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Abstract. Deterministic models play a crucial role in computer system develop-
ment, enabling the simulation and verification of system behaviors before Model-
Driven Development (MDD) tools transform and compile these models into final
implementations. Ensuring determinism is essential to guarantee that the behav-
iors of the implemented system maintain the properties analyzed in the models.
This paper investigates the semantics of deterministic models for data-flow net-
works, where systems consist of components that compute functions on streams.
While Kahn Process Networks (KPN) serve as a well-established semantic the-
ory for time-insensitive deterministic systems, it proves inadequate for systems
with time dependent components. To address this limitation, we use the concept
of timed streams and develop a fixed-point theory tailored for time-sensitive sys-
tems in the style of KPN. This theory serves as the foundation for the MDD
tool-chain, known as MIMOS, currently under development in Uppsala.

1 Introduction

Model-Driven Development (MDD) is a software-engineering paradigm, which applies
models to raise the level of abstraction at which software is developed and maintained.
The use of models can serve many purposes, including to simplify development by
abstracting from complexity, to support modularization through a component-based ap-
proach, to allow formal analysis supported by a formal semantics of models, to support
reliability guarantees, documentation, and others. There are numerous concrete frame-
works for MDD in various application domains. In the spectrum of MDD frameworks,
one can discern a tradeoff between generality and effectiveness for various tasks such as
analysis and code-generation. At one end of the spectrum is the Model-Driven Architec-
ture by OMG, centering around the UML language; its aspiration for generality makes
it difficult to provide effective automated support for tasks such as formal verification.
At the other end are various domain-specific frameworks that have been developed for
a certain application domain, thereby allowing the definition of a precise formal seman-
tics, support efficient code generation, etc. In this spectrum, an interesting framework
is the jABC (Java Application Building Center) framework by Tiziana Margaria and
Bernhard Steffen [21], which has been developed over the last 30 years. Its original
predecessors have been used in a domain-specific fashion to design telecommunica-
tion services, decision support systems, and test automation environments. In jABC,
models of services and applications are constructed by composing reusable building
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blocks (components) into graph structures, which are digested by supporting tools for
animation, prototyping, verification, code generation, and so on. Since its presentation
in [21], the versatility of this approach has been demonstrated by applications of jABC
and its successors (e.g., XMDD [12]) in a vast number of different applications; a recent
example is agriculture [2].

For embedded systems, MDD is particularly suitable: one reason being that model-
ing facilitates verification and validation of systems that interact with their physical en-
vironment. A wide range of MDD frameworks focus on embedded systems design in the
synchronous design paradigm, Simulink/Stateflow, and Scade. Simulation is maybe the
most important verification technique for V&V of Embedded system designs: therefore
deterministic execution semantics is important. Since timing is important for embedded
systems, time determinism is also important. This holds true even in the presence of
concurrency. For instance, the execution semantics of Simulink/Stateflow is completely
time deterministic, even though Stateflow has concurrency-like constructs.

Notably, most of the existing approaches are to perform mathematical simulation
based on the synchronous hypothesis where software components implement mathe-
matical functions and the computations of functions take zero-time. The recent work
on MIMOS [25] attempts to break the synchronous assumption which is not suitable
for performance-demanding and predictable applications on complex platforms such
as heterogeneous multi-core processors. The goal of MIMOS is to develop an asyn-
chronous design paradigm for building embedded systems, that remain functional- and
timing-deterministic as in the synchronous paradigm and in addition, performance- and
resource-ware, and also composable, enabling dynamic software updates after deploy-
ment.

This paper considers the problem of providing a time deterministic execution se-
mantics to modeling languages for embedded systems. We focus only on data-flow
languages despite of the synchronous or asynchronous paradigm. There is a variety of
such languages: Lustre, Esterel, Signal, Simulink/Stateflow and also MIMOS, that are
all in this category. The focus of Data-flow languages on data computations makes it
easy to model algorithms in signal processing, control, etc. Different languages can be
equipped with models of timing in many different ways, where the timing model can
be tailored to the specific desiderata of an application domain.

The problem of providing a suitable semantic model for data-flow languages has
been given some attention in the research community. The starting point for (almost)
all such models is the model by Kahn [4], which provides an elegant model of dataflow
networks where nodes are used to implement functions on streams, and links to buffer
input and output data among functions. Kahn embedded his model in an elegant CPO
structure, allowing us to derive the semantics of cyclic networks from semantics of its
nodes.

Kahns semantics works for functionally deterministic networks. It cannot be applied
out-of-the box to functionally non-deterministic models. One central stumbling block
is the non-deterministic merge node. A number of suggestions for generalizing Kahn’s
model have appeared. One class of model adds explicit timing to data items in streams,
resulting in various suggestions for timed streams. It might seem that moving to timed
streams trivially results in a deterministic semantics in the domain of timed streams,
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under the assumption that nodes themselves are “time deterministic”. Intuitively, this
means that if the exact timing of all input is given, then the behavior of a time deter-
ministic node is completely determined, and results in a uniquely defined output. This
impression is true, but only up to some limit, and under some mildly restrictive as-
sumptions. For instance, Yates [24] produces such a model under the assumption that
there is a minimal time quantity, which bounds the delay between reading input and
producing output for any node. Such an assumption may be true in the physical world,
assuming a minimal size of components and speed-of-light-like arguments. But some
languages have a conceptual semantics not conforming to this. For instance, Simulink
allows components with instantaneous output, and even allows zero-delay-cycles under
some restrictions.

In this paper, we look at some of these border phenomena, and discuss how various
proposals for timed stream models can or cannot cope with them. We also propose a
new variation of such a time stream model, and discuss its merits and shortcomings.
The main guiding principles as proposed in the work on MIMOS, include:

– Main desiderata: functional determinism and time determinism.
– The model is asynchronous to allow flexibility for dynamic software updates.
– The move from synchronous to asynchronous paradigm enables pipeline-parallelism,

“faster is generally better” instead of “you must respect a static schedule”.

2 Informal Motivation

The non-timed model of Kahn Networks, and the way in which it guarantees deter-
minism is well-known [4], However, the determinism of such Networks is destroyed as
soon as nodes can have time dependent behavior, where the time dependency translates
into functional non-determinism, e.g. merging two streams. In an untimed setting, we
could try to define a merge function recursively by something like:

f try
merge(ε,ε) = ε

f try
merge(a• s1,s2) = a• f try

merge(s1,s2)

f try
merge(s1,b• s2) = b• f try

merge(s1,s2)

However, this definition does not give a unique value for f try
merge(⟨a⟩,⟨b⟩). We can stay

in an untimed setting by making the merge unfair, e.g., defining f try
merge(⟨a⟩,⟨b⟩) = ⟨ab⟩.

But by monotonicity, we must then define f try
merge(ε,⟨b⟩)= ε , and in fact f try

merge(ε,s2)= ε

for any stream s2. Intuitively, this function waits for input in its first input stream, re-
gardless of what input appears in its second input stream. In order to define a reasonably
fair version of the merge, one then resorts into a timed model. For such a model, there
are some alternatives:

– One alternative is to model streams as timed signals over the non-negative reals,
i.e., as functions T→ D for some time domain T (e.g., the non-negative reals) and
data domain D. This has been done for example in [24]. This model seems fine
for modeling physical processes that operate in continuous time, and possibly also
hardware components at the physical level of electric signal, but not for modeling
controllers or other components at the software level, which we would like to model
as observing their input only at specific time points.
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– Another alternative is the approach of MIMOS [26, 25] for modeling of software
components such as controllers as well as complex software architecture. MIMOS
allows input reading and output writing of software components only at specific
time points, namely the start and end of their computation periods. This results in a
model of streams as (finite or infinite) sequences of timed tokens. Each timed token
is a pair ⟨d, t⟩, consisting of a data value d ∈ D and a time point t ∈ T, sometimes
referred to as a time stamp. Time stamping input and output is also the approach
chosen in the framework of Lingua Franca [11].
The non-negative time domain allows the definition of a CPO on timed streams, in
a similar way as the original model by Kahn and McQueen. It seems reasonable to
require that the time stamps in a stream are (not necessarily strictly) increasing. As
we will see, this type of model still allows some important design decisions that
may be important for being able to model a wide class of systems.

We take the second approach and base our model on the idea of viewing streams as
sequences of timed tokens. We would like such a model to be able to capture as general
a class of phenomena as possible, maybe including zero-delay-cycles, timeouts, and
the like. We assume nodes to be fully time deterministic. This means that they follow
a completely deterministic program/code. This program may use timers, and may also
have access to a precise clock for wall-clock time. In each of its behaviors, a node
reads inputs at precise time points. These time points may be different from behavior
to behavior, but should be uniquely determined by the sequence of inputs received upto
then.

In order to allow a general class of policies for how to receive inputs buffered in e.g.
FIFO or unordered sets etc., we may want, when considering the input at a specified
time t, to allow nodes to oversee the complete state of input ports, implying that they
can see how many timed tokens have appeared up to time t including to detect absence
of input, and also in which sequence they have been produced. For instance, a node
may decide at time t to read all timed tokens available at time t, or all tokens up to a
maximal number. In addition, we may likely want to include the possibility to read or
send a sequence of tokens with the same time stamp but with a causality or priority
order.

An example of a type of component that we may want to model, is a so-called
register. One way to model a register is as a source of streams of timed tokens, where
the time stamps are determined autonomously by the register. One could also envisage
a model of registers, that are “polled”, which can be modeled as having a stream of
input tokens that are requests for register values, and which respond to each input by a
register value after some delay (which can also be 0).

After these preliminary elaborations, let us try to define a general computation
model, which can capture the semantics of a very general class of time deterministic
nodes, including registers. In such a model, nodes have input and output ports. Each
port can be an output port of at most one node, but can be an input port of several
nodes. Each port sees a stream of timed tokens produced by the node which has this
port as an output port. If the port is an input of the system, the stream is an arbitrary
timed stream.
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Let us now return to the model of streams of timed tokens. It turns out that out-of-
the-box, it cannot model the full generality of time deterministic systems. Let us show
this by the following example.

Example 1. Consider a node which outputs a token at time 2 if no input has appeared
up to time 1, whereas it does not output anything at all if input appears at or before time
1. If we try to model this as a function f on timed streams, then this function would
have to satisfy the following equations:

f (ε) = ⟨b,2⟩
f (⟨a,1⟩) = ε

To be used in the denotational semantics setting outlined above, the function f should
be continuous (and therefore, in particular, monotonic), which means that prefixes of
input streams should be mapped to prefixes of output streams. The function f defined
here is obviously not monotonic. On the other hand, there is no question that the node
is time deterministic in an intuitive sense. ⊓⊔

One way to understand this example is to acknowledge that streams of timed tokens
by themselves do not show one important “input” to a node, which is time. We assume
that nodes have access to the current (wall-clock) time, and this “input” can also influ-
ence the behavior of a node. In Example 1, the passage of time triggers a timeout, which
in its turn causes output tokens to be emitted. From this understanding, we can extend
the “streams of timed tokens” model by also letting the passage of time be an input to
a network, and to each of its nodes. We can see (at least) two ways in which this can be
done:

– We can let time be an additional “input stream”: each network has an additional
time input, which is read by all its nodes. In Example 1, the function f would
output ⟨b,2⟩ if its input is empty and its time output is more than 1. We can make f
monotonic be requiring that any extension of the empty input can only add tokens
with time stamps at least the corresponding time input, i.e., (strictly) larger than 1.

– We can let time be an additional “token” in each input stream. Such a token would
be significant only to mark how far time has progressed for the receiver of the
stream, implying that all time tokens except the last can be ignored. We thus rep-
resent this token by equipping each input stream with a “length” value ∆ , indicat-
ing how far time has progressed in the reception of the stream. In Example 1, the
function f would output ⟨b,2⟩ for inputs ⟨ε,∆⟩ such that ∆ > 1. To recover mono-
tonicity, ⟨ε,∆⟩ cannot be extended by timed tokens with time stamps smaller than
∆ .

In §4, we work out this model of timed streams and illustrate some trade-offs using
examples. The guiding principle is that the resulting model should retain the machinery
of the original Kahn untimed model of streams of data items. The preservation of this
principle imposes some constraints on the mathematical machinery, which we aim to
illustrate.



6 GraJonKhoHuaHubRümYi

3 Related Work

For modeling timed computation, in the literature, there are two primary approaches.
The first one uses ordered sets, continuous (or monotonic) functions, and Tarski’s fixed-
point theorem. The second utilizes metric spaces, contraction mappings, and Banach’s
contraction principle.

The first category of models proposed in [23, 8, 9, 1, 26, 25] is essentially using
complete partial orders and least fixed-points as models of timed systems. In [23], Yates
and Gao tackle the fixed-point problem for systems with components constrained by
bounded reaction times (referred to as “∆ -causal”). They transform this problem into
one involving a suitably constructed Scott-continuous function, thus extending the Kahn
principle to networks of real-time processes. In [8, 9], Liu et al. simplify the use of
complete partial orders with a prefix order for timed systems. They introduce a special
value to mark the absence of events and define signals on lower sets of the tag set
to ensure time progression in the semantics of systems. Strictly causal functions, which
extend signal domains monotonically, are shown to have unique fixed-points where time
diverges if they are also Scott-continuous. This method relaxes the bounded-reaction-
time constraint, allowing components with locally bounded reaction times. However, it
does not fully address systems with more complex, varying reaction times, like those
exhibiting non-trivial Zeno behaviors. The approach in [1] models components as Scott-
continuous functions based on the prefix relation on signals. They note that in many
practical scenarios, simplifying assumptions could be made: (1) the tag set is a total
order, and (2) the values of a signal can be indexed in non-decreasing order. This allows
signals to be viewed as streams, reducing the theory to the standard Kahn semantics.
Moreover, heterogeneity (managing different tag sets) and distribution are addressed
within the generalized Kahn semantics. In [26, 25], streams are modeled as sequences
of timed tokens, where each token is described by a value and a time stamp. They
represent software components as functions that read timed input streams and generate
outputs at specific time points, subsequently presenting a fixed-point semantics for this
model in the Kahn style.

The second category of models is proposed in other works, e.g. [5, 6, 7, 19, 20,
24, 16, 17, 3, 10, 13, 14, 18]. These models are based on metric spaces, contraction
mappings, and Banach’s contraction principle. Reed and Roscoe are the first to ap-
ply this framework in a real-time extension of CSP [19, 20]. Yates extends this ap-
proach to create the first extensional model of timed computation with a real-time ex-
tension of Kahn’s process networks [24]. Müller and Scholz introduce another such
extension in [16], adopting metric spaces of dense signals rather than timed streams.
A uniform framework combining these models is presented in [5, 6, 7]. Building on
the generalization of bounded reaction times, Portmann et al. [18] introduce a causality
function to capture a more general form of strict causality. However, existing models
[5, 6, 7, 19, 20, 24, 16, 18] require a positive lower bound on the reaction time of system
components, which ensures that the functions are contraction mappings and allows the
use of Banach’s fixed-point theorem. This requirement prevents the modeling of non-
trivial Zeno phenomena and rigid time divergence. Additionally, these approaches typ-
ically use an unbounded subset of real numbers as the tag set, excluding other options
like super dense time, thus limiting their applicability to a broader range of systems.
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Naundorf [17] removes the bounded-reaction-time constraint and allows for arbi-
trary tag sets, defining strictly causal functions with a non-constructive proof for unique
fixed-points. His approach is valid under a totally ordered tag set but remains incom-
plete (see Example 3.9 in [14]). An interesting generalization of Naundorf’s theorem is
proven in [3], aiming to remove references to generalized distances, though the proof
remains non-constructive. Naundorf’s proposal is also rephrased in [10], using a gener-
alized distance function to identify strictly causal functions as strictly contracting ones,
facilitating access to the fixed-point theory of generalized ultra metric spaces. Matsik-
oudis and Lee [13, 14] further develop this concept by presenting a constructive fixed-
point theorem for strictly contracting functions. They show that this theorem arises from
a more intuitive concept of strict causality, where outputs are affected only by inputs
that occur strictly before them, provided that the input ordering is well-founded.

4 Formal Definition of (Timed) Streams and Continuous Functions

Complete Partial Orders. We start with some of the basic definitions required in our
setting. A chain-Complete Partial Order (CPO) is a pair ⟨A,⊑⟩, where A is a set and ⊑
is a partial order on A such that any increasing chain a1 ⊑ a2 ⊑ a3 ⊑ ·· · in A has a least
upper bound, denoted limn→∞ an. A continuous function f : A → A on a CPO ⟨A,⊑⟩ is
a monotonic function such that f (limn→∞ an) = limn→∞ f (an) for any increasing chain
a1 ⊑ a2 ⊑ ·· · in A. By Kleene’s fixed-point theorem, every continuous function f on a
CPO ⟨A,⊑⟩ with a least element ⊥∈ A has a least fixed-point, which can be constructed
as limn→∞ f n(⊥). More generally, if ⟨A,⊑A⟩ and ⟨B,⊑B⟩ are CPOs, then we call a
function f : A → B continuous if f is monotonic and f (limn→∞ an) = limn→∞ f (an) for
any increasing chain a1 ⊑A a2 ⊑A · · · in A (see, e.g., [15]).

In denotational semantics (e.g., [22]), the construction of a fixed-point can be seen
as building the result of a computation through successive approximations. If f models
a program or program fragment that uses input, part of which comes from previously
computed output, successive approximations f n(⊥) can be interpreted as the output
obtained after n applications of f .

Streams. Assume a data domain D. Let ⟨D∞,⊑⟩ be the set of finite and infinite se-
quences of elements (i.e., “streams”) in D with ⊑ being the prefix ordering on se-
quences. Then ⟨D∞,⊑⟩ is a CPO. When describing the behavior of networks, we as-
sociate streams with ports. For a set of ports P, this association is represented by a
valuation V : P → D∞. The set of valuations P → D∞ is turned into a CPO, as fol-
lows: For V : P → D∞ and V ′ : P → D∞, we define V ⊑ V ′ if V (p) ⊑ V ′(p) for all p
in P. The limit lim

n→∞
Vn of an increasing chain V1 ⊑ V2 ⊑ ·· · in P → D∞ is the function

Vlim : P → D∞ defined by Vlim(p) = lim
n→∞

Vn(p) for all p in P.

Timed Streams. Let T be a totally ordered time domain with ordering relation ≤. For
the time being, let T be the set R≥0 of real numbers (later, we might also let it be the
set N≥0 of natural numbers). A timed stream is a finite or infinite stream of pairs in
D×T, in which the time stamps are non-decreasing. There are two possible choices for
the non-decreasingness restriction: (i) A strict timed stream is a timed stream in which
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the time stamps are strictly increasing. (ii) A non-strict timed stream is a timed stream
in which the time stamps are non-decreasing. We consider for now non-strict timed
streams, so that no restrictions are imposed that are stronger than necessary. Let TS be
the set of streams in (D×T)∞ in which successive time stamps are non-decreasing. The
set TS with prefix ordering is a CPO, in the same way as ⟨D∞,⊑⟩ is a CPO. For a set P
of ports, the domain ⟨(P → TS),⊑⟩ is a CPO, which we denote by TSP.

Functions over Timed Streams. Let us consider a node N with input ports I and output
ports O. Let us try to represent its semantics as a function fN : TSI → TSO, We could then
try to model, for instance, a (timed) merge node, which merges input streams on ports
i1 and i2 to an output stream on port o, as a function merge : TS{i1,i2} → TS{o}, defined
through merge(V{i1,i2})(o) = fmerge(V (i1),V (i2)), where fmerge satisfies the equations

fmerge(ε,ε) = ε

fmerge(⟨a, t1⟩,ε) = ⟨a, t1⟩
fmerge(ε,⟨b, t2⟩) = ⟨b, t2⟩ .

However, if we want fmerge to be monotonic, we quickly run into a problem when defin-
ing fmerge(⟨a, t1⟩,⟨b, t2⟩), since by monotonicity, the result of this merge must extend
both ⟨a, t1⟩ and ⟨b, t2⟩. This is clearly impossible in general. A similar problem is re-
vealed by Example 1. Looking closer at these examples, the problem seems to be that
timed streams on their own do not show one important “input” to a node, which is
passage of time.

We therefore have to assume that nodes have access to the current (wall-clock)
time, and this “input” can also influence the behavior of a node. In a model with just
timed streams, this input is invisible, even if it can trigger behavior of a node, either by
making clear that it is “safe” to forward data from one of the inputs in the case of fmerge
(since earlier input can no longer appear), or by triggering a timeout which induces
subsequent output (as in Example 1). As a remedy to the problem, let us model the
“passage of time” input simply as a time point t in T. The idea of this “passage of time”
input is to represent how far time has progressed in the execution of a node or network.
By assuming the existence of a maximal element ∞ ∈ T, we obtain a CPO T with the
ordering ⊑ being the standard relation ≤.

When extending the modeling framework with a “passage of time” input, we can
see (at least) two ways in which this can be done.

1. We can let time be an additional “input stream”: each network has an additional
time input, which is read by all its nodes. In Example 1, the function f would
output ⟨b,2⟩ if its input is empty and its time input is more than 1. We can make f
monotonic be requiring that any extension of the empty input can only add tokens
with time stamps at least the corresponding time input, i.e., (strictly) larger than 1.

2. We can let time be an additional “token” in each input stream. Such a token would
mark how far time has progressed in that particular stream. We note that it is safe to
ignore all time tokens except the last one. We thus represent this token by equipping
each input stream with a “length” value, indicating how far time has progressed in
the reception or output of the stream. In Example 1, the function f would output
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⟨b,2⟩ for inputs ⟨ε,∆⟩ such that ∆ > 1. To recover monotonicity, an extended timed
stream ⟨s,∆⟩ cannot be extended by timed tokens with time stamps smaller than ∆ .

We work out alternative 1 in §4.1, and alternative 2 in §4.2. We use the timed merge as
an illustrating function, since it exhibits several of the problems and features of the two
solutions.

4.1 Timed Streams with Global Time

In this section, we work out in more detail alternative 1, in which each node and network
have access to an additional time input, modeled simply as a value in T, representing
the “current time”. We assume that nodes have access to the current (wall-clock) time,
and this “input” can also influence the behavior of a node. As discussed above, we turn
T into a CPO by adding ∞ as a maximal element. Let us preliminarily represent a node
or network N with input ports I and output ports O as a function fN : TSI ×T→ TSO.

As a first illustration, we model the node in Example 1 as a function fex1 : TS{i}×
T→ TS{o} through fex1(V{i}, t)(o) = ft(V (i), t), where ft is defined by

ft(s, t) = ε if t ≤ 1
ft(s, t) = ⟨b,2⟩ if mint(s)> 1 and t > 1
ft(s, t) = ε if mint(s)≤ 1 and t > 1

Here and in the following, for a non-empty timed stream s, we define mint(s) as the
smallest time stamp in s, and define mint(ε) = ∞. In the following, we often abuse
notation, and do not distinguish between the function representing the node (which
maps valuations and time points to valuations, which is fex1 in the example) and the
same function defined directly on timed streams ( ft ) in the example.

From this illustration, we make some observations.

– We cannot define ft(ε,1) as ⟨a,2⟩: continuity w.r.t. the time input dictates ft(ε,1)=
ε . Thus, a timeout which depends on the absence of input can trigger subsequent
output only when the time input has progressed past the timeout value. This is
natural, since the absence of input at a time point t can only be determined after the
time point t has passed.

– We cannot turn TS{i}×T into a CPO simply by component-wise extension of the
orders on TS{i} and T. Namely, if we would do so, then we would have:

(ε,2)⊑ (⟨a,1⟩,2) but ft(ε,2) ̸⊑ ft(⟨a,1⟩,2) .

The problem here is that in allowing (ε,2)⊑ (⟨a,1⟩,2) we allow timed tokens in an
input stream to be extended with time tokens that appeared earlier than the “current
time” (2 in this case). We must therefore be careful in the definition of our CPO,
and only allow the input timed streams to be extended by tokens with time stamps
at least being the time value. One could lament that this detracts slightly from the
elegance of the original Kahn model, but it seems to be an unavoidable consequence
of the fact that time is a global parameter.
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– The time input can be thought of as the “current wall-clock time” of the node. If t
is the current time input, then the output is the result of what the node commits to
outputting at time t (which can include future outputs), given that the input streams
up to t (i.e., ignoring larger time stamps) are as in the timed stream inputs.

After these observations, let us provide the formal definitions.

Definition 1 (Domain of Timed Streams with Global Time). Let P be a set of ports.
Let the domain TSG

P consist of the set TSP ×T with the ordering ⊑ defined by
(V, t)⊑ (V ′, t ′) if

– t ≤ t ′, and
– for each p ∈ P there is a (possibly empty) timed stream s′′ such that V ′(p) =V (p)•

s′′, and such that s′′ contains no time stamp smaller than t.

Using this definition, we model the behavior of a network with input ports I and output
ports O by a continuous function from TSG

I to TSO. The least function from TSG
I to TSO

is the function ⊥ : TSG
I → TSQ defined by ⊥(VI , t)(o) = ε for each o in O.

For the node in Example 1, the function ft becomes continuous.
We now use these definitions to model a timed merge node. The function f g

merge :
TSG

{i1,i2} → TS{o} (using the previously mentioned abuse of notation) can be defined by
recursion :

f g
merge(⟨a, t1⟩ • s1 , ⟨b, t2⟩ • s2 , t) = ⟨a, t1⟩ • f g

merge(s1 , ⟨b, t2⟩ • s2 , t) if t1 ≤ t2
f g
merge(⟨a, t1⟩ • s1 , ⟨b, t2⟩ • s2 , t) = ⟨b, t2⟩ • f g

merge(⟨a, t1⟩ • s1 , s2 , t) if t2 < t1
f g
merge(⟨a, t1⟩ • s1 , ε , t) = ⟨a, t1⟩ • f g

merge(s1 , ε , t) if t1 ≤ t
f g
merge(ε , ⟨b, t2⟩ • s2 , t) = ⟨b, t2⟩ • f g

merge(ε , s2 , t) if t2 < t
f g
merge(s1 , s2 , t) = ε otherwise.

This makes the function f g
merge continuous if allowing s1 and s2 above to be infinite

timed streams. We observe that in order to make f g
merge a function, one needs to define

a priority when two inputs with the same time stamp appear. In the above definition,
f g
merge gives priority to the first input. The input i2 can only be forwarded when time has

progressed so that one can be sure that no more inputs arrive on i1. As an illustration,
f g
merge(⟨a,1⟩ ,⟨b,1⟩ , 1) = ⟨a,1⟩; the second output cannot be forwarded at time 1, since

it is still possible for input to arrive on the first input port at time 1.
The unfairness of f g

merge gives rise to an unfairness in the limit, namely if an infinite
stream of tokens appear at one time instant: f g

merge((⟨a,1⟩)ω ,(⟨b,1⟩)ω ,2) = (⟨a,1⟩)ω ,
and even f g

merge((⟨a,1⟩)ω ,⟨b,1⟩,2) = (⟨a,1⟩)ω . This effect presupposes that no port can
carry more than an ω-infinite long stream of tokens4. We can avoid such unfairness at

4 We could maybe experiment with a solution like fmerge((⟨a,1⟩)ω ,⟨b,1⟩,2) = (⟨a,1⟩)ω ⟨b,1⟩,
allowing streams that are longer than ω , but this would be beyond the scope of this paper.
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each time point, by letting the merge switch priorities after each received token:

f g
merge(⟨a, t1⟩ • s1 , ⟨b, t2⟩ • s2 , t) = ⟨a, t1⟩ •gg

merge(s1 , ⟨b, t2⟩ • s2 , t) if t1 ≤ t2
f g
merge(⟨a, t1⟩ • s1 , ⟨b, t2⟩ • s2 , t) = ⟨b, t2⟩ •gg

merge(⟨a, t1⟩ • s1 , s2 , t) if t2 < t1
f g
merge(⟨a, t1⟩ • s1 , ε , t) = ⟨a, t1⟩ •gg

merge(s1 , ε , t) if t1 ≤ t
f g
merge(ε , ⟨b, t2⟩ • s2 , t) = ⟨b, t2⟩ •gg

merge(ε , s2 , t) if t2 < t
f g
merge(s1 , s2 , t) = ε otherwise.

gg
merge(⟨a, t1⟩ • s1 , ⟨b, t2⟩ • s2 , t) = ⟨a, t1⟩ • f g

merge(s1 , ⟨b, t2⟩ • s2 , t) if t1 < t2
gg

merge(⟨a, t1⟩ • s1 , ⟨b, t2⟩ • s2 , t) = ⟨b, t2⟩ • f g
merge(⟨a, t1⟩ • s1 , s2 , t) if t2 ≤ t1

gg
merge(⟨a, t1⟩ • s1 , ε , t) = ⟨a, t1⟩ • f g

merge(s1 , ε , t) if t1 < t
gg

merge(ε , ⟨b, t2⟩ • s2 , t) = ⟨b, t2⟩ • f g
merge(ε , s2 , t) if t2 ≤ t

gg
merge(s1 , s2 , t) = ε otherwise.

Note here that the priority is defined for the cases that the time stamps of the input
streams are equal.

Deriving the Model of Networks from Models of Nodes Let us now define the mathe-
matical machinery for deriving the model of a network from the models of its nodes.
Assume a network consisting of nodes N1, . . . ,Nk. Each node Ni has input ports Ii and
output ports Oi. Each port can be an output port of at most one node, i.e., Oi ∩O j = /0
for i ̸= j. The composition of N1, . . . ,Nk is a network N with output ports O = ∪k

i=1Oi
and input ports I = (∪k

i=1Ii) \O. Each node Ni is modeled by a continuous function
fi : TSG

Ii → TSOi . From the disjointness of the sets Oi, we can decompose the functions
fi into one function fo j : TSG

Ii → TS{o j} for each output port o j ∈ O. For each output
port o j ∈ O this produces an equation of form

V (o j) = fo j(V (i1), . . .V (im), t) (1)

From these equations, we would like to obtain a function fN : TSG
I → TSO, which rep-

resents the behavior of the entire network. The problem is that the equations (1) are
recursive in that the output ports may appear on both sides of the equations. More-
over, for a given t, we cannot directly derive a least solution to (1) by fixed-point it-
eration, since the ordering ⊑ on TSG

{o j} does not allow us to extend V (o j) by time

stamps smaller than t, thereby preventing a step-by-step construction of V (o j). To il-
lustrate this, assume that a port o1 is both an input and output port of a node N1 and
is connected back to itself when forming the network. Suppose further that the node
first outputs a token a at time 1, and thereafter (including at time 1) copies input to
output with no delay. The resulting network then produces an infinite timed stream
(⟨a,1⟩)ω on o1. This stream should be constructed step-by-step by iteration, but for
time 2 (say), in the equation V (o1) = fo1(V (o1),2) we have fo1(s,2) = ⟨a,1⟩ • s. If
we try to produce (⟨a,1⟩)ω by the usual fixed-point iteration, as the limit of the se-
quence fo1(ε,2), fo1(⟨a,1⟩,2), fo1(⟨a,1⟩ • ⟨a,1⟩,2), . . ., then we run into the problem
that (ε,2) ̸⊑ (⟨a,1⟩,2) etc. To resolve this issue we need to perform the fixed-point
iteration at time 1, thereby exploiting that (ε,1)⊑ (⟨a,1⟩,1)⊑ (⟨a,1⟩ • ⟨a,1⟩,1)⊑ ·· · .

This means that before solving the system (1) for time t, we need solve it for all
time points t ′ < t, and use the supremum of these solutions as a starting approximation
at time t. Let us collect this into a definition.
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Definition 2. Let a network be formed as above yielding equations (1). In order to
derive the function defining network behavior, we reformulate (1) by replacing V by a
time dependent valuation V ∗ : O×T→ TS which satisfies

V ∗(o j, t) = fo j(V
∗(i1, t), . . .V ∗(im, t), t) (2)

for all time points t ∈ T. Let then V ∗ be the valuation such that for each t ∈ T, the
valuation λo j.V ∗(o j, t) is the smallest valuation (in the domain TSO) such that for each
o j ∈ O we have V ∗(o j, t ′) ⊑ V ∗(o j, t) for all t ′ < t. The function defining network be-
havior is then given by fN(VI , t)(o j) =V ∗(o j, t).

Returning to the example before this definition, we first construct the solution V ∗(o1,1)=
(⟨a,1⟩)ω . Since (⟨a,1⟩)ω is a maximal element, it follows that V ∗(o1, t) = (⟨a,1⟩)ω for
all t ≥ 1.

4.2 Timed Streams with Individual End Times

In this section, we define a semantic domain in which time has a more local character.
We extend the domain of timed streams by adding, to each timed stream, an end time,
which is a non-negative real number representing the time up to which the timed stream
has been observed. The notion of stream end times leads to a somewhat richer model
of node behavior than the global time model. Since end times are associated both with
input and output streams, durations enable nodes to communicate not only data items
with time stamps, but also at which point in time the next output can occur, and they
give us more freedom in modeling networks. Maybe more importantly, streams with
end times make it possible to preserve the decentralized nature of execution in Kahn
networks: nodes communicate exclusively through channels, and as long as communi-
cation semantics is preserved the different parts of a network can execute completely
independently. End times correspond to an implementation of timed systems in which
nodes, when not producing any data, still output some form of empty data frames (“stut-
tering”) to communicate the absence of output to subsequent nodes.

As before, we assume that the time domain T contains a maximal element ∞ ∈ T,
and thus forms a CPO.

Definition 3. The set TSE of timed streams with end times consists of pairs ⟨s,∆⟩ of a
timed stream s and an end time ∆ that is at least as large as all time stamps in s:

TSE = {⟨s,∆⟩ ∈ TS ×T | ∆ ≥ maxt(s)} .

Here, we define maxt(s) as the largest time stamp occurring in s, with maxt(s) = ∞

if there is no largest time stamp and maxt(ε) = 0. We can turn the set TSE into a CPO
in a similar way as in the global time setting: timed streams with end times can be
extended to longer streams by adding further elements, but only if the time stamps of
the new elements are at least as large as the previous end time:

Definition 4. For ⟨s,∆⟩,⟨s′,∆ ′⟩ ∈ TSE, we define ⟨s,∆⟩ ⊑ ⟨s′,∆ ′⟩ if and only if ∆ ≤ ∆ ′

and s′ = s• s′′ for some stream s′′ with mint(s′′)≥ ∆ .
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We can observe that the limit of an increasing chain ⟨s0,∆0⟩ ⊑ ⟨s1,∆1⟩ ⊑ · · · is the
timed stream with end time ⟨ lim

n→∞
sn, lim

n→∞
∆n⟩. A node or network N with input ports I

and output ports O is represented as a function fN : TSEI → TSEO, where TSEP = P →
TSE is the CPO that associates a timed stream with end time with each element of P,
with point-wise extension of the ordering relation.

Modeling timeouts. For illustration, let us return to Example 1. We can model the
timeout node using the following function ft . As mentioned in the beginning of the
section, our model of the timeout node is able to explicitly state at which points in time
the node can produce data. Since the earliest output can occur at time point 2, for input
stream duration ∆ ≤ 1 the function can be defined as ⟨ε,2⟩. This output can then be
extended to either ⟨⟨b,2⟩,∞⟩ or ⟨ε,∞⟩, depending on whether input data is observed at
some time t ≤ 1 or not:

ft(⟨s,∆⟩) = ⟨ε,2⟩ if ∆ ≤ 1
ft(⟨s,∆⟩) = ⟨⟨b,2⟩,∞⟩ if ∆ > 1 and mint(s)> 1
ft(⟨s,∆⟩) = ⟨ε,∞⟩ if ∆ > 1 and mint(s)≤ 1

(3)

We can verify that this function is indeed a continuous function in our CPO.

Deriving Models of Networks from Models of Nodes. Like in §4.1, we discuss how the
functions associated with network nodes give rise to behavior of a network as a whole.
For this, assume again a network consisting of nodes N1, . . . ,Nk, where each node Ni
has input ports Ii and output ports Oi. Each port can be an output port of at most one
node, i.e., Oi ∩O j = /0 for i ̸= j. The composition of N1, . . . ,Nk is a network N with
output ports O = ∪k

i=1Oi and input ports I = ∪k
i=1Ii \O. Each node Ni is modeled by a

continuous function fi : TSEIi → TSEOi .
To execute the network, each of the nodes has to process its inputs; since the output

of some of the nodes is used as input of other nodes, and since there might be feedback
loops, execution has to be repeated until a fixed-point is reached. For this, consider the
CPO TSEO that associates a timed stream with end time with each output port. Each
element of TSEO can be considered as a possible internal state of the network. To run
the network to completion, we start from the state ⊥ ∈ TSEO that assigns the smallest
element (empty stream with end time 0) to each output port, and then repeatedly update
all output streams to the values computed by the nodes.

More formally, for some set P of ports, some element a ∈ TSEP, and some sub-
set P′ ⊆ P, we write a|P′ ∈ TSEP′ for the restriction of a to P′. We define the update
function of the network as the function Fstep(in) : TSEO → TSEO from internal states to
internal states, taking the (fixed) inputs in ∈ TSEI of the network into account:

Fstep(in)(out) =
⋃

i∈{1,...,k}
fi
(
(in∪out)|Ii

)
The function Fstep(in) is continuous, and its least fixed-point F(in)= limn→∞ Fstep(in)n(⊥)
corresponds to the outputs of the networks when run to completion.
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From Denotation to Implementation. Since functions in our new model not only re-
ceive, but also return end times of streams, a discussion is necessary whether all contin-
uous functions model nodes that could exist in the real world. Consider the following
three functions for copying data from input to output:

f1/2(⟨⟨a1, t1⟩,⟨a2, t2⟩,⟨a3, t3⟩, . . . ,∆⟩) = ⟨⟨a1,
1
2 t1⟩,⟨a2,

1
2 t2⟩,⟨a3,

1
2 t3⟩, . . . , 1

2 ∆⟩
f1(⟨⟨a1, t1⟩,⟨a2, t2⟩,⟨a3, t3⟩, . . . ,∆⟩) = ⟨⟨a1, t1⟩,⟨a2, t2⟩,⟨a3, t3⟩, . . . ,∆⟩
f2(⟨⟨a1, t1⟩,⟨a2, t2⟩,⟨a3, t3⟩, . . . ,∆⟩) = ⟨⟨a1,2t1⟩,⟨a2,2t2⟩,⟨a3,2t3⟩, . . . ,2∆⟩

All three functions are continuous, but they differ in the time points and end time of the
generated output streams. Function f1/2 outputs every item received at time point t at
the time 1

2 t, i.e., possibly at an earlier time than t; function f1 keeps all time stamps,
while function f2 outputs at time 2t, possibly at a later time than t. Although all three
functions are meaningful in our semantic framework, function f1/2 is an impossibility
from an operational point of view: a node implementing this function would output (or
forward) data before it has received the data. Assuming that time progresses equally fast
on all streams of the network, no such node can exist. Functions f1 and f2, in contrast,
could be implemented; a node for f2 would require unbounded memory, however, since
it has to store data incoming at time t until it can be output at time 2t.

In order to talk about implementability, we introduce a general notion of causality.
We first introduce the notion of cause, which is the minimal input producing a given
output. Then, given a cause ⟨s′,∆ ′⟩, we ask for a minimal extension ⟨s′′,∆ ′′⟩ of ⟨s′,∆ ′⟩
such that f(⟨s′,∆ ′⟩•⟨s′′,∆ ′′⟩) is an extension of f(⟨s′,∆ ′⟩). For readability, the following
definition only consider the case of unary functions, the extension to input tuples is
straightforward.

Definition 5 (Notion of cause). Consider a continuous function fN : TSE → TSE. We
say that

– ⟨s′,∆ ′⟩ is the cause for ⟨s,∆⟩ for fN if ⟨s′,∆ ′⟩ is the smallest stream such that
fN(⟨s′,∆ ′⟩) = ⟨s,∆⟩. That is, if for all ⟨s′′,∆ ′′⟩ ⊏ ⟨s′,∆ ′⟩, fN(⟨s′′,∆ ′′⟩) ⊏ ⟨s,∆⟩
(where ⊏ stands naturally for strictly smaller, that is, strictly smaller stream or end
time).

– if ⟨s′,∆ ′⟩ is the cause for ⟨s,∆⟩ for fN, and ⟨s,∆⟩ is of the form ⟨s∗ • x,∆⟩ for
some stream x (not necessarily a single item), then ⟨s′,∆ ′⟩ causes the extension
⟨s∗,∆ ∗⟩ → ⟨s∗ • x,∆⟩ if for all ⟨s′′,∆ ′′⟩ ⊏ ⟨s′,∆ ′⟩, fN(⟨s′′,∆ ′′⟩) ⊑ ⟨s∗,∆ ∗⟩. Note
that the extension x is minimal.

– if ⟨s′,∆ ′⟩ causes the extension ⟨s∗,∆ ∗⟩ → ⟨s∗ • x,∆⟩, then the cause for the exten-
sion ⟨s∗,∆ ∗⟩ → ⟨s∗ • x,∆⟩ is ∆ ′ if for any ∆ ′′ < ∆ ′, fN(⟨s′,∆ ′′⟩) ⊑ ⟨s∗,∆ ∗⟩, and
there exists such a ∆ ′′. That is, it is the time progress to ∆ ′ (e.g. a timeout) that
causes the extension ⟨s∗,∆ ∗⟩ → ⟨s∗ • x,∆⟩.

We have now defined the cause for an extension of the output ⟨s∗,∆ ∗⟩ to a larger
output ⟨s∗ • x,∆⟩. Now, we define define causality as a constraint on the time stamps
of the output extension x, such that we can show (conjecture) that causal functions are
implementable, possibly by infinitely powerful machines.
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Definition 6 (Causality). Consider a continuous function fN : TSE → TSE. Then, ev-
ery ⟨s,∆ ′′⟩ in the image of fN with ⟨ε,0⟩⊏ ⟨s,∆ ′′⟩ can be written in the form ⟨s∗•x,∆ ′′⟩,
such that there is a ⟨s′,∆ ′⟩ which causes the extension ⟨s∗,∆ ∗⟩ → ⟨s∗ • x,∆⟩ for some
∆ ≤ ∆ ′′. The function fN is causal if

– whenever ⟨s′,∆ ′⟩ is the cause for the extension ⟨s∗,∆ ∗⟩ → ⟨s∗ • x,∆⟩ and ε ⊏ x,
then, if s′ = ε then mint(x)≥ 0 else mint(x)≥ maxt(s′).

– if, in addition, ∆ ′ is the cause for the extension ⟨s∗,∆ ∗⟩ → ⟨s∗ • x,∆⟩ (and ε ⊏ x),
then mint(x) ≥ ∆ ′. The time stamp of x must be at least as large as its cause, and
here the cause is ∆ ′.

This definition extends to tuples in a straightforward manner: in both cases the time of
the effect must be greater than the maximal time of its cause.

Now, we can formulate our conjecture on the requirements for a function to be
implementable.

Conjecture 1 (Timing consistency postulate). A continuous function fN : TSEI → TSEO
is implementable, if

(1) it is causal in the sense of Definition 6, and
(2) for every chain of input tuples with diverging end times, that is,

(⟨s1
1,∆

1
1 ⟩, . . . ,⟨s1

n,∆
1
n ⟩)⊑ (⟨s2

1,∆
2
1 ⟩, . . . ,⟨s2

n,∆
2
n ⟩)⊑ ·· · with ∀k. lim

j→∞
∆

j
k = ∞

also the end times of each output stream tend to infinity:

if fN(⟨s j
1,∆

j
1⟩, . . . ,⟨s

j
n,∆

j
n⟩) = (⟨r j

1, ∆̄
j

1⟩, . . . ,⟨r
j
m, ∆̄

j
m⟩) then ∀k. lim

j→∞
∆̄

j
k = ∞

(the function does not block time).

Monotonicity of fN guarantees that the output produced for an extension of a pre-
vious input can only extend the previously computed output; it may depend on the
previous output (its potentially unbounded memory). Causality (condition 1) implies
timing consistency. If the interpretation of time stamps is the time at which its data item
is written (or delivered), then it is guaranteed that every cause is written not later than
its corresponding effect. We may still need an infinitely fast machine. Finally, condition
(2) guarantees that for every input chain that does not block time (the end times of all
input streams diverge), output approximations with diverging end times are produced.
That is fn does not block time progress (not for more than a finite number of steps).

Modeling timed merge. As a second example of using our model of timed streams
with end times, we show how timed merge can be captured. The following definition
corresponds to the “unfair” version of merge from §4.1, i.e., the function prefers data
arriving at input 1 over the one from input 2. We use an auxiliary function g to model the
interleaving of data items from the two input streams. In the first equation, defining the
actual function f et

merge, we need to set the end time of the output stream to the minimum
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timeout merge
input

Fig. 1: Feedback loops with timeout and timed merge nodes

end time min{∆1,∆2} of the input streams, since additional data arriving through the
input streams can lead to further output at time min{∆1,∆2} or later.

f et
merge(⟨s1,∆1⟩,⟨s2,∆2⟩) = ⟨g(⟨s1,∆1⟩,⟨s2,∆2⟩),min{∆1,∆2}⟩

g(⟨⟨a, t1⟩ • s1,∆1⟩,⟨s2,∆2⟩) = ⟨a, t1⟩ •g(⟨s1,∆1⟩,⟨s2,∆2⟩) if t1 ≤ min(mint(s2),∆2)
g(⟨s1,∆1⟩,⟨⟨b, t2⟩ • s2,∆2⟩) = ⟨b, t2⟩ •g(⟨s1,∆1⟩,⟨s2,∆2⟩) if t2 < min(mint(s1),∆1)
g(⟨⟨a, t1⟩ • s1,∆1⟩,⟨ε,∆2⟩) = ε if ∆2 < t1 lacks input from inp1
g(⟨ε,∆1⟩,⟨⟨b, t2⟩ • s2,∆2⟩) = ε if ∆1 ≤ t2 lacks input from inp2
g(⟨ε,∆1⟩,⟨ε,∆2⟩) = ε

4.3 On Networks with Feedback Loops

As a litmus test for our semantic models, we consider the handling of nodes that do not
consume any computation time (zero delay), and of networks that contain zero-delay
feedback loops. A zero-delay loop is a feedback loop that can produce output without
any time passing, i.e., output is produced at the same time point as input entering the
loop. Although it can be argued that actual implementations of networks cannot con-
tain zero-delay steps, such computations are an important abstraction when modeling
systems; it is therefore desirable that denotational semantics are able to capture compu-
tation that is instantaneous.

Simple Feedback Networks

Timeout with feedback. We consider networks with feedback loops, shown in Fig. 1.
The first example is a timeout node, which is a node that outputs data with delay: if no
data has been received before or at time 1, then a data item is output at time 2. As a
thought experiment, we investigate the effect of applying this timeout node in a direct
feedback loop, shown on the left-hand side of Fig. 1.

In the global-time model, the network defines a continuous function from T to
TS{o}. We can compute the output as a fixed-point for each time point t in T from
the definition in the beginning of §4.1. As a result, the port contains ε if t ≤ 1 and ⟨b,2⟩
if t > 1.

In the model of timed streams with end time, using definition (3), the output pro-
duced by the left network is the limit of the sequence

⟨ε,0⟩ ⊑ ⟨ε,2⟩ ⊑ ⟨⟨b,2⟩,∞⟩

which coincides with the last timed stream ⟨⟨b,2⟩,∞⟩. Arguably, this corresponds to
our intuition about timeout node run in a feedback loop. It should be noted that the
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merge split

if x > 1λx. x−1

λx. 1
input output

Fig. 2: Repetition network with zero-delay loop: for each timed data item ⟨k, t⟩ that is
received, the network is supposed to output k times the item ⟨1, t⟩.

“passing” of time in this example is the result of the timeout node specifying an output
stream end time that is greater than the end time of the input stream; intuitively, the
node itself is making time pass.

Merge with feedback. An example of zero-delay computation is the timed merge func-
tion, shown on the right-hand side of Fig. 1 and discussed for the global-time model
in §4.1 and for the model of timed streams with end times in §4.2. Both of our models
of timed merge ( f g

merge and f et
merge) forward data received on the input streams without

delay to the output stream. Both models moreover work in case of an infinite number
of data items arriving at the same point in time. This situation can lead to an unfair
selection of data, as discussed in §4.1, where also a possible fix to ensure fairness is
provided.

In the global-time model, the first external input is copied into an infinite stream
on the internal channel, but only after time has advanced from the time of that input,
because of the priority given to the external input. This priority also lets a stream of
external input that appears with the same time stamp on the first channel be repeated
infinitely on the output channel. Denoting the whole network by fmergefb, we have, for
instance

fmergefb(⟨a, t1⟩ • s1 , t) = ε if t1 > t
fmergefb(⟨a, t1⟩ • s1 , t) = ⟨a, t1⟩ if t1 = t < mint(s1)
fmergefb(⟨a, t1⟩ • s1 , t) = (⟨a, t1⟩)ω if t1 < min(t,mint(s1))
fmergefb(⟨a, t1⟩⟨b, t1⟩ • s1 , t) = (⟨a, t1⟩⟨b, t1⟩)ω if t1 < min(t,mint(s1))

In the model of timed streams with end times, the zero-delay feedback loop shown
in Fig. 1 has a less obvious effect. Given input streams with end times ∆1 and ∆2,
respectively, the function f et

merge produces a stream with end time min{∆1,∆2} as output.
This implies that the fixed-point of the feedback loop in Fig. 1 has end time 0, i.e., the
feedback loop makes time stop at point 0. The node can still produce output at time
point 0, provided that input occurs at time 0 on the first input, but the end time of the
output stream never advances beyond 0, hence the same holds for the second output.

Repetition Network As a somewhat more complicated example, consider now the
network with zero-delay feedback of Fig. 2. For each ⟨k, t⟩ received from the external
input, k−1 items ⟨i, t⟩ are fed back to the second input of the merge node and for each
element ⟨i, t⟩ received by the merge node an item ⟨1, t⟩ is sent to the global output. The
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amerge+EOS split

λx. x−1EOS-if x ≤ 0

λx. 1input output

Fig. 3: Improved repetition network with zero-delay loop, using timed merge amerge
with flow arbitration.

other nodes used in the network have semantics as follows: the nodes containing λ -
expressions apply a function to each element of a stream (“map”); the if -nodes remove
all data elements from a stream that do not satisfy the given predicate (“filter”); and the
split-node copies all data that it receives to multiple output streams. Functions modeling
those nodes can be defined easily in our framework.

Sadly, the network shown in Fig. 2 does not work, showcasing the limitations of
timed merge. There are two issues:

1. The unfair timed merge has to prioritize one of its two input streams, which prevents
the input data and the data flowing back through the feedback loop from being
merged correctly. If priority is given to the input to the network, the feedback data
is blocked (since further input could arrive at the same time); if priority is given to
the feedback data, the input data is blocked. In particular, in the global time model,
if priority is given to the input to the network, all elements ⟨k, t1⟩ present can be
read at time t1. But the feedback input is blocked at time t1. If the external input
progresses beyond t1, one cannot extend the feedback input with elements at t1.
Giving priority to the feedback input has a similar effect.

2. When using the model of timed streams with end times, the feedback loop gets
stuck at time 0; time never progresses beyond time 0.

In Fig. 3, we show one possible way to fix the repetition network. As we want to
suppose asynchronous independent execution of the nodes, we need an explicit termi-
nation signal, at least from the second input, after which time may progress and the
next item from the external input can be consumed. For this, the network in Fig. 3 uses
a timed merge node amerge that requires an explicit signal to switch between the two
input streams. For this, we assume a special data item EOS (“end-of-stride”) that can
occur on the streams. The intended semantics of the node amerge is as follows:

– Initially, amerge forwards data items from the first input to its output stream. Data
items arriving on the second input are not forwarded and remain in the input chan-
nel.

– Once an EOS is received on the first input stream, the amerge switches to the second
input, and now copies data from the second input to the output stream, including
all items that were previously queued. No data is read from the first input channel.

– Once an EOS is received on the second input stream, the nodes switches back to
the first input, etc.
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To define a complete network, we introduce two further nodes: the node +EOS copies
data from the input to the output, but adds an EOS after each item; the node EOS-if
replaces every data item for which the given predicate holds with EOS. The definition
of the three new nodes in the global-time model and the model of timed streams with
end time is straightforward.

5 Conclusion and Discussion

In this paper, we have studied the problem of defining deterministic execution semantics
of asynchronous data-flow languages in the presence of time. By designing appropriate
complete partial orders of timed streams, we are able to define the semantics in deno-
tational style, staying close to the original definitions for Kahn process networks, yet
are able to handle zero-delay feedback loops. The research has been inspired by the
(ongoing) work on the MIMOS model [26] of computation for embedded systems.

There are several avenues of future work. We can extend our notion of timed stream
with end time by distinguishing a weak and a strong notion of end time. This extension
might be useful to model zero-delay loops (see §4.3) in a more direct fashion. With the
weak interpretation of end time ∆ , any extension of the timed stream can add items with
time stamps ≥ ∆ (as we have considered so far in Definition 4), whereas with a strong
interpretation of end time ∆ , any extension of the timed stream can only add items with
time stamps > ∆ . This allows us to write more natural definitions, for example of the
merge function: we never need to suppose an end time beyond the time point of interest,
but only need to distinguish between streams with weak and strong end points.

Another extension is an alternative notion of external time: it is defined by a se-
quence of time points at which a function may look at its input and extend the previ-
ously computed output. This variant can be expressed within the framework of external
time defined here by requiring that every output produced has a time stamp not smaller
than the time point at which it is read, meaning that our versions of merge cannot for-
ward their initial time stamps in all cases. These external computation time points may
be defined per node (then it comes very close to a model for MIMOS) or for an entire
network.
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