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ABSTRACT

We propose a novel method for unsupervised classifica-
tion of coded hyperspectral acquisitions using a DD-CASSI
(Double Disperser - Coded Aperture Spectral Snapshot Im-
ager) system, which reduces the number of required acqui-
sitions, typically by an order of magnitude. Leveraging the
Separability Assumption (SA) and non-parametric Gaussian-
ity statistical tests, our approach identifies homogeneous re-
gions, which are areas of pixels made of the same material,
and determines their unique spectral signatures directly from
the coded measurements. By combining these statistical tests
with spatial characteristics from panchromatic images, our
iterative method effectively classifies regions without recon-
structing the entire hyperspectral cube. This approach demon-
strates the potential for accurate classification with minimal
data, paving the way for optimized hyperspectral data analy-
sis.

Index Terms— hyperspectral coded data, unsupervised
classification, statistical tests, DD-CASSI

1. INTRODUCTION

Conventional hyperspectral (HS) imaging techniques require
numerous acquisitions and necessitate spatial or spectral
scanning to fill the HS cube O ∈ RR×C×W , where (R,C)
are the spatial dimensions and W is the spectral dimension.
In our project, we utilize a controllable coded aperture imager
of the DD-CASSI type [1] (Fig. 1) to analyze the hyperspec-
tral scene, typically requiring ten times fewer acquisitions
than classical hyperspectral imagers.

The main component of this device is a controllable
micro-mirror mask, the DMD (Digital Micromirror Device),
which acts as a spatio-spectral mask. It allows the selection at
each pixel of a combination of spectral bands to be acquired.
This snapshot technique reduces both data volume and acqui-
sition times, and increases the signal-to-noise ratio (SNR) at
each pixel by combining light from multiple spectral bands.
The acquired data are referred to as coded data and one coded
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Fig. 1. Coded acquisition with DD-CASSI system

acquisition process can be expressed as follow:

D =

W∑
w=1

H⊙O +N , (1)

where D ∈ RR×C is the coded data, ⊙ denotes the Hadamard
(element-wise) product, H ∈ RR×C×W a filtering cube
which represents the DMD configuration, and N the acqui-
sition noise. By vectorization, and stacking for S successive
acquisitions, with different DMD configurations, it can be
rewritten as:

d = Ho+ n, (2)

where d ∈ RRCS×1 is the coded data, H ∈ RRCS×RCW is a
representative matrix of the instrument and DMD configura-
tions, o ∈ RRCW×1 is the HS cube, and n the corresponding
acquisition noise. Our goal is to analyze the HS cube from a
small number of acquisitions S ≪W.

In the literature, many supervised and unsupervised meth-
ods for hyperspectral image classification have been pro-
posed. However, these methods typically require working
with the entire hyperspectral cube, either obtained by scan-
ning or reconstructed from compressed data. The study by
[2] proposes a supervised classification method using a 3D
convolutional neural network for coded hyperspectral data
acquired with a DD-CASSI. This method optimizes the con-
figuration of the device’s micromirror mask according to the
scene, avoiding the need for full hyperspectral cube recon-
struction. However, such learning-based methods require a



sufficiently large database to validate the model’s accuracy
and avoid overfitting, which is not feasible in practice due to
the limited number of publicly-accessible labeled hyperspec-
tral databases.

In practice, in most cases, we cannot have a priori knowl-
edge about the observed scene, such as spectral signatures or
the number of materials. Therefore, supervised classification
methods cannot be applied in all scenarios due to the lack
of endmembers, and conventional unsupervised classification
methods are also not feasible. Moreover, reconstruction can
introduce errors affecting the quality of the results, and the
volume of reconstructed data is much larger than that of clas-
sification results, which are presented as a class map with di-
mensions RR×C .

These observations led us to propose an unsupervised
classification algorithm directly from coded data, without
going through the reconstruction step and without requiring
reference spectra or prior knowledge of the number of classes.
The objective of this algorithm is to classify homogeneous
regions (all pixels from the same material) and emphasize
regions requiring additional information.

2. UNSUPERVISED CLASSIFICATION
ALGORITHM

This algorithm is based on three major computational pillars:
the estimation of the reference spectrum in a homogeneous
region, the prediction of coded data using a simple model of
intraclass spectral variability, and Gaussianity statistical tests.

2.1. Estimation of reference spectrum using Separability
Assumption (SA)

For a given pixel n of the HS cube, the number of data in dn

(S) is lower than the spectrum length in on (W ) as S ≪ W .
Therefore, estimating the spectrum from the corresponding
coded data is an underdetermined inverse problem that re-
quires prior knowledge.

Our approach to compensate for the lack of information is
to account for the separability assumption [3], i.e. that some
regions composed of adjacent pixels correspond to a same
material and thus share similar spectra, possibly with a dif-
ferent intensity that can be estimated in practice from the
panchromatic image. For such a region r, the corresponding
HS model can be formulated as or = (pr ⊠ IW )sr = Prsr,
where where pr ∈ RNr represents the set of panchromatic
pixels of region r, Nr being the number of pixels in region r;
IW ∈ RW×W is an identity matrix; ⊠ denotes a Kronecker
product; and sr ∈ RW is the reference spectrum for this re-
gion.

The acquisition model for this region can be expressed as:
dr = Hror + nr = HrPrsr + nr = Grsr + nr. The
estimation of the reference spectrum sr is formulated as an

optimization problem such as:

ŝr = argmin
sr>0

∥dr −Grsr∥2Γ−1 + µ∥Dsr∥2, (3)

where Γ = diag{dr} is the covariance matrix of the noise
(Poisson noise approximated as a Gaussian noise), and
µ∥Dsr∥2 is a Tikhonov regularization that quadratically
penalizes the derivative along the spectral dimension. Such a
solution can be computed easily using a quadratic program-
ming solver.

However, using such a method to estimate a reference
spectrum ŝr requires to guarantee that the Separabilty As-
sumption is valid for region r.

2.2. Intraclass spectral variability model

In terms of spectral classification, the previous Separabilty
Assumption amounts to consider the simple intra-class spec-
tral variability model proposed by [4], as spectra of pixels in
the same class only differ by a multiplicative coefficient.

With such a model, if pixel n is of class k with a refer-
ence spectrum sk, its spectrum on can be expressed as on =
ψnsk, where ψn is the intra-class spectral variability coeffi-
cient for pixel n. Such a coefficient can be estimated easily
from the panchromatic image, as the panchromatic value pn
of pixel n corresponds to the integration of its spectrum over
all wavelengths: W pn = 1T

Won = ψn1
T
Wsk = ψns̃k, where

1W ∈ RW denotes a unit vector, and s̃k =
∑

w sk(w). Thus,
ψn can be estimated simply by ψ̂n = s̃−1

k pn. Note that it
is also possible to estimate ψ̂n from the coded data dn using
the relation dn = Hnon + nn = ψnHnsk + nn, however,
as demonstrated in previous studies [5], estimation from the
panchromatic image has yielded better results.

Such a model and estimator of ψ̂n can be used to test
whether pixel n is of class k or not.

2.3. Gaussianity statistical tests

In the context of coded hyperspectral data, the instrument
noise is often modeled as Poisson noise [6]. However, be-
cause the coded aperture system tends to reduce intensity
variations across the scene, we can approximate this Pois-
son noise as white Gaussian noise for each pixel. This
assumption holds particularly well when considering lim-
ited homogeneous regions of the scene. This allows us to
use Gaussianity statistical tests to check the Separability As-
sumption for a given region and associated spectrum, as the
residuals dr − Grŝr should be Gaussian, or to test whether
a pixel n is in a given class k as the residuals dn − ψnHnsk
should be Gaussian.

A statistical test is used to verify a hypothesis about a ran-
dom variable, such as its statistical parameters or its fit to a
given probability distribution, with a certain level of uncer-
tainty called the significance level α. By default, α is set at



0.05, meaning that a 5% uncertainty is allowed in the test re-
sults, providing 95% confidence in the conclusions.

There exists a family of tests dedicated to verifying the
Gaussianity of a random variable. Among these are para-
metric tests like the Kolmogorov-Smirnov (KS) test and
non-parametric tests like the Shapiro-Wilk (SW) test [7].
Theoretically, the SW test is regarded as the most power-
ful among Gaussianity tests, surpassing options like KS,
Anderson-Darling, and Lilliefors [8]. Moreover, an essential
distinction is that the KS test is requiring a large sample size
to yield significant results, while the SW test is valid for any
random variable sizes as small as six elements, making it
better suited to our data constraints. In practice, we have
tested and compared these two tests, with the SW test consis-
tently outperforming the KS test. For these reasons, we have
selected the SW test for the remainder of our work.

2.4. Proposed algorithm

In study [5], we demonstrated the relevance of the separabil-
ity hypothesis [3] and Gaussian white additive noise for real
coded data. This approach was validated using statistical tests
in the context of supervised classification, assuming the ref-
erence spectra of the scene materials were known. However,
in practice, these reference spectra are not available.

Our recent studies have shown the effectiveness of using
non-parametric Gaussianity statistical tests, such as the SW
test, for detecting homogeneous regions from which we can
extract reference spectra. This approach involves an SA pro-
cedure to estimate the spectrum of a selected region, followed
by a prediction of the coded data in this region. The tests are
then applied to the residuals between the real and predicted
data.

By combining the SA method with statistical tests, we
propose a new unsupervised classification approach that uti-
lizes spatial characteristics calculated from the panchromatic
image such as light intensity, alongside Gaussianity tests to
validate the estimation of reference spectra and determine the
class.

We propose a 3-steps approach, starting with a prepro-
cessing, followed by a loop of detection and one of labeling.
The detailed procedure is illustrated in Fig. 2.

The proposed unsupervised classification algorithm for
coded data consists of three main steps: preprocessing based
on the panchromatic image, detection of homogeneous re-
gions and extraction of reference spectra, and labeling of all
pixels belonging to the same material as the homogeneous
detected region. The algorithm is designed to stop when all
remaining unlabelled pixels are not validated as good candi-
dates for a new homogeneous region. Additional stopping
conditions include a maximum number of iterations to pre-
vent excessive computations.

The preprocessing step aims to consider the spatial as-
pect of the data, particularly by utilizing the panchromatic

Fig. 2. Unsupervised classification of coded data algorithm

image. This involves thresholding the panchromatic image to
remove low-intensity regions that do not contain sufficient in-
formation or with too low signal to noise ratio for accurate
SA reconstruction. The threshold value is crucial and must
be carefully chosen to eliminate dark pixels while retaining
enough detail in the rest of the scene.

A homogeneous region is detected using statistical tests
applied to the residuals between the real and predicted coded
data. A square block of dimensions R

√
P×

√
P is defined

around a central pixel randomly chosen among the prepro-
cessing results. The SW test is used to verify the gaussianity
of the residuals, assuming Gaussian white noise in the coded
data like mentionned the previous section 2.1. If the test
confirms gaussianity, the region is considered homogeneous
and the estimated spectrum ŝr is considered to be a reference
spectrum sk for the current class k.

The labeling step assigns labels to all pixels belonging to
the same material as the detected homogeneous region.

3. SIMULATION AND DISCUSSIONS

3.1. Simulation context

The algorithm was applied to both simulated and real datasets.
The LEGO Wall dataset (simulated dataset) was generated
based on a scene featuring a wall of LEGO bricks from [9]
(Fig. 3.a), while the Countryside dataset (real dataset) is an
extraction from the CAMCATT dataset [10] (Fig. 3.b). De-



tailed characteristics of the datasets are provided in Table 1.

LEGO Wall Countryside
Dimensions (R,C,W ) 397, 399, 110 451, 351, 117
Wavelengths [nm] 400 - 700 380 - 780
SNR [dB] ∼ 30 Unknown
Noise distribution iid. gaussian Unknown
PSF 2D Gaussian Unknown
(Point Spread Function) (σ = 2,∀w)

Table 1. Dataset characteristics

On the simulated dataset, a Gaussian PSF with a standard
deviation of σ = 2 was artificially applied to all wavelengths
w of the hyperspectral scene o, while on the real dataset, the
PSF is unknown. This implies that homogeneous regions are
well-defined in the LEGO Wall dataset, whereas in the Coun-
tryside dataset, they are visually estimated (for example, each
field could be considered a homogeneous region).

The corresponding coded data for both datasets were sim-
ulated using the SIMCA simulator [11] with DMD masks in a
normalized orthogonal length-S configuration, which is con-
sidered the most optimized configuration [12]. An additive
Gaussian white noise with known parameters was added on
coded data from The Wall dataset.

In both cases, for the classification process, the significa-
tion level of the statistical test was set as a typical value of
α = 0.05, which means we tolerate a 5% error rate.

The objective is to label as many homogeneous regions
as possible. Non-classified regions could be considered as
mixed regions, because of the PSF, or as undetermined classes
due to the lack of information.

3.2. Classification results

Figures 3.c and 3.d depict the classification results obtained
by applying our algorithm to the coded data computed from
the LEGO Wall and Countryside datasets, respectively.

In these figures, black-colored labels represent pixels that
were eliminated in the preprocessing step. Pixels that remain
unclassified are labeled in white. Both black and white la-
bels are considered as non-classified. Otherwise, each label is
represented by a random color.

For the LEGO Wall dataset (Fig. 3.b), our algorithm suc-
cessfully detected 19 classes automatically, without prior
knowledge of the number of classes (ground truth: 21 classes
after intensity threshold preprocessing, by considering each
brick as a class for simplicity). It is evident that the regions
inside the bricks were mostly correctly labeled, while those at
the frontiers between bricks remained unclassified. This out-
come is intended, as it is a feature of our algorithm to reject
pixels located near the frontier between two homogeneous re-
gions. Indeed, these pixels likely contain a mixture of spectra
due to the PSF. However, some frontiers between bricks were
not rejected (for example, in the red selected region between
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Fig. 3. Unsupervised classification results – a: False-color
scene of LEGO Wall ; b: False-color scene of Countryside
; c: Classification results from LEGO Wall ; d: Classifica-
tion results from Countryside ; e: Normalized spectra from
regions 1, 2 and 3 from (a) ; f: Normalized spectra from pix-
els 4, 5 and 6 from (b)

bricks 1 and 2), which is understandable when considering
that the reference spectra of these bricks are extremely similar
(see Fig. 3.e).

In the case of the Countryside dataset, since the noise dis-
tribution is unknown, it is challenging to choose an appro-
priate statistical test. We decided to use the same SW test
as in the case of the LEGO Wall dataset, assuming the noise
to be white Gaussian. In Fig. 3.d, different large fields were
mostly correctly identified by different labels. Some regions
with complex details were ignored, such as regions combined
with trees, houses, and grass. Other parts of the fields with
different types of soil were also considered as the same class
because the corresponding reference spectra are very similar
(Fig. 3.f). However, there are some noticeable imperfections,
for example, the green tree zone on the left of the scene was
divided into multiple labels instead of one or two labels, and
the grass zone and the field zone at the bottom-left corner of
the scene were not correctly separated.

3.3. Discussions and perspectives

In this study, we presented a promising approach for the un-
supervised classification of coded hyperspectral data without



reconstructing the cube. Despite having only a tenth of the in-
formation, an unknown number of materials, and the absence
of reference spectra, we successfully detected most homoge-
neous regions of the observed scene while effectively reject-
ing mixed regions, both in simulated and real datasets.

However, there is still room for future improvements. We
aim to exploit other spatial characteristics of the panchromatic
image beyond intensity level to apply to all three steps of the
algorithm. For the preprocessing step, spatial characteristics
could be used to eliminate regions that are probably not ho-
mogeneous, for example, by presenting different textures than
their neighboring regions. For the detection step, our prelim-
inary studies showed that the classification results depend on
the initialization order. By incorporating more spatial char-
acteristics, we aim to establish a processing order that could
be applied to all scenes uniformly. For the labeling step, we
intend to add spatial constraints to precisely determine region
boundaries.

For the coded data simulated from real dataset, further sta-
tistical studies will be necessary to determine a correct noise
model, and appropriate statistical tests could be utilized ac-
cordingly. Lastly, a class fusion step could be integrated into
our algorithm by comparing estimated reference spectra of
existing classes or by employing other statistical tests (such
as group variances tests) to verify the invariance of data val-
ues between different classes.

Additionally, further validation of statistical tests is nec-
essary. This includes examining type II errors (false negative)
and performing tests on residuals between real and predicted
data to understand how confidence in the test decreases as
the distance from the detected homogeneous region increases.
This will provide a pseudo-probability map, offering better in-
sights into the test’s behavior relative to real data. Spatial as-
pects of the data must also be considered when estimating the
variability coefficient, correlating the p-value, the estimated
ψ value, and the spatial distance.

Regarding unclassified regions, our long-term goal is to
develop adaptive strategies to adjust the mask configurations
based on the results of this homogeneous region detection
phase to obtain complementary data for a future comprehen-
sive scene analysis.
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2016.

[5] T.-T. Dinh, H. Carfantan, A. Monmayrant, and
S. Lacroix, “Tests statistiques pour l’analyse
d’acquisitions hyperspectrales codées,” in XXIXème
Colloque Francophone de Traitement du Signal et des
Images, Grenoble, 2023.

[6] F. Deger, A. Mansouri, M. Pedersen, J. Yngve Hard-
eberg, and Y. Voisin, “A Variational Approach for
Denoising Hyperspectral Images Corrupted by Poisson
Distributed Noise,” in ICISP 2014: Lecture Notes
in Computer Science. 2014, vol. 8509 of International
Conference on Image and Signal Processing, pp. 106–
114, Springer, Cham.

[7] S. S. Shapiro and M. B. Wilk, “An analysis of variance
test for normality (complete samples),” Biometrika, vol.
52, no. 3-4, pp. 591–611, Dec. 1965.

[8] N. M. Razali and B. W. YAP, “Power Comparisons
of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and
Anderson-Darling Tests,” Journal of Statistical Model-
ing and Analytics, vol. 2, no. 1, pp. 21–33, 2011.

[9] E. Hemsley, I. Ardi, T. Rouvier, S. Lacroix, H. Carfan-
tan, and A. Monmayrant, “Fast reconstruction of hyper-
spectral images from coded acquisitions using a sepa-
rability assumption,” Journal of the Optical Society of
America A, vol. 30, no. 5, pp. 8174–8185, Feb. 2022.

[10] L. Roupioz, X. Briolett, K. Adeline, A. Al Bitar,
D. Barbon-Dubosc, R. Barda-Chatain, P. Barillot,
S. Bridier, E. Carroll, and C. Cassa, “Multi-
source datasets acquired over Toulouse (France) in
2021 for urban microclimate studies during the CAM-
CATT/AI4GEO field campaign,” Data in Brief, vol. 48,
pp. 109, 2023.

[11] A. Rouxel, A. Monmayrant, S. Lacroix, H. Camon, and
S. Lopez, “Accurate ray-tracing optical model for coded
aperture spectral snapshot imagers,” Applied Optics,
vol. 63, no. 7, pp. 1828–1838, 2024.

[12] E. Hemsley, I. Ardi, S. Lacroix, H. Carfantan, and
A. Monmayrant, “Optimized coded aperture for fru-
gal hyperspectral image recovery using a dual-disperser
system,” Journal of the Optical Society of America A,
vol. 37, no. 12, pp. 1916–1926, Nov. 2020.


