gap between them. In that, we take advan-
tage of the polar method to provide some insights about the role of the lamination sequences;
specifically, for angle-ply laminates we point out the influence of the lamination angle. Such
informations are deemed to be very useful in the early stages of the design of morphing shells.

The paper is organized as follows. Section 2 introduces the relevant geometric properties
of the shells and the polar method notation for the material moduli. Section 3 presents the
main results: mono- and bistability regions are shown on the plane of polar moduli. We
sketch the shell stable shapes for several special choices of the material anisotropy and discuss
the associated elastic energy profiles. Finally we compare such results with the experimental
evidence of two composite laminated shells. The main hypotheses of the reduced shell model
and the procedure used to estimate the minimal energy gap between different equilibria are
discussed in two Appendices.
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2. Geometric and material parameters

2.1. Geometry of the shell natural shapes

We consider shallow shells with rectangular planform and pseudo-conic natural configura-
tions, which can be described by surfaces in the form:

S0 = {(x, y, w0(x, y)), 0 ≤ x ≤ Lx, −Ly/2 ≤ y ≤ Ly/2} ,

with:

w0(x, y) =
y2

2

(

h1 + (h2 − h1)
x

Lx

)

, (1)

for some h1, h2 ∈ R and 0 < Ly ≤ Lx. The geometry of the natural configuration of the shell is
completely defined by three design parameters: the aspect ratio of the planform η = Lx/Ly ≥ 1
and the real numbers h1 and h2, which measure the curvatures of the edges parallel to the y-
direction x = 0 and x = Lx, respectively. This class of natural configurations has been chosen
because it is sufficiently wide to include shapes suitable for technogical applications and simple
enough to allow a proper understanding of the role played by the parameters it depends on.

In what follows only two natural configurations will be considered. The first, displayed in
Fig. 1a, has curvatures h1 and h2 concordant in sign and will be labeled as (CC); the second,
sketched in Fig. 1b has discordant edge curvatures and will be labeled as (DC).

O

Lx Ly

x

y

(a) CC

O

Ly

x

y

Lx

(b) DC

Figure 1: The two natural configurations considered: shells with Concordant (a) and Discordant (b) Curvatures
of the opposites edges.

The values chosen for the geometrical design parameters Lx, Ly, h1 and h2 are listed in
Table 1. In order for the shell to be thin, edges lengths Lx, Ly have been chosen sufficiently
large compared to the laminate thickness t, here equal to 1 mm; their ratio Lx/Ly allows to
have a bistability region wide enough for both (CC) and (DC) cases, see [1]. The curvatures
h1, h2 have been chosen so that the shallowness ratio wmax/Ly is 1/8 for the edge x = 0 (this
is the edge to be clamped), and 1/6 for the edge x = Lx (to be left free). Both geometries
in Table 1 share the same aspect ratio η = 2 and only differ by the sign of the curvature
of the free edge. As the difference of the curvature radii is small compared to the length,
|h−1

1 − h−1
2 |/Lx ≃ 0.125, the CC shell is quasi-cylindrical.

Table 1: Geometric design parameters

Lx Ly h1 h2 t
(m) (m) (1/m) (1/m) (m)

Concordant Curvatures (CC) 0.3 0.15 1/0.15 1/0.1125 0.001
Discordant Curvatures (DC) 0.3 0.15 1/0.15 -1/0.1125 0.001
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The same natural configurations were already studied in [1] and it was shown that bistability
can be obtained by clamping these two shells along their curved side x = 0 onto a flat line in
a wide range of values for the geometric parameters η, h1 and h2. However, the analysis in
[1] was conducted with fixed material properties; in particular, the authors considered shells
made of an uncoupled square-symmetric ±45◦ angle-ply laminate. In the present work, we
keep the geometries of the natural configurations fixed and focus on the influence of composite
anisotropic behaviour on the multistability scenario.

2.2. Material constants of a composite laminated shell

As the shells under consideration are sufficiently thin and shallow we adopt the Föppl von-
Kármán model [25, 3] to compute their equilibria and stability (see Appendix A). Within this
model the material is assigned by the following linear constitutive prescriptions

n = A (e− f) +B (k − h) , m = D (k − h) +B⊤ (e− f) , (2)

relating the membrane stresses and bending moments to the membrane strains and to the
curvatures. In particular we have used the Voigt notation to indicate:

- the membrane stresses n = {nx, ny, ns} (ns = nxy is the shear component);

- the bending moments m = {mx,my,ms} (ms = mxy is the twisting component);

- the membrane strains e = {ex, ey, es} (es = 2exy is the shear strain)

- the curvatures k = {kx, ky, ks} (ks = 2kxy is the twisting curvature);

In order to account for a curved natural (i.e stress-free) configuration, we have also introduced
the strains f = {fx, fy, fs} and curvatures h = {hx, hy, hs} of the natural configuration.
Clearly these must obey the Gauss compatibility equation

∂2fx
∂y2

+
∂2fy
∂x2

− 2
∂2fxy
∂x∂y

= hxhy − h2
xy. (3)

The three 3× 3 matrices A, B and D in (2) indicate the membrane, coupling and bending
stiffnesses respectively. In order to give a synthetic analysis of the multistability behaviour of
orthotropic shells, we suppose the constitutive material of the shell to be uncoupled and to
have the same elastic behaviour in tension and bending in each direction. In the language of
Classical Laminated Plate Theory [2, 19], we suppose the material to be quasi-homogeneous
and orthotropic with principal directions aligned with the coordinate directions x and y. These
assumptions imply

A = tA∗, B = 0, D =
t3

12
A∗, A∗ =

a

t





1 ν 0
ν β 0
0 0 γ



 , (4)

where t is the equivalent shell thickness and A∗ the normalized membrane stiffness. As the
membrane and bending stiffness are mutually proportional, only four constitutive parameters
are sufficient to fix the shell material properties. Specifically, a measures the membrane and
bending stiffness in the x direction, β controls the ratio between the membrane and bending
stiffnesses in the two coordinate directions, ν measures the in-plane and out-of-plane Poisson
effects and γ controls the shear and torsional moduli.

Since composite laminates are an effective means to tailor anisotropic stiffness, we consider
that the aforementioned material properties are achieved by using laminates and adopt the
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polar method [22, 20] to represent the normalized stiffness tensor A∗. Within this represen-
tation, four material invariants T0, T1, RK and R1 and one angle Φ1 are sufficient to describe
the orthotropic stiffness tensors of a quasi-homogeneous laminate [12]. Namely, we have

a/t = T0 + 2T1 +RK cos 4Φ1 + 4R1 cos 2Φ1, (5)

a β/t = T0 + 2T1 +RK cos 4Φ1 − 4R1 cos 2Φ1, (6)

a ν/t = −T0 + 2T1 −RK cos 4Φ1, (7)

a γ/t = T0 −RK cos 4Φ1, (8)

where T0 and T1 are positive scalars representing the isotropic components of the tensor, whilst
the anisotropic components are RK and R1: RK is a real number (positive or negative values
of RK respectively correspond to low- or high-shear orthotropic materials [20]) and R1 is a
non-negative modulus. Finally, the angle Φ1 identifies the principal direction of orthotropy of
the laminate; in our case, the condition for the principal orthotropy direction to be aligned
with either x- or y-direction implies Φ1 = 0◦ or Φ1 = 90◦, respectively. Correspondingly, one
can notice that in expressions (5) cos 2Φ1 = ±1, whilst cos 4Φ1 = 1 in both cases.

The advantage of this representation is that for laminates made of identical layers (same
base material and same thickness), it can be easily shown that the isotropic components of the
normalized stiffess tensor A∗ are equal and coincide to those of the elementary layer, say T ℓ

0

and T ℓ
1 [12]. Thus, using the polar method, only the two anisotropic parameters RK and R1 are

left to represent the elastic behaviour of uncoupled quasi-homogeneous orthotropic laminates.
Hence, after choosing the elementary layer, the admissible domain of uncoupled orthotropic
laminates reduces to a two-dimensional region within the RK-R1 plane.

In particular, the admissible values of the anisotropic parameters of the tensor A∗ are
bounded because they depend on the combination of layers’ orientation angles within the
laminate stacking sequence, [12, 21]. Using the superscript ℓ for the polar parameters of the
elementary layer, these bounds are:

RK ≥ Rℓ
K

[

2

(

R1

Rℓ
1

)2

− 1

]

, (9a)

−Rℓ
K ≤ RK ≤ Rℓ

K , (9b)

0 ≤ R1 ≤ Rℓ
1. (9c)

Points satisfying the bounds (9) are represented by the upper half of the grey domain in
Figure 2 (i.e. non-negative values of R1, according to (9c)). Since Φ1 = 0, π/2 corresponds
to the quantity R1 cos 2Φ1 = ±R1, we can identify the upper half of the domain (R1 > 0) to
the case of an orthotropic laminate with the principal orthotropy direction aligned with axis
x (case Φ1 = 0). Each point of the upper half of the domain has a symmetric counterpart in
the lower half (negative R1): the symmetric point represents the same laminate configuration
(same elastic moduli) shifted by 90◦, i.e. with principal orthotropy direction aligned with the y
axis (case Φ1 = π/2). Thus, the complete domain of orthotropic quasi-homogeneous laminates
with their principal orthotropy axes aligned with either the x- or y-axis of the plate is shown
by the grey region in Figure 2.

Points on the curved boundary A-B-C correspond to orthotropic angle-ply laminates, i.e.
laminates with equal number of layers at angles α and −α. Moving from point A to C, the
lamination angle varies from α = 0◦ to α = 90◦: points A and C represent unidirectional
laminates with fibers aligned along the x- or y-direction, respectively. Point B corresponds to
the square-symmetric angle-ply laminate with α = 45◦, which was studied in [1] and used in
[4] to build a tristable shell. Points on the right boundary of the domain (segment A-D-C)
correspond to cross-ply laminates, with layers oriented at angles 0◦ and 90◦ in varying propor-
tion: in particular, point D can be achieved with an equal number of layers at each orientation

5



RK

Line of cross-ply 

laminates

Boundary of angle-ply

laminates

0o

90o

B

C

A

Isotropy

x

x

x

0/90o

x

+45/-45o

x

+22.5/-22.5o

x

+67.5/-67.5o

Admissible domain

R1,(0,90)

DI

Figure 2: Admissible domain in the plane of the polar parameters RK and R1. Numerical values are in GPa
and correspond to the base material in Table 2.

.

in the stacking sequence. Points on the horizontal axis R1 = 0 represent square-symmetric
laminates, whilst points on the vertical axis RK = 0 own a special form of orthotropy, see [19],
characterised by a constant value of the shear or torsional modulus. Finally, the origin of the
RK-R1 plane represents an isotropic laminate.

3. Multistable scenario as function of the polar parameters

We choose the polar moduli RK and R1 as the only design parameters. In particular,
we fix the material parameters for the elementary layer; hence, for both the shell natural
configurations of Figure 1, we determine the regions in the plane RK-R1 corresponding to
bistable shells after clamping.

Table 2: Material properties of the unidirectional carbon/epoxy ply TenCate TC275-1 Epoxy Resin System
(Grafil TR50S 15K fiber with a FAW 150 gsm, 35% RC). Values from the product data sheet [27].

E1 E2 ν12 G12 T ℓ
0 T ℓ

1 Rℓ
K Rℓ

1

GPa GPa - GPa GPa GPa GPa GPa
152.4 10.3 0.3 3.4 21.4 21.2 17.9 17.8

A highly anisotropic unidirectional carbon/epoxy ply has been chosen, the overall thick-
ness of the shell being fixed at t = 1 mm, see Table 2. This latter assumption implies a
laminate made by N = 8 layers, which is the minimal condition for designing uncoupled quasi-
homogeneous orthotropic laminates. Specifically, we can easily cover the curved boundary
A-B-C of the admissible domain in Figure 2 using the exact solution provided by [19] for the
8-layer angle-ply antisymmetric stacking sequence:

[α/− α/− α/α/− α/α/α/− α] , with: α ∈ [0◦, 90◦]. (10)

Other points of the domain of orthotropic laminates of Fig. 2 correspond to different stacking
sequences that can be determined by applying an optimisation approach such as in [10].
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In the present work, for both the natural configurations and for each choice of the moduli
RK-R1 within the admissible domain of Fig. 2, we use the reduced model of Föppl von-Kármán
shallow shell detailed in Appendix A to predict the number of stable configurations as well as
their shapes. When the shell is bistable, we compute the minimal energy path between the
two wells using the algorithm detailed in Appendix B.

3.1. Mono- and bistability regions

Fig. 3 displays the global stability scenario over the admissible domain in the plane of the
polar moduli RK-R1. The grey and white regions correspond, respectively, to shells that are
bistable and monostable after clamping the edge x = 0.

-10 10
RK

-10

10

R1

B

A

C

DF

E

G

P

Q

(a) Concordant Curvatures shell (CC).

-10 10
RK

-10

10

R1

B

A

C

DI

L

M

(b) Discordant Curvatures shell (DC).

Figure 3: Stability scenario in the plane of polar moduli.

The bistable region of shells with Concordant Curvatures (CC) of their opposite sides is
sensibly smaller, see Fig. 3a. As already pointed out in [1], these shells exhibit quasi-cylindrical
configurations with small stability margins. Specifically, the existence of bistable shells is
mostly limited to negative values of RK , i.e. high-shear orthotropic laminates (refer to (8)).
This region spans almost symmetrically with respect to the horizontal axis (R1 = 0). Hence,
bistability is obtained either by aligning the principal axis of orthotropy to the longitudinal
x axis (R1 > 0) or to the transverse y axis (R1 < 0). The bistability region borders are
the arc E-B-G on the left, corresponding to angle-ply laminates with angles α ∈ [24◦, 70◦]
approximatively, and the arc E-F -G on the right, with F = (RK ≈ −5.8 GPa, R1 = 0). In
particular, one can see that the CC shell made of isotropic laminates (RK = 0, R1 = 0) is not
bistable.

In the case of shells with Discordant Curvatures (DC) of their opposite sides, bistability
is obtained over a much wider set of material parameters. Specifically, the bistable region in
Fig. 3b covers almost the whole admissible domain of orthotropic laminates: only shells close
to the corner of unidirectional laminates in the transverse direction (α ≃ 90◦) are, indeed,
monostable. The bistability region is limited on the left by the A-B-L arc, i.e. all angle-ply
laminates with α ∈ [0◦, 73◦], and on the right by the segment A-D-M which corresponds to
cross-ply laminates (i.e. RK = Rℓ

K = 17.9 GPa); the limit point M stands for a cross-ply
layup with R1 ≈ 9.8 GPa and the main direction of orthotropy Φ1 shifted at 90◦ with respect
to the x-axis. Notice that the isotropic laminate, i.e. point I in Fig. 3b, is now included within
the bistability domain.
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3.2. Configurations and energy profiles for (CC) shells

With reference to the CC shell, we analyse how the shapes of bistable configurations evolve
over the bistability domains of Fig. 3a. To give a synthetic quantitative description of these
shapes, we compute the curvatures

Kx =
1

Lx

∫ Lx

0

kx(x, 0) dx, Ky =
1

Ly

∫ Ly/2

−Ly/2

ky(Lx, y) dy, (11)

respectively meaning the average kx curvature of the shell axis (y = 0) and the average ky
curvature of the free edge x = Lx. In addition, for each pair of stable configurations, we
compute the energy profile according to the procedure described in Appendix B. The results
are given in Fig. 4. In particular, Fig. 4a reports the variations of the average curvatures for
the main points highlighted in Fig. 3a, Fig. 4b and Fig. 4c plot the actual (i.e., not scaled,
nor magnified) shapes and the energy profiles for three angle-ply laminates corresponding to
points P , B and Q in Fig. 3a.

The main results shown in Fig. 4 are summarized in the following.
There are two disconnected equilibrium branches; on both, the stable shapes are charac-

terised by positive curvatures Kx and Ky.
The first branch, identified by a subscript 1, is stable on the whole domain. It is charac-

terized by a small value of the average axial curvature RKx ≤ 3 and by values of the average
edge curvature within 4 ≤ RKy ≤ 8 (R is here the characteristic radius of curvature of the
shell, see Appendix A). For angle-ply laminates, as the angle α varies from 0◦ to 90◦, the
point representative of the material properties moves on the arc A− E − B −G− C and the
equilibrium follows the curve A1 − E1 −B1 −G1 − C1. Along this path there is a substantial
increase of the curvature Ky mainly due to a decreasing value of the Dyy = t2a β/12 stiffness.
Similarly if the material point is moved along the line B −F −D (RK = 0), the curvature Kx

remains almost constant along the path B1 − F1 −D1 but the free edge curvature increase.
The second branch, identified by a subscript 2, is stable only in the bistability region (light

grey area). These equilibria are characterized by vanishing values of the edge curvature Ky,
whilst the average axial curvature changes from RKx ≃ 2 to RKx ≃ 20. In particular, on
the arc E − B − G of angle ply laminates the limit points of the bistable region are E where
α ≃ 24◦ and G where α ≃ 70◦. Therefore, when α < 24◦ or α > 70◦ the second branch looses
its stability.

The stable shapes associated at the points P , B and Q are reported in Fig. 4b. As α
increases from 30◦ (point P ) to 60◦ (point Q) it is evident the substantial increase of the axial
curvature in the second equilibrium branch.

Fig. 4c reports the energetic profiles of the elastic energy for angly-ply laminates on the
arc E − B − G, the coordinate s being a normalized abscissa between the minima. As the
angle α varies from 24◦ to 70◦, we note a sensible increment of the energy content of both
configurations. Indeed, as α increases the transverse stiffness Dyy = t2a β/12 increases and,
in turn, the pre-stress associated to clamping the edge x = 0 increases. We could also observe
how the stability margin of the second branch becomes vanishing as α → 70◦.

3.3. Configurations and energy profiles for (DC) pseudo-conical shells

With reference to the DC shell, we analyse how the shapes of bistable configurations evolve
over the bistability domains of Fig. 3b. Again, in order to give a synthetic quantitative descrip-
tion of these shapes, we observe how the average curvatures Kx and Ky vary on the domain
of polar moduli. The results are given in Fig. 5 and are summarized in the following.

There are two disconnected equilibrium branches lying in opposite quadrants on the average
curvature plane Kx-Ky.

The first branch, identified by a subscript 1, is stable on the whole domain. It is charac-
terized by average curvatures of opposite signs 1 ≤ RKx ≤ 2 and −8 ≤ RKy ≤ −4 (R is here

8



10 20
R Kx

4

8

R Ky

A1

E1

B1

G1

C1

F1

Q1

P1

D1

G2B2

E2
F2P2 Q2

RK

R1

B

A

C

DF

E

G

P

Q

(a) (b)

(c)

Figure 4: Variation of stable configurations in the admissible domain of Concordant Curvatures shell. (a)
Average curvatures Kx and Ky in Eqn. (11); the characteristic curvature radius is set to R = 1.6m. (b) Stable
shapes for the angle-ply laminates P , B and Q; (c) Elastic energy profiles for the same laminates P , B and Q;
s is the normalized abscissa between the minima, see Appendix B.

the characteristic radius of curvature of the shell, see Appendix A). For angle-ply laminates,
as the angle α varies from 0◦ to 90◦, the point representative of the material properties moves
on the arc A − B − C and the equilibrium follows the curve A1 − B1 − C1. Along this path
the absolute value of Ky curvature decreases, whilst the axial curvature Kx slightly increases.
In any case the shape variations of this equilibrium branch are quite small as can be checked
from three shapes L1, B1 and A1 in Fig. 5b.

The second branch, identified by a subscript 2, is stable only in the bistability region (light
grey area). These equilibria are characterized by much sharper variations as the material is
varied within the R1 − RK domain. The second branch becomes unstable when approaching
the region near the corner point C, the limit point on the boundary of angle-ply laminates
being L where α ≃ 73◦. In this region the ratio β = Dyy/Dxx between the bending stiffnesses
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Figure 5: Variation of stable configurations in the admissible domain of Discordant Curvatures shell. (a)
Average curvatures Kx and Ky in Eqn. (11); the characteristic curvature radius is set to R = 1.6m. (b) Stable
shapes for the angle-ply laminates A, B and L. (c) Elastic energy profiles for the same laminates A, B and L;
s is the normalized abscissa between the minima, see Appendix B.

in the coordinate direction becomes large; β → 15 as the material point tends to C.
The stable shapes associated with the material points A, B and L are reported in Fig. 5b,

again without scaling or magnification. As α increases from 0◦ (point A) to 73◦ (point L)
the second branch sensibly changes, passing from the configuration A2 to the S-shaped con-
figurations B2 and L2. We point out that the prediction of the shape B2, here obtained with
the von-Kármán model, was found to be very close with the shape numerically predicted by
Abaqus FE using a completely nonlinear shell model, see [1].

Fig. 5c reports the energetic profiles of the elastic energy for angly-ply laminates on the arc
A − B − L; again, the coordinate s is a normalized abscissa between the minima. We notice
that the energetic content of the two configurations is similar and has moderate variations with
respect to the angle α. Again one could appreciate the vanishing stability margin of the second
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branch as α → 73◦. We point out that the angle α sensibly affects the energy gap between
equilibria; hence we could obtain sensibly different energy profiles of the morphing structure
by modest variations of the angle α.

3.4. Comparison with experimental evidence

In cooperation with Aviorec [26], two Concordant Curvature shells have been produced
corresponding to the material properties of points B and P in Fig. 4.

The unidirectional lamina TenCate TC275-1 Epoxy Resin System was used (see Table 2)
with the stacking sequence as in Eqn. (10), with α = 45◦ (point B) and α = 30◦ (point P ).
The cure temperature was 135◦ C. The natural configurations of the two resulting laminated
shells are shown in Fig. 6, cf. Fig. 1a; one can hardly observe any difference in these two
shapes.

Figure 6: The laminated shells P (left) and B (right) in their natural configurations. Hatched patterns mark
the regions to be clamped.

The configurations obtained after clamping the edge x = 0 are reported in Fig. 7. In
particular, in Fig. 7a we show an overlay of the stable configurations after clamping the laminate
B: the predicted shapes where shown as B1 and B2 in Fig. 4b.

A measure of the average axial curvature on the prototype gives Kx ≃ 5.2m−1; this value
must to be compared with the prediction Kx(B2) ≃ 10.65/R ≃ 6.65m−1 (point B2 in Fig. 4a).
The video CCshellB alpha45.mp4, provided in the supplementary material, confirms the
robustness of the bistable behavior, cfr. the energy profile B1 −B2 in Fig. 4c.

Similarly, Fig. 7b reports the shapes obtained after clamping the laminate P ; this point
was chosen as sensibly closer than B to the boundary of the bistability region. Whilst the
lower configuration corresponds to the predicted shape P1 in Fig. 5b and it is stable, a small
force is needed to remain in the second configuration. This last shape corresponds to P2 in
Fig. 5b and was predicted to be stable but with a very small stability margin. The cause of
this discrepancy is not known to the authors; small pre-stresses in the natural configuration,
geometric or material imperfections could result in a small predicted stability margin to actually
vanish. As a matter of fact, the boundary E − F − G of the stability region in Fig. 3a is not
sharp corresponding to fading stability margins of the second equilibrium branch. Keeping
the maintaining force to a minimum, we have measured an average axial curvature Kx ≃
2.25m−1, whilst we predicted Kx(P2) ≃ 4.1/R ≃ 2.55m−1 (Point P2 in Fig. 4a). The video
CCshellP alpha30.mp4, provided in the supplementary material, proves that the second
equilibrium branch actually exists. An audible snap-through instability is indeed observed
when forcing the equilibrium P1 toward P2 and when releasing the P2 configuration.
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(a) (b)

Figure 7: Overlay of the stable configurations for two shells shown in Fig. 6 once clamped. (a) The material
refers to point B in Fig. 4a; the actual shape must be compared to B1 and B2 in Fig. 4b. (b) The material
refers to point P in Fig. 4a; to be compared to P1 and P2 in Fig. 4b.

4. Conclusions

An increasing number of engineering applications exploit bistability to enhance the perfor-
mance of structural systems. Focusing on the bistability of clamped shells, we have shown how
the material could be tailored to achieve a variety of multistable behaviors.

In particular, we suppose our shell assembled as a composite laminate and use the polar
representation [22] to parametrize the admissible domain for orthotropic elastic moduli. The
advantage is to draw indications which are independent on the actual lamina used but do
depend on the stacking sequence of the laminate. For two different geometries of the stress-
free shell configuration, we predict the nonlinear response after one of its edges has been
clamped. Imposing this boundary condition creates the stress distribution responsible for the
bistable behavior. Varying the material orthotropy, the shell nonlinear response is very rich; it
is characterized by different shapes of the secondary stable equilibria and by different profiles
of the elastic energy content. Hence, in such structural systems, the material alone is able to
determine the shapes of stable equilibria, the energetic gaps and the distance between the wells.
We show that the reduced model provides such informations while simultaneusly singling out
their sensitivity with respect to the lamination sequences. Notably, it allows to determine the
lamination angle corresponding to the desired multistable behaviour (e.g., a prescribed pair
of clamped stable shapes, each one with a specified robustness). In that, the model proves to
be a valuable tool for design purposes, both to get preliminary indications about the design
parameters and to drive FE simulations and tests on prototypes, otherwise almost useless.
Clearly a simultaneous optimization of both the natural stress-free shape and the material
properties could lead to a much more accurate design of the multistable structural response,
but this was out of the scope of this contribution. As a matter of fact, much still remains to be
done in this research field. Looking at the most promising technological applications, we deem
necessary to investigate in depth both the aeroelastic behaviour and the dynamic response of
multistable shells.

Appendix A. Reduced nonlinear model and stability analysis

We detail the modelling assumptions and the reduction procedure used in the stability
analyses of Sect. 3. First, we briefly recall the main assumptions of the generalized von-Kármán
model, see [3], [24] for details.
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Starting from a flat reference configuration, we consider shell configurations in the form:

S = {(x+ u(x, y), y + v(x, y), w(x, y)), 0 ≤ x ≤ Lx, −Ly/2 ≤ y ≤ Ly/2} ,

where the in-plane displacement fields u and v and the transverse displacement field w scale
as: u, v = O(ε2), w = O(ε), with ε = t2/R2 a small parameter, being t the thickness and
R the characteristic radius of curvature of the shell1 By assuming these scaling laws, the
contributions of the in-plane and transverse displacements to the membrane strains of the
surface S are comparable, so that we have:

ex =
∂u

∂x
+

1

2

(

∂w

∂x

)2

, ey =
∂v

∂y
+

1

2

(

∂w

∂y

)2

, exy =
1

2

(

∂v

∂x
+

∂u

∂y
+

∂w

∂x

∂w

∂y

)

, (A.1)

while the curvatures of the surface S only depend on the transverse displacement:

kx =
∂2w

∂x2
, ky =

∂2w

∂y2
, kxy =

∂2w

∂x∂y
. (A.2)

The stable equilibria are the local minima of the total energy E(u, v, w), sum of the bending
and membrane contribution:

E(u, v, w) =
1

2

∫ Lx

0

∫ Ly/2

−Ly/2

(mxkx +myky +msks + nxex + nyey + nses) dA, (A.3)

with the bending moments and membrane stresses as in (2).
Necessary conditions for the functional E to be stationary with respect to u and v are the

in-plane equilibrium equations:

∂nx

∂x
+

∂ns

∂y
= 0,

∂ns

∂y
+

∂ny

∂y
= 0, (A.4)

while for the system (A.1) and (A.2) to be integrable, the Gauss compatibility condition must
hold true:

∂2ex
∂y2

+
∂2ey
∂x2

− 2
∂2exy
∂x∂y

= kxky − k2xy. (A.5)

By inversion of the constitutive relations (2) and using (3), (A.5) is transformed in terms of
membranal stresses to get

1

t a (β − ν2)

[

(β − ν)
∂2nx

∂y2
+ (1− ν)

∂2ny

∂x2
−

(β − ν2)

γ

∂2ns

∂x∂y

]

=

= kxky − k2xy −
∂2fx
∂y2

−
∂2fy
∂x2

+ 2
∂2fxy
∂x∂y

= detk − deth.

(A.6)

where h denotes the curvature of the shell natural configuration. Equations (A.4) and (A.6)
constitute a linear system of differential equations to compute the membrane stresses in term
of the curvature field k. In what follow we exploits this fact to deduce a discrete approximation
of the energy functional (A.3), see [24] or [1] for more details.

Step 1. We seek for displacement fields w in the form

w(x, y) = q1
x2

2
+ q2

y2

2
+ q3

x3

6
+ q4

x2y2

2
+ q5

xy2

2
, (A.7)

uniquely defined by five Lagrangian parameters, q1 to q5. Such an ansatz covers the assumption
(A.7) and allows us to clamp the shell on the edge x = 0 by fixing q2 = 0 and q5 = 0.

1With t = 1 mm and R ≃ 1.61m, the curvatures in Table 1, the shell shallowness is evaluated to be
ε = t2/R2

≃ 10−4.
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Step 2. Using (A.2), the forcing term in (A.6) is evaluated to be

detk − deth = q1q4 x
2 + q3q4 x

3 − 3 q24 x
2 y2 +

(h1 − h2)
2

L2
x

y2. (A.8)

Here, according to Eqn. (1), deth = −(h1 − h2)
2y2/L2

x.

Step 3. After introducing (A.8) into (A.6), we use a standard finite-element code to solve the
membrane problem (A.4)-(A.6) with respect to the Lagrangian parameters q1, q3 and q4. A
high numerical precision to estimate the membranal stresses ensures a good estimate of the
membrane energy, which is the dominant term of the elastic energy functional.

Step 4. Inserting the ansatz (A.7) and the computed membrane stresses in (A.3) we finally ob-
tain a reduced energy funtional E = Ē(q), which is a fourth-order polynomial in the Lagrangian
parameters q = (q1, q3, q4).

We prefer the minimization of the reduced energy Ē(q) to a standard finite-element discretiza-
tion of the original energy functional (A.3). Indeed, in order to find all the branches of the
shell equilibria, we could rely on polynomial root-finding techniques of the system ∂Ē/∂q = 0.
These techniques become computationally infeasible when the number of degrees of freedom
becomes large.

Appendix B. Optimal path between minima

Once a bistable shell is given, the estimate of the energetic gaps between the two stable
equilibria is a question of relevant importance. To this aim, we sketch below a procedure to
compute, in the space of Lagrangian parameters, an optimal trajectory connecting the two
minima. Specifically, a trajectory is said to be optimal if it minimizes the maximum value
attained by the elastic energy. This is pictorially equivalent to finding a “mountain pass”
between two valleys; once the height of the pass is found the two energetic gaps are clearly
defined.
For assigned material parameters we suppose to be given an energy functional Ē(q) character-
ized by two distinct minima, say qa and qb. For every smooth curve s ∈ [0, 1] 7→ q(s) connecting
the two minima, i.e. q(0) = qa, and q(1) = qb, we define the “smoothing” functional

S(q(·)) =

∫ 1

0

‖q′′(s)‖2 ds+
(

max
s

‖q′‖ −min
s

‖q′‖
)2

, (B.1)

and the “maximal-energy” functional

E(q(·)) = max
s∈[0,1]

Ē(q(s)). (B.2)

Starting from k = 0, we iteratively solve, until convergence, the minimization problem

qk+1 = argmin
q
[S(q(·)) + c k E(q(·))] , c > 0, k = 0, 1, 2, ... (B.3)

using as a tentative solution the curve qk.
We note that in the first iteration, k = 0, the resulting optimal trajectory is the straight

line between the minima q0(s) = (1 − s) qa − s qb (depicted in red in Fig. B.8). Clearly,
as S(q0) = 0, the global minimum is reached. However, as k increases, the maximal-energy
functional E in (B.2) enters the game, since its relative cost with respect to the smoothing
functional increases. The real value c is used to control such cost. For k > 0 the straight path
is not any more optimal and the path is distorted in order to achieve a lower value of the energy
gap. In Fig. B.8a we have plotted, in a three-dimensional Lagrangian space q = (q1, q3, q4), the
energy level sets for a bistable shell; in the same figure the first iterate q0(s), the intermediate
steps and the final optimal path qk̄(s) are shown by a red straight line, a set of grey curves and
a thick black curve respectively. Fig. B.8b reports the elastic energy values on such trajectories.
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Figure B.8: a) Level sets for the elastic energy of a bistable shell and the straight (red) and optimized (black)
paths between the two minima. Intermediate steps, for 0 < k < k̄ in (B.3), are reported as thin grey curves.
b) Logarithmic plot of the energy along this paths.

Acknowledgement

The authors acknowledge the financial support of Project ANR-13-JS09-0009 (Agence Na-
tionale de la Recherche, France).

References

[1] M Brunetti, A Vincenti and S Vidoli. A class of morphing shell structures satisfying clamped
boundary conditions. Int. Journal of Solids & Structures, 82:47 – 55, 2016

[2] J Berthelot. Materials. Mechanical Behavior and Structural Analysis. Springer, 1999
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[25] T Von Kármán. Festigkeitsprobleme im maschinenbau. Encyklopädie der Mathematischen
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