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 Abstract  

Researchers have shown growing interest in using deep neural networks (DNNs) to efficiently 

test the effects of perceptual processes on the evolution of color patterns and morphologies. 

Whether this is a valid approach remains unclear, as it is unknown whether the relative 

detectability of ecologically relevant stimuli to DNNs actually matches that of biological neural 

networks. To test this, we compare image classification performance by humans and six DNNs 

(AlexNet, VGG-16, VGG-19, ResNet-18, SqueezeNet, and GoogLeNet) trained to detect 

artificial moths on tree trunks. Moths varied in their degree of crypsis, conferred by different 

sizes and spatial configurations of transparent wing elements. Like humans, four of six DNN 

architectures found moths with larger transparent elements harder to detect. However, humans 

and only one DNN architecture (GoogLeNet) found moths with transparent elements touching 

one side of the moth’s outline harder to detect than moths with untouched outlines. When moths 

took up a smaller proportion of the image (i.e., were viewed from further away), the 

camouflaging effect of transparent elements touching the moth’s outline was reduced for DNNs 

but enhanced for humans. Viewing distance can thus interact with camouflage type in opposing 

directions in humans and DNNs, which warrants a deeper investigation of viewing distance/size 

interactions with a broader range of stimuli. Overall, our results suggest that humans and DNN 

responses had some similarities, but not enough to justify widespread use of DNNs for studies of 

camouflage.  
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Introduction  
Artificial intelligence algorithms, and deep neural networks (DNNs) in particular, are 

becoming common tools for tackling questions in ecology and evolution while reducing human 

labour (Christin et al., 2019; Norouzzadeh et al., 2018; Tosh & Ruxton, 2010). DNNs consist of 

two parts, an encoder that projects a high-dimensional input, e.g., an image of a visual pattern or 

an entire animal, into a lower dimensional space, and a classification or regression function that 

uses encodings of the low dimensional space to make predictions (Charpentier et al., 2020; J. F. 

H. Cuthill et al., 2019; Wham et al., 2019). DNNs are made up of multiple layers of neurons that 

lack interconnections within layers but are connected to neurons in adjacent layers. The firing 

intensity of a neuron depends on the strength of signal received by connected upstream neurons 

and the neuron’s nonlinear activation function. Learning comes about by iteratively tweaking the 

weight of each neuron’s output to downstream neurons until a more accurate final output is 

attained. Although the architecture and computational mechanics of artificial neural networks 

were originally inspired by biological neural networks, the primary goal of deep neural networks 

today is to produce accurate outputs (in our case, categorizations) rather than to mimic the 

mechanics of biological neural networks. This could potentially be problematic for studies of 

camouflage, since prey color patterns evolve in response to the perceptual and cognitive 

processes of their predators (Merilaita et al., 2017), not of DNNs.  

Despite fundamental differences between the inner workings of biological and artificial 

neural networks, the spatial distribution of images of different classes of objects in the 

representational space of DNNs has been shown in various studies to be correlated with that of 

the primate visual cortex (Cadieu et al., 2014; Güçlü & van Gerven, 2015; Khaligh-Razavi & 

Kriegeskorte, 2014; Mély & Serre, 2017; Renoult et al., 2019; Yamins et al., 2014). Distances 

between images of patterns or entire animals in the representational space of the DNN encoder 

have also been shown to be correlated with their perceived visual similarity in humans (Zhang et 

al., 2018). And a recent study found that simulated moth-like prey that have evolved to be cryptic 

to DNNs become increasingly cryptic to humans as their evolution proceeds (Talas et al., 2020). 

That said, whether this works in the reverse direction, i.e., that increasingly cryptic prey to 

humans (or other animals) are also increasingly cryptic to DNNs, is unknown. This deserves 

testing and is the goal of the present study.An easy way to implement DNNs in ecology and 

evolution research is to take a convolutional DNN that has been pre-trained by computer 

scientists to recognize many different types of object classes and then retrain it to recognize a 

new stimulus or set of stimuli. . This procedure is called transfer learning, and is convenient 

because it requires a much smaller training set than would be required for a DNN with no 

previous training. In camouflage research, the new task is often a binary discrimination task, i.e., 

detecting the presence/absence of a specific object, such as a prey item. Unfortunately, DNNs 

widely available for transfer learning only accept three-channel images (“RGB” for red, green, 

and blue), excluding the possibility to include more than three spectral bands. This may be 

problematic when using DNNs to mimic animal visual systems very different from our own, 

especially those with more than three spectral channels, as are common in many animals, from 

birds to butterflies. However, in several studies, humans with their three-channel vision have 

shown reactions similar to those of birds towards images of colorful objects. For example, birds 

and humans can use aggregation of conspicuous prey as an unprofitability signal (Beatty et al., 

2005; Finkbeiner et al., 2012), and blue tits (Kazemi et al., 2014) and humans (Sherratt et al., 

2015) focus more on salient color cues than on pattern or shape information to classify prey as 

unpalatable. Reactions of humans and birds are also similar towards cryptic prey. For example, 
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disruptive coloration (i.e. contrasting elements touching prey contour) is more successful at 

concealing prey in comparison to background matching to the eyes of both humans (Troscianko 

et al., 2013) and birds (I. C. Cuthill et al., 2005). Similarly, both humans  (Tucker & Allen, 1988) 

and birds (Bond & Kamil, 1998) more often overlook rare than common cryptic prey (apostatic 

selection).  

Here we make a first attempt at testing whether widely-available DNNs, trained through 

transfer learning to a novel task, mimic the human perceptual system well enough to test 

hypotheses about the relative detectability of different cryptic prey to, at the very least, the 

perceptual system they are designed to mimic, i.e., humans. While one could debate how 

similarly DNNs should perform to humans in order to be considered sufficiently accurate for 

ecological research, we take, as a bare minimum criterion, that the directionality of effects should 

be the same. Specifically, we exposed both DNNs and humans to RGB pictures of five different 

cryptically-colored artificial moth morphs placed on tree trunks. These moths varied in their 

degree of crypsis by exhibiting transparent elements that varied in size and position (i.e., 

transparent windows touching or not touching prey outlines). The opaque portions of these moths 

appear cryptically colored to humans and exhibit low color and achromatic contrasts to birds as 

well (Arias et al., 2020). We chose these stimuli because they were recently used in an 

experiment testing the effect of size and position of transparent elements on prey detectability to 

wild birds in the field (Arias et al., 2021). By using the same stimuli as those used in the previous 

study, we gain some insight into the suitability of using DNNs and/or humans as surrogate 

predators for birds.  

   

Material and methods  
Artificial prey  

We took pictures of artificial grey moths identical to the moths used in the field 

experiment from Arias et al (2021). Prey were designed to represent different crypsis levels. 

Therefore, they constitute stimuli associated to different degrees of both background matching 

and disruptive coloration, camouflage strategies that have been proven differently performant (I. 

C. Cuthill et al., 2005; Fraser et al., 2007). The same pictures were used in both the DNN and the 

human experiments. We tested five types of artificial grey moths with different wing visual 

characteristics (Figure 1): 1) opaque (O morph), 2) with small transparent windows occupying 

15% of the total wing surface (SW morph), 3) with large transparent windows occupying 46.6% 

of the total wing surface and not touching any edge of the wing (LW morph), 4) with large 

transparent windows touching the bottom edge of the wing (BE morph), and 5) with large 

transparent windows touching all three wing edges (as each window is touching two edges of the 

three moth edges, B3E morph). In the latter three morphs, the total surface area of the opaque 

portions of the wings were identical. The opaque parts of the wings were made out of paper. For 

morphs including transparency, windows were cut out from the paper moth and a transparent film 

was added underneath the remaining parts. On top of the moth wings, we added an artificial grey 

body matching the wing colour. A tablet (iPad mini 2) and a smartphone (Moto G5, Android 

8.1.0) using the “U camera” application to produce square-shaped photos were used to take 

pictures of artificial prey. No HDR option was activated on either of the cameras. The device 

used was mounted on a tripod to take pictures of each of five artificial moth morphs, each pinned 

to the same position on a tree trunk, as well as the tree trunk alone with no moth present. This 

controlled setup ensured that we did not unintentionally photograph certain morphs against more 

challenging backgrounds. Each morph was photographed against 222 unique visual backgrounds.  
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Deep neural networks experiment  

We trained deep neural networks (DNNs) to detect all five moth morphs on tree trunks 

and then compared their responses to those of human “predators” when detecting the same prey.  

   

Selected DNNs and general training  
Rather than training DNNs from scratch (i.e., initializing all neuronal outputs with random 

weights), we used convolutional DNNs pre-trained to correctly identify 1000 object categories from more 

than a million images from the ImageNet database. Pre-trained networks have already learned to detect 

image features common to many classes of objects, and have pre-defined neuronal weights that are useful 

for learning new combinations of features. We took such DNNs as a starting point, and then used transfer 

learning to train them on the new task of detecting artificial moths. In transfer learning, the last few layers 

of an existing DNN are typically replaced with new ones that rapidly adapt to a new classification task. 

Transfer learning allows a neural network to reach high performance in a classification task even with a 

relatively small training dataset. To test the robustness of results obtained from DNNs, we used 100 

replicates of each of six different DNNs that were similarly trained: AlexNet, VGG-16, VGG-19, ResNet-

18, SqueezeNet, and GoogLeNet.  

Out of the 222 images of each morph, the training set included 144 randomly-selected 

images of each of the five morphs and each corresponding background image in quintuplicate. 

We included each background in quintuplicate so that there would be the same number of 

positive (with a moth) and negative stimuli (without a moth) in the training set. Thus, in total, 

1,440 images were used in training. Thirty-nine randomly-selected images of each morph and 

their corresponding background images in quintuplicate were used in the validation set (for a 

total of 390 images), and the remaining 39 images (out of 222) of each morph and the 

background were used in the test set (for a total of 234 images).  

During training, weights were frozen in the first 25% of layers to preserve feature 

detectors useful for recognizing many types of objects already learned from the ImageNet 

database (this amounted to two layers in AlexNet, four layers in VGG-16, and five layers in 

SqueezeNet, ResNet-18, VGG-19, and GoogLeNet). The initial learning rate in subsequent layers 

was set to 2*10-4, and was increased by a factor of ten in the final, fully-connected layer. The 

learning rate across all layers was reduced by a factor of 0.1 every ten epochs. The L2 

regularization term was set to 0.0001. Different solvers, which identify optimal weights, were 

used for different DNNs to maximize the learning capability (measured as the test set accuracy) 

of the different DNN architectures. The adaptive moment estimation (Adam) solver was used for 

AlexNet, ResNet-18, SqueezeNet, and GoogLeNet, and the stochastic gradient descent with 

momentum (sgdm) solver was used for VGG-16 and VGG-19. Minibatch size (the subset of 

images used during one iteration of training) was set to 80. Each minibatch contained eight sets 

of ten images. Each set of ten images had the same background, five of which contained one each 

of the O, SW, LW, BE, and B3E morphs. The remaining five in each set of ten was the same 

background image in quintuplicate.  

Training was halted and considered complete when the loss (a measurement of DNN 

uncertainty) on the validation set was higher than the previously smallest loss three times, in 

order to prevent overfitting (Ying, 2019). The final output network was the one with the lowest 

validation loss. We repeated this training and testing procedure 100 times, each time retraining 

the same initial DNN (pretrained on the ImageNet database) and randomly selecting which 

images (out of the full 222 images available per morph) were to be allocated for training, for 

validation, and for testing.  
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After training and testing, each DNN returned a score between 0 and 1 indicating its level 

of confidence that there was a moth in each picture. This score was determined by a sigmoid 

binary classifier (softmax layer in the DNN). Images with scores greater than 0.5 were classified 

as displaying a moth. To verify that DNNs were detecting moths using features of the wings, and 

not the body alone, we generated class activation maps (CAMs) of the final layer of the DNNs. 

These maps indicate which parts of the image contribute the most towards determining that the 

image contained a moth. SqueezeNet, ResNet-18, and GoogLeNet can produce such maps, but 

AlexNet, VGG-16, and VGG-19 cannot due to the fact that their final layer consists of multiple 

interconnected layers. All DNN training and testing and the generation of class activation maps 

were conducted using MATLAB (The MathWorks In., 2019).  

   

Analyses of DNN results  

We compared DNN architecture performances at moth detection by comparing their false 

positive rates (proportion of background images where DNNs had a score higher than 0.5 while 

there was no moth). Secondly, we compared DNN differences in detection between morphs. We 

created a binary response variable that only included responses to pictures with moths in them, 

and that was set to one for DNN scores higher than 0.5 (moth detected) and set to zero for DNN 

scores lower than 0.5 (moth not detected). Then, we fitted generalised linear mixed models 

(GLMM) for each DNN architecture assuming a binomial distribution, using the binary variable 

as a response variable. The explanatory variables were moth size in the picture (an inverse proxy 

for viewing distance; measured as the diameter of the moth’s broadest dimension and rescaled to 

have the minimum value at 0 and the maximum at 1) and moth morph. Different models were 

fitted including or not interactions between the explanatory variables. The AICc criterion was 

used to select the model that best fit our data. Moth morph had five levels: O, SW, LW, BE and 

B3E. We tested the following contrasts: a) O was more detected than other morphs, b) morphs 

with small windows (SW) were more detected than morphs with large windows (LW), c) morphs 

with uninterrupted edges (LW) were more detected than morphs with one broken edge (BE) and 

d) morphs with only one broken edge BE) were more detected the morphs with three broken 

edges (B3E). Random effects included picture set (pictures sharing the same background) and 

replicates (as each pre-trained DNN was trained to detect the experimental stimuli 100 

independent times).  

   

Human experiment  

Before the game  

We developed an online game using the Testable platform (https://www.testable.org/). 

The game was only available for computers, not for smartphones or tablets. As it was an online 

game, we made it as standardized as possible for all participants by asking them to follow several 

simple steps before the test. Participants were asked to hold up a credit card to a bar on the screen 

and adjust the size of the bar on the screen using arrow keys until it was the same size as the 

credit card. This enabled us to present the photos in equal sizes (a 4.5 cm square) to all 

participants. The small size at which the images were presented was necessary in order for the 

images to have the same resolution as that required by the DNNs while not appearing pixelated. 

Participants were asked to sit one arm-length distance away from their computer screen in order 

to ensure a consistent viewing distance across images seen by a given participant. Although 

people’s arm lengths vary, this effect was controlled for by including participant height and ID in 

the later statistical modelling. People always wearing glasses were asked to keep their glasses on. 

Participants were requested to concentrate on the fixation cross between the trials and to stay 

https://www.testable.org/
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focused and concentrated throughout the whole test and to keep interruptions at a minimum level. 

They were asked to look carefully at the photos to minimize false negatives. Participants were 

instructed to press the right arrow key when they spotted a moth and the left arrow key if they 

found no moth, and, if they did see a moth, to press the right arrow key as quickly as possible. 

Instructions were given in easy-to-read text in both German and English languages. Then, a short 

learning section was conducted, including one photo of each morph and one background photo. 

These photos were excluded from the real test. This training section ensured that participants had 

been previously exposed to all morphs, understood what they were looking for, and were familiar 

with the mechanics of the game. To start the real test, participants had to press ‘enter’ to ensure 

that they only started the test when they were focused and interruptions and distractions were set 

to a minimum.  

   

During the game  

For each participant, a subset of 110 pictures was randomly picked out of the entire pool 

of 1332 pictures used in the DNN experiment. This subset always included 11 photos of each 

moth morph (in total 55) and 55 photos corresponding to background images containing no moth. 

In a maximum of five seconds, participants had to choose whether there was a moth in the picture 

or not. We recorded the time a participant needed to press the key (reaction time, RT), and we 

assumed that short RTs corresponded to moths that were easier to detect. Additionally, the 

number of correct choices was counted. If the user did not respond within the five second picture 

presentation period, their response was recorded as correct if there was no moth in the picture and 

incorrect if there was a moth in the picture. To ensure participants were engaged and present at 

their computer throughout the experiment, if no response was recorded within the five second 

response time, a keystroke was required in order to proceed to the next trial. Between two 

pictures, a fixation cross was shown in the center of the screen to generate a specific starting 

point for all participants. The inter-trial interval (ITI) varied between 300 to 1500 milliseconds to 

prevent participants from getting used to the ITI, possibly affecting RTs. After 55 photos in 

random order, a break was included showing a black screen saying “short break” for five 

seconds. This break was intended to provide a short relaxation for the eyes and to enhance 

concentration. After that, another set of 55 pictures was shown.  

Data collected from each participant included: sequence of the pictures, RT for each 

picture, choice correctness, age, sex, height, and participant code (to keep track of the 

performance of each participant in an anonymous way). In total, data from 283 participants were 

collected.  

   

Analyses of the human experiment results  

As for the DNNs, we first compared participants’ performances at moth detection by 

comparing their false positive rates (proportion of background images where participants said 

there was a moth while there was none). Then, we analysed participants’ performance in response 

to the different morphs by analysing morph survival. We fit mixed effect Cox Proportional 

Hazards models (Cox, 1972) using the coxme package (Therneau, 2020) in R (R Foundation for, 

2014). Morph survival was calculated using both the time that participants took to find the moths 

(RT) and the numbers of each morph that were found per participant (correct answers when a 

moth was in the image). Moths that were not found by participants were considered as censored 

data in the model. Moth morph, moth size in the picture, participant height (expected to change 

the perceived size of the moths by modifying the distance to the screen) and position in the 

sequence of pictures shown to each participant (sequence) were included as fixed effects in the 
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model. Different models were fitted including different interactions between the explanatory 

variables. The AICc criterion was used to select the model that fit the data best. For morphs, we 

tested the same contrasts as in the DNN experiment: a) O was more detected than other morphs, 

b) morphs with small windows (SW) were more detected than morphs with large windows (LW), 

c) morphs with complete windows (LW) were more detected than morphs with one broken edge 

(BE) and d) morphs with one broken edge (BE) were more detected than morphs with three 

(B3E) broken edges. Picture set (out of 222) and participant sex, age, and code were included as 

random effects. Finally, we visualized the predictability of human responses by DNN outputs by 

fitting linear models using proportion of moths detected per morph for humans as the response 

variable and the proportion of moths detected per morph for each DNN independently as the 

explanatory variable. We fitted one linear model per DNN architecture. We considered that a 

DNN architecture could better predict human outcomes whenever significant coefficients were 

obtained and at higher r2 values. Interactions between morph type and size were included by 

fitting independent linear models in three data subsets including different moth sizes: 0-20 pixels, 

20-40 pixels and 40-60 pixels.  

   

Results  
Image elements used by DNNs to detect moths  

Class activation maps (CAMs) showed that DNNs used features of both the wings and 

body to recognize moths. SqueezeNet produces the highest-resolution CAMs, so we show 

examples of CAMs generated by SqueezeNet for each of five morphs against two different 

backgrounds in Figure 1. SqueezeNet shows a strong bias towards the highest activations 

overlapping the anterior wing edges, with a slight bias toward the left anterior edge, regardless of 

whether the images were mirrored such that the left side became the right side (i.e., when the 

images were mirrored, the bias was toward the new left side that had previously been the right 

side.). The importance of diagonally-oriented wing edges is particularly evident in the bottom 

row of images in Figure 1, where high activations were produced in response to diagonally-

oriented twigs viewed against a tree trunk. Although the actual moth was not detected in these 

images, the DNN still identified these images as having a moth in them, with probability scores 

ranging from 61-94%. 

   

Comparison between DNN architectures  

In the DNN experiment, AlexNet produced the highest false positive rate (0.24), while 

GoogLeNet produced the lowest (0.06, Table S1). Although DNN architectures ranked moths 

similarly, their responses were not identical when testing the different contrasts (Table 1). 

Opaque morphs were easier to detect than transparent ones for four out of six DNN architectures 

(AlexNet (z = 4.26, p <0.001), GoogLeNet (z = 14.6, p <0.001), ResNet (z = 17.19, p <0.001) and 

SqueezeNet (z =7.04, p <0.001)). Moths with small windows were easier to detect than moths 

with large windows for four DNN architectures (GoogLeNet (z = 4.34, p <0.001), ResNet (z = 

4.9, p <0.001), SqueezeNet (z = 2.93, p <0.005) and vgg16 (z = 2.89, p <0.005)). Only for 

GoogLeNet, morphs with transparent elements not touching any edge were more detected than 

morphs with transparent elements touching one moth edge (LW>BE: z = 5.86, p < 0.001). 

Breaking a single moth border instead of several increased moth detectability for all DNN 

architectures (BE>B3E: AlexNet: z = 5.02, p < 0.001, GoogLeNet: z = 11.08, p < 0.001, ResNet: 

z = 6.32, p <0.001, SqueezeNet: z = 8.57, p < 0.001, vgg16: z = 6.75, p < 0.001, vgg19: z = 3.49, 

p < 0.001). Size increase improved detectability similarly for all DNN architectures (size: 

AlexNet: z = 13.88, p < 0.001, GoogLeNet: z = 13.12, p < 0.001, ResNet: z = 10.55, p < 0.001, 
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SqueezeNet: z = 14.38, p < 0.001, vgg16: z = 14.38, p < 0.001, vgg19: z = 16.16, p < 0.001). 

Opaque morphs were even more detected than transparent ones when they were large for four 

DNNs (AlexNet (z = 9.24, p < 0.001), SqueezeNet (z = 5.36, p < 0.001), vgg16 (z = 6.87, p < 

0.001) and vgg19 (z = 10.31, p < 0.001)), but it was the opposite for ResNet (z = -3.45, p = 

0.002). At larger sizes, moths with small windows gained more in detectability in comparison to 

moths with large windows for all DNN architectures (size:SW>LW: AlexNet: z = 4.95, p < 

0.001, GoogLeNet: z = 4.07, p < 0.001, ResNet: z = 2.98, p < 0.005, SqueezeNet: z = 5.23, p < 

0.001, vgg16: z = 5.95, p < 0.001, vgg19: z = 8.3, p < 0.001). Similarly, morphs with large 

transparent elements and complete borders gained more in detectability with size compared to 

morphs with one broken border for five out of the six tested DNN architectures (AlexNet: z = 2.6, 

p < 0.005, SqueezeNet: z = 3.23, p < 0.005, ResNet: z = 6.51, p < 0.001, vgg16: z = 7.09, p < 

0.001, vgg19: z = 7.8, p < 0.001). However, detectability of moths with one instead of three 

broken edges increased with size only for ResNet (z = 5.33,/span>p <0.001), vgg16 (z = 5.09, p 

<0.001) and vgg19 (z = 8.36, p <0.001).  

1  

   

Table 1. Recapitulation of model results per DNN (first 6 columns) and humans (column 7). 

Whenever statistical results go in the direction of the relationship stated in the first column we 

wrote “yes. In case statistical results were significant but suggest the opposite direction we wrote 

“no”. NS stands for non-significant differences (p-value threshold: 0.05). All results that agree 

with human results are shown in bold. * highlights only differences where none of the DNNs 

showed the same response as humans. Dots on the detectability ranking row mean undetermined 

order between morphs. Size was rescaled in all models. Tables summarized here can be found in 

ESM.  

   AlexNet  GoogLeNet  ResNet  SqueezeNet  vgg16  vgg19  Humans  

O>all  yes  yes  yes  yes  NS  NS  yes  

SW>LW  NS  yes  yes  yes  yes  NS  yes  

LW>BE  NS  yes  NS  NS  NS  NS  yes  

BE>B3E  yes  yes  yes  yes  yes  yes  yes  

size:O>all  yes  NS  no  yes  yes  yes  no  

size:SW>LW  yes  yes  yes  yes  yes  yes  no*  

size:LW>BE  yes  NS  yes  yes  yes  yes  NS  

size:BE>B3E  NS  NS  yes  NS  yes  yes  no*  

Detectability 

ranking  O>SW.LW.BE>B3E  O>SW>LW>BE>B3E  O>SW>LW.BE>B3E  O>SW>LW.BE>B3E  O.SW>LW.BE>B3E  O.SW.LW.BE>B3E  O>SW>LW>BE>B3E  

1  

   

Comparison between DNNs’ and humans’ reactions  

Humans had a similar false discovery rate to DNNs (Table S1): humans reported seeing a 

moth when facing 16% of photos without any moth (i.e., in between the 6% and 24% false 

discovery rate for DNNs). Humans timed-out responses when the picture had a moth where larger 

for B3E (67 responses) morph, followed by similar values for BE (42 responses) and LW (44 

responses). The fewest timed-out responses were for C (6 responses) and SW (13 responses). 

Humans were better than DNNs at detecting moths (Fig. 2, human results are always above the 

diagonal). For both DNNs and humans, moths exhibiting transparent elements were detected in 
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most cases (score > 0.5, Figure 2). Morph detectability rankings (O>all, SW>LW, LW>BE and 

BE>B3E) were similar for humans and GoogLeNet, but not for the other individual DNN 

architectures (Tables 1, S2 and S3 and Figure 2).  

   

Like DNNs, humans detected larger moths more easily (humans z =10.96, p < 0.001, 

Figure 2). However, the interaction between size and morph detectability in humans contrasted 

with the general pattern reported for DNNs. In humans, morphs that were more difficult to detect 

generally gained more in detectability with size increase than morphs that were easier to detect 

(Table S3), whereas the opposite was true of DNNs. I.e., morphs that were easier to detect for 

DNNs gained more in detectability with size increase than morphs that were more difficult to 

detect. For humans and opposite to AlexNet, SqueezeNet, vgg16 and vgg19, the gain in detection 

with size was larger for transparent moths than for opaque ones (size: O>all z = -8.62, p < 

0.001).  In contrast to all DNN results, at larger morph sizes, morphs with large windows gained 

more in detectability than morphs with small windows for humans (size: SW>LW: z = -6.6, p < 

0.001). For humans and in contrast to all DNNs, the size-dependent gain in detection was greater 

for moths with multiple broken borders than for moths with one broken border (size: BE>B3E: z 

= -3.99, p <0.001). No difference in detectability gain was detected at larger morph sizes when 

comparing broken and unbroken borders (size:LW<BE: z = -1.25, p = 0.21), similar only to 

GoogLeNet. Finally, human participants performed slightly better by thend than at the beginning 

of the game (sequence: z = 7.27, p <0.001). Since DNNs do not learn during the testing phase, no 

comparison between humans and DNNs could be made here.  

   

Predictability of human behaviour from DNN results varied according to morph size (Figure 2 

and Table S4). Results of DNNs and humans were more similar for sizes between 0-20 pixels and 

especially 20-40 pixels than for sizes between 40-60 pixels. Additionally, DNN architectures 

differed in their predictability of human responses from low such as AlexNet to rather high such 

as GoogLeNet and vgg19 (Figure 2).  

   

   

Discussion  
Can DNNs be a reliable proxy for human perception?  

In our experiments, we tested the detection of cryptic moths with or without transparent 

elements differing in size and position by six different DNN architectures and humans. Although 

the responses among observers were not identical, we can report some general trends shared by 

all observers. Humans and DNNs readily detected many of the prey items presented during the 

experiment, suggesting that for both of them our prey were not extremely cryptic. However, we 

can identify some key traits that reduced detectability for most of the observers: the presence of 

transparent elements and several broken moth borders. These traits correspond to detectability 

reducers that have already been documented elsewhere. Previous experiments with humans and 

birds have shown that transparent elements reduce prey detectability, probably because they 

enhance background matching (Arias et al., 2019, 2020) and/or resemble holes caused by decay 

or insect damage (Costello et al., 2020). Broken borders have also reduced detectability of prey 

by birds in other studies (Fig. S1, Arias et al., 2021; Cuthill et al., 2005), enhanced by inner 

background-matching elements (Fraser et al., 2007).  Experiments using a computational vision 

model suggest that disruptive coloration affects edge-recognition algorithms enhancing detection 

of inner “edges” that hamper real edge detection and thus prey detectability (Stevens & Cuthill, 

2006).  
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Despite these general trends, ranking was not identical among DNN architectures and 

humans. Human ranking of the different morphs was only shared with GoogLeNet, suggesting an 

unexpected variability of DNN architecture responses. These differences could be related to the 

salience of different traits for the different observers. Class activation maps suggest that 

diagonally-oriented wing edges were particularly important for moth detection, at least for 

SqueezeNet, and that in some cases, these edges on their own were sufficient to elicit a 

categorization of moth (Fig. 1). This suggests that DNNs may not have learned the general form 

of the moths, but rather some isolated diagnostic features, like diagonally-oriented edges. 

Salience differences between elements and DNN architectures may be related to the differences 

in DNN responses.  

 For our dataset, GoogLeNet was the most reliable (albeit still imperfect) proxy for 

detection by humans, but whether or not it would mirror human responses to a similar extent for 

other types of stimuli remains uncertain. Importantly, we found that the size of the moths had a 

large effect on the different morphs’ relative detectability, such that GoogLeNet’s responses no 

longer mirrored those of humans when the moths were large. For humans, the morphs that gained 

the most in detectability with size increase were those that were already more difficult to detect. 

This effect may have been driven, in part, by the fact that the morphs that were easier to detect 

were detected at a high rate even when small, so they could gain very little in detectability with 

size increaseAs a result, the detectability of all morphs seemed to reach a plateau at large sizes 

(Figure 2). By contrast, for most DNNs and most morph comparisons, size increase rendered 

more detectable all morphs but even more those that were already easier to detect (19/22 possible 

comparisons morph contrast x DNN architecture, Table 1). For DNNs, the relative detectability 

of the different morphs changed dramatically between the small and medium size classes, but 

very little between the medium and large size clsses, and did not appear to be approaching a 

plateau as was observed in the human data (Figure 2). This suggests that humans and DNNs may 

have differentially weighted and/or used different features or feature combinations whose 

saliencies are not perfectly correlated at different apparent viewing distances. Still, our dataset 

had fewer photos of moths of larger sizes (457 pictures below 20 pixels, 695 picture between 20 

and 40 pixels and 155 pictures between 40 and 60 pixels) and this could have had an effect on 

DNNs and humans, so one could argue that training the DNNs on pictures with an uneven 

distribution of sizes could have led to this effect, although it is difficult to imagine the mechanism 

behind such an effect. It is also worth mentioning that these moth stimuli were novel to both 

humans and DNNs, and thus both types of observers exhibited learning – DNNs during their 

training and humans over the course of testing. Uneven size distribution could have had an effect 

on learning in both types of observers, but whether the effect would be the same for both humans 

and DNNs is unclear. For a novel set of stimuli, it would be difficult to make recommendations 

as to how large a target should be in order for GoogLeNet to mirror human responses, as the 

optimal size for a given stimulus class likely depends on a variety of unpredictable factors. In 

order to better understand the  differential interactions between size and other target 

characteristics in humans versus DNNs, future studies could include items of varying visual 

complexity that are harder  for humans to detect. It is interesting to note that Figure 2 suggests 

that when absolute detectability for humans and DNNs is similar (i.e., when the plotted points lie 

along the y=x line), the relative detectability of the different morphs is more likely to be similar 

(albeit still not identical). It would be interesting to test whether the same holds true for a 

completely different set of stimuli.   

DNNs have made incredible strides in mimicking biological perception in the last decade, 

but they are still susceptible to error in ways that computer scientists are still discovering (Serre, 
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2019). For example, recent studies have shown that DNNs do not encode global object shape, but 

rather local object features, and perform poorly when asked to classify images composed of 

silhouettes without any internal object texture (Kubilius et al., 2016). Indeed, Baker et al. (2018) 

found VGG-19’s performance to be abysmal when objects had clearly-defined shapes against a 

white background but incongruous internal textures. An interesting example was that of a shape 

of a vase with an internal texture taken from a photo of a gong. For a human, the vase shape is 

evident whereas the identity of the texture is unclear, whereas VGG-19 assigned the highest 

probability (22%) to “gong” and only a very low probability (1.8%) to “vase.” This represents a 

key difference between human and DNN perception and may help explain why DNN and human 

responses did not perfectly mirror each other in the present study. Features that were diagnostic 

of “moth” likely differed between humans and DNNs in this experiment. For humans, the entire 

outline would have been important, whereas for DNNs, isolated features like a plain gray 

diagonal stripe seem to have been important.  

Recent work has taken a different approach to using DNNs to study camouflage than the 

approach used here, and may represent a promising alternative approach that could potentially 

yield more biologically representative results. Rather than training DNNs on the presence versus 

absence of a target in an image, Fennell et al. (2019; 2021) trained DNNs on reaction times 

obtained from real humans in a detection task involving a limited range of phenotypes, from 

highly conspicuous to highly cryptic, and then asked DNNs to predict human reaction times to a 

large range of novel targets. To test whether DNNs’ predictions for novel targets were accurate, 

humans were presented with a subset of these targets and their reaction times recorded. 

Specifically, humans were presented with targets that DNNs predicted would have very different 

reaction times (high vs. low (Fennell et al., 2021) or high vs. intermediate vs. low (Fennell et al., 

2019)). Mean human reaction times between these coarse categories differed in the expected 

directions, but fine-scale validation tests on the relative detectability of similar-looking targets 

were not conducted; this remains an interesting avenue for future research. That said, such an 

approach would not have been a more efficient way to test specific hypotheses such as the ones 

tested in the present study because, unfortunately, it still requires significant input from human 

subjects.  

   

Generalization to field trials with birds  

While we found strong resemblance between at least one of the DNNs and human 

participants, their responses only partially matched those reported for birds (Arias et al., 2021). 

Whereas in birds, only the position but not the size of transparent windows seemed to affect prey 

detectability, in DNNs and humans, both the size and position of the windows strongly affected 

detectability.  

One potential explanation for the lack of agreement between wild birds and humans and 

DNNs could be related to what was effectively being tested in our experiments. A real-life 

predation event requires several steps including prey detection, identification, handling and 

consumption (Endler, 1986). Yet human and DNN experiments only tested the detectability and 

identification of different items as potential prey (i.e., moths). By contrast, the field experiment 

only counted detections that were followed by the entire chain of steps, without the possibility to 

include events when prey was detected but not attacked. Therefore, conditions that can affect the 

motivation to attack, and thus reduce the number of attacked prey in comparison to detected prey, 

such as level of hunger (Savory et al., 1993; Savory & Lariviere, 2000) or neophobia (Marples & 

Kelly, 1999), moths resembled no local moth), were part of the field experiment with birds but 

not of the experiments with DNNs or humans.  
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DNN, human and bird experiments also differed in the heterogeneity of light conditions at 

which they were exposed to prey. The original bank of images that was later randomised and 

presented to humans and DNNs included many sets of pictures of the different morphs at constant 

background, morph size and light conditions per set. By contrast, avian predators were exposed to 

prey in the field where light conditions are highly diverse. Natural outdoor illumination varies not 

only across different sun elevations and weather conditions, but also across different viewing 

angles and microhabitats (Endler, 1993; Johnsen et al., 2006; Siegel et al., 1999; Tedore & 

Nilsson, 2019), and can be expected to vary quickly as a bird moves from one perch to another. 

Such variables may have introduced noise into the wild bird data and obscured differences in 

detectability that may have been observed under more controlled conditions. It would be 

interesting to run a  laboratory-based follow-up experiment in which birds are trained to peck 

moths in images on touch screens, as well as a field-based experiment in which humans are asked 

to search for artificial moths in a real forest. Perhaps if the conditions experienced by humans, 

birds, and DNNs were more similar, their results would also have been more similar. That said, 

the conditions experienced by birds and humans in the forest could never be made entirely 

equivalent due to the different ways humans and birds move through the environment.  

The spatial configuration of elements seen by birds may have also differed from that seen 

in the photos viewed by humans and DNNs. Birds may search for moths from a different viewing 

angle than the moths were photographed from. All photographs were taken from a viewing angle 

perpendicular to the surface of the moth wings. By contrast, birds may search while flying or 

walking on the trunk or the ground. Different viewing angles can be expected to impact not only 

the apparent configuration of opaque elements, but also the specular reflection (i.e., glare) by 

transparent elements. In the first set of images in Figure 1, some specular reflection can be seen 

from the transparent windows of the BE morph. Real butterflies and moths with transparent 

elements show comparatively less specular reflection; thus, it would be interesting to run a 

similar set of experiments with artificial moths containing empty windows rather than transparent 

windows made from synthetic materials.  

However, it is possible that differences in the results are not related to the experimental 

set-up, but rather to the intrinsic functioning of the different observer “visual” systems, such as 

differences in the colour and achromatic contrasts seen by the different observers. DNNs and 

humans were fed standard RGB photos from consumer cameras designed to produce reasonably 

realistic color and achromatic contrasts to humans. Birds, on the other hand, possess a rather 

different visual system with four cones that are differently-tuned and more spectrally separated 

than the three cones of humans (Serre, 2019). Although calculations predicted low color and 

achromatic contrasts between moths and tree trunks for birds (Arias et al., 2021), it is unlikely 

that the contrasts in our images perfectly replicated those seen by birds in the field. Indeed, the 

coor and especially achromatic channels of birds are known to be much noisier than those of 

humans (Olsson et al., 2018). The noisier the visual system, the more likely it is that the wing 

edges bordering a transparent window will be obscured by noise. It is possible that, when viewed 

from a distance, the edges of SW and LW were similarly obscured for birds, but not for humans 

or DNNs. It would be useful to test whether programming and training DNNs from scratch that 

accept multispectral images with four or even five channels (in order to include the achromatic 

double cone channel), taken by a camera mimicking bird vision (see, e.g., camera with custom 

filters described in Tedore and Nilsson (2019, 2021)), with noise mimicking that of avian cones 

introduced into the images, would yield more similar results to those obtained from wild birds.  

Finally, it is worth mentioning that the sample size of the field experiment with birds 

(1733 moths, of which 618 were attacked) was over an order of magnitude lower than the sample 
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sizes obtained in the present study from humans (N=31130 picture views) and DNNs (N=23400 

picture views). Although 618 attacks is a high number for a field study, it is possible that with an 

even larger sample size, some small effect of transparent element size would have been 

detectable.  

   

Conclusions and future directions  
DNNs and humans showed similar but not identical reactions towards the same stimuli in 

our experiments. Strong resemblance was found between GoogLeNet and human morph ranking. 

However, the apparent distance (size) of the prey affected the strength of the effects of the size 

and position of transparent elements, with small prey size generally strengthening these effects in 

humans and weakening them in DNNs. With the six DNNs used in our study, we were unable to 

simulate humans’ sensitivity to object size. This suggests that prey size/viewing distance can 

interact with camouflage type in opposing directions in humans and DNNs, and warrants a fuller 

and more targeted investigation of size interactions with a broader range of stimuli.  

Neither human nor DNN responses closely matched those of wild birds in the field. There 

were several potentially confounding factors between field and lab conditions, however. Future 

work should better control for viewing angle, lighting, and motivation in bird experiments by 

using laboratory-trained birds. Future work should also compare the DNN results obtained in this 

study to those obtained with a DNN that accepts images with 4+ channels taken with a 

multispectral camera mimicking avian vision such as those in Tedore and Nilsson (2019, 2021).  
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Caption figures  

Figure 1. Example images of each of the five morphs against two different backgrounds (a. 

and b.) at different viewing distances, together with their corresponding class activation maps 

(CAMs) produced by SqueezeNet. The CAMs are heatmaps with “hot”, or red, regions 

corresponding to parts of the image with the highest activations (centre of the clouds 

displayed in the second and fourth rows of pictures). Note that in (a), the DNN has correctly 

identified the locations of the moths, whereas in (b), the DNN consistently misidentifies two 

crossed diagonally-oriented twigs as a moth.  
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Figure 2. Mean detection of the different morphs by AlexNet (a, b, c), GoogLeNet (d, e, f), 

ResNet (g, h, i), SqueezeNet (j, k, l), vgg16 (m, n, o) or vgg19 (p, q, r) (x- axis) and by 

humans (y-axis) at different moth sizes: below 20 pixels (a, d, g, j, m, p), between 20 and 40 

pixels (b, e, h, k, n, q) and from 40 to 60 pixels (c, f, i, l, o, r).  Diagonal represents what 

would be identical responses for humans and DNNs. 
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Figure S1. Morph survival when exposed to wild avian predators under field conditions. On 

such experiment artificial moths had wings made with paper and plastic wings and a fully 

edible body made with flour, water, lard and edible ink. Moths sporting the five different 

morphs also used in the current study, were placed on tree trunks and their ‘survival’ was 

monitored every day for four days. Bird attacks were detected by the marks left on the body. 

Figure and data from Arias et al (2021).  
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Table S1. False positive rate for different DNNs and humans  

Type  Architecture  False positive rate  

DNN  

SqueezeNet  0.11  

ResNet  0.09  

AlexNet  0.24  

vgg16  0.09 

vgg19  0.12  

GoogLeNet  0.06  

Humans     0.16  
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Table S2: GLMM results for each DNN. Size was rescaled in all models  

   

   AlexNet  GoogLeNet  ResNet  

   Estim±SE  z  p  Estim±SE  z  p  Estim±SE  z  p  

Intercept  -2.05±0.28  -7.29  <0.001  -2.26±0.49  -4.61  <0.001  -0.85±0.56  -1.52  0.129  

morphs.O>all  0.11±0.03  4.26  <0.001  0.61±0.04  14.6  <0.001  0.48±0.03  17.19  <0.001  

morphs.SW>LW  0.13±0.08  1.62  0.105  0.66±0.15  4.34  <0.001  0.55±0.11  4.9  <0.001  

morphs.LW> BE -0.09±0.09  -0.98  0.329  0.85±0.15  5.86  <0.001  0.19±0.12  1.54  0.124  

morphs.BE>B3E  0.4±0.08  5.02  <0.001  1.37±0.12  11.08  <0.001  0.73±0.12  6.32  <0.001  

size  10.86±0.78  13.88  <0.001  20.81±1.59  13.12  <0.001  19.78±1.87  10.55  <0.001  

size:morphs.O>all  0.99±0.11  9.24  <0.001  -0.16±0.22  -0.76  0.448 -0.39±0.11  -3.45  <0.001  

size:morphs.SW>LW  1.38±0.28  4.95  <0.001  3.01±0.74  4.07  <0.001  1.49±0.5  2.98  <0.005  

size:morphs.LW>BE  0.77±0.3  2.6  <0.005  0.75±0.63  1.2  0.231  1.69±0.52  3.23  <0.005  

size:morphs.BE>B3E  0.36±0.25  1.46  0.144  0.22±0.47  0.47  0.640  2.49±0.47  5.33  <0.001  

                              

   SqueezeNet  vgg16  vgg19  

   Estim±SE  z  p  Estim±SE  z  p  Estim±SE  z  p  

Intercept -2.46±0.42  -5.85  <0.001  -3.98±0.65  -6.12  <0.001  -2.8±0.51  -5.47  <0.001  

morphs.O>all  0.29±0.04  7.04  <0.001  0.12±0.07  1.73  0.083  -0.05±0.05  -1.01  0.314  

morphs.SW>LW  0.38±0.13  2.93  <0.005  0.55±0.19  2.89  <0.005  0.08±0.15  0.54  0.588  

morphs.LW> BE  -0.15±0.13  -1.16  0.245  0.1±0.19  0.52  0.605  -0.1±0.16  -0.66  0.511  

morphs.BE>B3E  0.93±0.11  8.57  <0.001  1.18±0.17  6.75  <0.001  0.46±0.13  3.49  <0.001  

size  19.27±1.34  14.38  <0.001  39.22±2.73  14.38  <0.001  30.47±1.89  16.16  <0.001  

size:morphs.O>all  1.16±0.22  5.36  <0.001  4.12±0.6  6.87  <0.001  4.85±0.47  10.31  <0.001  

size:morphs.SW>LW  2.98±0.57  5.23  <0.001  7.31±1.23  5.95  <0.001  7.33±0.88  8.3  <0.001  

size:morphs.LW> BE  3.36±0.52  6.51  <0.001  7.8±1.1  7.09  <0.001  6.42±0.82  7.8  <0.001  

size:morphs.BE>B3E  0.18±0.39  0.45  0.651  4.39±0.86  5.09  <0.001  5.29±0.63  8.36  <0.001  
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Table S3: Cox Regression test with mixed effects on moth ‘survival’ (moth detection and time 

spent by participants at finding them). Random effects included picture set and participant 

code. Size was rescaled in all models  

   

Humans  

   

   Estim±SE  z  P      

morph.O>all  0.186±0.009  19.92  <0.001  ***   

morph.SW>LW  0.611±0.036  16.82  <0.001  ***   

morph.LW> BE  0.502±0.044  11.49  <0.001  ***   

morph.BE>B3E  0.599±0.039  15.25  <0.001  ***   

Size (i.e., apparent distance)  3.342±0.305  10.96  <0.001  ***   

Sequence (only humans)  0.002±0.0003  7.27  <0.001  ***   

Height (only humans)  0.002±0.001  1.38  0.170      

morph.O>all:size  -0.228±0.0264  -8.62  <0.001  ***   

morph.SW>LW:size  -0.667±0.101  -6.6  <0.001  ***   

morph.LW> BE: size  -0.151±0.121  -1.25  0.210      

morph.BE>B3E:size  -0.423±0.107  -3.93  <0.001  ***   
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Table S4. Linear models showing the relationship between human reactions and each DNN architecture outcomes for three different moth size 

intervals. In bold are significant coefficient values. R2 values correspond to adjusted r2.  

   0-20 size units  20-40 size units  40-60 size units  

   coef±S.Error  t  p  r2 coef±S.Error  t  p  r2  coef±S.Error  t  p  r2  

AlexNet  2.64±1.13  2.33  0.1  0.53  0.37±0.15  2.56  0.08  0.58  0.08±0.07  1.13  0.34  0.06  

GoogLeNet  0.76±0.13  5.81  0.01  0.89  0.51±0.08  6.71  0.01  0.92  0.09±0.07  1.3  0.28  0.15  

ResNet  0.97±0.16  5.94  0.01  0.89  0.65±0.12  5.23  0.01  0.87  0.08±0.07  1.17  0.33  0.08  

SqueezeNet  0.95±0.29  3.24  0.05  0.7  0.49±0.11  4.54  0.02  0.83  0.07±0.07  1.05  0.37  0.02  

vgg16  0.65±0.07  8.74  <0.001  0.95  0.68±0.05  14.56  <0.001  0.98  0.08±0.07  1.05  0.37  0.02  

vgg19  0.74±0.12  6.41  0.01  0.9  0.59±0.04  15.88  <0.001  0.98  0.09±0.07  1.23  0.31  0.11  
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