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We derive asymptotically exact formulas for the equilibrium magnetic stripe period in ultra-
thin films with out-of-plane anisotropy that include the full domain wall magnetic dipolar energy.
Starting with the reduced two-dimensional micromagnetic model valid for thin films, we obtain the
leading order approximation for the energy per unit volume in the vanishing film thickness limit
in the case of Bloch and Néel wall rotations. Its minimization in the stripe period leads to an
analytical expression for the equilibrium period with a prefactor proportional to the Bloch wall
width. The constant in the prefactor, related to the long-range dipolar interactions, is carefully
evaluated. This results in a remarkable agreement of the stripe domain energy density and stripe
period predicted by our analytical formulas with micromagnetic simulations. Our formula can be
used to accurately deduce magnetic parameters from the experimental measurements of the stripe
period and to systematically predict the equilibrium stripe periods in ultrathin films.

I. INTRODUCTION

Magnetic domain observation and prediction have been
the subject of continuous scientific interest for over a hun-
dred years1. The characteristics of magnetization pat-
terns are notoriously difficult to elucidate, since they
intricately depend on the balance of multiple interac-
tions present in magnetic systems. A particular chal-
lenge comes from the fact that magnetic systems fall
into the category of systems with competing short-range
and long-range interactions1–3. Specifically, magnetic
stripes and bubbles in ferromagnetic films with out-of-
plane anisotropy are a prime example of the magnetic
domain patterns forming as a result of such a compe-
tition. They were first observed at the end of the 50’s
and were the subject of extensive studies related to their
application in magnetic bubble memories4,5. In the late
80’s, the progress in deposition techniques enabling atom-
ically resolved growth of ultrathin film multilayers led to
a revival in magnetic domain observations in thin films
with out-of-plane anisotropy and to the discovery of prop-
erties specific to the nanoscale. These lower-dimensional
magnetic systems gave rise to multiple new opportunities
in both fundamental and applied magnetism6.

In magnetic thin films the magnetostatic interaction
tends to maintain the magnetization in the film plane7.
However, it was observed that for films of thicknesses
of the order of a few nanometers or less, the anisotropy
of interfacial origin may promote an out-of-plane mag-
netization in transition metal systems8. Magnetic stripe
patterns were observed in multilayers9–11 and ultrathin
films with thicknesses tuned close to the spin reorien-
tation transition12–14. More recently, the presence of
a Dzyaloshinskii-Moriya interaction (DMI) of interfacial
origin in ultrathin films was brought to light15,16. Chi-
ral Néel stripes17 and skyrmionic bubbles18 were ob-

served in ultrathin films. The possibility to manipulate
skyrmions by currents18 and electric fields19, and the as-
sociated potential of skyrmions for information technol-
ogy applications20,21 led to a second revival in experimen-
tal and theoretical investigations on magnetic stripes in
ultrathin magnetic films and multilayers.
Modeling of magnetization patterns in thin films re-

quires to evaluate precisely the demagnetizing energy, a
notoriously difficult task owing to the slow convergence
and often singular behavior of the demagnetizing energy
integrals in space due to the long-range nature of the
magnetostatic interaction. For example, it is not possi-
ble to calculate exactly the demagnetizing energy of an
isolated 1D domain wall in a film of infinite extent in the
plane, as the respective integrals diverge22. In the ultra-
thin film limit, the magnetic surface and volume charges
decouple23 and the full demagnetizing energy including
long-range dipolar interaction can be calculated explic-
itly in the case of a compact magnetic skyrmion, using
Fourier transform24,25. In the case of stripe domains,
the periodic character of the pattern enables the use of
Fourier series. This feature resulted in various model-
ing studies of stripe patterns in a countless number of
publications, among which only a few will be cited here.
Theoretical studies of stripes started with the work of

Kittel, who treated the case of equilibrium stripe peri-
ods much smaller than the film thickness26. This was
followed by the work of Maleck and Kamberský27, who
studied the case of thicknesses of the order or lower than
the domain width and predicted an increase of the stripe
period with the decrease of the film thickness under a
certain threshold thickness. Kooy and Enz proposed a
generalized demagnetizing energy applicable to a wide
range of thicknesses28.
In the case of a magnetic monolayer, Yafet and Gy-

orgy included explicitly the domain wall dipolar energy
and predicted a striped ground state for sufficiently large
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anisotropy29. Czech and Villain considered a regime in
which a monolayer may exhibit an exponential depen-
dence of the domain size on the inverse strength of the
dipolar interaction30, a behavior that was already iden-
tified for the stripe patterns in the context of Langmuir
monolayers, whose modeling bears many similarities to
magnetic systems31. Kaplan and Gehring32 proposed a
micromagnetic model in which the domain wall thickness
is neglected and obtained a semi-analytical formula pre-
dicting a stripe period with an exponential dependence
on the inverse film thickness. This formula was later de-
rived explicitly by Millev33, who obtained an analytical
expression for the prefactor under the same assumptions.
In parallel, Kashuba and Pokrovsky34, and later Sukstan-
skii and Primak35, took into account the finite domain
wall width in an ultrathin film and derived an analytical
formula, where the film thickness present in the Kaplan
and Gehring formula in the prefactor is replaced by the
Bloch wall width.

More recently, studies of the stripe problem took into
account the Néel character of the domain wall that results
in an additional nonlocal dipolar energy term related to
the volume magnetic charges. Lemesh et al.36 derived
an expression for the energy whose numerical minimiza-
tion gives a prediction of the stripe period, as well as
the domain wall width and angle. Meier et al. proposed
a modified version of the Kashuba and Pokrovsky for-
mula taking into account the Néel character of the do-
main wall37.

Despite the extensive efforts in modeling the stripe
patterns in magnetic thin films, at present there exists
no clarity about the regime of validity of various exist-
ing analytical formulas for the equilibrium stripe peri-
ods. Formulas with a prefactor proportional to the film
thickness19,38–43 or the Bloch wall width37,44–46 are used
indiscriminately for ultrathin films, despite presenting up
to more than one order of magnitude difference47. Addi-
tionally, even among the models which take into account
the domain wall long-range dipolar contributions in the
stripe energy, resulting in an analytical formula with a
prefactor proportional to the Bloch wall width34,35,37,47,
there exist discrepancies in the estimated constants in
front of the prefactor up to a factor of 3. This is prob-
lematic, as these formulas often serve as a tool to quanti-
tatively estimate the domain wall energy from the stripe
period.

In the present work we settle this issue by calculating
an asymptotically exact analytical formula for the equi-
librium magnetic stripe period valid in the ultrathin film
regime, were the prefactor is calculated explicitly for the
case of both Bloch and Néel domain walls. The validity
of the obtained formulas is tested using detailed micro-
magnetic simulations, in which we compare the energy
density scaling with the domain period, as well as the
domain period variation with the film thickness for sys-
tems with and without DMI. Our results confirm that
for ultrathin films the full domain wall contribution to
the energy needs to be taken into account, leading to a

FIG. 1: Schematic representation of an ultrathin film of thick-
ness d with periodic stripe magnetic domains of period L .
The black and white colors represent magnetization pointing
up and down in the z-direction, while blue and red represent
the in-plane magnetization pointing left and right in the x-
direction (Néel domain walls).

proportionality of the prefactor to the Bloch wall width
and providing a prefactor that is asymptotically exact for
vanishing thicknesses.

Our paper is organized as follows. In Sec. II, we
present the formulas for the energy per unit volume and
the equilibrium period of magnetic stripe domains de-
rived by us, in a dimensional form convenient to use for
comparison with experiments. In this section, we also
compare the predictions of our formulas with the results
of direct numerical simulations for several sets of exper-
imentally relevant parameters and compare our findings
with previous literature. The rest of the paper provides
the details of our derivation and the simulations. Specifi-
cally, in Sec. III, we set up a reduced mathematical model
whose solution asymptotically governs the energetics of
the equilibrium stripe domains. In Sec. IV, we carry
out an asymptotic analysis of this model to extract the
leading order expansion for the energy density and the
equilibrium stripe period. Finally, in Sec. V we present
the details of our numerical simulations and in Sec.VI we
draw conclusions.

II. SUMMARY OF THE RESULTS

We consider a sample that consists of a thin ferro-
magnetic film of thickness d with out-of-plane magnetic
anisotropy and infinite extent in the plane. We de-
fine the dimensionless film thickness δ = d/ℓex, where

ℓex =
√
2Aex/(µ0M2

s ) is the exchange length, Aex the
exchange stiffness, µ0 the vacuum permeability and Ms

the saturation magnetization. The film is assumed to
be sufficiently thin, δ ≲ 1, in order for the magnetiza-
tion vector M to be independent of the z-variable (see
Fig. 1). We introduce the dimensionless DMI strength
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κ = D/
√
AexKd, where Kd = 1

2µ0M
2
s and D is the in-

terfacial DMI constant (in J/m2, non-negative without
loss of generality). It is widely expected that for δ and κ
sufficiently small the magnetic ground state of the sam-
ple consists of periodic parallel magnetic stripes with a
period L (see Fig. 1), where the stripes are magnetic
domains of width ≃ 1

2L with magnetization pointing al-
ternatively up and down depending only on x, separated
by domain walls. We assume that the magnetization vec-
tor rotation lies in a plane: either the xz-plane for Néel
stripes or the yz-plane for Bloch stripes.

To illustrate our results, we consider the case of a
thin transition metal ferromagnetic film with an exchange
constant Aex = 10 pA/m and saturation magnetization
Ms = 1 MA/m, resulting in an exchange length ℓex ≃ 4
nm.

A. Bloch stripes

In Sec. IVB, we compute the energy per unit volume
F(L ) = f(L /ℓex)Kd, after subtracting the energy of the
uniformly magnetized state, of periodic stripe domains
of period L in the classical case of stripes separated by
Bloch walls (D = 0). We obtain

F(L ) ≃ 2σB

L
− 4dKd

πL

[
ln

(
L

π2LB

)
+ γ + 1

]
, (1)

where σB = 4
√
AexKeff is the wall surface tension, in

whichKeff = Ku−Kd is the effective magnetic anisotropy
of the thin film, LB =

√
Aex/Keff is the Bloch wall width,

and γ ≈ 0.5772 is the Euler-Mascheroni constant. We
obtain the leading order optimal period by minimizing
F(L ) in L :

L Bloch
opt = π2e−γLB exp

(
πσB

µ0M2
s d

)
. (2)

This formula is asymptotically exact for d → 0.
In order to illustrate the Bloch stripes period for-

mula, we chose a volume magnetocrystalline anisotropy
tuned to Ku1 = 0.75 MJ/m3 (regime 1) and indepen-
dent of the film thickness (the regime of magnetocrys-
talline anisotropy of surface origin will be considered in
Sec. II B). In Fig. 2, we present the optimal stripe period
for regime 1, where the prediction from Eq. (2) is rep-
resented as the solid line. We use black dots to present
the optimal period obtained using micromagnetic simu-
lations using the MuMax3 software48. These numeri-
cal results, obtained with the help of the procedure de-
scribed in detail in Sec. V, were computed by minimizing
the energy of one stripe with period L , under periodic
boundary conditions (see Fig. 1). The stripe period is
varied until the optimal stripe period, corresponding to
the smallest minimized energy density, is found. The mi-
cromagnetic simulations are in a very good agreement
with our asymptotic formula in Eq. (2) for the values of
δ up to δ = 2 (see Fig. 2).
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We derive asymptotically exact formulas for the equilibrium magnetic stripe period in ultra-
thin films with out-of-plane anisotropy that include the full domain wall magnetic dipolar energy.
Starting with the reduced two-dimensional micromagnetic model valid for thin films, we obtain the
leading order approximation for the energy per unit volume in the vanishing film thickness limit
in the case of Bloch and Néel wall rotations. Its minimization in the stripe period leads to an
analytical expression for the equilibrium period with a prefactor proportional to the Bloch wall
width. The constant in the prefactor, related to the long-range dipolar interactions, is carefully
evaluated. This results in a remarkable agreement of the stripe domain energy density and stripe
period predicted by our analytical formulas with micromagnetic simulations. Our formula can be
used to accurately deduce magnetic parameters from the experimental measurements of the stripe
period and to systematically predict the equilibrium stripe periods in ultrathin films.

I. INTRODUCTION

L Bloch
opt (µm) L Néel

opt (µm) d (nm)

Magnetic domain observation and prediction have been
the subject of continuous scientific interest for over a hun-
dred years1. The characteristics of magnetization pat-
terns are notoriously di�cult to elucidate, since they
intricately depend on the balance of multiple interac-
tions present in magnetic systems. A particular chal-
lenge comes from the fact that magnetic systems fall
into the category of systems with competing short-range
and long-range interactions1–3. Specifically, magnetic
stripes and bubbles in ferromagnetic films with out-of-
plane anisotropy are a prime example of the magnetic
domain patterns forming as a result of such a compe-
tition. They were first observed at the end of the 50’s
and were the subject of extensive studies related to their
application in magnetic bubble memories4,5. In the late
80’s, the progress in deposition techniques enabling atom-
ically resolved growth of ultrathin film multilayers led to
a revival in magnetic domain observations in thin films
with out-of-plane anisotropy and to the discovery of prop-
erties specific to the nanoscale. These lower-dimensional
magnetic systems gave rise to multiple new opportunities
in both fundamental and applied magnetism6.

In magnetic thin films the magnetostatic interaction
tends to maintain the magnetization in the film plane7.
However, it was observed that for films of thicknesses
of the order of a few nanometers or less, the anisotropy
of interfacial origin may promote an out-of-plane mag-
netization in transition metal systems8. Magnetic stripe
patterns were observed in multilayers9–11 and ultrathin
films with thicknesses tuned close to the spin reorien-
tation transition12–14. More recently, the presence of

a Dzyaloshinskii-Moriya interaction (DMI) of interfacial
origin in ultrathin films was brought to light15,16. Chi-
ral Néel stripes17 and skyrmionic bubbles18 were ob-
served in ultrathin films. The possibility to manipulate
skyrmions by currents18 and electric fields19, and the as-
sociated potential of skyrmions for information technol-
ogy applications20,21 led to a second revival in experimen-
tal and theoretical investigations on magnetic stripes in
ultrathin magnetic films and multilayers.

Modeling of magnetization patterns in thin films re-
quires to evaluate precisely the demagnetizing energy, a
notoriously di�cult task owing to the slow convergence
and often singular behavior of the demagnetizing energy
integrals in space due to the long-range nature of the
magnetostatic interaction. For example, it is not possi-
ble to calculate exactly the demagnetizing energy of an
isolated 1D domain wall in a film of infinite extent in the
plane, as the respective integrals diverge22. In the ultra-
thin film limit, the magnetic surface and volume charges
decouple23 and the full demagnetizing energy including
long-range dipolar interaction can be calculated explic-
itly in the case of a compact magnetic skyrmion, using
Fourier transform24,25. In the case of stripe domains,
the periodic character of the pattern enables the use of
Fourier series. This feature resulted in various model-
ing studies of stripe patterns in a countless number of
publications, among which only a few will be cited here.

Theoretical studies of stripes started with the work of
Kittel, who treated the case of equilibrium stripe peri-
ods much smaller than the film thickness26. This was
followed by the work of Maleck and Kamberský27, who
studied the case of thicknesses of the order or lower than
the domain width and predicted an increase of the stripe
period with the decrease of the film thickness under a
certain threshold thickness. Kooy and Enz proposed a
generalized demagnetizing energy applicable to a wide
range of thicknesses28.
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FIG. 2: Equilibrium stripe period L Bloch
opt as a function of the

film thickness d in the regime of Bloch walls (zero DMI). The
material parameters are Aex = 10 pA/m, Ms = 1 MA/m and
Ku1 = 0.75 MJ/m3 (regime 1). The asymptotic equilibrium
stripe period in Eq. (2) is represented by a solid line. The
equilibrium stripe period obtained by micromagnetic simula-
tions using MuMax348 (see Sec. V for details) is represented
by black dots. The equilibrium stripe periods from previous
works32,34,35,37,47 are also shown (see inset for details).

B. Néel stripes

We now consider a system with DMI, where
4 ln 2
π2 dKd < D < 4

π

√
AexKeff , i.e., for D > 0 suf-

ficiently large to ensure a pure Néel rotation for the
wall, but sufficiently small to prevent spin spirals36,49.
In Sec. IVA, we compute the energy per unit volume
F(L ) = f(L /ℓex)Kd, after subtracting the energy of
the uniformly magnetized state, of periodic stripe do-
mains of period L in the case of Néel walls. We obtain

F(L ) ≃ 2σN

L
− 4dKd

πL

[
ln

(
L

2π2LB

)
+ γ + 1

]
, (3)

where σN = 4
√
AexKeff − πD > 0 is the surface tension

of the Néel domain wall. Minimizing this energy in L ,
we obtain

L Néel
opt = 2π2e−γLB exp

(
πσN

µ0M2
s d

)
. (4)

Again, this formula is asymptotically exact for d → 0.
This expression differs in two points from that in Eq.
(2). First, the expression for the domain wall surface ten-
sion appearing in the exponential factor is, as expected,
taking into account a decrease in the surface tension by
πD due to DMI49,50. Second, a factor of two, related
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We derive asymptotically exact formulas for the equilibrium magnetic stripe period in ultra-
thin films with out-of-plane anisotropy that include the full domain wall magnetic dipolar energy.
Starting with the reduced two-dimensional micromagnetic model valid for thin films, we obtain the
leading order approximation for the energy per unit volume in the vanishing film thickness limit
in the case of Bloch and Néel wall rotations. Its minimization in the stripe period leads to an
analytical expression for the equilibrium period with a prefactor proportional to the Bloch wall
width. The constant in the prefactor, related to the long-range dipolar interactions, is carefully
evaluated. This results in a remarkable agreement of the stripe domain energy density and stripe
period predicted by our analytical formulas with micromagnetic simulations. Our formula can be
used to accurately deduce magnetic parameters from the experimental measurements of the stripe
period and to systematically predict the equilibrium stripe periods in ultrathin films.

I. INTRODUCTION

L Bloch
opt (µm) L Néel

opt (µm) d (nm)

Magnetic domain observation and prediction have been
the subject of continuous scientific interest for over a hun-
dred years1. The characteristics of magnetization pat-
terns are notoriously di�cult to elucidate, since they
intricately depend on the balance of multiple interac-
tions present in magnetic systems. A particular chal-
lenge comes from the fact that magnetic systems fall
into the category of systems with competing short-range
and long-range interactions1–3. Specifically, magnetic
stripes and bubbles in ferromagnetic films with out-of-
plane anisotropy are a prime example of the magnetic
domain patterns forming as a result of such a compe-
tition. They were first observed at the end of the 50’s
and were the subject of extensive studies related to their
application in magnetic bubble memories4,5. In the late
80’s, the progress in deposition techniques enabling atom-
ically resolved growth of ultrathin film multilayers led to
a revival in magnetic domain observations in thin films
with out-of-plane anisotropy and to the discovery of prop-
erties specific to the nanoscale. These lower-dimensional
magnetic systems gave rise to multiple new opportunities
in both fundamental and applied magnetism6.

In magnetic thin films the magnetostatic interaction
tends to maintain the magnetization in the film plane7.
However, it was observed that for films of thicknesses
of the order of a few nanometers or less, the anisotropy
of interfacial origin may promote an out-of-plane mag-
netization in transition metal systems8. Magnetic stripe
patterns were observed in multilayers9–11 and ultrathin
films with thicknesses tuned close to the spin reorien-
tation transition12–14. More recently, the presence of

a Dzyaloshinskii-Moriya interaction (DMI) of interfacial
origin in ultrathin films was brought to light15,16. Chi-
ral Néel stripes17 and skyrmionic bubbles18 were ob-
served in ultrathin films. The possibility to manipulate
skyrmions by currents18 and electric fields19, and the as-
sociated potential of skyrmions for information technol-
ogy applications20,21 led to a second revival in experimen-
tal and theoretical investigations on magnetic stripes in
ultrathin magnetic films and multilayers.

Modeling of magnetization patterns in thin films re-
quires to evaluate precisely the demagnetizing energy, a
notoriously di�cult task owing to the slow convergence
and often singular behavior of the demagnetizing energy
integrals in space due to the long-range nature of the
magnetostatic interaction. For example, it is not possi-
ble to calculate exactly the demagnetizing energy of an
isolated 1D domain wall in a film of infinite extent in the
plane, as the respective integrals diverge22. In the ultra-
thin film limit, the magnetic surface and volume charges
decouple23 and the full demagnetizing energy including
long-range dipolar interaction can be calculated explic-
itly in the case of a compact magnetic skyrmion, using
Fourier transform24,25. In the case of stripe domains,
the periodic character of the pattern enables the use of
Fourier series. This feature resulted in various model-
ing studies of stripe patterns in a countless number of
publications, among which only a few will be cited here.

Theoretical studies of stripes started with the work of
Kittel, who treated the case of equilibrium stripe peri-
ods much smaller than the film thickness26. This was
followed by the work of Maleck and Kamberský27, who
studied the case of thicknesses of the order or lower than
the domain width and predicted an increase of the stripe
period with the decrease of the film thickness under a
certain threshold thickness. Kooy and Enz proposed a
generalized demagnetizing energy applicable to a wide
range of thicknesses28.
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FIG. 3: Equilibrium stripe period L Néel
opt as a function of the

film thickness d in the case of Néel walls. The thin film param-
eters are Aex = 10 pA/m, Ms = 1 MA/m, Ku2 = 1 MJ/m3

and D2 = 2 mJ/m2 (regime 2). The asymptotic equilibrium
stripe period in Eq. (4) is represented by a solid line. The
equilibrium stripe period obtained by micromagnetic simula-
tions using MuMax3 (see Sec. V for details) and in previous
works32,37 are also presented (see inset for details).

to the nonlocal dipolar interactions is appearing in the
expression for the prefactor in the case of Néel walls.
This additional energy is a consequence of the volume
charges present in the Néel wall, associated with the in-
plane component of the demagnetizing field, whose an-
alytical expression in the limit d → 0 is a well-known
result37,49,51.

The equilibrium stripe period formula for the case of
Néel walls in Eq. (4) is illustrated by the solid line in
Fig. 3. We present the case of a magnetic thin film with
a volume magnetocrystalline anisotropy Ku2 = 1 MJ/m3

and a volume DMI D2 = 2 mJ/m2 (regime 2). Our
asymptotic formula shows a very good agreement with
the micromagnetic simulations for low d and starts to
deviate as the thickness becomes greater than the Bloch
wall width d > LB ≃ 5 nm, which is outside the range
of validity of our expression for the stray field energies
valid in the ultrathin film limit23,50. Finally, we address
the classical regime of a few monolayer transition metal
wedge with magnetocrystalline anisotropy and DMI of in-
terfacial origin that are inversely proportional to the film
thickness: Ku3 = Ks3/d and D3 = Ds3/d (regime 3)52.
In this type of systems, the observable stripe domains
are present in a very narrow range of thicknesses12–14,19

(a fraction of a monolayer), as can be seen in Fig. 4. As
expected, the asymptotic model is very accurate in this
regime, in which δ ∼ 0.1.
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We derive asymptotically exact formulas for the equilibrium magnetic stripe period in ultra-
thin films with out-of-plane anisotropy that include the full domain wall magnetic dipolar energy.
Starting with the reduced two-dimensional micromagnetic model valid for thin films, we obtain the
leading order approximation for the energy per unit volume in the vanishing film thickness limit
in the case of Bloch and Néel wall rotations. Its minimization in the stripe period leads to an
analytical expression for the equilibrium period with a prefactor proportional to the Bloch wall
width. The constant in the prefactor, related to the long-range dipolar interactions, is carefully
evaluated. This results in a remarkable agreement of the stripe domain energy density and stripe
period predicted by our analytical formulas with micromagnetic simulations. Our formula can be
used to accurately deduce magnetic parameters from the experimental measurements of the stripe
period and to systematically predict the equilibrium stripe periods in ultrathin films.

I. INTRODUCTION

L Bloch
opt (µm) L Néel

opt (µm) d (nm)

Magnetic domain observation and prediction have been
the subject of continuous scientific interest for over a hun-
dred years1. The characteristics of magnetization pat-
terns are notoriously di�cult to elucidate, since they
intricately depend on the balance of multiple interac-
tions present in magnetic systems. A particular chal-
lenge comes from the fact that magnetic systems fall
into the category of systems with competing short-range
and long-range interactions1–3. Specifically, magnetic
stripes and bubbles in ferromagnetic films with out-of-
plane anisotropy are a prime example of the magnetic
domain patterns forming as a result of such a compe-
tition. They were first observed at the end of the 50’s
and were the subject of extensive studies related to their
application in magnetic bubble memories4,5. In the late
80’s, the progress in deposition techniques enabling atom-
ically resolved growth of ultrathin film multilayers led to
a revival in magnetic domain observations in thin films
with out-of-plane anisotropy and to the discovery of prop-
erties specific to the nanoscale. These lower-dimensional
magnetic systems gave rise to multiple new opportunities
in both fundamental and applied magnetism6.

In magnetic thin films the magnetostatic interaction
tends to maintain the magnetization in the film plane7.
However, it was observed that for films of thicknesses
of the order of a few nanometers or less, the anisotropy
of interfacial origin may promote an out-of-plane mag-
netization in transition metal systems8. Magnetic stripe
patterns were observed in multilayers9–11 and ultrathin
films with thicknesses tuned close to the spin reorien-
tation transition12–14. More recently, the presence of

a Dzyaloshinskii-Moriya interaction (DMI) of interfacial
origin in ultrathin films was brought to light15,16. Chi-
ral Néel stripes17 and skyrmionic bubbles18 were ob-
served in ultrathin films. The possibility to manipulate
skyrmions by currents18 and electric fields19, and the as-
sociated potential of skyrmions for information technol-
ogy applications20,21 led to a second revival in experimen-
tal and theoretical investigations on magnetic stripes in
ultrathin magnetic films and multilayers.

Modeling of magnetization patterns in thin films re-
quires to evaluate precisely the demagnetizing energy, a
notoriously di�cult task owing to the slow convergence
and often singular behavior of the demagnetizing energy
integrals in space due to the long-range nature of the
magnetostatic interaction. For example, it is not possi-
ble to calculate exactly the demagnetizing energy of an
isolated 1D domain wall in a film of infinite extent in the
plane, as the respective integrals diverge22. In the ultra-
thin film limit, the magnetic surface and volume charges
decouple23 and the full demagnetizing energy including
long-range dipolar interaction can be calculated explic-
itly in the case of a compact magnetic skyrmion, using
Fourier transform24,25. In the case of stripe domains,
the periodic character of the pattern enables the use of
Fourier series. This feature resulted in various model-
ing studies of stripe patterns in a countless number of
publications, among which only a few will be cited here.

Theoretical studies of stripes started with the work of
Kittel, who treated the case of equilibrium stripe peri-
ods much smaller than the film thickness26. This was
followed by the work of Maleck and Kamberský27, who
studied the case of thicknesses of the order or lower than
the domain width and predicted an increase of the stripe
period with the decrease of the film thickness under a
certain threshold thickness. Kooy and Enz proposed a
generalized demagnetizing energy applicable to a wide
range of thicknesses28.
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FIG. 4: Equilibrium stripe period L Néel
opt as a function of

the film thickness d in the case of Néel walls for an ul-
trathin film with thickness-dependent volume magnetocrys-
talline anisotropy Ku3 = Ks3/d and thickness-dependent
volume DMI D3 = Ds3/d. The thin film parameters are
Aex = 10 pA/m, Ms = 1 MA/m, Ks3 = 0.6 mJ/m2, and
Ds3 = 1.2 pJ/m (regime 3). The asymptotic equilibrium
stripe period in Eq. (4) is represented by a solid line. The
equilibrium stripe period obtained by micromagnetic simula-
tions using MuMax348 (see Sec. V for details) and in previous
works32,37 are also presented (see inset for details).

C. Comparison with previous studies

In Figs. 2–4, we also present the equilibrium stripe
periods predicted by existing formulas in the literature
and compare them with our asymptotic predictions in
Eqs. (2) and (4). We start with the Kaplan and Gehring
formula that reads32,33

L KG
opt =

π√
e
d exp

(
πσ

µ0M2
s d

)
, (5)

where σ is the domain wall surface tension in three di-
mensions. This formula has been widely used to obtain
quantitative information based on experimental measure-
ment of the stripe period in ultrathin films19,38–43. How-
ever, this formula is valid for films of thicknesses much
larger than the Bloch wall width, d ≫ LB , which is very
unlikely to be the case for an ultrathin film. Notice that
if one were to use this formula in the case of the Bloch
stripes (no DMI), one would have to choose σ = σ1 =
4
√
AexKu, as the corresponding expression for the energy

density already takes into account the exact full magneto-
static energy of the three-dimensional magnetic domains
with zero wall thickness. Nevertheless, in the literature
one often assumed σ = σ2 = 4

√
Aex(Ku −Kd), which is

not consistent with the three-dimensional stray field en-
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ergy calculation used. For Néel stripes (with DMI), the
correct choice of the domain wall surface tension would
be σ = σ3 = 4

√
Aex(Ku +Kd) − πD in order to ac-

count for the additional stray field energy contribution
localized in the one-dimensional wall profile53. Never-
theless, σ = σ4 = 4

√
Aex(Ku −Kd) − πD has been fre-

quently used. Regardless of the choice of σ, the formula
also suffers from the prefactor proportional to the film
thickness d. In all the cases, the Kaplan and Gehring
formula presents, from one order of magnitude (regime
1, see Fig. 2), up to two orders of magnitude (regimes 2
and 3, see Figs. 3 and 4) errors in the predicted equilib-
rium stripe period compared to our asymptotic formula,
and its use should, therefore, be avoided in the case of
ultrathin films with d ≲ LB .

The formulas of Kashuba and Pokrovsky34, Sukstan-
skii and Primak35, and Skomski et. al47 are, on the con-
trary, valid in the ultrathin film limit, i.e., for d ≲ LB .
They are represented for the Bloch case in Fig. 2. They
differ from Eq. (2) only by the numerical constant in
front of the Bloch wall width in the prefactor, since their
prefactor is proportional to the Bloch wall width as in Eq.
(2). This constant is resulting from the long-range dipo-
lar interaction energy term for the stripe system, which
is calculated by evaluating a series (see Sec. IV). Differ-
ent assumptions or incorrect evaluation of these series led
to different prefactor constants in those previous studies
and to under- or overestimation of the equilibrium stripe
periods of less than an order of magnitude (see Fig. 2).

Finally, we compare our result with the work of Meier
et al.37. In their work, Meier et al. used the expression
given by Kashuba and Pokrovsky34 for the long-range
dipolar interaction energy of the stripe domains. They
introduced three modifications as compared to Kashuba
and Pokrovsky. First, the expression of the domain wall
surface tension appearing in the exponential factor is
modified to account for the wall surface tension decrease
by πD in presence of DMI49, in agreement with Eq. (4).
Second, they account for the increase in the wall surface
tension as the result of the presence of volume charges in
the case of a Néel wall51. This leads to an additional fac-
tor of two in their prefactor as compared to the Bloch case
in agreement with the additional factor of 2 in Eq. (4) as
compared to Eq. (2). Third, they introduce a thickness-
dependent domain wall width and domain wall surface
tension. One can see in Fig. 2 that this last modification
introduced by Meier et al. leads to a slight decrease of the
predicted stripe period compared to that of Kashuba and
Pokrovsky in the case of the Bloch stripes and a slight ap-
parent improvement of the agreement with the numerics.
Nevertheless, this improvement is somewhat fortuitous,
since the asymptotic behavior of the formula of Meier
et al. is the same as that of Kashuba and Pokrovsky,
which presents around a 50% discrepancy with our exact
asymptotic formula and the results of direct numerical
minimization of the micromagnetic energy (see also Figs.
3 and 4 for the case of the Néel stripes). Our asymptotic
formula, on the other hand, yields a very good accuracy

throughout the entire thickness range as long as the film
thickness is lower than the Bloch width without the need
to introduce any further thickness dependence related to
wall surface tension or domain wall width thickness vari-
ation (see Figs. 2–4, see also sec. V for a discussion on
the domain wall width thickness variation).

III. MODEL

We now present a detailed derivation of our formulas.
We begin by specifying the microscopic sample geome-
try. For simplicity, we consider an extended material in
the film plane and impose periodic boundary conditions
to avoid the need to deal with the material edge effects
(the treatment of the latter in the case of ultra-thin films
can be found in54). Let T2

L = [0,L )2 be a flat two-
dimensional torus (a square box of sidelength L with
periodic boundary conditions) with L macroscopically
large. For a single layer of total thickness d we define

Ω̃ = T2
L × (−d/2, d/2) ⊂ R3 to be the set occupied by

the ferromagnetic layer. Next we write the full micro-
magnetic energy functional (in the SI units) for three-
dimensional configurations M = M(x, y, z) described by
the magnetization vector M : T2

L × R → R3 satisfying

|M| = Ms, the saturation magnetization (in A/m), in Ω̃,

and M = 0 outside Ω̃, with no applied field2,49:

E3d(M) =

∫
Ω̃

(
Aex

M2
s

|∇M|2 + Ku

M2
s

|M⊥|2
)
d3r

+
D

M2
s

∫
Ω̃

(
M∥∇⊥ ·M⊥ −M⊥ · ∇⊥M∥

)
d3r

− µ0

2

∫
Ω̃

Hd ·M d3r − 1

2
µ0M

2
s L 2d,

(6)

where we used the notation M = (M⊥,M∥) ∈ R3 with

M⊥ ∈ R2 denoting the in-plane component of M and
M∥ ∈ R denoting the out-of-plane component of M
(parallel to the out-of-plane easy axis); the operator
∇⊥ = (∂x, ∂y) denotes the in-plane portion of the gra-
dient. The terms in the energy are, in order of appear-
ance: the exchange and the crystalline anisotropy with
exchange stiffness Aex (in J/m, positive) and uniaxial
perpendicular anisotropy constant Ku (in J/m3, posi-
tive), respectively; the interfacial DMI constant D (in
J/m2, of arbitrary sign); the stray field energy with the
vacuum permeability µ0 andHd being the demagnetizing
field solving the static Maxwell’s equations distribution-
ally in T2

L × R:

∇ · (Hd +M) = 0, ∇×Hd = 0, (7)

with periodic boundary conditions in the plane and van-
ishing as z → ±∞; and an additive constant chosen so
that E3d(M) = 0 for M = ±MsχΩ̃ẑ, where χΩ̃ is the

characteristic function of Ω̃, i.e., to offset the energy of
the monodomain state.
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We next carry out a suitable non-dimensionalization.
We measure all lengths in the units of the exchange
length ℓex =

√
2Aex/(µ0M2

s ) and define the normalized
magnetization and energy

m =
M

Ms
, E3d =

E3d

Aexd
. (8)

Then the rescaled micromagnetic energy E3d is a function
ofm : T2

L×R → R3 with |m| = 1 in Ω = T2
L×(−δ/2, δ/2)

and |m| = 0 in the complement of Ω, where

L =
L

ℓex
, δ =

d

ℓex
, (9)

and may be written as

E3d(m) =
1

δ

∫
Ω

(
|∇m|2 +Q|m⊥|2 − 1

)
d3r

+
κ

δ

∫
Ω

(
m∥∇⊥ ·m⊥ −m⊥ · ∇⊥m∥

)
d3r (10)

+
1

δ

∫
T2
L×R

∇ ·m(−∆)−1∇ ·m d3r.

Here we introduced the dimensionless effective material
quality factor Q and the dimensionless DMI strength κ:

Q =
2Ku

µ0M2
s

, κ = D

√
2

µ0M2
sAex

, (11)

as well as the inverse Laplacian operator (−∆)−1 whose
action on three-dimensional plane waves is defined as

e−ik·r(−∆)−1eik·r =
1

|k|2
, (12)

expressing the fact that the stray field energy repre-
sents the Coulombic repulsive energy of the “magnetic
charges”, whose density ρ = −∇·m is understood in the
distributional sense in T2

L×R (Ref.55). In the rest of the
paper we always consider the non-dimensional version of
the problem. For definiteness we also assume from now
on that κ ≥ 0, without loss of generality.

We now introduce a reduced two-dimensional micro-
magnetic model appropriate for ultra-thin films corre-
sponding to δ ≪ 1. We define the magnetization
m = m(x, y) on a flat torus T2

L = [0, L)2. The non-
dimensional energy of such a configuration in Ω is ob-
tained via a suitable asymptotic reduction from Eq. (10)
in the ultra-thin film limit (for δ ≪ 1) and, up to an
additive constant, reads23,50

E2d
L (m) =

∫
T2
L

(
|∇m|2 + (Q− 1)|m⊥|2

)
d2r

+ κ

∫
T2
L

(
m∥∇ ·m⊥ −m⊥ · ∇m∥

)
d2r

− δ

2

∫
T2
L

m∥(−∆)1/2m∥ d
2r

+
δ

2

∫
T2
L

∇ ·m⊥(−∆)−1/2 ∇ ·m⊥ d2r.

(13)

Here the symbols (−∆)1/2 and (−∆)−1/2 denote the half-
Laplacian operator and its inverse, respectively, whose
actions on two-dimensional plane waves are defined as

e−ik·r(−∆)1/2eik·r = |k|, (14)

e−ik·r(−∆)−1/2eik·r =
1

|k|
. (15)

The terms associated with the half-Laplacian describe
the nonlocal contributions of the stray field due to the
surface and volume charges, respectively, with the usual
local surface charge contribution renormalizing the out-
of-plane anisotropy constant. In particular, we have
E2d

L (m) ≃ E3d(mχΩ) for δ ≪ 1, where χΩ is the charac-
teristic function of the set Ω and mχΩ represents a three-
dimensional magnetization configuration in the film that
does not vary along the z-direction.

A. Néel stripes

It may be conjectured, although it is a very difficult
and unsolved mathematical problem, that the global en-
ergy minimizer of this energy with κ and δ small, and
with L sufficiently large, is given by a periodic array
of stripes in which the magnetization rotates between
the two easy directions ±ẑ. In the presence of interfa-
cial DMI the rotation of the magnetization vector in the
domain walls changes its character from Bloch to Néel.
Hence, assuming that the magnetization profile is a one-
dimensional Néel rotation with angle θ = θ(x), i.e., that

m = (sin θ(x), 0, cos θ(x)), (16)

the energy of such a configuration is E2d
L (m) = LE1d

L (θ),
where

E1d
L (θ) =

∫ L

0

(
|θ′|2 + (Q− 1) sin2 θ + κθ′

)
dx

− δ

2

∫ L

0

cos θ

(
− d2

dx2

)1/2

cos θ dx (17)

+
δ

2

∫ L

0

sin θ

(
− d2

dx2

)1/2

sin θ dx,

where the fractional operator
(
− d2

dx2

)1/2
is the one-

dimensional version of half-Laplacian, whose action on
one-dimensional plane waves is defined as

e−ikx

(
− d2

dx2

)1/2

eikx = |k|. (18)

Note that this operator admits the following integral
representation56,57:(

− d2

dx2

)1/2

u(x) =
1

π
p.v.

∫ ∞

−∞

u(x)− u(x′)
|x− x′|2

dx′, (19)
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where p.v. denotes the principal value of the integral at
x′ = x, for any smooth periodic function u defined on
the whole real line.

The optimal configuration is obtained by minimizing
the energy E2d

L per unit area, hence if θL is a minimizer
of E1d

L and the stripe conjecture is valid, we have

f(L) =
1

L
E1d

L (θL) = min
m∈H1(T2

L;S2)

1

L2
E2d

L (m), (20)

where the latter minimization is carried out over the stan-
dard class H1(T2

L;S2) of three-dimensional vector fields
with values on a unit sphere and with square integrable
weak derivatives. A posteriori, any minimizer is known
to be smooth and to satisfy the Euler-Lagrange equation

0 = θ′′L(x)−(Q− 1) sin θL(x) cos θL(x)

− hs(x) sin θL(x) + hv(x) cos θL(x),
(21)

where the effective fields hs and hv due to the long-range
dipolar contributions of the surface and volume charges
are, respectively,

hs =
δ

2

(
− d2

dx2

)1/2

cos θL, (22)

hv = −δ

2

(
− d2

dx2

)1/2

sin θL, (23)

and the energy density f(L) may be alternatively written
as

f(L) = −2πκ

L
+

1

L

∫ L

0

(|θ′L|2 + (Q− 1) sin2 θL

− hv sin θL − hs cos θL)dx.

(24)

As cos θL and sin θL are assumed to be periodic, with-
out loss of generality one can take L to be the funda-
mental period of the stripes, which we do from now on.
The DMI term forces winding of the angle by −2π over
the fundamental period for κ > 0, hence after a suitable
translation we may assume that θL(x) decreases from
θL(0) = π

2 to θL(L) = − 3π
2 . Thus Eq. (21) should be

solved on the interval (0, L) with the above Dirichlet
boundary conditions at x = 0 and x = L. Furthermore,
as there is no applied magnetic field, we may assume an
additional symmetry θL(

L
2+x) = θL(x)−π for x ∈ (0, L

2 ),
consistent with Eq. (21), which allows to restrict the
solution of Eq. (21) to the interval (0, L

2 ) with Dirich-

let boundary conditions θL(0) = π
2 and θL

(
L
2

)
= −π

2 .
In fact, one further expects that θL is an odd function
around x = L

4 on
(
0, L

2

)
, i.e., θL(x) = −θL

(
L
2 − x

)
. In

particular, θL(x) decreases from θL(0) =
π
2 to θL

(
L
4

)
= 0

on
(
0, L

4

)
. Notice that these assumptions are consistent

with Eq. (21), since cos θL and sin θL being an even and
odd function on

(
0, L

2

)
around the midpoint x = L

4 re-
sults in hs and hv also being an even and odd functions,
respectively, consistent with θ′′L being an odd function.

B. Bloch stripes

Here we briefly adapt the calculation above to the case
of κ = 0, no DMI. In this case the optimal stripe profile
is of Bloch type:

m = (0, sin θ(x), cos θ(x)), (25)

in order to minimize the contribution of bulk charges to
the stray field energy. As there is no contribution from
bulk charges in this case, the energy is

E1d
L (θ) =

∫ L

0

(|θ′|2 + (Q− 1) sin2 θ)dx

− δ

2

∫ L

0

cos θ

(
− d2

dx2

)1/2

cos θ dx,

(26)

and the Euler-Lagrange equation satisfied by an associ-
ated minimizer θL is

0 = θ′′L(x)− (Q− 1) sin θL(x) cos θL(x)

−hs(x) sin θL(x). (27)

Contrary to the case of strong DMI, with only the sur-
face charge contribution to the energy present the opti-
mal profile θL(x) is expected to exhibit no winding and
hence be periodic (see also58). The energy density of
stripes is then given by

f(L) =
1

L

∫ L

0

(
|θ′L|2 + (Q− 1) sin2 θL − hs cos θL

)
dx.

(28)

IV. CALCULATION OF THE OPTIMAL
STRIPE PERIOD IN ULTRATHIN FILMS

We now investigate the minimization problem asso-
ciated with f(L) in the limit δ → 0. It is known
rigorously23 that in this regime (with the effect of not
too strong DMI readily incorporated as in50) the aver-
age length scale of the energy-minimizing patterns for
Eq. (13) on all sufficiently large spatial domains scales as

L ∼ ea/δ√
Q− 1

, a =
π

2

(
4
√

Q− 1− πκ
)
> 0. (29)

In particular, under the periodic stripe conjecture
Eq. (29) gives the leading order scaling (up to a pref-
actor) of the optimal stripe period. Furthermore, if L is
the fundamental period, we have

∣∣E1d
L (θL)

∣∣ ≤ C for some
constant C > 0 independent of δ, and the same estimate
holds for every term in the energy separately23.

A. Néel stripes period

To calculate the optimal period, we first need to ap-
proximate the energy density f(L) for sufficiently small
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values of δ. This requires to find a leading order approx-
imation to the minimizing profile θL, which in view of
the fact that L → ∞ as δ → 0 is, in principle, a singular
perturbation problem. Nevertheless, at least formally it
is possible to show that the leading order behavior of θL
on the interval

(
0, L

4

)
may be obtained by setting δ = 0

in Eq. (21), yielding a unique monotonically decreasing

solution θ
(0)
L satisfying θ

(0)
L (0) = π

2 and θ
(0)
L

(
L
4

)
= 0. In-

deed, from the integral representation of
(
− d2

dx2

)1/2
in

Eq. (19) we have for any function u ∈ C∞(R) ∩ L∞(R)(
− d2

dx2

)1/2

u(x) =
1

π
p.v.

∫ x+1

x−1

u(x)− u(x′)
|x− x′|2

dx′

+
1

π

∫ x−1

−∞

u(x)− u(x′)
|x− x′|2

dx′ +
1

π

∫ ∞

x+1

u(x)− u(x′)
|x− x′|2

dx′.

(30)

Therefore∥∥∥∥∥
(
− d2

dx2

)1/2

u

∥∥∥∥∥
L∞(R)

≤ 4

π
∥u∥L∞(R) +

1

π
∥u′′∥L∞(R).

(31)

Thus, with u = cos θL or u = sin θL we have

∥hs∥L∞(R) + ∥hv∥L∞(R)

≤ Cδ
(
1 + ∥θ′L∥2L∞(R) + ∥θ′′L∥L∞(R)

)
,

(32)

for some universal constant C > 0. Furthermore, argu-
ing as in59, one can show that ∥θ′L∥L∞(R) and ∥θ′′L∥L∞(R)
are both uniformly bounded for all bounded solutions of
Eq. (21), hence the stray field terms are uniformly small,
and one can therefore look for a solution of the Dirichlet
problem for Eq. (21) in the form of a regular series expan-
sion in δ. Furthermore, it is not difficult to see directly
from Eq. (21) with δ = 0 that

θ
(0)
L (x) = arccos

[
tanh

(
x
√
Q− 1

)]
+O(e−cL), (33)

for some c > 0 when L ≫ 1, for all x ∈
(
0, L

4

)
.

Having formally established that the minimizer θL ≃
θ
(0)
L to within O(δ) accuracy, we proceed to calculate to
the leading order in δ:

f(L) = −2πκ

L

+
4

L

∫ L/4

0

∣∣∣∣∣dθ(0)L

dx

∣∣∣∣∣
2

+ (Q− 1) sin2 θ
(0)
L

 dx

+
2δ

L

∫ L/4

0

(
sin θ

(0)
L

(
− d2

dx2

)1/2

sin θ
(0)
L

)
dx

− 2δ

L

∫ L/4

0

(
cos θ

(0)
L

(
− d2

dx2

)1/2

cos θ
(0)
L

)
dx

+
O(δ2)

L
,

(34)

where the O(δ2) error term arises from the fact that θ
(0)
L

is a strict local minimizer of E1d
L with δ = 0 and the same

boundary data, and that θL− θ
(0)
L = O(δ). Furthermore,

as the perturbations are localized in the vicinity of the
domain walls, this error term is expected to be uniform

in L. Indeed, with the minimizer θL close to θ
(0)
L , by

Eq. (19) we have

hs(x) ∼
δ

x
, hv(x) ∼

δ

x2
, 1 ≪ x ≪ L. (35)

Hence the perturbation effectively vanishes in the space
between the domain walls.

We now write f(L) ≃ f1(L) + f2(L), where f1 is the
sum of the first and the second lines, and f2 is the sum
of the third and the fourth lines in the right-hand side of
Eq. (34). An explicit calculation shows that

f1(L) =
2

L

(
4
√

Q− 1− πκ
)
+O

(
e−cL

)
, (36)

for some c > 0 and all δ ≪ 1. This is just the energy of
two Néel walls per period, up to the exponential order in
L ≫ 1.

To calculate f2, we pass to the Fourier series rep-

resentations of cos θ
(0)
L and sin θ

(0)
L . From the sym-

metries of θ
(0)
L we have cos θ

(0)
L (x) = cos θ

(0)
L

(
L
2 − x

)
and sin θ

(0)
L (x) = − sin θ

(0)
L

(
L
2 − x

)
for x ∈ [L4 ,

L
2 ],

and cos θ
(0)
L (x) = − cos θ

(0)
L (L − x) and sin θ

(0)
L (x) =

sin θ
(0)
L (L − x) for x ∈ [L2 , L]. Defining the Fourier se-

ries of the resulting functions, we then obtain

sin θ
(0)
L (x) =

∞∑
m=1

a2m−1 cos

(
2π(2m− 1)x

L

)
, (37)

cos θ
(0)
L (x) =

∞∑
m=1

b2m−1 sin

(
2π(2m− 1)x

L

)
. (38)

Using the fact that by Eq. (33) we have

cos θ
(0)
L (x) ≃ tanh

(
x
√
Q− 1

)
, x ∈

[
0, L

4

]
, (39)

sin θ
(0)
L (x) ≃ sech

(
x
√
Q− 1

)
, x ∈

[
0, L

4

]
, (40)

up to O(e−cL) errors, the coefficients of the sine series
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can be computed as

b2m−1 =
4

L

∫ L/2

0

cos θ
(0)
L (x) sin

(
2π(2m− 1)x

L

)
dx

= − 2

(2m− 1)π

×
∫ L/2

0

dθ
(0)
L (x)

dx
sin θ

(0)
L (x) cos

(
2π(2m− 1)x

L

)
dx

= − 4

(2m− 1)π

×
∫ L/4

0

dθ
(0)
L (x)

dx
sin θ

(0)
L (x) cos

(
2π(2m− 1)x

L

)
dx

(41)

≃ 4
√
Q− 1

(2m− 1)π

×
∫ ∞

0

sech2
(
x
√
Q− 1

)
cos

(
2π(2m− 1)x

L

)
dx

=
4π

L
√
Q− 1

csch

(
(2m− 1)π2

L
√
Q− 1

)
,

where we integrated by parts in the first line and used

the symmetry of cos θ
(0)
L in the second line, again with

errors of exponential order. Similarly, the coefficients of
the cosine series are

a2m−1 =
8

L

∫ L/4

0

sin θ
(0)
L (x) cos

(
2π(2m− 1)x

L

)
dx

≃ 8

L

∫ ∞

0

sech
(
x
√
Q− 1

)
cos

(
2π(2m− 1)x

L

)
dx

=
4π

L
√
Q− 1

sech

(
(2m− 1)π2

L
√
Q− 1

)
. (42)

Finally, with the help of Eq. (18) and Eq. (34) the stray
field energy density is

f2(L) ≃ −πδ

2L

∞∑
m=1

(2m− 1)
(
|b2m−1|2 − |a2m−1|2

)
= − 32π3δ

L3(Q− 1)

×
∞∑

m=1

(2m− 1)csch2
(
2π2(2m− 1)

L
√
Q− 1

)
. (43)

Let us define s = 2π2

L
√
Q−1

and compute the above sum
as

∞∑
m=1

2m− 1

sinh2[(2m− 1)s]

=

∞∑
m=1

m

sinh2(ms)
−

∞∑
m=1

2m

sinh2(2ms)
, (44)

by splitting the series in the first term in the right-hand
side into the even and odd terms. Since for s > 0 the

series above converge exponentially fast, we have

∞∑
m=1

2m− 1

sinh2[(2m− 1)s]
=

d

ds

∞∑
m=1

(1− coth(ms))

− d

ds

∞∑
m=1

(1− coth(2ms)). (45)

Hence it is enough to compute the series

∞∑
m=1

(1− coth(ms))

= 2

∞∑
m=1

e−2ms

e−2ms − 1
= −2L(e−2s), (46)

where L(q) =
∑∞

m=1
qm

1−qm is a well-studied Lambert se-

ries (see e.g.60). We obtain

∞∑
m=1

2m− 1

sinh2[(2m− 1)s]

= −2
d

ds
(L(e−2s)− L(e−4s)). (47)

When s → 0 and, hence, q = e−2s → 1−, we have the
following asymptotic expansion of L(q) (see e.g.60 (The-
orem 2.2(2)), and61):

L(q) =
∞∑

m=1

qm

1− qm

= −
ln ln 1

q − γ

ln 1
q

+
1

4
−

∞∑
n=1

B2
n

nn!

(
ln

1

q

)n

, (48)

where γ is the Euler-Mascheroni constant and Bn is the
n-th Bernoulli number. Therefore, for s → 0, using
Eqs. (47) and (48), we obtain

∞∑
m=1

2m− 1

sinh2[(2m− 1)s]
=

γ + 1− ln s

2s2
+O(1). (49)

Recalling that s = 2π2

L
√
Q−1

, for L ≫ 1 and δ ≪ 1 we then

obtain

f2(L) = − 4δ

πL

[
ln

(
L
√
Q− 1

2π2

)
+ γ + 1 +O(1/L2) +O(δ)

]
. (50)

for some c > 0. Thus, within the O(δ2/L) + O(δ/L3) +
O(e−cL) errors the total energy density is

f(L) ≃ 2

L

(
4
√

Q− 1− πκ
)

− 4δ

πL

[
ln

(
L
√
Q− 1

2π2

)
+ γ + 1

]
. (51)
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We now minimize the obtained expression in L. A
simple calculation shows that the expression for f(L) in
Eq. (51) is uniquely minimized by L = Lopt, where

Lopt ≃
2π2e−γ

√
Q− 1

exp
[ π
2δ

(
4
√
Q− 1− πκ

)]
. (52)

As expected, the optimal period is of the form appearing
in Eq. (29), which justifies neglecting the error terms in
the expression for f(L) as δ → 0, and gives the leading
order asymptotic behavior of the optimal stripe period
in this limit.

B. Bloch stripes period

We can follow the same arguments as in Sec. IVA
applied to the Bloch stripes for κ = 0 discussed in Sec.
III B. Retracing all the computations and noticing that in
this case the Fourier coefficients a2m−1 = 0 for all m ∈ N,
we arrive at the formula

f2(L) ≃ − 8π3δ

L3(Q− 1)

×
∞∑

m=1

(2m− 1)csch2
(
π2(2m− 1)

L
√
Q− 1

)
. (53)

An expansion analogous to the one in Sec. IVA then
yields

f(L) ≃ 2

L

(
4
√
Q− 1

)
− 4δ

πL

[
ln

(
L
√
Q− 1

π2

)
+ γ + 1

]
. (54)

Optimizing this expression then gives, to the leading or-
der, the optimal period

Lopt ≃
π2e−γ

√
Q− 1

exp

(
2π

δ

√
Q− 1

)
. (55)

V. MICROMAGNETIC SIMULATIONS

We carried out detailed micromagnetic simulations of
the magnetic stripe domains, using the open source Mu-
Max3 software48. Our system consists of a box of
Nx×256×1 cells, where Nx is varied. The individual cell
size is lx×4 nm × lz, where lx is set to 1 nm in the Bloch
case (regime 1) and 0.25 nm in the Néel case (regimes 2
and 3), and lz = d, where d is varied between d = 0.65 nm
(δ ≃ 0.16) and d = 8 nm (δ ≃ 2). The choice of the num-
ber of cells in the y-direction is dictated by the MuMax3
implementation of the periodic boundary conditions for
the stray field, which are approximated by specifying the
number of repeats of the computational domain to define
the magnetostatic kernel. We set the number of repeats
in (X,Y, Z) to (5,5,0) alongside with our choice of the

FIG. 5: Comparison between the numerical simulations in
dots (MuMax348) and dimensional version of the asymptotic
energy F(L ) = f(L /ℓex)Kd, where f(L) can be found in Eq.
(51), represented as a solid line. The parameters are Aex = 10
pA/m, Ms = 1 MA/m, Ku2 = 1 MJ/m3 and D2 = 2 mJ/m2.
The film thicknesses are (starting from the bottom curve)
d = 4 nm, d = 3 nm, d = 2 nm, d = 1.4 nm and d = 1 nm.

discretization cell sizes and numbers in order to achieve
a sufficiently good accuracy of the calculation.

We fix the system exchange constant to Aex = 10
pA/m and saturation magnetization to Ms = 1 MA/m,
resulting in an exchange length ℓex ≃ 4 nm. A snap-
shot of the simulated system in the case of Néel walls
(regime 2), which has been minimized in energy, is shown
in Fig. 1(a). In this simulation, the stripe period is im-
posed. As a consequence, in order to find the lowest
energy configuration, we repeat the simulation for vari-
ous Nx and look for a minimum of the energy per unit
volume as a function of Nx. The equilibrium stripe pe-
riod predicted by Eqs. (2) and (4) serves as a guide to
guess the period in the simulation, and the simulations
converge quickly to the minimum of energy for each Nx.

We extract the stripe system energy density from the
simulation by suitably offsetting the total energy den-
sity output parameter of MuMax3 and compare it to
the dimensional asymptotic energy density F(L ) =
f(L /ℓex)Kd in mJ/m3, where f(L) is the energy density
of the stripe system computed in Sec. IV, see Eq. (51)
for the Néel case and Eq. (54) for the Bloch case. In Fig.
5, we show, for regime 2 (Néel rotation, Ku2 = 1 MJ/m3

and D2 = 2 mJ/m2), the energy density (dots) obtained
numerically using the minimize routine for the values
of Nxlx between 100 nm and 2 µm and the thickness d
varying from 1 nm to 4 nm. The dimensional asymptotic
energy density F(L ) = f(L /ℓex)Kd obtained from Eq.
(51) and represented by the solid line in Fig. 5 shows ex-
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cellent agreement with the numerical simulations. The
good agreement between the asymptotics and the simu-
lations starts to deviate around d ≃ 4 nm (d ≃ LB).

We want to mention that in a ferromagnetic thin film,
the domain wall width has been shown to be thickness-
dependent, even in the ultrathin film limit36 (d → 0).
In regime 1, the domain wall width estimated from a fit
to the profile obtained with the micromagnetic simula-
tions presents, for d = 8 nm, a 40% decrease compared
to LB . However, the excellent agreement between the
micromagnetic simulations and the asymptotic formulas
in this work shows that the equilibrium stripe period is
unaffected by this dependence to the leading order.

VI. CONCLUSIONS

We have derived analytical formulas for the equilib-
rium stripe period which present an inverse exponential
dependence on the film thickness and a prefactor pro-
portional to the Bloch wall width. These formulas are
derived for the case of pure Néel and Bloch rotations and
are asymptotically exact for vanishing film thicknesses in
the presence or absence of interfacial DMI, respectively.
The formulas are applied to classical sets of system pa-
rameters, including the Bloch and the Néel regimes and
a film thickness varying from one monolayer to about 10
nm. The comparison with micromagnetic simulations in
the considered regimes shows excellent agreement, con-
firming the applicability of our formula in the ultrathin
film regime. This agreement represents a quantitative
improvement as compared to the state of the art formu-
las in the literature as previous studies did not succeed to

obtain the correct asymptotics for vanishing thicknesses.
The accuracy of our formulas is remarkably robust up to
thicknesses of at least twice the exchange length. The
variation of the wall width with the film thickness does
not affect this accuracy and the formulas remain accu-
rate as long as the thickness is smaller than the Bloch
wall width. We also highlight the inapplicability, in the
ultrathin film regime, of an alternative formula obtained
by neglecting the wall width (thin wall approximation)
which leads to a prefactor proportional to the film thick-
ness. This settles a controversy with regards to which
formula should be used for predicting the equilibrium
stripe period in ultrathin films. We explicitly clarify the
conditions of validity of the respective formulas as well
as the proper choice of domain wall surface tension in the
different regimes.
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J. Magn. Magn. Mater. 189, 19 (1998).

52 B. Heinrich and J. F. Cochran, Adv. Phys. 42, 523 (1993).
53 J.-F. Babadjian, G. Di Fratta, I. Fonseca, G. A. Francfort,

M. Lewicka, and C. B. Muratov, Quart. Appl. Math 81
(2023).

54 G. Di Fratta, C. B. Muratov, and V. V. Slastikov, Math.
Models Methods Appl. Sci. 34, 1861 (2024).

55 G. Di Fratta, C. B. Muratov, F. N. Rybakov, and V. V.
Slastikov, SIAM J. Math. Anal. 52, 3580 (2020).

56 C. B. Muratov and V. V. Osipov, J. Comp. Phys. 216, 637
(2006).

57 C. B. Muratov and V. V. Osipov, J. Appl. Phys. 104,
053908 (2008).

58 A. Giuliani, J. L. Lebowitz, and E. H. Lieb, Commun.
Math. Phys. 286, 163 (2009).

59 C. B. Muratov and X. Yan, Proc. R. Soc. A 472, 20150762
(2016).

60 S. Banerjee and B. Wilkerson, Int. J. Number Theory 13,
2097 (2017).

61 J. C. Kluyver, KNAW Proceedings 22, 323 (1919).


	Introduction
	Summary of the results
	Bloch stripes
	Néel stripes
	Comparison with previous studies

	Model
	Néel stripes
	Bloch stripes

	Calculation of the optimal stripe period in ultrathin films
	Néel stripes period
	Bloch stripes period

	Micromagnetic simulations
	Conclusions
	Acknowledgments
	References

