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OF ELASTIC PLATES AND SHELLS 

L. AZRAR, B. COCHELIN, N. DAMlL* AND M. POTIER-FERRY 

Laboratoire de Physique et Mecanique des Materiaux, URA CNRS 1215, lnstitut Superieur de Genie Mecanique et 
Pruductique, UniPersite de Metz, lie du Saulcy, 57045 Metz Cedex, France 

SUMMARY 

In this paper, we apply an asymptotic-numerical method for computing the postbuckling behaviour of plate 
and shell structures. The bifurcating branch is sought in the form of polynomial expansions, and it is 
determined by solving numerically (FEM) several linear problems with a single stiffness matrix. A large 
number of terms of the series can easily be computed by using recurrent formulas. In comparison with 
a more classical step-by-step procedure, the method is rapid and automatic. However, the polynomial 
expansions have a radius of convergence which limits the validity of the solution to a neighbourhood of the 
bifurcation point. ln the present form, the method should be viewed as a cheap and automatic way of 
completing a linear buckling analysis. It is illustrated in two examples: a square plate under in-plane 
compression and a cylindrical shell under pressure. 

l. INTRODUCTION

In general, the postbuckling behaviour of plates and shells is computed by using standard 
predictor-corrector algorithms and branch switching techniques.1-3 The most popularly used
scheme is the Newton-Raphson method associated with a load control, a displacement control, 
or an arc length control.4-6 Although such methods are continuously being improved, for 
instance, with better predictors,7'8 they require long computation times as compared to a linear 
problem, and it is difficult to automatize the step-by-step procedure. Moreover, the imperfection 
sensitivity analysis requires very long computation times since one has to perform one step
by-step computation for each given imperfection. 

An alternative method has been proposed by Damil and Potier-Ferry9 to compute the 
postbuckling of perfect or imperfect elastic structures in a cheap and automatic way. As in
classical post buckling theory, 10-12 the solution is sought by means of asymptotic expansions but
without a too earlier truncature of the series. They established a proper way to expand, and 
showed how to compute all the terms of the series by building up and solving linear problems in 
a recurrent manner. Practically, the linear problems are solved by a classical finite element 
method and only few terms have to be computed. Since all the linear problems have the same 
stiffness matrix, only one matrix inversion is needed. This is a very attractive point of the method, 
which requires about the same computing time as a single step of the modified Newton-Raphson 
algorithm. This method had been illustrated on a one-dimensional test: the postbuckling of an 
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imperfect elastic beam which rests on a non-linear foundation. It notably improves the classical 
perturbed bifurcation theory where only the first term of the expansion is considered. 

This asymptotic-numerical method falls into the category of perturbation techniques that have 
already been addressed in References 1 3 -19. In general, only a few terms of the series can be really 
determined because of the complexity of the expansion procedure, and, quite often, the perturba
tion technique is reduced to a second-order approximation. The use of symbolic computation 
software can be very helpful to circumvent this difficulty.18 In Reference 9 the governing 
equations of plate and shell models have been written in a simple form with quadratic non
linearities. Hence, the expansion procedure is not too complex and explicit formulas have been 
derived for each individual term. The procedure can easily be implemented in an existing finite 
element software and jt permits one to compute numerically as many terms as wanted. 

The asymptotic-numerical method gives a continuous analytic representation of the solution 
branch which contrasts with the step-by-step representation given by predictor-<;orrector algo
rithms. Inside the radius of convergence of the series ,  the analytic representation can be very 
precise, provided that a sufficient number of terms are used and there is definitely no need of any 
correction. One drawback seems to be that the analytic representation is limited by a finite radius 
of convergence, but it would be a real drawback only if the radius of convergence was small, for 
instance, if it was smaller than the 'step length', as one can expect when using a classical 
step-by-step procedure. Furthermore, after an expansion process, various techniques can be 
applied, either for a direct improvement of polynomial representation of the solution branch21 or 
for constructing powerful numerical methods, by using the terms of the series as trial vectors in 
a Rayleigh-Ritz method.1 7 

The aim of the present paper is to test our asymptotic-numerical method for computing the 
first bifurcating branch of a perfect plate or a perfect cylindrical shell. It is organized as follows. 

In Section 2, we show that, within the framework of small strains and moderate rotations, the 
governing equations of a large class of plate and shell models are quadratic, and can be written in 
the form 

L(U) + (A. - J.c)L'(U) + Q(U, U) = 0 (1) 
where U is a mixed stress-displacement unknown vector, ,;, the load parameter, ).c the buckling
load, Land L' are linear operators and Q a bilinear operator. This equation is similar to equation 
(6) of Reference 9, except for the term that accounts for the imperfection. In view of applying
expansion techniques for computing a bifurcating branch at ). = ,le, it is convenient to write the
equilibrium equation in a simple quadratic form such as ( 1 ). 

In Section 3, we present a review of the asymptotic-numerical method. First, we define proper 
expansions of the unknowns and introduce them into (1). So, the non-linear mixed problem (1) is 
transformed into a sequence of linear mixed problems that are written explicitly in Section 3.2. 
The next step consists in changing every linear mixed problem into a displacement problem, and 
to solve them by a standard finite element method. 

The method is applied to a flat plate in Section 4 and to a cylindrical shell in Section 5. 
Computational techniques are discussed at that time, and it is shown how to implement the 
method in an existing finite element software. The combination of the asymptotic-numerical 
principle and the classical Fourier decomposition for axisymmetric geometry is detailed in 
Section 5. 

In Section 6, we present the numerical results and discuss the radius of convergence of the 
series. We also give some insight into the various attempts made for the improvement of the 
method. 
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2. GOVERNING EQUATIONS

Various variational principles can be established to write the governing equations of plate and 
shell models. Hereafter, we recall that a pure displacement approach yields cubic governing 
equations, whereas the mixed stress-displacement approach yields only quadratic ones. Hence, in 
view of applying an expansion procedure, the mixed approach is preferred here since it leads to 
a simpler algebra. A pure displacement version of the present method would be practicable, but it 
is much more tedious. After the expansion process, we shall come back to a displacement 
formulation and use very classical displacement FEM. The aim of this section is to write the 
governing equations of a large class of plate and shell models under form ( 1 ). 

The displacement of the middle surface of the shell or the plate will be denoted by U a and W, 
where U" are the in-plane displacements ( plane (x1, x2)) and Wis the transversal displacement in
the x3 direction (Figure 1). The Green-Lagrange strains are supposed to vary linearly through the
thickness x3 and will be denoted by

(2a) 

with 
(2b) 

r and K are the generalized membrane strain and bending strain. The membrane strain will be 
separated into a linear part rL(U,,, W) and a non-linear part rNL(U,,, W), whereas the bending 
strain K is supposed to be linear with respect to the displacement (framework of moderate 
rotations). 

For example, in the case of a Von Karman plate, the components of these generalized strain 
tensors are: 

r�p = t(U,,,p +Up,,,) 

r�t = !(W:a W:p) 

Kap= - W:ap 

(3a) 

(3b) 

(3c) 

and in the case of a Donnell cylindrical shell of radius R we have the same components, except for
the following one: 

(4) 

The membrane forces and the bending moments associated with r, K will be denoted by N and
M. We assume that the material is linear-elastic, and that there is no coupling between membrane

x3 

xl 

Figure 1. Reference configuration of the shell (or the plate) 
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N = Cm:r 
M =Cb: K 

(5a) 
(5b) 

The more general situation with a coupling matrix Cmb between membrane and flexion is of greatconcern for unsymmetric composite laminates for example, but it has been reported in theAppendix for simplicity of this presentation. The potential energy of the shell or the plate can be written as
P(U", W) = L 'iY(r, K) dn - A.&(U2, W) (6a) 

with (6b) 
where 11' is the strain energy density,,;, the load parameter, and A.r!J> the work done by the appliedloads. Since r and K are quadratic in U" and W, P(U2, W) is of degree 4 with respect to U"' W.The equilibrium equations, derived from the constancy of P( U., W), are cubic in U", W, andcannot be put under the quadratic form ( 1 ). It is necessary to introduce additional variables toreduce the degree in the equations. This can be achieved by using the Hellinger-Reissnerfunctional: 

with 
HR(U", w, N, M) = L r:N + K:M - 'iY*(N, M)d!l - A.&(U", W) (7a) 

* _ _l • -1. _l • -1. 11' (N,M)- 2N.Cm .N + 2M.Cb .M (7b) 
The mixed functional HR is cubic in U", W, N, M and the constancy of HR yields quadraticequations. It is important to note that the bending strain is linear with respect to the displacementand there is no need to introduce the variable M here to get quadratic equations. We choose toeliminate this variable and keep U "' W, N only. So, the governing equations can be derived fromthe first variation of the functional 

.P(U",W,N)= Lr:N-tN:c;1:N+!K:Cb:KdO-A.&'(U",W) (8) 

which yields quadratic equations in U "' W, N. By introducing the mixed unknown 

U= j � l No:p 
the governing equations of the model can be obtained from 

J(.P(U)) = 0 VJU (9) 

We· assume that the fundamental solution of (9) is linear with respect to the load parameter
A. (linear prebuckling) (Figure 2). This is rigorously exact for a plate under in-plane compression and a common approximation for a cylindrical shell under pressure.22 We introduce the
following change of variable which is classical within the postbuckling theory (see Reference 12,for instance): 

U= A.U0+fr ( 10)

and flexion in  the constitutie equations: 
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'\. Bifurcating branch 

u 

Figure 2. Load--<lisplacement curve with a linear fundamental solution 

where A. is the load parameter, U0 is the fundamental solution, and 0 is the new unknown.
Because there will be no possible confusion, we shall forget the sign " in order to simplify the 
notation. From now onwards, U will represent the difference between the actual displacement 
and the fundamental one. 

With the change of variable (10), the governing equation (9) can be rewritten as 

with 

«L(U), JU)) + (). - J.c ) «L'(U), i5U)) + «Q(U, U), JU))= 0 VJU (lla) 

«L(U), JU))= fn N : JrL + (rL - C�1:N):oN + K:Cb:bKdQ +Ac L N ° : brNL dQ (llb) 

«L'(U), iSU)) = L N°:i5rNLdQ (llc) 

«Q(U, U), JU))= L rNL:bN + N:brNLdn (lld) 

< < L(. ), bU)) and < < L'(. ), JU)) are linear operators and < < Q(.,. ), JU)) is a bilinear operator.

In view of a further finite clement discretization, it is convenient to consider a variational 
formulation as ( 1  la) rather than local equilibrium equations. Here the problem involves two
bilinear forms «L(U), iSU)), «L'(U), bU)) and one trilinear form « Q(U, U), bU)). To be
consistent with our classical operational notations (1), we have formally introduce a scalar 
JJroduct < <., . ) ) which classically allows one to associate linear self-adjoint operators L and L' 
with the two bilinear forms, and the quadratic operator Q with the trilinear form. But, at this 
stage, the scalar product is unnecessary. 
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3. REVIEW OF THE ASYMPTOTIC-NUMERICAL METHOD

For Jc = Ac, there is a solution branch that bifurcates from the fundamental one. This means that
the tangent operator Lis singular for this value of the parameter A. Furthermore, we assume that 
the kernel of this tangent operator L is one-dimensional, what occurs generically. For structures 
of revolution, the eigenspace is two-dimensional, but it is known that, even in this case, all the 
bifurcating solutions can be obtained by one-mode analysis. The asymptotic-numerical method 
aims to get a large part of the bifurcating branch in the form of a polynomial approximation. 

3.1. Polynomial approximation of a bifurcating branch
By use of the implicit function theorem, it is established that the unknown U and the load 

parameter A can be expanded into an integro-power series of a parameter 'a':
00 

A - ).c = L C(p)aP (12a) 
p=l 

00 
U = L aPV(p) (12b) 

p=l 
with V(p) orthogonal to V(l) for p � 2, 

«V(p) , V(I))) = 0 if p � 2. ( 1 2c) 

This representation ( 12) of a bifurcating solution branch is classical within bifurcation theory.
Here the unknown U is not expressed as a function of the parameter Jc, but it is the pair
unknown-parameter (U, A.) that is expressed as a function of the amplitude a, which is the
projection of U on the eigenmode V(l) . It is clear that the so-defined amplitude a and the
representation (12) depend on the chosen projector or, equivalently, on the chosen scalar product 
(12c) . 

The principle of the numerical method is to compute successively a number of vectors V(p) and 
coefficients C(p) up to a given order n. The truncature of the series ( 1 2) at the same order n yields 
polynomials ).(a, n), V(a, n), that we consider as approximations of the exact-solution branch. 

3.2. Expansion of the non-linear problem into linear problems

By introducing expansions (12) into (11), we get a set of linear problems in V(p) and C(p) : 

( (L(V(l)) , 6U)) = 0 

((L(V(2)) ,  6U)) = - C(l) ((L'(V(l)) ,  6U)) - ((Q(V(l) ,  V(l) ) ,  6U)) 
((V(2) , V(l))) = 0 

((L(V(3)) ,  oU)) = - C(l) ((L'(V(2)) ,  6U)) - C(2) ((L'(V(l)), oU)) 

- 2< < Q(V(l) , V(2)) ,  oU))

«V(3), V(l))) = 0 

p-1 p-1 

(13a) 
(13b)

(13c) 

«L(V(p) ), JU))= - I C(r)«L'(V(p - r)), oU)) - I «Q(V(r), V(p - r)), bU)) (13d)
r= 1 r-;;;;;; 1 

«V(p), V(l))) = 0 
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Since the kernel of Lis one-dimensional, the solution V (1) of (I 3a) depends on a single multiplier.
Because of the representation ( 12b) and ( 1 2c) of the branch, this multiplier contributes to the 
definition of the parameter a, but it does not change the solution branch. Hence, it can be chosen 
arbitrarily, and, in what follows, we consider that the solution of ( 1 3a) is uniquely defined. 
Because L is singular, the RHS of the l inear problems ( 13b)-( 13d) must satisfy a solvability 
condition that is obtained by setting JU= V(l) in these variational equations. In this way, we
compute the coefficient C(p) in terms of the vectors V(p'), p' < p. 

Equation ( 1 3b) leads to 

C(l) = 
_ «Q(V(l), V(1)), V(l))) 

«L'(V(l)), V(l))) 

and it follows from ( 1 3d) that 

1 
C(p -1) = 

«L'(V(l)), V(l))) 

(14a) 

x [ -:t� C(r)«L'(V(p - r)), V(l))) -:t: «Q(V(r), V(p - r), V(l))) J ( 14b)

Formally, the solution of ( 1 3) is equivalent to the solution of a set of linear problems in V (p ). The 
pth problem can be written under the more compact form 

«L(V(p)), c5U)) = «F(p), JU)) VJU 
«V(p), V(l))) = 0 

( 1 5a) 

( 1 5b) 

The unknown vector V(p) includes the displacement and the membrane stress resultant as 
previously: 1 Ua(P) )

V(p) = W(p) 
N,,.fl(p) 

( 16) 

The operator ( < L(. ), c5U)) is defined by ( 1 1 b) and the RHS of ( 1 5a) can be made explicit from
( 1 3d) , (llc) and (ltd). For example, with Von-Karman-type non-linearity (see (3b)), we get 

where 

« F(p), c5U)) = L F� (p) bW,a + F:p(p) bNafl dQ (17a) 

p-1 
F�(p) = - L (C(r}N�p + Nap (r)) W,p(p - r)

r=I 

N p-I 1 
F ap(P) = - L 2 W,a(r) W, p (P - r)

r-1 

( 17b) 

( 17c) 

3.3. Transformation of the linear mixed problems into displacement problems

Let us recall that the variable V contains not only the displacements Ua, Wbut also the stress 
Nafi which had been introduced to get quadratic non-linearities in the governing equations. As 
a consequence, all the linear problems ( 15a) are mixed. In order to use classical FEM, we shall 
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now transform ( 1 5) into a pure displacement problem and a pseudo-constitutive equation, which 
gives the pth term of the resultant stress N (p) as a function of the displacement. 

By choosing {JU as a pure stress (bUa = {J W  = O; 6Nap t= 0) in the linear problem ( 1 5a), we get
the following pseudo-constitutive equation: 

( 18) 

Let us denote the displacement vector by 

After having inserted ( 18) into ( 1 5a), we obtain a pure displacement problem 

«L(V(p)), 60)) = «F(p), <>O)) V<>O (19a) 

( 1 9b) 

with 

«V(p), V(l))) = O 

«L(V(p)), 60)) = L crL:Cm:brL + K:Cb: bK) dQ + }_c L N°:£5rNLdQ (19c)

«F(p), £50)) = t F� (p) bW,a  + Cm:FN(p):brLdQ (19d) 

The operator ( ( L( ), {JU)) appears to be the sum of the elastic stiffness operator and the
geometric stiffness operator. 

So, the mixed problem ( 1 5) has been replaced by the displacement problem (19) and the formula 
( 1 8) for the stress. Finally, N is a convenient additional variable to reduce the degree in the 
equation and to make easier the expansion procedure. Once the non-linear problem is trans
formed into a set of linear problems, the stress N is eliminated in these linear problems. 

3.4. Solution of the linear problems using classical FEM 

The last step of the asymptotic-numerical method is to solve successively the linear problems 
(19) in V(p) and C(p) with a very classical finite element method. After solving each problem, we
compute the resultant stress N(p) using formula (18) . We find it easier to report the computa
tional techniques in Sections 4 and 5, where we deal with a precise plate or a shell model, rather 
than in this general section. 

A last remark should be made before closing this section. We have described the asymptotic 
procedure intentionally, on the basis of continuous formulations because this analysis requires 
one only to split between linear and quadratic operators. The finite element techniques are 
needed only for solving the linear problem (19). 

4. APPLICATION TO VON KARMAN PLATE

4.1. Definition of the problem

We consider a geometrically perfect plate made of isotropic homogeneous material and loaded 
by in-plane forces ( Figure 3). The middle surface of the plate is a symmetry plane for this problem
and the fundamental solution is a pure membrane deformation without any lateral deflections. 
The first bifurcation is symmetric and the associated buckling mode is a pure bending deforma-
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A.c 

--5/;E w 

Figure 3. Pattern of the load-displacement curve for a plate under in-plane compression 

tion. The vector V (l) solution of ( 1 3a) is the buckling mode: 

V(I)� ! + l 
Accounting for the symmetry of the problem, expansions ( 12) can be simplified into 

A - },c = C(2)a2 + C(4)a4 + C(6)a6 + · · · 

(20) 

(21a)

! 0 
J l Ua(2) l l 0 l l Ua(4) 1 l 0 l U =a W(l)

J 
l + a2 0 + a3 W(3) + a4 0 ( + a5 W(S) + · · · (21b)

0 �.� 0 �p�) 0 

where a is a parameter which represents the projection of solution U on the buckling mode. The 
coefficients C(p) are zero when p is odd. V (p) is a pure membrane displacement when p is even 
and a pure fl.exion one if p is odd. 

4.2. Computation of V(p) and C(p) with FEM 
As presented in Section 3, the mixed vector V (p) is computed in two steps. First, we calculate

the displacement component 'V'(p) and, second, we calculate the stress component Nap( p). 

4.2.1. Computation of V(p). With the classical notation of computational mechanics, the
discretization of ( 19a) reads 

{22) 

where [ V(p)] is the vector of nodal displacements, [Ke] is the usual small-displacements stiffness 
matrix ,  [Kg] is the geometric stiffness rnatrix,[Ke - Ile Kg] is the tangent stiffness matrix at the
bifurcation point and is singular. The orthogonality condition ( 19b) between V(p) and V(l) 
should be added to (22) in order to get an invertible problem. After discretization, this condition 
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reads 

[
V
(l)]

1
[P][

V
(p) ] = 0 (23) 

where Pis a positive-definite matrix associated with the scalar product (19b). Here we choose to 
take [P] = [K0] to have an energy-oriented scalar product. So, (22) and (23) yield the invertible
problem 

(24) 

where [ V*] = [Ke] [ V(l)] and k is a Lagrange multiplier. The construction of the global matrix
in (24) requires very ordinary computation. The additional column V* has almost no conse
quence on the required storage dimension, and on the time decomposition if a compact column 
storage (skyline) is used. Note that the stiffness matrix is the same for all the linear problems. 
Hence, we perform a Crout decomposition once and for all. 

The construction of the right-hand-side vector [F (p)] is very similar to the construction of
a residual vector in a Newton-Raphson scheme, and it requires about the same computing time. 
Equations (3), ( 1 1), ( 1 3), ( 1 5), ( 17) and ( 19) yield 

[
F
(p) ] = - t [Bo]1[CmJ [P"

(p)] + [B.J [F
u
(p) ] dQ (25) 

where [B0] and [B.J are the classical strain-displacement matrices defined by 

[rLJ = [Bo][
V
]

[W:,,J = [B.] [V]
(26a) 

(26b) 

4.2.2. Computation of N,p(p). The membrane forces N.µ are calculated at each Gauss point by
( 1 8), which can be rewritten here as 

( p-1 )N.p(P) = Cma/!yll r;o(P) +Ii! W:y(r) W:ll(P - r)

4.2.3. Computation of C(p). By making explicit (14b), we get

C(p - 1 )  � f, I [- ( Cmo:Prll [ PI1 t W.r(r) W:.i(P - r)] r�µ(l)
W (l)N° W (l) dQ Jn r=l 

,a •P ,p 
Q 

(27) 

+ [t� C(r)N�p W:.(p - r) + :t: N,,p(r) W:.(p - r) J W:p(l) dQ J (28) 

4.3. Implementation 
We have implemented this method in our homemade finite element program, which had been 

designed to perform linear buckling analysis, and non-linear continuation analysis with a 
Newton-Raphson scheme. Only few additional FORTRAN subroutines (that concern the con
struction of [F(p)]) had to be introduced since [Ke], [Kg],},°' V(1)  and the matrices [B0], [B.]
were already available. 

10



Acc
ep

te
d 

M
an

us
cr

ip
t

Once the buckling load Ac and the corresponding buckling vector V(l) have been computed by 
a linear buckling analysis, this asymptotic-numerical method truncated at order n requires 

• to assemble the matnx ---=--- -
. [Ke-AcKglV*J 

V*t 0 

• to perform a Crout decomposition of the above matrix

• to assemble n - l RHS vectors [P(p)]
• to perform n -1 forward and backward substitutions

The computation of the coefficient C(p - 1) and one term of the membrane stress N(p) can be
judiciously performed during the assembling of [F(p)] so that almost no additional time is 
required for these quantities. In summary, we can say that this asymptotic-numerical method
requires about the same computation time as a modified Newton-Raphson step with n - 1 
iterations (without reactualization of the stiffness matrix). 

In Table I, we compare the computation time of some vectors V(p) with elastic analysis,
buckling analysis and Newton-Raphson steps. For a large number of d.o.f., most of the
computing time is spent in the Crout decomposition, and the asymptotic-numerical method is 
only one and a half times a linear elastic analysis. 

4.4. Numerical results

We have tested this method on the academic problem of a simply supported square plate 
loaded by a uniform uniaxial compression. We use the triangular shell element D.K.T. due to 
Batoz et al., 23 which has three nodes and five d.o.f. per node (U 1, U 2, W, 81, 82 ). For symmetry

Table I. Computing time of the asymptotic-numerical method. Comparison between linear elastic 
analysis, linear buckling analysis, and modified Newton-Raphson steps 

Number of d.o.f: 726 Number of d.o.f: 4812 

Time in second Ratio Time in second Ratio 
(Workstation) t/t elastic (mini S-Comp) t/t elastic 

Crout decomposition 
of K=LtDL 24 0-4 223 0·9 
Linear elastic 
analysis 60 247 
Modified Newton- Raphson 
step, 5 iterations 118 1·96 291 1·17 
Linear buckling 
analysis 334 5·56 1870 7·57 
Asymptotic-numerical 
method 
Order 2 85 1·41 270 1·09 
Order 5 110 1·83 293 1-18 
Order 10 169 2·81 333 1·34 
Order 15 242 4·03 379 1·53 
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W(3) 

W(S) 

w (7) 

W(9) 

W(l I) 

W( 13) 
figure 4. Visualization of the vectors V(p) = {O, W(p) }'for p odd. Magnification factors have been used for those figures; 

sec Table II for the real values of W(p)/h at the centre nf the plate 

reasons, only a quarter of the plate was considered for computation (200 elements, 726 d.o.f.) but
the whole plate is plotted in the figures. 

The deflection W(p) for the odd problems are shown in Figure 4 and the in-plane dis
placements U, ( p) for the even problems in Figure 5. The coefficients C(p) and the displacement
W(p)/h at !he centre of the plate are reported in Table II. 

We have plotted that ratio W/h versus the ratio ).,/),c for different truncatures of the series (21) in
Figure 6. Wis the deflect ion at the centre of lhe plate and h is the thickness of the plate. All these
asymptotic curves are compared with the 'exact' solution obtained with a Ncw!on-Raphson 

scheme. A discussion of the results is reported later in this paper, in order to be associated with the
results on the cylindrical shell. 
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Figure 5. Visualization of the vectors V (p) = { U ,(p ), 0} for p even. Magnification factors have been used for these figures 
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Figure 6. Load-displacement curve for the plate: W/h at the centre versus ,l/A.,. Comparison between the 'exact' solution 
and different truncatures of the asymptotic-numerical solution 
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Table II. Coefficients C(p) and W(p)/h at the centre for a square plate under 
uniaxial in-plane compression. The buckling mode is normalized by W(l)/h= 1 at 

the centre of the plate 

Coefficients of the load expansion 

C(l) 
C(2) 
C(3) 
C(4) 
C(5) 
C(6) 
C(7) 
C(8) 
C(9) 
C(JO) 
C(l l) 
C(12) 
C(l3) 
C(14) 

0 
0·189779 

0 
-0·0178759 

0 
0·0027601 

0 
-0·0005163 

0 
0·0001131 

0 
-0·0000267 

0 
-0·0000066 

Coefficients of the displacement 
expansion at the centre of the plate 

W(l)/lt 
W(2)/lt 
W(3)/lt 
W(4)/lt 
W(5)/h 
W(6)/h 
W(7)/h 
W(S)/h 
W(9)/h 

W(lO)/h 
W(l l)/h 
W(12)/h 
W(13)/lt 
W(l4)/h 

l·OOE+OO 
0 

-2·39E-02 
0 

3·16E-03 
0 

-5·62E-04 
0 

1·21E-04 
0 

-2·86E-05 
0 

7·04E-06 
0 

5. APPLICATION TO SHELLS OF REVOLUTiON

5.1. Definition of the problem
Shell problems could also be studied within the previous method by using 2-D shell finite 

elements. However, for structures of revolution, the splitting into Fourier series permits us to limit 
ourselves to 1-D finite elements (see Reference 24, for instance), which is very efficient especially 
within the present asymptotic-numerical method. 

For simplicity, we consider here only a circular cylindrical shell of radius R, length L and 
thickness h, which is made of a homogeneous isotropic elastic material. The co-ordinate system 
along the shell is shown in Figure 7: the axial displacement is denoted by U 1, the circumferential 
one by U 2 and the radial one by W. The shell is subjected to an external pressure loading P. 

Because of the symmetry of revolution, the buckling mode of the shell involves only one wave
number. Unfortunately it is double, but we can restrict ourselves to a single-mode analysis 
without loss of generality.25 Indeed, the eigenspace can be generated by rotation from one 
eigenmode, for instance, from the eigenmode that i's symmetric with respect to the (0, x1, x3 )
plane. According to this choice, the vector V(l) that is a solution of (13a) can be written as 

u1 (x) cos(my/ R) '· 
u2(x) sin (my/R) 

V(l) = 2 
w(x) cos(my/R)

(29) 
n11 (x) cos(my/ R) 
n22(x) cos(my/R)
niz (x) sin(my/ R)

where the integer m is the circumferential wave number of the buckling mode. The first 
bifurcation is symmetric and expansion ( 12) can be rewritten as 

A - }c = C(2)a2 + C(4)a4 + · · · (30a) 
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L 

w 

Figure 7. Pattern of the load-displacement curves for a cylindrical shell under pressure 

U =a J �g; l + aJ ��; )+ · · · 

l Nap(I) l Nap(2) 
(30b) 

The coefficients C(p) are zero if p is odd, but there is no particular property for the vectors V(p) as 
for the case of a plate, because the buckling mode involves both membrane and bending strains. 

5.2. Computation of V(p) and C(p) by FEM 
For the computation of V(p) and C(p), we could follow exactly the general procedure described

in Sections 3 and 4, by solving problems (19) with 2-D shell elements. This would require to invert 
a single stiffness matrix whose dimension corresponds to a two-dimensional discretization of the 
shell. However, it is classical when there is a symmetry of revolution to introduce a circumferen
tial Fourier series decomposition of the unknowns, and to split a 2-D problem into a set of 1 -D 
problems for each harmonic. This requires one to discretize only the generatrix of the cylinder 
with 1-D elements. So, important computing t',,,. �can be saved, provided that the amount of 1-D 
problems is not too large. 

In our case, we have to solve not only one 2-D problem but a set of 2-D problems, and each 2-D 
problem has to be split into a set of 1-D problems. However, the number of 1-D problems to be
solved is rather small as shown in the following. So, the combination of both asymptotic 
expansions and Fourier decomposition is very efficient with regard to computation time. 

5.2.1. Splitting of the operators L, L', Q. In order to transform ( 13) into a set of 1 -D problems,
we need to split the 2-D operators L(. ), L'(. ), Q(.,.) into 1-D operators for each harmonic. Let us
use capital letters for 2-D operators and variables, and small letters for 1-D operators and 
variables. In order to avoid a heavy algebra with the function sines and cosines, we prefer to use 
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the complex exponential (we note that i2 = - 1). This leads us to consider complex-valued
functions and to replace the scalar product by a Hermitian product in a classical way. In the same 
manner, we replace here the bilinear forms < < L(U), ()U) ), « L' (U ), () U)) and the trilinear form
< < Q (U, U), bU)) by sesquilinear forms: to achieve this, it is sufficient to replace bU by i ts
complex conjugate in the RHS of (llb)-(lld). 

We shall say that the vector field V (x, y) is a pure harmonic of order k (k > 0) if it can be
expressed in the following form: 

V (x, y) = 

U1 (x) 
-iu2(x) 

w(x) 
n11(x) 
n12 (x) 

-in12(x) 

exp (iky/R) (31) 

Such a pure harmonic is completely defined by k (k > 0) and a corresponding 1 -D vector field 
v(x)1 = {u1(x), u2(x), w(x), n11(x), n22(x) , n12(x)} that is real-valued. The conjugate of a pure
harmonic of order k will be called a pure harmonic of order - k. Let V (x , y), V'(x, y), V"(x, y) be
pure harmonics of order k, k', k". lf the operators L, L' and Q are considered as partial differential 
operators whose coefficients do not depend on y, they obviously satisfy the following splitting 
properties: 

L (V (x, y) )  = /k(v(x)) exp (iky/R) 

L' (V(x, y)) = l\(v(x)) exp (iky/R) 

Q(V(x , y), V'(x, y)) = qk.k,(v(x), v'(x)) exp ( i (k + k' )y/R) 

(32a) 

(32b) 

(32c) 

which define real-valued linear (or bilinear) operators /k(.), /�(.), qk.k·(., . )  acting on functions of
the single variable x. The variational form of the latter splitting properties (32) can be written as: 

«L (V), V')) = 0 if k # k'

«L'(V), V')) = 0 if k # k'

«Q(V, V ' ), V")) = 0 if k + k' # k"

«L(V), V')) = (/k(v), v') if k = k' 

«L'(V), V')) = <L�(v), v') if k = k'

«Q(V, V' ), V")) = (qk,k'(v, v') ,  v") if k + k' = k"

(33a) 

(33b) 

(33c) 

(33d) 

(33e) 

(33f) 

The splitting properties (33) are trivially established and will permit us to split each linear 2-D 
problem (13) into several 1-D problems. 

5.2.2. Computation of V(p). According to the notation given by (31), we can rewrite the
buckling mode (29) as 

V(l) = V(l, 0) + V(O, 1 ) (34) 

where V (l, 0) and V (O, 1) are pure harmonics of order m and -m, respectively, and they are both
associated with the real 1 -D vector field v (l, O)(x). Note that V(O, 1) is the conjugate of V (l, O) . 

Order 2: The RHS of (13b) is quadratic with respect to V (l). Hence, it can be split into pure
harmonics of order 2m, 0, - 2m, and the solution V(2) is also of the form 

V(2) = V(2,0) + V(l, I) + V(0, 2) (35) 
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where these three vectors are pure harmonics of order 2m, 0, -2m. Let the real 1-D vector field
v(2, 0) correspond to V(2, 0) and V(O, 2), and let the real 1-D vector field v(I, 1) correspond to 
V(l, 1). 

By choosing JU as a pure harmonics of order 2m and 0, and with account taken of the splitting 
properties (33), we get the solution (35) of the 2-D problem (13b) by solving the two following 1 -D 
problems: 

< l2m(v(2, 0)), Ju) = - ( qm. m(v(l, 0), v(l, 0)), Ju) V bu

(l0(v(l, 1 )), Ju)= - 2(qm, -m(v(l, 0), v(l, 0)), bu) Vbu

(36a) 

(36b) 

The third problem to define V (0, 2) (by choosing JU as a pure harmonic of order - 2m) is 
superfluous since this vector is a conjugate of V(2, 0). The 2-D orthogonality between V ( 1 )  and 
V(2) is automatically satisfied. 

The two problems (36) are mixed and they are solved in two steps as presented i n  Section 3.2. 
After discretization of the gcneratrix of the cylinder with 1 -D clements, the displacement parts of 
the vectors v(2, 0) and v(l, 1 )  are given by 

[ke (2m) + Ac kg(2m)] [ v(2, 0)] = [.f{2 ,  0) ] 

[ kc(O) + ).c kg(O)] [v(l, 1 )] = [f(l, 1)] 

(37a) 

(37b) 

Note that the tangent stiffness matrices in (37) are invertible. Indeed, it is only the matrix 
[ ke (m) + Ac kg (m)] that corresponds to pure harmonics of order m that is singular. Because the 
operators l, q arc real-valued, the matrices and RHS in (37) are real. After solving (37), we 
compute the membrane stress na11(2, 0) and na11 ( 1, 1).

The splitting of (13c) (order 3) is left to the reader and we now detail the splitting of (13d) 
(order p). 

Order p: We look for the vector V(p) as a sum of p + I vectors V(p -j, j) that are pure
harmonics. The notations are such that the sum of the indices indicates the order p, and the 
difference of the indices indicates the order of the harmonic: 

p
V(p) = L V(p -j,j). (38) 

j=O 
V( j, p - j) is the conjugate of V(p -j, j), and these two vectors are associated with the real 1 -D
vector v(p - j, j ). 

Each vector v(p -j,j) is a solution of the 1 -D variational problem

Int (p-1)/2 
((l(p-2j)m(v(p - j,j), Ju)= - L C(2r)((l;p-2j)m(v(p - j - r,j - r)), Ju)

r= 1 
p-1 r 

- L L ((q(p-2j-r+2s)m,(r-2s)m(v(p -j - r + s, j - s), v(r - s, s)), Ju) Vbu (39)
r=ls=O 

with the convention that v(p, q) = v(q, p), and v(p, q) = 0 if p < 0 or q < 0. After discretization, 
the displacement part of v(p - j, j) is a solution of 

[k0((p - 2j )m) +Ac kg((p - 2j)m)] [v(p -j, j)] = [f(p - j, j) ]  (40)

which is an invertible problem, except when p - 2j = 1. In such cases, the 2-D orthogonality 
between V(p) and V(l) yields a 1-D orthogonality condition between v(p - j,j) and v(l, 0). It is
added to (40) as presented in Section 4.2 to get an invertible problem. 
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5.2.3. Computation ofC(p). The linear problem (39) is singular when p -2j = 1, that is to say,
for p = 2k + 1 and j = k (k an integer). In this case, the RHS of (39) has to verify a solvability 
condition which determines the coefficient C(2k). From equation (39) we get 

C(2k)= , - I C(2r)(l�(v(k+ 1-r,k -r), v(l,O))) 
1 [ k-1

(lm(v(l,O)), v(l,0)) r=l 

2k r 
L L (fo-r+2s)m,(r-2s)m(v(k+ 1-r+ s,k-s),v(r- s,s)),v(l,O)) (41) 

r= 1s=0 

5.3. Implementation 
The combination of the asymptotic expansion technique and the splitting into harmonics leads 

to solve a set of 1 -D linear problems. More precisely, the computation of expansion (30) up to 
order p = 2k requires 

• to assemble 2k + I small matrices that correspond to the one-dimensional operators
lo, lm, lzm, ... '[(2k)m• and

• to assemble (k + 1)2 - 2 RHS vectors, and to solve (k + 1)2 - 2 linear problems, with the
2k + 1 above-mentioned stiffness matrices. 

Note that the matrix [(k0(m) + ).ckg(m)] associated with the operator lm is singular, and 
a column vector [v*] is added as in (24) to get an invertible matrix. 

The programming of the method is here more intricate than if we had simply used 2-D 
elements. But, as a result, the computing time is very short. 

5.4. Numerical results 
We have performed several tests for different geometries of a cylindrical shell loaded by 

external pressure. In fact, for buckling and postbuckling analysis, the geometry of a circular 
cylindrical shell can be characterized by the unique Bartdorf parameter Z = � L 2 /R h
(Reference 20) which, for a given radius R and thickness h ,  represents the length of the shell. The 
generatrix of the cylinder has been discretized using classical 1 -D elements with two modes and 
the four degrees of freedom Ui. u2, w, w,x· The results are presented in Figurs 8-lO, where the
displacement w/h is reported versus the load parameter kP = P(R L 1/n2D) (P: pressure,
D = Eh3/12( 1  - v2)). Following Yamaki,22 we have tested different Z values. These results are 
discussed in Section 6. 

6. DISCUSSION OF THE NUMERICAL RESULTS

6.1. Pattern ol the load-di5placement curves

The load-displacement curves obtained for the plate and the cylindrical shell problems are very 
characteristic of polynomial approximations. Indeed, for small values of the parameter a, the 
asymptotic-numerical solutions ( 12) coincide quite perfectly with the exact solution, and if the
order of truncature is sufficiently large they do not depend on this order of truncature. Beyond 
a critical value of'a', the truncated polynomial series separates from the solution and they do not 
converge when the order of truncature increases. Obviously, this critical value is the radius 
of convergence of the series (12) and it is clearly defined in all the cases that we have studied 
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Figure 8 .  Load-displacement curve for the shell Z = 1000. w/h versus k" . Different truncatures of the asymptotic
numerical solution 

(see Figures 6- 1 0). This typical pattern is due to the representation by polynomials because the
functions an (n large) are almost zero if a < 1 and grow very rapidly for a >  1 .

6.2. The radius of convergence

For the plate problem of Section 4, presented in Figures 4-6, we can see that the truncations of 
the series (21 )  at orders 4, 6, 8 and 10 significantly improve the solution at order 2, which i s  the 
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Figure 9. Load-displacement for the shell Z = 500. w(h versus k0 • Different truncatures of the asymptotic-numerical 
solution 

classical initial postbuckling approximation. However, with the representation (2 1 ), it does not 
seem worth computing much more terms since little improvement is obtained after order 1 0. The 
radius of convergence is about ).,/ J...c = 1 ·4 and w/h = 1 ·6 and it is 'reached' with about 1 0  terms in
the expansions. After order 10, the vector V(p) for p odd and even, respectively, is almost
rigorously collinear, as can be seen in Figures 4 and 5. We have tested other plate problems by 
changing the boundary conditions (clamped, simply supported, free), the shape of the plate 
(circular, rectangular) and the compressive load, and we found that the radius of convergence was 
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Figure 10. Load-displacement for the shell Z = 200. w/h versus kP. Different truncatures of the asymptotic-numerical 
solution 

not significantly modified. It varies between 1 ·4 and 1 ·6 for ),/)_c and between 1 ·5 and 1 ·8 for w/h. 
We have also tested the influence of the mesh size by using 8, 50, 200 and 800 elements for 
a quarter of a square plate. We found that the radius of convergence does not depend on the mesh 
size and that the asymptotic-numerical expansions always converge to the 'exact' numerical 
solution associated with the same mesh. (The 'exact' solution mentioned here is in fact a finite 
element approximation of the plate problem and it varies with the mesh size.) 
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For the cylindrical shell, we do not report any exact solution, but we can clearly see the radius 
of convergence (Figures 8-1 0) when all the curves are separated from each other. For Z = 1 000 
(long shell), the radius of convergence is P/Pc = 0·85 and w/h = 4. For Z = 500, we get
P/Pc = 0·85 and w/h = 3; and for Z = 200, we have P/Pc = 0·8 and w/h = 2. So, the radius of 
convergence in terms of P/Pc does not significantly depend on the geometrical parameter Z,
whereas it clearly depends on Z in terms of w/h. This is consistent with the fact that the non-linear 
effects appear earlier for shorter shells.22 Smaller values of Z have not been tested here because 
the prebuckling solution is no more linear as it is supposed in this paper [equations (9) and ( 10)] .  
The account of  such a non-linear prebuckling will be presented in a separate paper. 

From a practical point of view, it is necessary to determine the radius of covergence. This can 
be done using classical techniques2 1  or by simply computing residual vectors for given values of 
the parameter a. Note that inside the radius of convergence, representation ( 12) yields a very 
precise approximation of the branch. 

6.3. Increasing the range of validity

Already now, we are able to get a large part of the bifurcating branch for about the same 
computing time as one step of the modified Newton Raphson algorithm. Although this result is 
appreciable, one can be disappointed in that the radius of convergence is not larger. This is 
particularly true for the cylindrical shell where the minimum of the load-displacement curve, 
which is very important from an engineering point of view, is out of the radius of convergence. 
Hence, increasing the range of validity of the asymptotic-numerical method has become our 
major research axis. In this respect, we have investigated several variants of the present method 
on the plate problem. First, the choice of the scalar product ( 12c), which defines the orthogonality 
condition between the buckling mode V(t )  and all the other terms V(p), may influence the radius 
of convergence. For the plate problem, we have tested different scalar products by setting the 
matrix P of (23) to identity, or to K e ,  or to K. + cxKg(O < ex <  Ac ). The variation of the radius of
convergence was not determinant, and we recommend to take P = K0 because of its mechanical
sense, even if it is not always the best choice. We have also numerically applied the so-called 
Lyapunov-Schmidt reduction, 1 2  where the displacement is expanded with respect to both the 
buckling-mode amplitude a and the load ;,. This leads to solve a set of linear problems and 
a single non-linear equation (bifurcation equation) in a and A. Such a method requires more 
computations than the one presented here because the number of linear problems to be solved 
grows as N2 (N order of truncature) and, furthermore, one non-linear equation is to be solved 
numerically. In comparison with representation ( 12), the Lyapunov-Schmidt reduction avoids 
solving fhe bifurcation equation by means of expansions, which could reduce the radius of 
convergence. Unfortunately, the improvements were not impressive enough to go further in that 
direction. 

In fact, a very promising approach consists in rewriting a posteriori our asymptotic expansions, 
replacing polynomial truncatures by rational fractions called Pade approximants (see, for 
instance, Reference 26). Increasing of the range of validity can be very spectacular. For instance, 
a first test on the plate problem shows that we can get a very good approximation of the solution 
up to ),/Ac = 4 and w/h = 5, with very little additional computation time. A survey of this very 
important point will be presented in a forthcoming paper. 

Another direction of investigation would be to apply the reduced basis technique of Noor and 
Peters. 1 7 The idea is to use the computed vector V(p) as a Ritz basis, and to apply a classical Ritz 
(or Galerkin) method. In other words, the expansion procedure is used only for building up 
a suitable basis. 
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7. CONCLUSIONS

In this paper, we have applied an asymptotic-numerical method for computing the post-buckling 
behaviour of elastic plates and shells. The principle of the method is to compute numerically two 
polynomial series that give the displacement and the load as a function of the buckling-mode 
amplitude. By using a mixed approach, the governing equations have been written with a quad
ratic non-linearity. Hence, the expansion procedure is rather simple and it can easily be 
implemented in an existing FE software. lt permits one to compute a very large number of terms 
of the series. 

In comparison with a more classical step-by-step procedure, the present method has the 
following advantages: 

• I t  is very efficient with regard to computation time. Indeed, the expansion technique transforms
the non-linear problem into a sequence of linear problems with a single stiffness matrix. Hence,
the computation time is of the same order as for a single step of the modified Newton-Raphson
algorithm. 

• The solution branch is known continuously and not only on some points.
• Another very important point is that the computation of the series is fully automatic. The only

parameter that has to be chosen is the order of truncature, and this can easily be automated.
Particularly, there is no need to decide a priori the step length as in a step-by-step procedure.
The range of validity of the asymptotic-numerical solution is analysed a posteriori by determin
ing the radius of convergence of the series. In fact, the range of validity, or the step length, is
given by the method itself and it is not chosen a p riori by the user.

Already now, we have shown on two plate and shell problems that the method is able to
complete a linear buckling analysis in an automatic manner, and with a computing time that i s  
rather small as  compared to the linear buckling analysis. I t  i s  an effective tool for giving an insight 
into the postbuckling behaviour. Nevertheless, the present method would be much more attract
ive if the range of validity of the polynomial series could be significantly extended. It seems that 
the use of Pade approximants will permit us to achieve this goal, and we are currently 
investigating this. The reduce basis technique of Noor and Peters1 7 also seems to be an interesting 
way of completing the present analysis. 

Here, we have not considered any imperfections, and the present asymptotic numerical method 
is only an abridged version of the original method proposed by Damil and Potier-Ferry.9 
Imperfection sensitivity analysis requires additional works that are carried out for imperfect 
cylindrical shells. In this case, a class of non-linear problems will be solved by inverting only one 
stiffness matrix. 

Finally, we are also adapting such asymptotic-numerical procedures for the computation of 
any non-linear solution of a plate or a shell problem, and not only the bifurcating branches. 
Because it is rapid and automatic, this method could be the basis of an efficient continuation 
procedure. 

APPENDIX 

In the case where there is coupling between membrane and fiexion in the constitutive equation, 
we have, instead of (5), 

N = Cm : r + Cmb : K 

M = Cmb : r  + Cb: K

(42) 

(43) 
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Defining the inverse of the above relation by 

r = Sm : N + Smb : M 

K = Smb : N + Sb : M 

equations (6)-(8), ( 1 1 ), ( 1 8) and ( 19) should be replaced by 

if"(r, K ) = t r : cm :r + !K :Cb :K + r : Cmb : K  

'W' * (N, M ) = tN: Sm : N  + tM :Sb :M + N: Smb : M  

(44)

(45) 

ft'(Ua, W, N ) = L (r : N  - !N:C,;; 1 : N )  + (t K : C,;;1 : K) + (K : Cmb : C,;; 1 : N) dQ - ,l,,qJ>(Ua, W)
(46) 

+ (Sb 1 : K  + cmb : c,;;1 : N ) : 8K dQ + ),c L N° : 8rNL dQ (47) 

N (p) = Cm : ( rL(p) - FN(p)) + Cmb : K(p) (48) 

( ( l(V(p)), 8 0 )) = L (Cm SL + Cmb : K): brL 

+ (Cmb :rL  + Cb :K):8K dQ + Ac L N°: 8rNL dQ (49) 

( ( F(p), 8U )) = j F� (p) 8 Jt'. 0  + Cm :FN (p):brL + Cmb : FN(p) :8K dQ (50) Jn 
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