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Abstract—Independent vector analysis (IVA) is an attractive
solution to address the problem of joint blind source separation
(JBSS), that is, the simultaneous extraction of latent sources from
several datasets implicitly sharing some information. Among
IVA approaches, we focus here on the celebrated IVA-G model,
that describes observed data through the mixing of independent
Gaussian source vectors across the datasets. IVA-G algorithms
usually seek the values of demixing matrices that maximize the
joint likelihood of the datasets, estimating the sources using these
demixing matrices. Instead, we write the likelihood of the data
with respect to both the demixing matrices and the precision
matrices of the source estimate. This allows us to formulate a
cost function whose mathematical properties enable the use of a
proximal alternating algorithm based on closed form operators
with provable convergence to a critical point. After establishing
the convergence properties of the new algorithm, we illustrate
its desirable performance in separating sources with covariance
structures that represent varying degrees of difficulty for JBSS.

Index Terms—IVA, PALM Algorithm, Maximum-Likelihood,
Blind Source Separation, Proximal methods

I. INTRODUCTION

THE blind source separation problem (BSS) aims at factor-
izing a data matrix as a product of a mixing matrix and a

source data matrix. BSS is thus a data-driven method to extract
latent features from a dataset, which have a broad variety of
uses. It offers a wide range of applications in signal processing
and engineering including neuroimaging data analysis [1],
communications [2], [3], remote sensing [4], to name a few
[5]. The latent sources are interpreted as physical quantities of
interest that cannot be measured directly, e.g. brain connectiv-
ity networks [1], [6], [7], or can be used as features for further
tasks such as classification [8]. The BSS problem generalizes
to the joint blind source separation problem (JBSS) when
multiple datasets are analyzed jointly to benefit from their
shared information. JBSS is necessary to fully analyze datasets
that share similarities. This case presents itself when the
datasets contain measures of a same phenomenon for different
subjects [6], [9], different measurement methods [10], or more
generally for various modalities [11]. Allowing the interaction
between the datasets leads JBSS to achieve more accurate
separation than multiple separate BSS in general [6], [12].

One way to address BSS is to model the rows of the
source dataset as samples of mutually independent random
variables or random process called sources and the datasets
as mixtures of independent sources [13]. This approach is
known as independent component analysis (ICA) [14], which
has been one of the most popular ways to achieve ICA due to
its uniqueness guarantees under very general conditions. ICA
can be generalized to independent vector analysis (IVA) [6],
[12], [15], [16], [17] to address the JBSS problem. In this case,

sources are considered as random vectors (or random process
vectors), called source component vectors (SCVs). Each entry
of a SCV accounts for one source in a given dataset. In IVA,
now the SCVs are assumed to be independent rather than
univariate sources as in ICA. Within each SCV, the statistical
dependence (correlation for IVA-G) across the datasets are
taken into account. IVA methods gather a family of algorithms
that aim at recovering the SCVs and mixing coefficients
that generated the observed data. The JBSS problem can be
addressed with many other methods such as groupICA [7],
[16], or joint ICA [18], but IVA is more powerful as it offers a
greater flexibility and helps preserve the individual variability
represented by each dataset, e.g., in multisubject analyses
[19], [20]. Moreover, it enables a common factorization of the
datasets without needing to realign the sources a posteriori,
which can be costly, thus alleviating the inherent permutation
ambiguity across the datasets.

IVA is typically formulated using a maximum of likelihood
(ML) estimator, which means that the estimation is done by
solving an optimization problem where the cost-function is
derived from the log-likelihood of the data. In [12], we see
IVA-G presented as a minimization of the mutual information
of the SCVs to maximize their independence, those two
formulations are equivalent when the number of samples tends
to infinity [6].

In this paper, we focus on the case of non-degenerate, cen-
tered Gaussian SCVs, placing ourselves in the so-called IVA-G
framework, as presented in [12]. This model is convenient, as
the SCVs are fully described by their covariance matrix (or
equivalently by their precision matrix). Besides, since IVA-
G algorithms only make use of second order statistics (SOS)
of the data, this makes them the simplest and most efficient
among the IVA algorithms. In the Gaussian case, having the
demixing matrices gives a natural estimate of the covariance
matrices of the SCVs through their empirical covariance, this
is why the cost function in [12] only depends on the demixing
matrices. In this work however, we choose to write the ML
such that it explicitly takes the SCVs probability density
function (pdf) as an input variable, to benefit from analytical
properties of the resulting cost.

So far, the IVA-G algorithms are based on standard opti-
mization methods, like Newton’s method or gradient descent,
without demonstration of explicit convergence guarantees. In
this article, we show that our proposed cost function to
jointly search for the Gaussian SCVs and demixing matri-
ces generalizes the cost function in [12], in the sense that
replacing the precision matrices of the SCVs by the inverse
of their empirical covariance matrices for the given demixing
matrices, we recover a cost function that only depends on
those demixing matrices and that is equal to the one in [12]
up to a constant. The choice of a cost function that jointly
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acts on the sought demixing and covariance matrices offers
an attractive structure enabling the explicit incorporation of
priors and constraints, and the use of mathematically sound
minimization algorithms. Hence, we design a Proximal Alter-
nating Linearized Minimization algorithm (PALM), dedicated
to IVA-G problem, and show that it converges to a critical
point under some mild assumptions. The resulting scheme,
denoted PALM-IVA-G, is also shown to be fast, and to
establish a reliable estimation performance in practice, and
at least as good as the state-of-the-art methods for IVA-G.

Our contributions can be summarized as follows. First, we
provide a novel variational formulation for IVA-G, introducing
a new cost function and establishing its mathematical proper-
ties. Second, building upon these properties, we design the
PALM-IVA-G algorithm, to solve the resulting minimization
problem, and show its convergence under mild assumptions.
Third, we numerically illustrate the desirable performance of
our approach, in comparison with state-of-the-art approaches,
on a number of scenarios that cover various degrees of
dependence across the datasets.

The paper is organized as follows. Section II introduces
the JBSS problem, the IVA-G framework to address it, and
presents our cost function based on maximum likelihood
estimation. Section III then focuses on our proposition of
an original iterative algorithm to solve the IVA-G problem.
Convergence results are presented in Section IV. Numerical
experiments assessing the validity and good performance of
our approach are presented in Section V. Section VI concludes
the paper.

II. THE IVA-G PROBLEM

A. Notation
Throughout the paper, we use bold upper case symbols for

matrices, bold lower case symbols for column or row vectors,
calligraphic upper case symbol for tensors of order three or
more, and regular lower case symbols for scalars. Italic font is
used for deterministic quantities while regular one is used for
random quantities. For instance, let u = [u1, . . . ,uN ]⊤ be an
RN -valued random vector, for which we draw V realisations
that we stack, columnwise, in a matrix U ∈ RN×V . The
latter can also be written as U = [u1, . . . ,uN ]⊤ with, for
every n ∈ {1, . . . , N}, un ∈ RV a column vector of V
realizations of the scalar random variable un.

The subset of non-singular (resp. symmetric) matrices of
RN×N is denoted GLN (R) (resp. SN ). IN is the N × N
identity matrix. We also denote S+N the set of positive semi-
definite matrices of size N , and S++

N = S+N
⋂
GLN (R) the set

of positive definite (PD) matrices. ∥ · ∥ denotes the Frobenius
norm for any vector, matrix, and tensor of order three or more.

For any matrix A, we denote by ∥A∥S its spectral norm,
equal to the largest singular value of A. For every n ∈
{1, . . . , N}, a⊤

n denotes the n-th row of A. If A is a square
matrix, we note σA = (σA,l)1≤l≤N ∈ RN the vector of its
singular values, tr(A) its trace, and det(A) its determinant.
diag(A) ∈ RN is the vector whose entries are the diagonal
coefficients of A, whereas for a ∈ RN , Diag(a) (with an
upper case) is the diagonal matrix whose coefficients are
the components of a. We also note Diag(A) the diagonal
matrix whose diagonal coefficients are the same as those of A.
Finally, for any (N,M) ∈ (N\{0})2, we consider the matricial

scalar product defined as (∀(A,B) ∈ (RN×M )2) ⟨A | B⟩ =
tr(A⊤B).

B. JBSS problem
Let K,N, V be positive integers, we consider K datasets

denoted (X [k])1≤k≤K where ∀k ∈ {1, . . . ,K},X [k] ∈
RN×V is a real-valued matrix. For instance, in an fMRI
analysis problem, for n ∈ {1, . . . ,M}, and k ∈ {1, . . . ,K},
the n-th row of X [k], (x[k]

n )⊤ could model the blood-oxygen-
level-dependent (BOLD) contrast in the V voxels of a 3D
model of the brain, measured at acquisition time n for the k-
th subject, within a cohort of K patients [1], [7]. We assume
that the observed datasets are obtained by a linear mixing of
latent source datasets, i.e, (∀k ∈ {1, . . . ,K}):

X [k] = A[k]S[k] ∈ RN×V , (1)

where A[k] =
(
a
[k]
m,n

)
1≤m≤N,1≤n≤N

∈ RN×N is a square
non-singular mixing matrix and S[k] ∈ RN×V is a latent
matrix whose coefficients are typically interpreted as hidden
features of the phenomenon described by X [k]. The JBSS
problem consists in estimating simultaneously for all k ∈
{1, . . . ,K}, both A[k] and S[k] from X [k]. We estimate the
inverse of the mixing matrices by the so-called demixing
matrices (W [k])1≤k≤K , and deduce estimates (Y [k])1≤k≤K

for the source datasets (S[k])1≤k≤K by calculating

(∀k ∈ {1, . . . ,K}) Y [k] = W [k]X [k]. (2)

In a nutshell, using tensor notations, JBSS amounts to
providing an estimate Y = [Y [1], . . . ,Y [K]] of the source
tensor S = [S[1], . . . ,S[K]] via the demixing tensor W =
[W [1], . . . ,W [K]], which is an estimate of the slice-wise
inverse of the mixing tensor A = [A[1], . . . ,A[K]], given
the datasets X = [X [1], . . . ,X [K]]. Here, S,X and Y ∈
RN×V×K and A and W ∈ RN×N×K .

C. IVA model
Assuming that the datasets share some information which

can be leveraged to separate the sources more accurately
than if dealt with individually, IVA [17] models this in-
terdependence of the X [k] through statistical links between
the latent datasets. More precisely, the rows of the latent
datasets with the same index are assumed to be correlated,
while being independent from rows with different indices.
To formalize this, IVA models the columns of the X [k]

(resp. S[k]) as independent samples from RN -valued random
vectors x[k] = [x

[k]
1 , . . . , x

[k]
N ]⊤ (resp. s[k] = [s

[k]
1 , . . . , s

[k]
N ]⊤).

We can thus rewrite the model in (1) using random vector
notations: (∀k ∈ {1, . . . ,K}),x[k] = A[k]s[k]. Regrouping the
components of the s[k] with corresponding indices, we obtain
N all RK-valued random vectors, sn = [s

[1]
n , . . . , s

[K]
n ]⊤ for

n ∈ {1, . . . , N} called source component vectors, where each
entry of a SCV accounts for the corresponding dataset. The
goal of IVA is to make the SCVs as independent as possible.

IVA aims at recovering the sources by building demixing
matrices (W [k])1≤k≤K . At the same times, it builds esti-
mated SCVs (yn)1≤n≤N whose distributions have probability
density functions respectively denoted (pyn)1≤n≤N and that
we suppose mutually independent. Similarly as for SCVs,
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we denote (∀n ∈ {1, . . . , N}),yn = [y
[1]
n , . . . , y

[K]
n ]⊤ the

estimated SCVs, and we reorganize the components to define
(∀k ∈ {1, . . . ,K}),y[k] = [y

[k]
1 , . . . , y

[k]
N ]⊤. Then, we see

with (2) that for all k ∈ {1, . . . ,K}, x[k] is estimated by
(W [k])−1y[k], whose probability distribution is entirely deter-
mined by the demixing matrices and the (pyn

)1≤n≤N . Said
otherwise, W and (pyn

)1≤n≤N yield an estimated generative
model for our observed datasets.

D. IVA-G cost function
In the following, for every n ∈ {1, . . . , N}, we denote by

Y n ∈ RK×V the matrix obtained by stacking vertically the
n-th rows of Y [k] for k ∈ {1, . . . ,K}. Therefore, using (2),
we have

(∀n ∈ {1, . . . , N}) Y n = W nX, (3)

where

W n =


w

[1]⊤
n 0 . . . 0

0 w
[2]⊤
n . . . 0

...
...

. . .
...

0 0 . . . w
[K]⊤
n

 ∈ RK×KN (4)

and

X =

X [1]

...

X [K]

 ∈ RKN×V . (5)

The objective of IVA is to determine W and (pyn
)1≤n≤N

that maximize the log-likelihood of X in our estimated
generative model, given by [15]

N∑
n=1

log pyn
(Y n) + V

K∑
k=1

log |detW [k]|.

In the Gaussian case, considered here, we model
(yn)1≤n≤N as centered non-degenerate Gaussian vectors,
whose pdf is thus entirely determined by their covariance ma-
trices, or equivalently, their precision matrices that we denote
(Cn)1≤n≤N . As done previously, to simplify our notation,
we introduce the tensor C = [C1, . . . ,CN ] ∈ (S++

K )N that
gathers the estimated precision matrices of all the SCVs.
Moreover, we assume sample independence, so the pdf of Y n

is the product of the pdfs of its columns. Under this Gaussian
modeling, we have,

(∀y ∈ RK)

log pyn(y) =
1

2
log detCn −

K

2
log 2π − 1

2
y⊤Cny. (6)

Hence, the problem becomes equivalent to minimize, with
respect to W, C, the cost function JIVA−G(W, C) defined as

JIVA−G(W, C) + 1

2

N∑
n=1

log detCn +

K∑
k=1

log |detW [k]|

=
1

2

N∑
n=1

1

V
tr(CnY nY

⊤
n )

=
1

2

N∑
n=1

tr(CnW nR̂xW
⊤
n ), (7)

where R̂x = 1
V XX⊤ is the empirical covariance matrix of x̂.

Note that the domain of function (7) can be extended to
RN×N×K × RK×K×N by setting JIVA−G(W, C) = +∞ if
W [k] is singular for some k ∈ {1, . . . ,K} or if Cn is not
symmetric positive definite for some n ∈ {1, . . . , N}.

Remark 1 As we will show in Section IV, the non-singularity
of R̂x is a sufficient condition to the lower-boundedness of
(7), and as such, to the well-posedness of our optimization
problem. In practice, for a large number of samples — that is
V > KN — drawn from a continuous probability distribution,
the empirical covariance matrix R̂x is non-singular almost
surely. Hence, we will suppose that this condition holds in the
remainder of this article.

E. IVA-G-V and IVA-G-N approaches

In [12], the authors proposed two algorithms, called IVA-
G-V and IVA-G-N, to solve the IVA-G estimation problem.
To do so, they reformulate the problem as the minimization
of the following cost function [12]:

J̃IVA−G(W) =
1

2

N∑
n=1

log det(W nR̂xW
⊤
n )−

K∑
k=1

log |detW [k]|.

(8)
These approaches implicitly estimate the covariance matrices
of the sources by C−1

n = W nR̂xW
⊤
n , that is, the empirical

covariance matrices of the (yn)1≤n≤N . The minimization of
(8) is usually performed using either a gradient-based, or
a Newton-based solver, leading to IVA-G-V and IVA-G-N
schemes, respectively. To the best of our knowledge, these
algorithms do not benefit from strong guarantees in terms of
convergence of the iterates.

It is easy to show that finding (W, C) that minimizes the
proposed objective function (7) is actually equivalent to finding
W that minimizes the cost (8) used in state-of-the-art IVA-G
approaches, as stated in the following known result.

Theorem 1 (Equivalence between JIVA−G and J̃IVA−G)
For a given W ∈ RN×N×K , if all the W [k] are non-

singular, then

(i) JIVA−G(W, .) is minimized over RK×K×N at Ĉ(W) =
[Ĉ1(W 1), . . . , ĈN (WN )] where

(∀n ∈ {1, . . . , N}) Ĉn(W n) = (W nR̂xW
⊤
n )

−1.
(9)

(ii) We have, for every W ∈ RN×N×K:

min
C∈(S++

K )N
JIVA−G(W, C) = J̃IVA−G(W) +

KN

2
. (10)

Theorem 1 shows that Ŵ is a minimizer for J̃IVA−G if
and only if (Ŵ, Ĉ(Ŵ)) is a minimizer for JIVA−G, hence the
equivalence. The advantage of relying on the proposed cost
function that takes C as an input block variable is that it offers
a more structured form, allowing an efficient use of a block
alternating minimization scheme, and benefiting from sounded
convergence, as we will show in Section III.
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F. Ambiguities in IVA-G model
There are two ambiguities in the IVA-G generative model,

that correspond to information on the parameters that cannot
be deduced from the observed data. The first one is the per-
mutation ambiguity. New mixing matrices can be obtained by
renumbering of the SCVs, that is, by defining Ã

[k]
= A[k]P

with P a permutation matrix. This change however does not
modify the value of the cost function (7). The second one
is the scaling ambiguity. For every k ∈ {1, . . . ,K} and
n ∈ {1, . . . , N}, and for any α

[k]
n ∈ R \ {0}, we can replace

s
[k]
n with ŝ

[k]
n = α

[k]
n s

[k]
n and a

[k]
m,n with â

[k]
m,n = (α

[k]
n )−1a

[k]
m,n

for every m ∈ {1, . . . , N}. Those transformations let the
random vectors x

[k]
n unchanged, and consequently, they do

not affect the likelihood expression. Hence, the demixing
matrices can only estimate the inverse of the ground truth
mixing matrices, up to the permutation and scaling ambiguity.
The latter ambiguity moreover raises the problem that a
minimizing sequence of JIVA−G is not necessarily bounded.
This motivates our proposition for a regularized version for
the cost.

G. Proposed regularized cost function
Let us note, for all C ∈ (S++

K )N and n ∈
{1, . . . , N}, (cn,k,k)1≤k≤K = diag(Cn). Due to the scaling
ambiguity raised above, for any (W, C), it is possible to rescale
the coefficients to define (W ′, C′) such that JIVA−G(W ′, C′) =
JIVA−G(W, C) and that

(∀n ∈ {1, . . . , N})(∀k ∈ {1, . . . ,K}) c′n,k,k = 1. (11)

To do this, one can set, for each (k, n), α[k]
n = 1√

cn,k,k
. As

a consequence, if a minimizer of JIVA−G exists, then there
exists at least another minimizer, satisfying cn,k,k = 1 for all
(k, n). To mitigate this ambiguity, we thus propose to add a
quadratic penalty to the cost function to control the distance
to 1 of the diagonal coefficients of the precision matrices.1

Remark 2 Let us notice that a minimizer of JIVA−G, such
that cn,k,k = 1 has no reason to be qualitatively better than
any other minimizer of JIVA−G. The proposed regularization
aims at reducing the number of distinct minima, and at ensur-
ing some mathematical properties of the cost we will leverage
to prove the convergence of our optimization algorithms. It
is still possible, once convergence is reached, to rescale the
sources a posteriori.

In addition to the scaling penalty term, we also propose
to add an extra term to the cost function, to constrain the
singular values of the recovered precision matrices to be
positive by a minimum margin. This term aims at avoiding
numerical issues that could arise at the boundary of the
logarithm determinant definition domain, without damaging
the quality of the results. In practice, the constraint is simply
imposed, by adding an indicator function ι[ϵ,+∞)K , equal to
0 for non-negative entries, +∞ otherwise. Our objective is to
impose that the components of the vector of singular values
σCn ∈ RK of matrix Cn are above a certain ϵ > 0, for every

1In IVA-G-V and IVA-G-N, the scale ambiguity is managed by an ad-hoc
renormalizing of the rows of the demixing matrices after each iteration of the
minimization solver.

n. We thus obtain the final form for our proposed (regularized)
cost function, denoted by JReg

IVA−G:

(∀(W, C) ∈ (GLN (R)K × (S++
K )N ))

JReg
IVA−G(W, C) = JIVA−G(W, C) + α

2

N∑
n=1

∥diag(Cn)− 1K∥2

+

N∑
n=1

ι[ϵ,+∞)K (σCn
), (12)

α > 0 is an hyper-parameter that controls the strength of the
introduced regularization.

Our IVA-G method then aims to minimize (12). This is a
challenging non-convex and non-smooth problem. The next
section is dedicated to discuss further the properties of (12),
and to design an efficient optimization algorithm to find a
critical point of it.

III. PROPOSED MINIMIZATION ALGORITHM

A. Mathematical properties of JReg
IVA−G

In order to design an appropriate minimization algorithm for
(12), let us examine the structure and properties of the cost
function JReg

IVA−G. First, let us remark that minimizing (12) on
GLN (R)K × (S++

K )N is equivalent to

minimize
(W,C)∈RN×N×K×RK×K×N

h(W, C) + f(W) + g(C), (13)

with

2h(W, C) =
N∑

n=1

tr(CnW nR̂xW
⊤
n ) + α∥ diag(Cn)− 1K∥2,

(14)

f(W) =


−
∑K

k=1 log |detW
[k]|

if (∀k ∈ {1, . . . ,K})W [k] ∈ GLN (R)
+∞ otherwise,

(15)

g(C) =


− 1

2

∑N
n=1 log detCn

if (∀n ∈ {1, . . . , N})Cn − ϵIK ∈ S+K
+∞ otherwise.

(16)

As we already mentioned, ϵ > 0 serves as obtaining better
regularity for the cost function (with closed definition domain).
It is typically taken very small (e.g., ϵ = 10−12 in our
experiments) to ensure the problem is essentially equivalent to
a search for a maximum of the likelihood. A similar strategy
was adopted in [21]. Formulation (13) has the advantage of
isolating a differentiable term h acting on both set of variables
(W, C), and two non differentiable terms, f and g, acting
separately on W or C.

a) Function h: Let us first study function h acting
jointly on W and C variables. We state the following lemmas,
regarding the expression and smoothness properties, of its
partial gradients, with respect to the first or second entry, the
other being fixed.

Lemma 1 The partial gradient of h with respect to variable
W , evaluated at (W, C) ∈ RN×N×K × RK×K×N , reads:

∇Wh(W, C) = (∇W [k]h(W, C))1≤k≤K ∈ RN×N×K , (17)
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where, for all k ∈ {1, . . . ,K},

∇W [k]h(W, C) =
(∂h(W, C)

∂w
[k]
n,m

)
1≤n,m≤N

=

 [C1W 1R̂x]k,(k−1)N+1 . . . [C1W 1R̂x]k,(k−1)N+N

...
...

[CNWNR̂x]k,(k−1)N+1 . . . [CNWNR̂x]k,(k−1)N+N

 .

Moreover, for every C ∈ RK×K×N , ∇Wh(·, C) is Lipschitz
continuous, with modulus

LW(C) = ρCϱR̂x
, (18)

where R̂
[k]

x is the matrix obtained by extraction of the columns
kN + 1 to (k + 1)N of R̂x,

ϱR̂x
= max

1≤k≤K
∥R̂

[k]

x ∥S (19)

and
(∀C ∈ RK×K×N ) ρC = max

1≤n≤N
∥Cn∥S. (20)

Proof: See Appendix A.

Lemma 2 The partial gradient of h with respect to C, evalu-
ated at (W, C) ∈ RN×N×K × RK×K×N , reads:

∇Ch(W, C) = (∇Cn
h(W, C))1≤n≤N ∈ RK×K×N , (21)

where, for all n ∈ {1, . . . , N},

∇Cn
h(W, C) = 1

2
W nR̂xW

⊤
n + α(Diag(Cn)− IK).

Moreover, for every W ∈ RN×N×K , ∇Ch(W, ·) is Lipschitz
continuous with constant modulus

LC = α. (22)

Proof: See Appendix B
According to Lemmas 1 and 2, both partial derivatives of

h are well defined and continuous with respect to W and C,
which shows in particular that h is a C1 function.

b) Functions f and g: Functions f and g are proper (i.e.,
finite-valued at least at one point), and lower-semicontinuous.
Furthermore, function g is convex (see, for e.g., [22, Example
24.66], for a proof), while function f is not. Both functions
f and g are not differentiable but still, it is possible to
manipulate them efficiently, for minimization purpose, through
their proximity operator [23].2 The following lemmas provide
the expression for these operators, that will then be perused
in our algorithm. The proofs for these lemmas mainly rely on
the fact that both f and g are so-called spectral functions [24],
depending only on the spectral values of their inputs. Note that,
despite the non-convexity of f , its proximity operator is still
uniquely defined, as shown in the proof for Lemma 3.

Lemma 3 Let W ′ ∈ RN×N×K , and some c > 0. We define
the proximity operator of f at W ′ as

proxcf (W ′) = argmin
W∈RN×N×K

1

2
∥W −W ′∥2 + cf(W)

= (UW
′[k] Diag(σW [k])V W

′[k])1≤k≤K , (23)

2See also https://proximity-operator.net/

where (∀k ∈ {1, . . . ,K}) W ′[k] = UW
′[k] Diag(σW

′[k])V W
′[k]

is the singular value decomposition of W
′[k], and

σW [k] =
σW

′[k] +
√

σ2
W

′[k] + 4c

2
. (24)

Proof: See Appendix C.

Lemma 4 Let C′ ∈ RK×K×N , and some c > 0. The proximity
operator of g at C′ is given by

proxcg(C′) = argmin
W∈RK×K×N

1

2
∥C − C′∥2 + cg(C)

= (UC′
n
Diag(σCn

)V C′
n
)1≤n≤N (25)

where (∀n ∈ {1, . . . , N}),C ′
n = UC′

n
Diag(σC′

n
)V C′

n
is

the singular value decomposition of C ′
n, and

σCn
= max

(
ϵ,
σC′

n
+
√
(σC′

n
)2 + 2c

2

)
. (26)

Proof: See Appendix D.

B. Proposed PALM-IVA-G algorithm
As shown in the previous subsection, the minimization of

(12) amounts to solve Problem (13), that has a structure
particularly well suited to block alternating minimization.
More precisely, we have shown that the cost function includes
(partially) Lipschitz differentiable terms acting on both (W, C)
variables (Lemmas 1 and 2), as well as two terms acting
separately on these variables. Despite being non differentiable,
these terms are proper, lower-semicontinuous, and with a
tractable proximity operator (Lemmas 3 and 4). These results
pave the way for applying a block alternating proximal gra-
dient algorithm, as studied for instance in [25], [26], [27].
Here, we opted for PALM introduced in [28], because of
its powerful convergence results. We adapted here PALM
mechanism to the minimization of the cost (12) and thus
designed PALM-IVA-G presented in Alg. 1. In PALM initial
study, the convergence was shown in the case of sequential
block updates. Here, we instead opted for a more versatile
update scheme that follows the so-called essentially cyclic rule
[25], allowing each block to be updated more than once, per
main iteration. This assumption hence gives more flexibility
to our algorithm, and it is straightforward to adapt the proof
given in [28] to this case, using a similar technique to [25].

At each step i ∈ N of PALM-IVA-G main loop, we update
W (resp. C) a number nW(i) ≤ nW (resp. nC(i) ≤ nC)
of times, with nW and nC positive integers. The updates
include gradient, and proximal steps, as follows. First, gradient
steps on h with respect to the active block, W or C, with
positive stepsizes c(i)W or cC , respectively, are conducted. Then,
proximal steps on f or g, are run, using the same stepsizes.
Inner and outer loops are controlled by a maximum number of
iterations, and furthermore include early stopping tests, based
on comparing the following quantities to the (small) precision
parameter δ > 0:

(∀(W,W ′) ∈ (RN×N×K)2)

θW(W,W ′) = max
1≤n≤N
1≤k≤K

||w
′[k]
n −w

[k]
n ||2

2N
, (27)

https://proximity-operator.net/
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Algorithm 1 PALM-IVA-G

Require: Empirical covariance R̂x, initial tensors
(W(0), C(0)) ∈ GLN (R)K × (ϵIK + S+K)N ,
penalty weight α > 0, stepsizes
γC ∈ (0, 2), γW ∈ (0, 1), maximal inner/outer
loops nW ∈ N \ {0}, nC ∈ N \ {0}, N ∈ N \ {0},
precision δ > 0.

Ensure: (Wout, Cout)
1: ▷ Initialization ◁
2: W(0,0) ←W(0)

3: C(0,0) ← C(0)
4: cC ← γC

α
5: i ← 0
6: θ

(0)
ext ← +∞

7: ▷ Start Main Loop ◁

8: while θ
(i)
ext > δ or i < N do

9: ▷ Update W ◁

10: c
(i)
W ← γW

LW(C(i))
using (18)

11: j ← 0
12: θ

(0)
int ← +∞

13: while θ
(j)
int > δ or j < nW do

14: W(i,j+1) ← prox
c
(i)
W f

(W(i,j) − c
(i)
W∇Wh(W(i,j), C(i)))

15: using (17) and (23)
16: θ

(j)
int ← θW (W(i,j+1),W(i,j))

17: j ← j + 1

18: W(i+1,0) ←W(i,j)

19: W(i+1) ←W(i+1,0)

20: ▷ Update C ◁
21: j ← 0
22: θ

(0)
int ← +∞

23: while θ
(j)
int > δ or j < nC do

24: C(i,j+1) ← proxcCg(C(i,j) − cC∇Ch(C(i,j),W(i+1)))

25: using (21) and (25)
26: θ

(j)
int ← θC(C(i,j+1), C(i,j))

27: j ← j + 1

28: C(i+1,0) ← C(i,j)
29: C(i+1) ← C(i+1,0)

30: ▷ Evaluate Stopping Criteria ◁

31: θ
(i+1)
W ← θW(W(i+1),W(i)) using (27)

32: θ
(i+1)
C ← θC(C(i+1), C(i)) using (28)

33: θ
(i+1)
ext ← max(θ

(i+1)
W , θ

(i+1)
C )

34: i ← i+ 1
35: (Wout, Cout)← (W(i), C(i))

return (Wout, Cout)

(∀(C, C′) ∈ (RK×K×N )2)

θC(C, C′) = max
1≤n≤N
1≤k≤K

||c′n,k − cn,k||2

2K
, (28)

where, for n ∈ {1, . . . , N} and k ∈ {1, . . . ,K}, the
notation cn,k refers to the k-th row of the matrix Cn.

Let us now move to Section IV, with the aim to establish
the convergence of PALM-IVA-G iterates (W (i), C(i))i∈N.
Practical settings for PALM-IVA-G hyper-parameters will be
discussed in Section V.

IV. CONVERGENCE RESULT

Let us state our convergence theorem for the proposed
PALM-IVA-G algorithm.

Theorem 2 (Convergence of PALM-IVA-G) Assuming the
setting of Algorithm 1, the infinite sequence (W(i), C(i))i∈N
converges to a critical point (W∗, C∗) of function JReg

IVA−G
given in (12).

Here, a critical point is defined as in [28, Rem.1 (iv)],
i.e., 0 ∈ ∂JReg

IVA−G(W∗, C∗), where ∂ denotes the limiting
subdifferential operator. The proof of the above result relies on
[28, Theorem 1] in the case of a cyclic update of the blocks.
The latter states the convergence of a generic form of PALM
method under several assumptions regarding the properties of
the cost function, and provided the sequence is bounded. It is
hence sufficient to show that such conditions hold in our case,
to prove Theorem 2. In the previous section, we have already
seen that f and g are proper and lower semi-continuous
functions such that the proximal operators proxcf and proxcg
are defined for all c > 0, at any pointW ∈ GLN (R)K and C ∈
(S++

K )N , respectively. We also outlined that h is a C1 function
and for every given W ′ ∈ RN×N×K (resp. C′ ∈ RK×K×N ),
the function C 7→ h(W ′, C) (resp.W 7→ h(W, C′)) is C1,1

LC(W′),
i.e. its partial gradient C 7→ ∇Ch(W ′, C) is globally Lipschitz
with modulus LC(W ′) (resp. C1,1

LW(C′)). We note that those
first properties were necessary to well-defining the algorithm
itself.

Using our notation, to complete the proof, we need to
demonstrate each item of the following Assumption 1 is
satisfied.

Assumption 1
1) infRN×N×K×RK×K×N JReg

IVA−G > −∞.
2) ∇h is Lipschitz continuous on bounded subsets of

RN×N×K × RK×K×N .
3) (W(i), C(i))i∈N is bounded.
4) There exists (λ+

W , λ−
W , λ+

C , λ
−
C ) > 0 such that:

(∀i ∈ N)λ−
W ≤ LW(C(i)) ≤ λ+

W ,

and
(∀i ∈ N)λ−

C ≤ LC(W(i)) ≤ λ+
C .

5) JReg
IVA−G is a KL function.

Indeed, following the steps of [28], the update scheme of
the algorithms makes the sequence of the costs decreasing, and
using the first item of the above assumption, this sequence has
a finite limit. Then, items 2) to 4) enable to prove that the limit
set of (W(i), C(i))i∈N is nonempty, compact, and contains only
critical points of JReg

IVA−G. Finally, the last item is used to prove
that (W(i), C(i))i∈N is a Cauchy sequence, hence convergent.
The verification of Assumption 1 is technically involved and
is therefore provided in Appendix E.

V. EXPERIMENTAL RESULTS

We now present a set of experiments, to assess the
quantitative, qualitative, and computational performance of
PALM-IVA-G on tasks of independent Gaussian sources
separation.
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A. Experimental protocol
1) Qualitative evaluation: In all the experiments, the pro-

posed method PALM-IVA-G, as well as the benchmarks, are
evaluated by means of the so-called jISI (joint Intersymbol In-
terference) score, also used in [12]. This score is an extension
of the ISI score that was introduced in [29] to assess the per-
formance of ICA methods. jISI score measures the correspon-
dance between demixing matrices W = [W [1], . . . ,W [K]]
and the ground truth mixing matrices A = [A[1], . . . ,A[K]],
up to a common permutation and a rescaling of their rows.
Let us note

(∀k ∈ {1, . . . ,K}) G[k] = W [k]A[k] (29)

and, for every (m,n) ∈ {1, . . . , N}2, the mean gn,m =∑K
k=1 |g

[k]
n,m| of the (n,m)-th entry of tensor G =

[G[1], . . . ,G[K]]. The jISI score of the pair (W,A) is

jISI(W,A) = 1

2N(N − 1)

[
N∑

n=1

(
N∑

m=1

gn,m
maxp gn,p

− 1

)

+

N∑
m=1

(
N∑

n=1

gn,m
maxp gp,m

− 1

)]
. (30)

As defined in (30), the jISI score is a real number be-
tween 0 and 1, with jISI score equals 0 if and only if
G = (gn,m)1≤n,m≤N has exactly one positive coefficient by
row and by column, that is when it is a (possibly permuted)
diagonal matrix. This happens when the (W [k]A[k])1≤k≤K

are simultaneously permuted diagonal matrices, which is the
best situation one can expect from a source separation step.
Hence, the smallest the jISI score, the better quality for the
source separation.

2) Benchmark methods: Our algorithm PALM-IVA-G is
compared against two state of the art algorithms for indepen-
dant Gaussian source separation, namely IVA-G-V and IVA-
G-N, both introduced in [12]. Those two algorithms perform
the minimization of the cost function J̃IVA−G (8) (which, as
we remind, only depends on variable W) using, respectively,
a gradient descent and a Newton’s method. Both implement
a backtracking linesearch, and a normalization of the rows
of the demixing matrix at each iteration. Hyper-parameters
are set as recommended in [12]. Let us emphasize that both
of these algorithms are empirical, and, to our knowledge, do
not benefit from established convergence guarantees, though
in practice we did not observe any failure.

For every experiment, and each algorithm, we obtain an
estimate for which we record the jISI score reached at
convergence (i.e., when stopping criterion is reached), and
the computational time, in seconds, denoted T, to reach this
convergence point. All algorithms are implemented in Python
3.10.12 and run on a Dell Precision 5820 Workstation with
11th Gen Intel(R) Core(TM) i9-10900X at 3.00GHz, equipped
with 32Go Ram.

3) Synthetic dataset generation: For each experimental
setup, we define a generative model defined by the ground-
truth variables (A,Σ), and use this model to generate
source data S of length V = 10000, and then mix it
into observed data X . The goal is to recover estimates of
([(A[1])−1, . . . , (A[K])−1], [Σ−1

1 , . . . ,Σ−1
N ]) up to the scaling

and permutation ambiguities. All trials are repeated over 100
independent runs, and we compute the mean µjISI (resp.
µT) and standard-deviation σjISI (resp. σT) values for the

jISI score (resp. computational time T). Most experiments
are conducted for various values for the dimensions (K,N),
specified in each test case. Depending on the nature of the
phenomenon modeled, the covariance and the mixing matrices
may have various properties, leading us to define several sets
of experiments, detailed hereafter.

We aim at exploring the impact of the overall level of
correlation across the datasets (given by the extra-diagonal co-
efficients of the SCVs covariance matrices), and the variability
of those correlations. Our generative model used to simulate
SCVs depends on two parameters ρ = [ρ1, . . . , ρN ]⊤ ∈
[0, 1]N and λ ∈ [0, 1]. Given those, we compute a ground
truth tensor Σ = [Σ1, . . . ,ΣN ] with, for every n,

Σn = ρn11
⊤ +

λ

R
QQ⊤ + ηnIK (31)

with
ηn = 1− ρn − λ ∈ [0, 1], (32)

matrix Q randomly drawn in RK×R with elements qi,j ∼
N (0, 1) mutually independent, and R ∈ N \ {0} a predefined
rank value.

Then, we have, for every n, and every entry (i, j),{
E{(Σn)i,j} = ρn + (λ+ ηn)δi,j

Var{(Σn)i,j} = λ2

R (1 + δi,j).
(33)

This means that ρ controls the average correlation across the
datasets while λ controls the variability between the correla-
tions. The third term ensures that the covariance matrices we
use are positive definite. In our experiments, we opt for four
scenarios, corresponding to low/high variability, and low/high
correlation, as defined below:

• Case A: low correlation, low variability. λ = 0.04 and, ρ
regularly sampled in [0.2, 0.3]N ,

• Case B: low correlation, high variability. λ = 0.25 and,
ρ regularly sampled in [0.2, 0.3]N ,

• Case C: high correlation, low variability. λ = 0.04 and,
ρ regularly sampled in [0.6, 0.7]N ,

• Case D: high correlation, high variability. λ = 0.25 and,
ρ regularly sampled in [0.6, 0.7]N ,

The sources are expected to be easier to separate in case D,
while case A is more challenging, since increasing the correla-
tion or the variability of the sources decreases the Cramer-Rao
Lower-Bound of the ML estimator and thus tends to improve
the separation [15]. Each of the four cases is investigated, for
various sizes K ∈ {5, 10, 20} and N ∈ {10, 20}, and we
set R = K + 10. In all experiments, the ground truth tensor
A is simulated by drawing its entries independently from a
zero-mean Gaussian distribution with a standard deviation of
1.

For each simulated pair (A,Σ), we build the corresponding
input data X , following the mixing model (1). Note that, as
recommended in [12], we systematically performed a whiten-
ing of the data, before applying the algorithms. This step
amounts to multiplying, for every k ∈ {1, . . . ,K}, the latent
sources by full-rank matrices (B[k])1≤k≤K , and solving the
demixing problem on X ′[k] = B[k]X [k] = B[k]A[k]S[k]. The
whitening matrices are set to decrease the spectral norm of
R̂x, with the aim to improve the conditioning of the loss
function, and hence accelerate the empirical convergence of
the methods.
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Fig. 1: jISI scores vs computation times (mean ± standard
deviation) using PALM-IVA-G for Case A over 20 runs,
with α taking values in {0.1, 0.5, 1, 5, 10} (the brighter color,
the higher α). The jISI score varies little with α, the latter
impacting mostly the time, with good compromise at α = 1
(dark orange).

4) Algorithmic settings: The implementation of the pro-
posed PALM-IVA-G algorithm requires the setting of (i) the
stepsizes, (ii) the regularization weight, and (iii) the stopping
conditions for internal and external loops.

We set the stepsizes to constant values (γC , γW) =
(1.99, 0.99), i.e. as large as possible to meet the convergence
theorem assumptions. The penalty parameter α appears to
have little influence over the performance of PALM-IVA-
G, in terms of jISI metric and computational time, as long
as it is chosen in a reasonable range. This can be observed
empirically in Fig. 1 summarizing results for Case A and
various values of α. Indeed, except for α = 10 which seems to
yield systematically slower computations, we cannot observe
that a value of α gives consistently better results than the
others. Similar behaviors were obtained for Cases B to D. For
the experiments, we thus retain α = 1, as it achieves a good
compromise in terms of time complexity.

PALM-IVA-G algorithm, as well as its competitors IVA-
G-V and IVA-G-N are run until a certain stopping criterion is
reached, with a maximum number of N = 20000 iterations.
The precision threshold is set to δ = 10−10, and the maximum
number of iterations within the internal loops of PALM-IVA-
G are n̄C = 1 and n̄W = 15. For IVA-G-V (resp. IVA-G-N),

we monitor only the value of (27) between consecutive iterates,
stopping once lower than δ = 10−6 (resp. δ = 10−7). Note
that the values of (n̄C , n̄W , δ) have been empirically set to
reach the best trade-off between jISI score and computational
time, ensuring fair comparisons of the methods.

The validity of our settings can be assessed visually on Fig.
2, showing the cost function evolution using our PALM-IVA-
G algorithm in a representative example.
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Fig. 2: Top: Empirical convergence of PALM-IVA-G, on a
synthetic example from Case D, with (K,N) = (20, 20),
λ = 0.25 and ρ ∈ [0.2, 0.3]⊤. Cost function across iterations
(left) and time in second (right). Bottom: On the same exam-
ple, evolution of jISI score along iterations (left) and time in
seconds (right), for the compared methods.

B. Results
We now present the results of the experiments, and com-

ment on the strengths and weaknesses of our algorithm in
comparison with the benchmarks. The results are illustrated
in Figs. 3 and 4, and summarized in Tab. I. On Fig. 3
and 4, we display, for each of the three algorithms, a cross
centered at (µT, µjISI), and spread out by ±σT (horizontal)
and ±σjISI (vertical) axis. The best results thus correspond to
a cross located on the bottom left side of the figure (i.e., low
jISI score reached in a minimal time). In Tab. I, we highlight
in bold font (resp. italic bold font) the best results in terms
of µjISI (resp. µT), considering of similar quality jISI scores
with less than 10−4 difference (resp. computation times with
less that 10−2 difference).

All algorithms achieve what appears to be optimal separa-
tion in easy cases (B and D). In difficult cases, it is generally
either IVA-G-V or PALM-IVA-G that have the best jISI, with
an advantage for PALM-IVA-G in small dimensions and an
advantage for IVA-G-V in larger dimensions, but in all cases
performance remains close. IVA-G-N is generally not as good,
but manages to keep its performance close to that of the other
algorithms, except for Case A, where it gives jISI values 20
to 50 percent higher than the other algorithms on average.

Computations of PALM-IVA-G are tractable, and stay
under two minutes. The running time is sensitive to the number
of sources, and seems to grow linearly with the number of
datasets within the tested dimensions. For N = 10, our
algorithm takes less than 15 seconds to run in average in all



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. XX, NO. XX 9

cases. Meanwhile, IVA-G-V is less sensitive to N and also
manages to separate the sources in two minutes in average at
most for the dimensions in the experiment. However, IVA-G-N
is the slowest of all three algorithms, it takes several tens
of seconds in small dimensions for Cases A and C, and its
computational cost becomes prohibitive in larger dimensions,
taking an average time of fifteen minutes to run in Case A for
K = 20 and N = 20. Visually, it leads to blue crosses often
positioned on the right side of the plots in Figs. 3 and 4.

In contrast to gradient descent, iterations using Newton’s
method or proximal gradient are more informed and are
expected to find the local minimum more efficiently. On
the other hand, these methods are more costly, since they
involve Hessian inversions for IVA-G-N, and SVDs for our
PALM-IVA-G, and such cost is not necessarily offset by
a gain in number of iterations. Besides, the update scheme
of PALM-IVA-G implies many more updates of the block
W than the block C, so most of the matrices for which we
compute the SVD are of size N×N rather than K×K, this is
why the computation time of PALM-IVA-G increases faster
with respect to N than K.
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Case A: ρ ∈ [0.2, 0.3]N and λ = 0.04

0 2 4 6 8

Time (s.)

0.019

0.02

0.021

0.022

0.023

0.024

0.025

jI
S

I

0 2 4 6 8 10

Time (s.)

0.0135

0.014

0.0145

jI
S

I

0 10 20 30

Time (s.)

0.011

0.0111

0.0112

0.0113

0.0114

0.0115

jI
S

I

(K,N) = (5, 10) (K,N) = (10, 10) (K,N) = (20, 10)

0 10 20 30

Time (s.)

0.021

0.0215

0.022

0.0225

0.023

jI
S

I

0 10 20 30

Time (s.)

0.0138

0.014

0.0142

0.0144

jI
S

I

0 20 40 60

Time (s.)

0.0112

0.0113

0.0114

0.0115

jI
S

I

(K,N) = (5, 20) (K,N) = (10, 20) (K,N) = (20, 20)
Case B: ρ ∈ [0.2, 0.3]N and λ = 0.25

Fig. 3: jISI score vs computational time in seconds (mean
± standard deviation), for PALM-IVA-G (green), IVA-G-V
(red) and IVA-G-N (blue), for Case A and Case B.

In conclusion, in addition to its established convergence
guarantees, PALM-IVA-G appears to be competitive with the
state of the art IVA-G algorithm, consistently achieving good
jISI scores and taking reasonable time to run, especially when
the number of sources is not too high.
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Fig. 4: jISI score vs computational time in seconds (mean
± standard deviation), for PALM-IVA-G (green), IVA-G-V
(red) and IVA-G-N (blue), for Cases C and D.

VI. CONCLUSION

In this article, we addressed the problem of joint blind
source separation, through the IVA-G formulation. First, we
derived a cost function parameterised by the demixing matrices
and the precision matrices of the sources, to solve IVA-G based
on the maximum likelihood estimator. We then introduced an
additional term to fix the scaling ambiguity, hence forcing
the precision matrices of output solution to have ones on its
diagonal, completing the design of our cost function.

Then, we studied the different terms of this non-convex
and non-smooth cost, in particular, we gave explicit formulas
for the partial gradients of the smooth term with respect to
both blocks of variable and for the proximity operators of
the separable terms. Based on these results, we proposed an
algorithm adapted from the PALM optimizer, and proved
that the sequence of iterates converges globally to a critical
point. We compared our method to two state-of-the-art IVA-G
algorithms and showed that our method is competitive in terms
of jISI score and computation time, especially for a moderate
number of sources.

As a future work, those encouraging results on synthetic
datasets should be confirmed on real data, for instance from
fMRI or MEEG. Depending on the application considered,
we could leverage model knowledge in the form of new reg-
ularization terms in the cost function. The proposed proximal
alternating algorithm is versatile and would be easily adaptable
to a large class of penalties and constraints.
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TABLE I: Averaged jISI scores, µjISI, and averaged computa-
tional times, µT, in seconds, for PALM-IVA-G, IVA-G-V and
IVA-G-N (from top to bottom). Best (i.e., lowest) jISI results
(resp. lowest times) are highlighted in bold (resp. italic bold).

K = 5 K = 10 K = 20

N = 10 N = 20 N = 10 N = 20 N = 10 N = 20

PA
L

M
-I

VA
-G

Case A µjISI 9.79E-02 1.36E-01 5.40E-02 6.74E-02 3.88E-02 4.18E-02
µT 3.0 23.8 4.3 41.2 9.2 84.2

Case B µjISI 2.14E-02 2.20E-02 1.40E-02 1.41E-02 1.13E-02 1.13E-02
µT 0.5 3.1 0.6 3.7 1.5 8.6

Case C µjISI 4.63E-02 5.29E-02 2.51E-02 2.63E-02 1.70E-02 1.70E-02
µT 4.9 39.2 6.6 49.7 13.6 107.2

Case D µjISI 9.45E-03 9.46E-03 6.03E-03 6.03E-03 4.97E-03 4.98E-03
µT 0.7 4.6 0.9 5.6 2.4 14.9

IV
A

-G
-V

Case A µjISI 1.01E-01 1.37E-01 5.61E-02 6.64E-02 3.81E-02 4.11E-02
µT 1.8 5.4 12.2 30.4 44.6 123.7

Case B µjISI 2.15E-02 2.20E-02 1.40E-02 1.41E-02 1.13E-02 1.13E-02
µT 1.1 2.3 6.0 15.2 28.5 58.2

Case C µjISI 4.68E-02 5.03E-02 2.47E-02 2.58E-02 1.63E-02 1.67E-02
µT 1.6 4.1 10.1 21.3 36.0 86.8

Case D µjISI 9.48E-03 9.45E-03 6.08E-03 6.07E-03 4.99E-03 5.00E-03
µT 1.2 2.6 8.3 15.8 32.9 74.7

IV
A

-G
-N

Case A µjISI 1.36E-01 1.69E-01 7.62E-02 9.79E-02 4.76E-02 4.95E-02
µT 25.0 82.8 76.4 285.7 234.7 1023.5

Case B µjISI 2.19E-02 2.21E-02 1.41E-02 1.41E-02 1.13E-02 1.13E-02
µT 5.9 21.9 7.7 24.3 17.0 52.4

Case C µjISI 5.05E-02 5.54E-02 2.52E-02 2.63E-02 1.69E-02 1.67E-02
µT 19.5 89.5 36.5 138.3 81.1 304.3

Case D µjISI 9.51E-03 9.45E-03 6.08E-03 6.06E-03 4.99E-03 5.00E-03
µT 1.8 6.2 2.3 6.8 6.5 17.6

APPENDIX A
PROOF OF LEMMA 1

Let (W, C) ∈ RN×N×K×RK×K×N . The partial derivative
of h in (14), with respect to the (n,m, k)-th entry of tensor
W reads

∂h(W, C)
∂w

[k]
n,m

=
1

2

N∑
n′=1

∂ tr(Cn′W n′R̂xW
⊤
n′)

∂w
[k]
n,m

. (34)

For n′ ̸= n, the terms of the above sum are null, hence

∂h(W, C)
∂w

[k]
n,m

=
1

2

∂ tr(CnW nR̂xW
⊤
n )

∂w
[k]
n,m

. (35)

Then, by applying the formula of the derivative of a matricial
scalar product [30],

∂h(W, C)
∂w

[k]
n,m

=
1

2

∂⟨CnW nR̂x|W n⟩
∂w

[k]
n,m

=
1

2

(
⟨∂(CnW nR̂x)

∂w
[k]
n,m

|W n⟩+ ⟨CnW nR̂x|
∂W n

∂w
[k]
n,m

⟩
)

=
1

2

(
⟨Cn

∂W n

∂w
[k]
n,m

R̂x|W n⟩+ ⟨CnW nR̂x|
∂W n

∂w
[k]
n,m

⟩
)

= tr
( ∂W n

∂w
[k]
n,m

R̂xW
⊤
nCn

)
. (36)

Hereabove, ∂Wn

∂w
[k]
n,m

is a matrix of dimension K ×KN whose
elements are equal to 0, except one, at row index k and column
index (k − 1)N +m, which is equal to 1. We deduce

∂h(W, C)
∂w

[k]
n,m

= [CnW nR̂x]k,(k−1)N+m. (37)

The above expression can be reexpressed in a more concise
matrix form which gives (17), and proves the first part of the
lemma.

Let C ∈ RK×K×N . From (17), we can see that ∇Wh(., C)
is linear, and thus Lipschitz continuous. Moreover, for every
W ∈ RN×N×K ,∥∥∥∂h(W, C)

∂W

∥∥∥2 =

K∑
k=1

N∑
n=1

N∑
m=1

([CnW nR̂x]k,(k−1)N+m)2

=

N∑
n=1

K∑
k=1

( N∑
m=1

([CnW nR̂x]k,(k−1)N+m)2
)

=

N∑
n=1

K∑
k=1

∥[CnW nR̂x]k,(k−1)N+1,...,N∥2

=

N∑
n=1

K∑
k=1

∥cn,kW nR̂
[k]

x ∥2. (38)

Using the identity ∥AB∥ ≤ ∥A∥S∥B∥, we have, for all
k ∈ {1, . . . ,K}, n ∈ {1, . . . , N},

∥cn,kW nR̂
[k]

x ∥2 ≤ ∥R̂
[k]

x ∥2S∥cn,kW n∥2 ≤ ϱ2
R̂x
∥cn,kW n∥2.

(39)
CnW n is a K × KN matrix whose k-th line is equal to
cn,kW n, hence,

K∑
k=1

∥cn,kW n∥2 = ∥CnW n∥2 ≤ ∥Cn∥2S∥W n∥2. (40)

Overall, ∥∥∥∂h(W, C)
∂W

∥∥∥2 ≤ N∑
n=1

ϱ2
R̂x

K∑
k=1

∥cn,kW n∥2

≤ ϱ2
R̂x

N∑
n=1

ρ2C∥W n∥2

= ρ2Cϱ
2
R̂x
∥W∥2. (41)

This concludes the second part of the Lemma, i.e. W →
h(W, C) is Lipschitz differentiable with constant (18).

APPENDIX B
PROOF OF LEMMA 2

For all W ∈ RN×N×K , h(W, .) in (14) is quadratic, which
yields the expression (21) in a straightforward manner, and
concludes the first part of the proof. Let W ′ ∈ RN×N×K .
According to (21), it can be easily checked that ∇Ch(W ′, .)
is Lipschitz with moduli α, hence C → h(W ′, C) is Lipschitz
differentiable with constant (22), which ends the proof.

APPENDIX C
PROOF OF LEMMA 3

Function f in (15), reads, equivalently, for all W ∈
RN×N×K , f(W) =

∑K
k=1 f̂(W

[k]), where, for all M ∈
RN×N , with singular values σM = (σM ,ℓ)1≤ℓ≤N , f̂(M) =
− log |detM | = ϕf̂ (σM ), with

ϕf̂ : R
N 7→ (−∞,+∞]

σ = (σ1, . . . , σN ) 7→

{
+∞ if (∃ℓ ∈ {1, . . . , N}) σℓ ≤ 0

−
∑N

l=1 log σℓ otherwise.
(42)
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Let c > 0 and W ′ ∈ RN×N×K . Then,

cf(W)+
1

2
∥W−W ′∥2 =

K∑
k=1

cf̂(W [k])+
1

2
∥W [k]−W

′[k]∥2.

Hence, we can minimize the sum by minimizing all its terms
independently. In other words, W ∈ proxcf (W ′), if and only
if, for every k ∈ {1, . . . ,K},

W [k] ∈ proxcf̂ (W
′[k]).

It remains to derive an explicit form for proxcf̂ . To do so, let
us use the following lemma whose proof is given in [31] (see
also [24], [22] for similar results on the proximity operators
of spectral functions).

Lemma 5 Let N ≥ 1 and ϕ : RN 7→ (−∞,+∞] be
a function whose domain is not empty and is contained in
[0,+∞)N , such that ϕ is invariant by any permutation of its
arguments and that the proximity operator of ϕ is defined.
Let Φ : RN×N 7→ (−∞,+∞],M 7→ ϕ(σM ) where σM is a
vector containing the N singular values of M in any order.
Then, the proximity operator of Φ is defined, and for any
M ′ ∈ RN×N , whose singular value decomposition reads
M ′ = UM ′ Diag(σM ′)V ⊤

M ′ , if σM ∈ proxϕ(σM ′), then
we have UM ′ Diag(σM )V ⊤

M ′ ∈ proxΦ(M
′).

Function (42) is invariant by permutation of its arguments
and verifies ∅ ̸= domϕf̂ ⊂ [0,+∞)N . Moreover, for any
σ′ = (σ′

1, . . . , σ
′
N ) ∈ RN ,

proxcϕf̂
(σ′) = argmin

σ∈RN

cf(σ) +
1

2
∥σ − σ′∥2

= argmin
σ∈(0,+∞)N

N∑
ℓ=1

1

2
(σℓ − σ′

ℓ)
2 − c log σℓ.

(43)

The above prox calculation requires to minimize a sum of
functions, each term acting on a different variable, which
means we can minimize each term independently. Let l ∈
{1, . . . , N}, then

∀σℓ > 0 :
d
(
1
2 (σℓ − σ′

ℓ)
2 − c log σℓ

)
dσℓ

= σℓ − σ′
ℓ − cσ−1

ℓ = 0

⇐⇒ σ2
ℓ − σ′

ℓσℓ − c = 0

⇐⇒ σℓ ∈

{
σ′
ℓ −

√
(σ′

ℓ)
2 + 4c

2
,
σ′
ℓ +

√
(σ′

ℓ)
2 + 4c

2

}
.

As σℓ 7→ 1
2 (σℓ − σ′

ℓ)
2 − c log σℓ diverges toward +∞ in

0+ and +∞ and is C1 on (0,+∞), it must have a minimum
where its derivative is equal to 0. The only point where it

happens is σℓ =
σ′
ℓ+
√

(σ′
ℓ)

2+4c

2 , so we can conclude that this
point is a global minimum.

Finally, proxcϕf̂
is uniquely defined for any σ′ ∈ RN and

has the explicit form:

σ = proxcϕf̂
(σ′) =

σ′ +
√

(σ′)2 + 4c

2
where the square and square root operations are applied
component-wise. Applying Lemma 5, with M = W [k],
M ′ = W

′[k], for every k ∈ {1, . . . ,K}, and Φ = f̂ , allows
to conclude the proof.

APPENDIX D
PROOF OF LEMMA 4

For every C ∈ RK×K×N , we can rewrite function (16), as
g(C) =

∑N
n=1 ĝ(Cn) where, for every M ∈ RK×K , with

singulare values σM = (σM ,ℓ)1≤ℓ≤K , ĝ(M) = ϕĝ(σM ),
with

ϕĝ : RK → (−∞,+∞]

σ = (σ1, . . . , σK) 7→

{
+∞ if (∃ℓ ∈ {1, . . . ,K}) σℓ ≤ 0

−
∑K

l=1 log σℓ otherwise.

Moreover, for any σ′ ∈ RK ,

proxcϕĝ
(σ′) = argmin

σ∈[ϵ,+∞)

1

2

K∑
ℓ=1

(σℓ − σ′
ℓ)

2 − c log σℓ

= max

(
ϵ,
σ′ +

√
(σ′)2 + 2c

2

)
.

Hence the result, applying Lemma 5 for every n ∈ {1, . . . , N},
with Φ = ĝ, and (M ,M ′) = (Cn,C

′
n).

APPENDIX E
CONVERGENCE PROOF

a) Lower-boundedness of the cost function: Using The-
orem 1,

(∀(W, C) ∈ RN×N×K × RK×K×N )

JIVA−G(W, C) ≥ J̃IVA−G(W) +
KN

2
.

Let us note σ− the smallest eigenvalue of R̂x, then R̂x −
σ−IKN is a symmetric matrix whose eigenvalue are non-
negative, i.e., R̂x−σ−IKN is symmetric positive. Therefore,
it is also the case of W n(R̂x − σ−IKN )W⊤

n for any
n ∈ {1, . . . , N}, and

W nR̂xW
⊤
n ⪰ σ−W nW

⊤
n , (44)

where ⪰ denotes the Loewner order relationship defined
on (SN )2 as (∀(A,B) ∈ (SN )2) A ⪰ B ⇐⇒ A−B ∈ S+N .

Yet, W nW
⊤
n is a diagonal matrix whose k-th coefficient

is ∥w[k]
n ∥2. Hence det(W nR̂xW

⊤
n ) ≥ (σ−)K det(W nW

⊤
n )

and

1

2
log det(W nR̂xW

⊤
n ) ≥

1

2
K log(σ−) +

1

2

K∑
k=1

log ∥w[k]
n ∥2.

(45)
Besides, by Hadamard inequality applied to the lines of W [k]

for any k ∈ {1, . . . ,K}, |detW [k]|2 ≤
∏N

n=1 ∥w
[k]
n ∥2,

hence,

− log |detW [k]| ≥ −1

2

N∑
n=1

log ∥w[k]
n ∥2. (46)

By summing (45) for n ∈ {1, . . . , N}, and (46) for k ∈
{1, . . . ,K}, it comes:

(∀W ∈ RN×N×K) J̃IVA−G(W) ≥ KN

2
(1 + log(σ−)). (47)

We can conclude that JIVA−G is lower bounded on
RN×N×K × RK×K×N . Finally, since the quadratic regular-
ization term is positive, JReg

IVA−G is lower bounded too, which
ends the proof.
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b) Lipschitz continuity of the gradient: The expressions
of the partial gradients of h given in Lemmas 1 and 2 show
clearly that ∇h is a C1 function on RN×N×K × RK×K×N .
Consequently, the mean value theorem can be applied to show
that it has Lipschitz continuity on any bounded domain.

c) Boundedness of the sequence:
• Boundedness of (C(i))i∈N

First, we notice that (20) defines a norm on RK×K×N .
For all (i, j) ∈ N2 such that C(i,j) belongs to the sequance
generated by PALM-IVA-G, let us note:

C
(i,j)

n = C(i,j)
n − cC(α(Diag(C(i,j)

n )− IK)

− 1

2
W (i+1)

n R̂xW
(i+1)⊤
n ).

∥C(i,j+1)
n ∥S = max

(
ϵ,
∥C(i,j)

n ∥S +

√
∥C(i,j)

n ∥2S + 2cC

2

)
≤ ∥C(i,j)

n ∥S +

√
cC
2
, (48)

assuming that ϵ <
√

cC
2 , which is verified in our experimental

settings.
As W (i+1)

n R̂xW
(i+1)⊤
n is symmetric positive,

∥Cn
(i,j)∥S ≤ ∥C(i,j)

n − γC(Diag(C(i,j)
n )− IK)∥S

= ∥C(i,j)
n − γC Diag(C(i,j)

n )∥S + γC . (49)

Let u ∈ RK be a unit norm vector. Using the in-
equality for matrices of S+K ,∀(k, l) ∈ {1, . . . ,K} |c(i,j)n,k,l| ≤√

c
(i,j)
n,k,k

√
c
(i,j)
n,l,l , it comes

u⊤C(i,j)
n u

=
∑

1≤k,l≤K

c
(i,j)
n,k,lukul ≤

∑
1≤k,l≤K

|c(i,j)n,k,l||uk||ul|

≤
∑

1≤k,l≤K

√
c
(i,j)
n,k,k|uk|

√
c
(i,j)
n,l,l |ul|

≤
∑

1≤k,l≤K

c
(i,j)
n,k,ku

2
k

2
+

c
(i,j)
n,l,lu

2
l

2
= Ku⊤ Diag(C(i,j)

n )u.

It follows that, for all u ∈ RK such that ∥u∥ = 1,
u⊤
(
C(i,j)

n − γC Diag(C(i,j)
n )

)
u ≤ (1 − γC

K )u⊤C(i,j)
n u ≤

(1− γC
K )∥C(i,j)

n ∥S. Combining this result with (48) and (49),
we deduce that ∥C(i,j+1)

n ∥S ≤ (1− γC
K )∥C(i,j)

n ∥S+γC+
√

cC
2 ,

then we can prove by recurrence that for all (i, j), ∥C(i,j)
n ∥S ≤

max
(
∥C(0)

n ∥S,K(1 +
√

1
2αγC

)
)
. Consequently, if we define

ρ̄ = max
(
∥ρC(0)∥S,K(1 +

√
1

2αγC
)
)
, (50)

ρ̄ is an upper bound for (ρC(i))i∈N, which proves that
(C(i))i∈N is bounded.

• Boundedness of (W(i))i∈N
Again, we fix i ∈ N, the proximal operator used
in Algorithm 1 ensures that C(i) ∈ (ϵIK + S+K)N .
Thus, (∀n ∈ {1, . . . , N}) tr(C(i)

n W (i)
n R̂xW

(i)⊤
n ) ≥

ϵ tr(W (i)
n R̂xW

(i)⊤
n ) ≥ ϵσ−∥W (i)

n ∥2 using (44). By summing
these inequalities,

1

2

N∑
n=1

tr(C(i)
n W (i)

n R̂xW
(i)⊤
n ) ≥ ϵσ−

2
∥W(i)∥2. (51)

Besides, let us consider the concave inequality on the loga-
rithm function at point 2

ϵσ− > 0,

(∀x ∈ (0,+∞)) log x ≤ log
2

ϵσ− +
ϵσ−

2
x− 1. (52)

Taking k ∈ {1, . . . ,K} and summing (52) applied on
∥w(i)[k]

n ∥ for n ∈ {1, . . . , N}, we obtain
N∑

n=1

log ∥w(i)[k]
n ∥ ≤ N(log

2

ϵσ− −1)+
ϵσ−

2
∥W (i)[k]∥2. (53)

And combining this inequality with (45) gives

− log |detW (i)[k]| ≥ −ϵσ−

4
∥W (i)[k]∥2 − N

2
(log

2

ϵσ− − 1).

Finally, summing for k ∈ {1, . . . ,K},

−
K∑

k=1

log |detW (i)[k]| ≥ −ϵσ−

4
∥W(i)∥2−KN

2
(log

2

ϵσ−−1).

(54)
Summing (54) and (51) yields

ϵσ−

4
∥W(i)∥2 − KN

2
(log

2

ϵσ− − 1)

≤ 1

2

N∑
n=1

tr(C(i)
n W (i)

n R̂xW
(i)⊤
n )−

K∑
k=1

log |detW (i)[k]|

= JIVA−G(W(i), C(i)) + 1

2

N∑
n=1

log detC(i)
n

≤ JIVA−G(W(i), C(i)) + KN

2
log ρ̄.

Following the proof of [28, Lemma 2], it is sufficient that
the first four items of Assumption 1 hold to obtain that
JReg
IVA−G(W(i), C(i)) is a non-increasing sequence. We thus

have

∥W(i)∥2 ≤ 4

ϵσ−

(
JReg
IVA−G(W

(0), C(0)) + KN

2
log ρ̄(

2

ϵσ− − 1)
)
.

(55)

This shows that (W(i))i∈N is bounded too.
d) Bounds for the corrected Lipschitz moduli: Using

(18), we can set λ−
W = ϵϱR̂x

and λ+
W = ρ̄ϱR̂x

. We can also
set λ−

C = λ+
C = α.

e) KL property: KL property is a key tool from func-
tional analysis to demonstrate convergence of iterates in the
non-convex setting [28]. It is sufficient here to apply the result
from [32, Section 4.3], which states that a function verifies
KL on the domain of its subdifferential, if it is lower semi-
continuous, proper, and definable in an o-minimal structure.

We rely on the o-minimal structure S(Ran,exp), defined in
[33, Section 2, Example (6)], which contains log, exp and
all semi-algebraic functions. The properties in [33, Section 5]
can then be used to show that S(Ran,exp) contains our cost
function JReg

IVA−G, after identifying RN×N×K×RK×K×N with
RKN(K+N).
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L. V. Pérez, C. Torres, and R. Becerra-Garcı́a, “Evaluation of electro-
oculography data for ataxia sca-2 classification: A blind source sepa-
ration approach,” in 2010 10th International Conference on Intelligent
Systems Design and Applications, 2010, pp. 237–241.

[9] B. Gabrielson, M. A. B. S. Akhonda, S. Bhinge, J. Brooks, Q. Long,
and T. Adali, “Joint-IVA for identification of discriminating features in
EEG: Application to a driving study,” Biomedical Signal Processing
and Control, vol. 61, p. 101948, Aug. 2020.

[10] D. Lahat, T. Adali, and C. Jutten, “Multimodal data fusion: An overview
of methods, challenges, and prospects,” Proceedings of the IEEE, vol.
103, no. 9, pp. 1449–1477, 2015.

[11] Z. Boukouvalas, M. Puerto, D. C. Elton, P. W. Chung, and M. D. Fuge,
“Independent vector analysis for molecular data fusion: Application to
property prediction and knowledge discovery of energetic materials,”
in 2020 28th European Signal Processing Conference (EUSIPCO).
Amsterdam, Netherlands: IEEE, Jan. 2021, pp. 1030–1034.

[12] M. Anderson, X.-L. Li, and T. Adalı, “Joint blind source separation with
multivariate Gaussian model: Algorithms and performance analysis,”
IEEE Trans. Signal Processing, vol. 60, no. 4, pp. 2049–2055, April
2012.

[13] J.-C. Pesquet and E. Moreau, “Cumulant-based independence measures
for linear mixtures,” IEEE Transactions on Information Theory, vol. 47,
no. 5, pp. 1947–1956, 2001.

[14] P. Comon, “Independent component analysis, a new concept?” Signal
processing, vol. 36, no. 3, pp. 287–314, 1994.

[15] M. Anderson, G.-S. Fu, R. Phlypo, and T. Adali, “Independent vec-
tor analysis: Identification conditions and performance bounds,” IEEE
Transactions on Signal Processing, vol. 62, no. 17, pp. 4399–4410, 2014.

[16] T. Adali, M. Akhonda, and V. D. Calhoun, “ICA and IVA for data
fusion: An overview and a new approach based on disjoint subspaces,”
IEEE sensors letters, vol. 3, no. 1, p. 7100404, Jan. 2019.

[17] T. Kim, I. Lee, and T.-W. Lee, “Independent vector analysis: Definition
and algorithms,” in Proceedings of the 40th Asilomar Conference on
Signals, Systems and Computers (ASILOMAR 2006), 2006, pp. 1393–
1396.

[18] V. D. Calhoun and T. Adali, “Feature-based fusion of medical imaging
data,” IEEE Transactions on Information Technology in Biomedicine,
vol. 13, no. 5, pp. 711–720, 2009.

[19] A. Michael, M. Anderson, R. Miller, T. Adali, and V. Calhoun, “Preserv-
ing subject variability in group fMRI analysis: Performance evaluation
of GICA vs. IVA,” Frontiers in systems neuroscience, vol. 8, p. 106, 06
2014.

[20] J. Laney, K. P. Westlake, S. Ma, E. Woytowicz, V. D. Calhoun, and
T. Adalı, “Capturing subject variability in fMRI data: A graph-theoretical
analysis of GICA vs. IVA,” Journal of neuroscience methods, vol. 247,
pp. 32–40, 2015.

[21] E. Chouzenoux, T. T.-K. Lau, C. Lefort, and J.-C. Pesquet, “Optimal
multivariate Gaussian fitting with applications to PSF modeling in
two-photon microscopy imaging,” Journal of Mathematical Imaging
and Vision, vol. 61, no. 7, pp. 1037–1050, Sept. 2019.

[22] H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone
Operator Theory in Hilbert Spaces, 2nd ed. New York: Springer, 2017.

[23] P. L. Combettes and J.-C. Pesquet, “Proximal splitting methods in
signal processing,” in Fixed-Point Algorithms for Inverse Problems
in Science and Engineering, Bauschke, H. Burachik, R. Combettes,
P. Elser, V. Luke, D. Wolkowicz, and H. (Eds.), Eds. Springer, 2011,
pp. 185–212.

[24] A. Benfenati, E. Chouzenoux, and J.-C. Pesquet, “Proximal approaches
for matrix optimization problems: Application to robust precision matrix
estimation.” Signal Processing, no. 69, p. 107417, 2020.

[25] E. Chouzenoux, J.-C. Pesquet, and A. Repetti, “A block coordinate
variable metric forward–backward algorithm,” Journal of Global Op-
timization, vol. 66, no. 3, pp. 457–485, 2016.

[26] L. T. K. Hien, D. Phan, and N. Gillis, “An inertial block majoriza-
tion minimization framework for nonsmooth nonconvex optimization,”
Journal of Machine Learning Research, vol. 24, pp. 1–41, 2023.

[27] E. Chouzenoux, M.-C. Corbineau, J.-C. Pesquet, and G. Scrivanti, “A
variational approach for joint image recovery and feature extraction
based on spatially varying generalised Gaussian models,” Journal of
Mathematical Imaging and Vision, pp. 1–22, 2024.

[28] J. Bolte, S. Sabach, and M. Teboulle, “Proximal alternating linearized
minimization for nonconvex and nonsmooth problems,” Mathematical
Programming, vol. 146, no. 1, pp. 459–494, 2014.

[29] S. Amari, A. Cichocki, and H. Yang, “A new learning algorithm for
blind signal separation,” in Advances in Neural Information Processing
Systems, vol. 8. MIT Press, 1995.

[30] K. B. Petersen and M. S. Pedersen, “The matrix cookbook,” Oct. 2008,
version 20081110.

[31] J.-C. Pesquet, “Prox of a function of the singular values of a matrix,”
internal report, CVN, CentraleSupélec, 2022.
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