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HYPERBOLICITY STUDY OF MODELS FOR TURBULENT TWO-PHASE

FLOWS OBTAINED FROM THE VARIATIONAL PRINCIPLE

ÉMILE DELÉAGE1,2

Abstract. We present a class of hyperbolic systems modeling two-phase, two-velocity flows that

can be obtained from Hamilton’s principle of stationary action, under conventional constraints:

conservation of the mass for each component. The governing equations imply the conservation of
total momentum and total energy. The hyperbolicity is guaranteed for small relative velocities,

i.e. close to equilibrium, by the presence of turbulence through a Reynolds stress tensor. This is

the main novelty of the paper. The incorporation of this tensor in the equations is made by the
addition of a turbulent term in the potential energy that appears in the Lagrangian of the model.

Various forms of the turbulent term are proposed, and the ones leading to a hyperbolic system of

equations are characterized by a general criterion. The presence of the Reynolds stress tensor is
crucial for the hyperbolicity. Indeed, if it is removed from the Lagrangian, the resulting equations

are not hyperbolic for small relative velocities.

1. Introduction and main results

Multi-phase flow modeling aims to describe the simultaneous flow of different materials (solid,
liquid, gas). It has a wide range of applications in biology, geosciences and industry, and is an active
area of research at the intersection between physics, mechanics and mathematics. In this study, we
focus on the case of two phases interacting with each other. We derive new two-phase flow models
from Hamilton’s principle, and we show that the presence of turbulence guarantees the hyperbolicity
of the resulting equations.

1.1. Different multiphase flow models and hyperbolicty criterion. The multi-phase flow
denomination can be used for very diverse phenomena occuring at various scales ([12]). Let us give
some examples that can be found in nature. In geophysics, gravity driven flows such that rock, ice
or snow avalanches and pyroclastic flows can be seen as multi-phase flows made of solid particles
flowing in a surrounding gas ([8],[19]). Lava can also be modeled as a liquid-gas two phase flow (see
the recent studies [24], [6]). In biology, the flow of human blood can be modeled as a suspension
of red blood cells immersed in a viscous liquid (plasma) ([20], [11]). Multi-phase flow theory is also
used at the planetary scale in climate science, to model for instance density stratified oceans, or
ocean-atmosphere couplings (see [29]).

In order to model these flows with accuracy, it is necessary to use models that take into account
the specifity of each situation. The kind of model used usually depends on key features of the multi-
phase flow, such as the nature of each component and the topology of the mixture. The microscopic
description tracks the motion and interactions of individual particles. It is well-adapted to the study
of granular suspensions when the number of solid particles is small (see for instance [21]). When it
is not possible to track each particle, a continuous description has to be used. There are two main
kinds of continuous models for two-phase flows. When it is possible to identify distinct regions made
of one phase and interacting with each other inside the flow, a separated two-phase system with
interfaces can be used. This is the case for instance with the multi-layers models (see for instance
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[1]). When the scale of these “one component regions” is much smaller than the typical scale of the
motion, or when the two phases are dispersed, it is better to use an averaged description. In this
kind of model, the two species are present at each space point, in a proportion given by volumes
fractions. The dynamics is described by extended version of Euler or Navier-Stokes equations. Some
models then use simplifying hypotheses in order to only keep one averaged velocity for all the phases
(as in [8] for example) . In other cases, the full complexity of the dynamics is taken into account
and the velocity of each phase is a distinct unknown of the model. For instance, this is the case of
the class of models presented in [9] that includes the Baer-Nunziato model.

In the following, we will focus on this last approach, but the three approaches are linked. Indeed,
a way to derive a fully dispersed model is to start from a microscopic or a separated one, and to apply
an averaging process. Closure relations are then needed in order to express averages of nonlinear
and interfacial terms. An introduction to averaging techniques can be found in [12]. For the link
between separated and dispersed phase flow models, see also [13]. For more recent work on the topic,
see [4] and [5].

We shall now give a brief presentation of an important mathematical feature of reversible multi-
phase continuum models, which is the hyperbolicity property. The hyperbolicity property is an
algebraic criterion that guarantees interesting behaviours when it is satisfied. From a mathematical
point of view, it provides local well-posedness for the model. It means that, starting from a regular
enough initial data, there exists a unique solution, which depends continuously on the initial data.
From a physical point of view, the propagation of waves occurs at finite speed in hyperbolic systems,
which is crucial for predictability and causality. For numerical purposes, hyperbolic systems can
be solved by well-known and robust schemes. For an introduction to hyperbolic systems, see for
instance the book [2].

A priori, the hyperbolicity property is not satisfied in every multi-phase flow model (see below).
In the framework of multi-velocity models, the hyperbolicity is often equivalent to a condition on
the relative velocities, i.e. on the difference between the velocity of two different phases. In [27] for
instance, it is shown that the hyperbolicity of a large class of barotropic systems is equivalent to the
condition |v1 − vk| ̸= ck, k = 2, . . . , N , where N is the number of different phases, vi is the velocity
of the phase i and ci is the sound speed of the phase i.

In the following, we will show that the introduction of turbulence in multi-phase flow models
enables to guarantee that the hyperbolicity property is satisfied. Furthermore, the resulting models
can be obtained from a variational principle.

1.2. Variational formulation of fluid mechanics. Let us now describe the method that will be
used in order to derive the multi-phase models. It is called Hamilton’s stationary action principle.
This principle offers a unified way to formulate the governing evolution equations of many physical
systems. It enables to obtain the governing evolution equations from a scalar function called the
Lagrangian. The Lagrangian L is a function of the trajectory of the particles and is defined as
the difference between the kinetic and potential energies of the system. Once the Lagrangian of the
system is specified, one can define the associated action, which is the time integral of the Lagrangian.
The stationary action principle then states that the particles follow a trajectory for which the action
is stationary, eventually with additional constraints on the motion. The equations stating that the
action is stationary characterize the trajectory and are called Euler-Lagrange equations.

Let us give some examples in the context of continuous media. In this case, one often defines a
Lagrangian density L, which corresponds to a Lagrangian per unit of volume. The Lagrangian L is
then given by the integral of the Lagrangian density L over the whole domain. For a compressible
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barotropic fluid of density ρ and of velocity v, the Lagrangian density can be defined as

L :=
1

2
ρ|v|2 − ρE(ρ).

The term ρ|v|2/2 is the density of kinetic energy of the fluid, and the term ρE(ρ) is called the density
of internal energy. It is linked to the pressure of the fluid via the Maxwell relation p(ρ) := ρ2E ′(ρ).
The trajectory, denoted x(t,X), and the velocity are related by the following ordinary differential
equation (ODE):

(1.1) ∂tx(t,X) = v(t, x(t,X)), x(0, X) = X.

The capital letter X is used for the initial position of the particles, also called the Lagrangian
coordinate. The letter x stands for the position of the particle in motion, also called the Eulerian
coordinate. In order that L be a function of the trajectory only, one must specify how the density
ρ depends on the trajectory. This is done by imposing the constraint of mass conservation, via the
equation

(1.2) ∂tρ+ div(ρv) = 0.

With this constraint, one can apply the stationary action principle and obtain the corresponding
Euler-Lagrange equation, which is an evolution equation for the velocity (see for instance [7] for
detailed computations):

(1.3) ∂tv + (v · ∇)v +
1

ρ
∇p(ρ) = 0.

Equations (1.2) and (1.3) form together a well-known system called Euler compressible barotropic
equations. This system is hyberbolic if and only if the pressure is an increasing function of the
density, which amounts to require that the map ρ 7→ ρE(ρ) is convex. Other properties of this
system are the conservation of momentum:

∂t(ρv) + div(ρv ⊗ v + pId)
T = 0,

and of total energy:

∂te+ div[(e+ p)v] = 0, with e :=
1

2
ρ|v|2 + ρE(ρ)

for smooth solutions. Hamilton’s stationary action principle provides an additional interpretation
of these conservation laws. Indeed, Noether’s Theorem (see [25]) states that conserved quantities
correspond to symmetries of the Lagrangian. Here, the conservation of momentum comes from the
spatial translation invariance of L, and the conservation of energy is related to the invariance by
time translation.

We now move on to the case of a two phase flow. The two phases will be denoted by the indices
1 and 2. The density, velocity and internal energy are respectively denoted by ρi, vi and Ei, i = 1, 2.
Since the two velocities are different, it is also the case for the trajectories of the particles of the
phase 1 and 2, denoted by xi and defined as in (1.1) by

∂txi(t,Xi) = vi(t, xi(t,Xi)), xi(0, Xi) = Xi, i = 1, 2.

The volume fraction of the phase i is denoted by αi. The two volume fractions are linked by the
constraint

(1.4) α1 + α2 = 1,
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which means that there is no vacuum. It is important to distinguish the true density ρi of each
phase from the material density ρi,0 := ρi/αi. The constraint of mass conservation only holds for
the true densities:

(1.5) ∂tρi + div(ρivi) = 0, i = 1, 2.

A possible choice to define the Lagrangian density of the mixture is to say that the kinetic (resp.
internal) energy of the mixture is the sum of the kinetic (resp. internal) energy of each phase,
weighted by the volume fractions:

(1.6) L =
1

2
ρ1|v1|2 +

1

2
ρ2|v2|2 − ρ1E1

(
ρ1
α1

)
− ρ2E2

(
ρ2
α2

)
.

Physically, this means that there is no energy associated to the interactions between the two phases.
Hamilton’s principle under the constraints given by Equation (1.4) and Equations (1.5) yields a
system of evolution equations for the variables (ρ1, v1, ρ2, v2), for which the two pressures are equal
(p1 = p2) and the volume fractions are given functions of the densities: αi = αi(ρ1, ρ2). This system
is hyperbolic if and only if the relative velocity is greater than an explicit lower bound: the system
is hyperbolic when

|v2 − v1|2 > ρc2w

[(
α1

ρ1

)1/3

+

(
α2

ρ2

)1/3
]3

,

where cw is the speed of sound of the mixture and ρ := ρ1 + ρ2 is the total density (see [14]).
This lower bound for the relative velocity can be problematic in situation where the two velocities
are close, e.g. near equilibrium. Indeed, when the criterion is not fulfilled, complex characteristics
appear.

In [15], Hamilton’s principle was again used together with the same Lagrangian (1.6) and the
same constraints, and a different system was obtained, including an additional “lift” term. This
counter-intuitive fact can be explain by the choice of the trajectories made by the author. Indeed,
instead of defining the Lagrangian as a function of the trajectories of each phase x1 and x2, the mean
velocity of the fluid v := (ρ1v1 + ρ2v2)/ρ (with ρ = ρ1 + ρ2 the total density) was used to define
a third trajectory x(t,X), given by the ODE ∂tx(t,X) = v(t, x(t,X)). The Lagrangian was then
considered as a function of the trajectories x(t,X) and x2(t,X2). As a consequence, the evolution
equation obtained for the velocity vi differs by an additional lift term equal to curl(v1) ∧ (v − vi)
(i = 1, 2). The apparition of these lift terms is thus explained by the change of reference frame. Even
if the obtained system is different, the hyperbolicity criterion remains unchanged for this modified
model. In particular, the system is not hyperbolic when the norm of the relative velocity is small
([15],[14]).

One possible interpretation of this lack of hyperbolicity is that some interaction terms are missing
and should be added in the Lagrangian. In [17], an extension of the kinetic energy by addition of a
term of the form (dα1/dt)

2 modeling inertia enabled to obtain an unconditional hyperbolicity for a
model of bubbly fluid (liquid-gas interaction). Allowing the Lagrangian to depend on derivatives of
the unknowns is frequent in multi-fluid modeling. This is done for instance in Korteweg-type models,
used in the context of liquid vapor mixture with a diffuse interface, and for which the Lagrangian
depends on the gradient of the density (see e.g. [18]).

1.3. Models studied and main results. In this work, we will show that two phase flow models
that are hyberbolic for small relative velocity can be obtained from Hamilton’s stationary action
principle by adding an additional term to the Lagrangian, corresponding to a turbulent interaction.
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More precisely, we will consider the following Lagrangian density:

L =
1

2
ρ1|v1|2 +

1

2
ρ2|v2|2 − ρ1E1

(
ρ1
α1

)
− ρ2E2

(
ρ2
α2

)
− r

2
Tr(P ),

where r ∈ {ρ1, ρ2, ρ} is either the density of one of the two phases, or the total density, depending on
the choice of the model, and P is the Reynolds stress tensor. P is a second order symmetric definite
positive tensor whose evolution equation is prescribed as an additional constraint to the model and
is given by

(1.7) ∂tP + (u · ∇)P +
∂u

∂x
P + P

(
∂u

∂x

)T

= 0,

where the velocity u drives the evolution of the tensor P and is given by u ∈ {v1, v2, v} depending
on the choice of the model.

The Reynolds stress tensor appears in the context of turbulent flows when a Reynolds averaging is
performed. The tensor P is then obtained from the second order correlations of the velocity (see [26]).
Equation (1.7) is classical and appears whenever third order correlations are neglected ([23], [30]). It
was shown in [28] that the same equation structure appears in the context of sheared shallow-water
flows. In this context, the averaging operator is the depth-averaging. In the compressible barotropic
case, Reynolds averaged equations form a system of hyperbolic equations (see [3]). In the previous
study of the author [10], it was proved that this system of equations is symmetric hyperbolic if
and only if the pressure is constant or the tensor P is scalar. The proof that Reynolds averaged
equations can be obtained from Hamilton’s stationary principle was presented in [16], in the case of
a one phase flow.

Here, we aim to extend the Reynolds averaged equations to the case of a two phase flow. For
two phases, there are various possibilities regarding the tensor P . Indeed, the turbulence can be
carried either by one of the two phases, by the two phases, or by the mixture itself. We describe
these different cases below.

Turbulence carried by the mixture velocity. Our first result concerns the case of a turbulence
carried by the mean velocity. A possible interpretation is that the turbulence is caused by the
mixture of the two phases. We thus first consider the following Lagrangian:

(1.8) L =
1

2
ρ1|v1|2 +

1

2
ρ2|v2|2 − ρ1E1

(
ρ1
α1

)
− ρ2E2

(
ρ2
α2

)
− ρ

2
Tr(P ),

with convex internal energies, and assume that the evolution equation of P is given by

(1.9) ∂tP + (v · ∇)P +
∂v

∂x
P + P

(
∂v

∂x

)T

= 0,

with v the mean velocity, associated to the conservation of total density:

∂tρ+ div(ρv) = 0

(this last equation being obtained by summing the conservation equation on ρ1 and ρ2). Assuming
Equations (1.5) and (1.9) as constraints, the full system obtained by Hamilton’s principle is given
by (see Section 2 for the derivation):

∂tρi + div(ρivi) = 0, i = 1, 2,(1.10a)

∂tvi + (vi · ∇vi) + curl(v2) ∧ (v − vi) +∇(Ui) +
1

ρ
div(ρP )T = 0, i = 1, 2,(1.10b)

∂tP + (v · ∇)P +
∂v

∂x
P + P

(
∂v

∂x

)T

= 0.(1.10c)
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The pressure of the system is defined by

p = p1 = p2, with pi :=

(
ρi
αi

)2

E ′
i

(
ρi
αi

)
, i = 1, 2.

The relation p1 = p2 is the Euler-Lagrange equation associated to the variable α1. It enables to
express the volume fractions α1 and α2 = 1 − α1 as functions of the densities ρ1, ρ2 only via the
implicit functions theorem. The functions Ui that appear in (1.10b) can then be expressed as

(1.11) Ui(ρ1, ρ2) :=

(
∂

∂ρi

[
ρiEi

(
ρi
αi

)])∣∣∣∣
αi=αi(ρ1,ρ2)

i = 1, 2.

As a consequence of the convexity of the internal energies ρiEi
(

ρi

αi

)
, the partial derivatives of the

potentials Ui satisfy

(1.12) a1 :=
∂U1

∂ρ1
> 0, b :=

∂U1

∂ρ2
=

∂U2

∂ρ1
> 0, a2 :=

∂U2

∂ρ2
> 0,

as well as the additional relation

(1.13) a1a2 − b2 = 0.

System (1.10) admits two additional conservation laws. For smooth solutions, the total momentum
ρv is conserved:

(1.14) ∂t(ρv) + div(ρ1v1 ⊗ v1 + ρ2v2 ⊗ v2 + pId+ ρP )T = 0,

as well as the total energy

(1.15) ∂t(e1 + e2) + div(e1v1 + e2v2 + (α1v1 + α2v2)p+ ρPv)T = 0.

The energy of each phase is given by

ei :=
1

2
ρi|vi|2 + ρiEi

(
ρi
αi

)
+

1

2
ρiTrP, i = 1, 2,

Once again, the variational formulation of System (1.10) enables to relate the conservation
laws with symmetries of the Lagrangian density (1.8). Indeed, Noether’s theorem states that the
conservation of momentum (1.14) is associated to the invariance of (1.8) by spatial translations,
while the conservation of energy (1.15) is associated to the invariance by time translation.

Note the presence of the lift term curl(v2)∧ (v− vi) in the evolution equation of vi. As explained
before, this term appear because the Lagrangian was considered as a function of the two trajectories
x1(t,X1) associated to v1 and x(t,X) associated to the mean velocity v. The choice of the trajectory
x(t,X) is unevitable in the derivation of the equations in order to be able to express the constraint
(1.9) in Lagrangian coordinates (see the detailed derivation in Section 2). Since the lift terms depend
on the choice of the trajectories and are uncommon in the litterature, we also study a simpler version
of System (1.10), where the lift terms are removed:

∂tρi + div(ρivi) = 0, i = 1, 2,(1.16a)

∂tvi + (vi · ∇vi) +∇(Ui) +
1

ρ
div(ρP )T = 0, i = 1, 2,(1.16b)

∂tP + (v · ∇)P +
∂v

∂x
P + P

(
∂v

∂x

)T

= 0.(1.16c)

The hyperbolicity of Systems (1.10) and (1.16) is characterized by the following theorem:
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Theorem 1. (Hyperbolicity of two-phase flow with a turbulence carried by the mean velocity)
Let us denote ρi,0 := ρi/αi the material density of each fluid, for i = 1, 2. Let also

(1.17) θ := ρ1ρ2 (
√
a1 −

√
a2)

2 − 1

2
(ρ1

√
a1 + ρ2

√
a2)

2
,

a1, a2 being defined in (1.12). Then it holds that:

• In dimension d = 1, the lift terms of Equation (1.10b) vanish and System (1.10) is hyperbolic
whenever ρ1,0 ̸= ρ2,0, for small relative velocity. In other words, there exists a constant
C = C(ρ1, ρ2, P ) > 0 such that (1.10) is hyperbolic whenever |v1 − v2| < C.

• When d = 2, suppose again that ρ1,0 ̸= ρ2,0. Also suppose that

(1.18) |v1 − v2| < C, and either ρP > θId or ρP < θId.

Then both System (1.10) and System (1.16) are hyperbolic.
• When d = 3, system (1.16) is hyperbolic under the assumptions ρ1,0 ̸= ρ2,0 and (1.18).
Under these two assumptions, System (1.10) is only weakly hyperbolic.

In dimension 2 and 3, if the condition ρP > θId or ρP < θId is not satisfied, System (1.10) and
(1.16) are only weakly hyperbolic.

The fact that the hyperbolicity of the system is improved after removing the lift terms is quite
surprising and is a consequence of the presence of the Reynolds stress tensor. Indeed, as already
explained in the end of paragraph 1.2, the hyperbolicity criterion is not affected by the addition or
removal of lift terms for a two-phase flow without Reynolds stress tensor. See also Remark 2 below.

Turbulence carried by one of the two phases. We now suppose that the turbulence is only
carried by one phase, say the phase 2. We thus consider the following Lagrangian :

(1.19) L :=
1

2
ρ1|v1|2 +

1

2
ρ2|v2|2 − ρ1E1

(
ρ1
α1

)
− ρ2E2

(
ρ2
α2

)
− 1

2
ρ2Tr(P2).

We use the superscript 2 for the tensor P2 to insist on the fact that it is carried by the phase two.
As a consequence, we assume that the evolution of P2 is given by

(1.20) ∂tP2 + (v2 · ∇)P2 +
∂v2
∂x

P2 + P2

(
∂v2
∂x

)T

= 0.

We also impose the conservation of the two densities:

(1.21) ∂tρi + div(ρivi) = 0, i = 1, 2.

In order to lighten the presentation, the system obtained is given by Equation (4.4) of Section 4.
The result concerning this system is the following:

Theorem 2. (Hyperbolicity of two-phase flow with a turbulence carried by one phase only)
The hyperbolicity of the system obtained by Hamilton’s principle from the Lagrangian (1.19) and

the constraints (1.20) and (1.21) can be caracterized as follows:

• When d = 1, System (4.4) is hyperbolic for small relative velocity |v1 − v2|, i.e. there exists
C = C(ρ1, ρ2, P2) > 0 such that (4.4) is hyperbolic when |v1 − v2| ≤ C.

• When d = 2, 3 let

µ := ρ1a1 −
1

2
ρ2a2

and assume that either P2 > µId or P2 < µId. Then (4.4) is hyperbolic for |v1 − v2| ≤ C. If
the condition P2 > µId or P2 < µId is not satisfied, System (4.4) is only weakly hyperbolic.
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Turbulence carried by each of the two phases. We also study the case of the mixture of two
turbulent phases. In other words, each phase is endowed with a Reynolds stress tensor denoted Pi,
i = 1, 2. The Lagrangian density is the following:

(1.22) L :=
1

2
ρ1|v1|2 +

1

2
ρ2|v2|2 − ρ1E1

(
ρ1
α1

)
− ρ2E2

(
ρ2
α2

)
− 1

2
ρ1Tr(P1)−

1

2
ρ2Tr(P2).

The densities are still conserved:

∂tρi + div(ρivi) = 0, i = 1, 2.

The evolution equations for P1, P2 are given by

(1.23) ∂tPi + (vi · ∇)Pi +
∂vi
∂x

Pi + Pi

(
∂vi
∂x

)T

= 0, i = 1, 2.

In order to lighten the presentation, the system obtained is given by Equation (4.6) of Section 4.
The result concerning this system is the following:

Theorem 3. (Hyperbolicity of the mixture of two turbulent phases)
The hyperbolicity of the system obtained by Hamilton’s principle from the Lagrangian (1.22) under

the constraints of mass conservation and (1.23) can be characterized as follows:

• When d = 1, System (4.6) is hyperbolic for small relative velocity |v1 − v2|, i.e. there exists
C = C(ρ1, ρ2, P2) > 0 such that (4.6) is hyperbolic when |v1 − v2| ≤ C.

• When d = 2, 3 assume that

(1.24)
1

3
P1 ≤ P2 ≤ 3P1, or equivalently

1

3
P2 ≤ P1 ≤ 3P2.

Then (4.6) is hyperbolic whenever |v1 − v2| ≤ C. If (1.24) is not satisfied, (4.6) is only
weakly hyperbolic.

General criterion of hyperbolicity for turbulent two-phase flows. We finally come back to
the general Lagrangian density

L =
1

2
ρ1|v1|2 +

1

2
ρ2|v2|2 − ρ1E1

(
ρ1
α1

)
− ρ2E2

(
ρ2
α2

)
− r

2
Tr(P ),

The three previous results show that the turbulence rTrP/2 can be added in various ways to the
potential energy of a two-phase flow in order to obtain a hyperbolic system of equations. The next
and last result states that the three examples given previously are the only ones for which the
resulting system of equations is hyperbolic.

Theorem 4. (General criterion of hyperbolicity for turbulent two-phase flows)
Consider the following general Lagrangian density:

(1.25) L :=
1

2
ρ1|v1|2 +

1

2
ρ2|v2|2 − ρ1E1

(
ρ1
α1

)
− ρ2E2

(
ρ2
α2

)
− 1

2
rTr(P ),

endowed with the constraints

(1.26) ∂tρi + div(ρivi) = 0, i = 1, 2

and

(1.27) ∂tP + (u · ∇)P +
∂u

∂x
P + P

(
∂u

∂x

)T

= 0,

where
(r, u) ∈ {ρ1, ρ2, ρ} × {v1, v2, v}.
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Let us consider the system formed by Equations (1.26), (1.27) and the Euler-Lagrange equations
associated to the Lagrangian density (1.25). We denote by M the matrix of this system. Then, in
dimension 1, all the eigenvalues of M are real when v1 = v2, whatever the choice of convex internal
energies ρiEi(ρ), i = 1, 2, if and only if the density r and the velocity u are compatible, i.e. the
following equation is satisfied:

∂tr + div(ru) = 0.

Let us give two remarks to complete the results obtained.

Remark 1. When one of the two phases, say the phase 1, is made of solid particles, one often
assumes that the material density of the phase 1, given by

ρ1,0 :=
ρ1
α1

is a constant. This is the case for instance for a dry granular flow or for a granular suspension. Note
that it is then straightforward to express the volume fractions as functions of the density ρ1 :

α1 =
ρ1
ρ1,0

, α2 = 1− ρ1
ρ1,0

.

All the systems and hyperbolicity results obtained are still valid under the following modifications:

• There is no internal energy associated to the phase 1: E1 = 0.
• The pressure is defined by

p = p1 = p2 =

(
ρ2
α2

)2

E ′
2

(
ρ2
α2

)
,

• The chemical potentials Ui are defined by

Ui(ρ1, ρ2) :=
∂

∂ρi

[
ρ2E2

(
ρ2

1− ρ1/ρ1,0

)]
, i = 1, 2.

Remark 2. In dimension 2 or 3, the results obtained state that the hyperbolicity is valid under
additional conditions on the spectrum of the Reynolds tensor (see (1.18) for instance). These
additional conditions are necessary to prevent some eigenvalues of the systems to appear with a
multiplicity greater than 1. They are called non resonance conditions. If they are not satisfied, the
systems obtained are only weakly hyperbolic. The solution of weakly hyperbolic systems are known
to be less regular than the ones of hyperbolic systems. In particular, phenomena like creation of
vacuum or high concentration (delta shocks) can occur (see [22] for instance).

Recall that the Reynolds stress tensor is a symmetric, definite positive tensor. As a consequence,
in some cases, these non resonance conditions are always satisfied. For instance, the condition
ρP > θId or ρP < θId of Theorem 1 is automatically satisfied when θ < 0, which is the case
whenever a1 is close to a2. Similarly, the non resonance condition of Theorem 2 is automatically
satisfied whenever µ < 0.

Outline of the paper. The rest of this document is organised as follows. In Section 2, we give the
derivation of the two-phase flow system with a mixture turbulence, System (1.10), from Hamilton’s
principle. In Section 3, we give a detailed study of the hyperbolicities of this system and its simplified
version, System (1.16), in order to prove Theorem 1. In Section 4, we show the hyperbolicity of the
two other models presented in the introduction (Theorems 2 and 3) and we establish the general
hyperbolicity criterion stated in Theorem 4.
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2. Derivation of the model from variational principle

Notations. The space dimension is denoted d and can be equal to 1, 2 or 3. We denote ∂i := ∂/∂xi

the partial derivative of the variable xi, for 1 ≤ i ≤ d. If f : Rd → R is a scalar function, we denote
by ∇f ∈ Rd the gradient of f , i.e. the vector field of components ∂if , 1 ≤ i ≤ d.

If Z = (Z1, . . . , Zd) : Rd → Rd is a vector field, the divergence of Z is the scalar function defined
by

div(Z) := ∂1Z1 + · · ·+ ∂dZd.

We also denote by ∂Z/∂x the Jacobian matrix of Z, i.e. the matrix of coefficients (∂Z/∂x)i,j =
∂Zi/∂xj , for 1 ≤ i, j ≤ d.

If Z = (Zi)1≤i≤d and Z ′ = (Z ′
i)1≤i≤d are two vector fields, we denote Z ⊗ Z ′ the second order

tensor defined by Z⊗Z ′ := Z(Z ′)T , i.e. the matrix of coefficients (Z⊗Z ′)i,j = ZiZ
′
j , for 1 ≤ i, j ≤ d.

If A : Rd → Md(R) is a second order tensor, we define the divergence of A as the line vector of
Rd whose i-th component is given by the divergence of the i-th column of A.

We denote Id the identity matrix. For any positive integer d, we denote S++
d (R) the set of

symmetric definite positive matrices, i.e. the symmetric matrices of size d with a positive spectrum.

Derivation of System (1.10) from variational principle. We now give the derivation of System
(1.10) from Hamilton’s stationary action principle. Various arguments that are used in this proof
can be found in other works. We refer to [16] for the derivation of Reynolds averaged equations
via variational principle. Detailed computations of Euler-Lagrange equations in different reference
frames were performed in [15]. Finally, we refer to [7] for an introduction to the application of
Hamilton’s principle to fluid mechanics.

We consider a two-phase flow with a Lagrangian density given by

(2.1) L =
1

2
ρ1|v1|2 +

1

2
ρ2|v2|2 − ρ1E1

(
ρ1
α1

)
− ρ2E2

(
ρ2
α2

)
− ρ

2
Tr(P ),

where ρi (resp. vi) is the density (resp. velocity) of the phase i, i = 1, 2. The two density are
conserved :

(2.2) ∂tρi + div(ρivi) = 0, i = 1, 2,

which implies that the total density ρ := ρ1 + ρ2 is also conserved:

∂tρ+ div(ρv) = 0, with ρv := ρ1v1 + ρ2v2.

α1 and α2 are the volume fractions of the phases 1 and 2 and verify the constraint

α1 + α2 = 1,

hence α2 = 1− α1. The evolution of the Reynolds stress tensor is given by

(2.3) ∂tP + (v · ∇)P +
∂v

∂x
P + P

(
∂v

∂x

)T

= 0.

We aim to show that Hamilton’s principle applied to the Lagrangian (2.1) endowed with the two
constraints (2.2) and (2.3) yields Equation (1.10b) as the Euler-Lagrange equation associated to the
velocity vi:

∂tvi + (vi · ∇vi) + curl(v2) ∧ (v − vi) +∇(Ui) +
1

ρ
div(ρP )T = 0, i = 1, 2.
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2.1. Trajectories and Lagrangian quantities. Let us suppose that the two-phase flow lies in a
fixed open set Ω ⊂ Rd, d = 1, 2, 3. We denote by X ∈ Ω (or Xi, i = 1, 2) the initial position of an
element of fluid at time t = 0. X is usually called the Lagrangian coordinate. The trajectory of an
element of the phase 1, flowing at velocity v1, that started at the point X1 at time t = 0, is denoted
by x1(t,X1) ∈ Ω. It is defined by

∂tx1(t,X1) = v1(t, x1(t,X1)), with x1(0, X1) = X1.

We will assume that x1(t) : Ω → Ω is a diffeomorphism for every t ∈ [0, T ], where T > 0 is fixed, and
we will denote by x1(t)

−1 its inverse. The trajectory x1 enables to define Lagrangian quantities, i.e.
quantities that depend on the Lagrangian coordinates. Three examples are the Lagrangian velocity
vl1, the Lagrangian density ρl1 and the Lagrangian volume fraction αl

1, defined by

vl1(t,X1) := v1(t, x1(t,X1)), ρl1(t,X1) := ρ1(t, x1(t,X1)), and αl
1(t,X1) := α1(t, x1(t,X1)).

From the chain rule and the mass conservation, one then computes that

(2.4) ∂tρ
l
1(t,X1) = (∂tρ1 + v1 · ∇ρ1)(t, x1(t,X1)) = −[ρ1div(v1)](t, x1(t,X1)).

Using the identity v1 = vl1 ◦ x1(t)
−1 and the chain rule once again,

div(v1) =Tr

(
∂v1
∂x

)
= Tr

[(
∂vl1
∂X1

◦ x1(t)
−1

)(
∂x1(t)

−1

∂x

)]
= Tr

[(
∂vl1
∂X1

)(
∂x1

∂X1

)−1
]
◦ x1(t)

−1

=
∂tJ1
J1

◦ x1(t)
−1,

where we defined

J1 := det

(
∂x1

∂X1

)
the Jacobian of the trajectory x1 and we used the identity

(2.5)
d

ds
[detA(s)] = detA(s)Tr

[
dA

ds
A(s)−1

]
,

valid for any C1 function s 7→ A(s) such that the square matrix A(s) is invertible. Returning to
(2.4), we obtain

(2.6) ∂tρ
l
1 = −ρl1

∂tJ1
J1

, i.e. ∂t
(
ρl1J1

)
= 0, hence ρl1 =

ρ1|t=0

J1

(note that x1(0) = Id, hence J1|t=0 = 1). We deduce that the density ρ1 is determined by its value
at time t = 0 and by the trajectory x1.

In a similar way, we define x(t,X) the solution of

∂tx(t,X) = v(t, x(t,X)), x(0, X) = X.

In other words, x(t,X) is the trajectory of a particle flowing at the mean velocity that started in
position X at time 0. As before, one can define the Lagrangian mean velocity, the Lagrangian total
density and the Lagrangian Reynolds tensor by

vl(t,X) := v(t, x(t,X)), ρl(t,X) := ρ(t, x(t,X)) and P l(t,X) := P (t, x(t,X)).

As in Equation (2.6), we deduce that

(2.7) ρl =
ρl|t=0

J
, with J := det

(
∂x

∂X

)
.
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Furthermore, the chain rule yields that P l solves an ordinary differential equation, given by

∂tP
l +

(
∂v

∂x
◦ x(t)

)
P l + P l

(
∂v

∂x
◦ x(t)

)T

= 0.

Hence P is also uniquely determined by the trajectory and the initial value P |t=0.

2.2. Action and variations. Recall that the Lagrangian density of System (1.10) was given in
Equation (1.8) by

L =
1

2
ρ1|v1|2 +

1

2
ρ2|v2|2 − ρ1E1

(
ρ1
α1

)
− ρ2E2

(
ρ2
α2

)
− 1

2
ρTr(P ).

This Lagrangian density can also be written in terms of the variables (ρ1, ρ, v1, v, α1, ρTrP ):

L(ρ1, ρ, v1, v, α1, ρTrP ) :=
1

2
ρ|v|2 + ρ1ρ

2(ρ− ρ1)
|v − v1|2 − U(ρ1, ρ− ρ1, α1)−

1

2
ρTrP,

where

U(ρ1, ρ2, α1) := ρ1E1
(
ρ1
α1

)
+ ρ2E2

(
ρ2

1− α1

)
,

From now on, we will see L as a function of the variables (ρ1, ρ, v1, v, α1, ρTrP ) only. One can
now define the action associated to this Lagrangian:

A
[
x1, x, α

l
1

]
:=

∫ T

0

∫
Ω

L(ρ1, ρ, v1, v, α1, ρTrP )dxdt.

Let Φ = (ϕ1, ϕ, ϕα1) ∈ Rd×Rd×R be a smooth vector field which is compactly supported in (0, T )×Ω.
For every ϵ ∈ R, one can perturbate the trajectories and define (x1,ϵ, xϵ, α

l
1,ϵ) := (x1, x, α

l
1)+ ϵΦ. To

these modified trajectories, one can associate the corresponding densities, velocities and Reynolds
stress tensor that we will denote ρ1,ϵ, ρϵ, v1,ϵ, vϵ, Pϵ. We define

Aϵ := A[x1,ϵ, xϵ, α
l
1,ϵ]

the perturbed action. Hamilton’s stationary action principle states that the trajectory followed by
the particles is a stationary point of the action, i.e. that

∂Aϵ

∂ϵ

∣∣∣∣
ϵ=0

= 0,

for every perturbation Φ. In order to simplify notations, we denote, for every quantity fϵ depending
on ϵ, δf := (∂ϵfϵ)|ϵ=0. δf is often called the variation of f . The stationary action principle is thus
equivalent to require that the variation of the action is equal to zero: δA = 0. We will also define
ζ1 := ϕ1 ◦ x1(t)

−1, ζ := ϕ ◦ x(t)−1 and ζα1
:= ϕα1

◦ x1(t)
−1. From the stationary action principle,

one obtains the following equality:

0 = δA =

∫ T

0

∫
Ω

(
∂L
∂ρ1

δρ1 +
∂L
∂ρ

δρ+
∂L
∂v1

δv1 +
∂L
∂v

δv +
∂L
∂α1

δα1 +
∂L

∂(ρTrP )
δ(ρTrP )

)
dxdt.

We thus need to compute the variations of all variables. First, it follows from the conservation of
mass (2.6) and (2.7), as well as the formula (2.5) that

δρ1 = −div(ρ1ζ1) and δρ = −div(ρζ).

As a consequence, we can integrate by parts to obtain that∫ T

0

∫
Ω

∂L
∂ρ1

δρ1 =

∫ T

0

∫
Ω

∇
(
∂L
∂ρ1

)
· ρ1ζ1 and

∫ T

0

∫
Ω

∂L
∂ρ

δρ =

∫ T

0

∫
Ω

∇
(
∂L
∂ρ

)
· ρζ.
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We now move on to the variation of the velocities. Since v1 ◦x1(t) = vl1 and δvl1 = ∂tϕ1, we get that

δv1 = ∂tζ1 +
∂ζ1
∂x

v1 −
∂v1
∂x

ζ1.

Let us define

K1 :=
1

ρ1

(
∂L
∂v1

)T

, hence ρ1K
T
1 =

∂L
∂v1

.

An integration by part coupled by the conservation of ρ1 yields∫ T

0

∫
Ω

∂L
∂v1

δv1 =

∫ T

0

∫
Ω

ρ1K1 ·
(
∂tζ1 +

∂ζ1
∂x

v1 −
∂v1
∂x

ζ1

)
=−

∫ T

0

∫
Ω

ρ1ζ1 ·

(
∂tK1 +

∂K1

∂x
v1 +

(
∂v1
∂x

)T

K1

)
.

In a similar way, we define

K :=
1

ρ

(
∂L
∂ρ

)T

and obtain that ∫ T

0

∫
Ω

∂L
∂v

δv = −
∫ T

0

∫
Ω

ρζ ·

(
∂tK +

∂K

∂x
v +

(
∂v

∂x

)T

K

)
.

Concerning the variations of α1, we compute that

δα1 = ζα1 −
∂α1

∂x
ζ1.

Finally, the equation satisfied by P implies that the variation of P is given by

δTrP = −2Tr

(
∂ζ

∂x
P

)
− ∂(TrP )

∂x
ζ

(see [16]). In particular, the field ζ is needed to express the variations of P . This is why we use
the trajectory x(t,X) corresponding to the mean velocity v and responsible for the presence of lift
terms (see [15] and below). It follows that

δ(ρTrP ) = −2Tr

(
∂ζ

∂x
ρP

)
− div(ρTrPζ).

Hence, by integration by parts,∫ T

0

∫
R

∂L
∂(ρTrP )

δ(ρTrP ) =

∫ T

0

∫
R
Tr

(
∂ζ

∂x
ρP

)
= −

∫ T

0

∫
R
div(ρP )ζ.

The stationary action principle can thus be written

0 = δA =−
∫ T

0

∫
Ω

ρ1ζ1 ·

(
∂tK1 +

∂K1

∂x
v1 +

(
∂v1
∂x

)T

K1 −∇
(
∂L
∂ρ1

)
+

1

ρ1

∂α1

∂x

∂L
∂α1

)

−
∫ T

0

∫
Ω

ρζ ·

(
∂tK +

∂K

∂x
v +

(
∂v

∂x

)T

K −∇
(
∂L
∂ρ

)
+

1

ρ
div(ρP )T

)

+

∫ T

0

∫
Ω

∂L
∂α1

ζα1
.
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Since ζ1, ζ and ζα1 are arbitrary and independent of each other, each of the integrands must vanish
and we obtain the following Euler-Lagrange equations:

0 =∂tK1 +
∂K1

∂x
v1 +

(
∂v1
∂x

)T

K1 −∇
(
∂L
∂ρ1

)
+

1

ρ1

∂α1

∂x

∂L
∂α1

,(2.8)

0 =∂tK +
∂K

∂x
v +

(
∂v

∂x

)T

K −∇
(
∂L
∂ρ

)
+

1

ρ
div(ρP )T ,(2.9)

0 =
∂L
∂α1

.(2.10)

2.3. Computation of the equation of the velocities. We can now use the three Euler-Lagrange
equations obtained to get the evolution equations for the velocities vi, i = 1, 2. Note that Equation
(2.8) can be simplified with the help of Equation (2.10). We also compute that

K1 =v1 − v2,
∂L
∂ρ1

=
1

2
|v1 − v2|2 −

∂U

∂ρ1
+

∂U

∂ρ2
,

K =v2,
∂L
∂ρ

=
1

2
|v|2 − 1

2
|v − v2|2 −

∂U

∂ρ2
.

Hence after adding (2.9) to (2.8), we obtain the equation for v1:

∂tv1 + (v1 · ∇)v1 + curl(v2) ∧ (v − v1) +∇
(
∂U

∂ρ1

)
+

1

ρ
div(ρP )T = 0.

We also compute that (2.9) yields the equation for v2:

∂tv2 + (v2 · ∇)v2 + curl(v2) ∧ (v − v2) +∇
(
∂U

∂ρ2

)
+

1

ρ
div(ρP )T = 0.

We still need to express these two equations without the dependence on α1 coming from (∂U/∂ρi).
In order to do this, we define g(ρ1, ρ2, α1) := ∂U/∂α1 and obtain with Equation (2.10) that

g(ρ1, ρ2, α1) =
∂U

∂α1
= − ∂L

∂α1
= 0.

We compute that

g(ρ1, ρ2, α1) =
∂U

∂α1
= −

(
ρ1
α1

)2

E ′
1

(
ρ1
α1

)
+

(
ρ2

1− α1

)2

E ′
2

(
ρ2

1− α1

)
= p2 − p1,

hence (2.10) states that the two pressures are equal. Furthermore,

∂g

∂α1
=

∂2U

∂α2
1

=
1

α1

[
2

(
ρ1
α1

)2

E ′
1

(
ρ1
α1

)
+

(
ρ1
α1

)3

E(2)
1

(
ρ1
α1

)]

+
1

1− α1

[
2

(
ρ2

1− α1

)2

E ′
2

(
ρ2

1− α1

)
+

(
ρ2

1− α1

)3

E(2)
2

(
ρ2

1− α1

)]

=

(
ρ1
α1

)2

U11 +

(
ρ2

1− α1

)2

U22,

where

Uii :=
1

αi

[
2E ′

i

(
ρi
αi

)
+

ρi
αi

E(2)
i

(
ρi
αi

)]
=

∂2U

∂ρ2i
=

1

αi

d2ρEi(ρ)
dρ2

∣∣∣∣
ρ=ρi/αi

> 0,
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since we assume that ρEi(ρ) is a convex function of ρ for i = 1, 2. We are thus allowed to use the
implicit functions theorem to express α1 as a function of ρ1 and ρ2: α1 = α1(ρ1, ρ2). For i = 1, 2,
we obtain that

∇
(
∂U

∂ρi

)
=

∂2U

∂ρi∂ρ1
∇ρ1 +

∂2U

∂ρi∂ρ2
∇ρ2 +

∂2U

∂ρi∂α1
∇α1

=

(
∂2U

∂ρi∂ρ1
+

∂2U

∂ρi∂α1

∂α1

∂ρ1

)
∇ρ1 +

(
∂2U

∂ρi∂ρ2
+

∂2U

∂ρi∂α1

∂α1

∂ρ2

)
∇ρ2

=∇(Ui),

where

Ui(ρ1, ρ2) :=
∂U

∂ρi
(ρ1, ρ2, α1(ρ1, ρ2))

as claimed in Equation (1.11). We also compute that

∂2U

∂ρ1∂α1
= − 1

α1

[
2
ρ1
α1

E ′
1

(
ρ1
α1

)
+

(
ρ1
α1

)2

E(2)
1

(
ρ1
α1

)]
= − ρ1

α1
U11,

and that
∂2U

∂ρ2∂α1
=

ρ2
α2

U22.

Finally, we can use the identity

∂α1

∂ρi
= − ∂g/∂ρi

∂g/∂α1
= − (∂2U/∂α1∂ρi)

(∂2U/∂α2
1)

to obtain that

ai :=
∂Ui

∂ρi
=

U11U22

(
ρ3−i

α3−i

)2
(

ρ1

α1

)2
U11 +

(
ρ2

1−α1

)2
U22

> 0,

and
∂U1

∂ρ2
=

U11U22
ρ1

α1

ρ2

α2(
ρ1

α1

)2
U11 +

(
ρ2

1−α1

)2
U22

=
∂U2

∂ρ1
=: b > 0.

It follows that a1a2 − b2 = 0 as claimed.

Remark. In the case where one phase is incompressible, there is no dependence on the variable
α1 and the derivation is easier. However, the system obtained still has the same structure, and the
equality a1a2 = b2 is obtained by direct computation.

3. Hyperbolicity of the equations

We give here the proof that System (1.10) is hyperbolic. We first write (1.10) in matricial form:

∂tY +

d∑
j=1

Aj(Y )∂jY = 0.

The vector field Y takes values in R2+2d+d(d+1)/2 = R(d+1)(d+4)/2, and the square matrices Aj(Y )
are smooth functions of Y . Let us also define, for every ξ = (ξ1, . . . , ξd) ∈ Rd, the matrix

A(Y, ξ) :=

d∑
j=1

Aj(Y )ξj .
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Then saying that (1.10) is hyperbolic is equivalent to saying that, for every ξ ∈ Rd such that |ξ| = 1,
the matrix A(Y, ξ) is diagonalizable with real eigenvalues.

Since the property of hyperbolicity is invariant under C1 change of variables, we choose to set

Y :=


ρ2
v2
ρ
v

P̃

 , with P̃ := P > 0 if d = 1, P̃ :=

P11

P12

P22

 if d = 2, P̃ :=


P11

P12

P13

P22

P23

P33

 if d = 3

(recall that P is a symmetric second order tensor). With this variables, the matrix A(Y, ξ) can be
written as a block matrix:

A(Y, ξ) =


v2 · ξ ρ2ξ

T 0 0 0
αξ (v · ξ)Id + ξ(v2 − v)T (β + P/ρ)ξ 0 C(ξ)
0 0 v · ξ ρξT 0
δξ 0 (γ + P/ρ)ξ (v · ξ)Id C(ξ)
0 0 0 D(ξ) (v · ξ)Id

 .

The coefficients α, β, γ and δ are given by

α := a2 − b, β := b, γ :=
1

ρ
(ρ1a1 + ρ2b), δ :=

1

ρ
[ρ1(b− a1) + ρ2(a2 − b)].

When d = 1, the matrices C(ξ) and D(ξ) are scalars given by C(ξ) := ξ, D(ξ) := 2Pξ. When d = 2,
one has

C(ξ) :=

(
ξ1 ξ2 0
0 ξ1 ξ2

)
and D(ξ) :=

2P11ξ1 + 2P12ξ2 0
P21ξ1 + P22ξ2 P11ξ1 + P12ξ2

0 2P12ξ1 + 2P22ξ2

 .

When d = 3,

C(ξ) :=

ξ1 ξ2 ξ3 0 0 0
0 ξ1 0 ξ2 ξ3 0
0 0 ξ1 0 ξ2 ξ3

 , D(ξ) :=


2(Pξ)1 0 0
(Pξ)2 (Pξ)1 0
(Pξ)3 0 (Pξ)1
0 2(Pξ)2 0
0 (Pξ)3 (Pξ)2
0 0 2(Pξ)3

 ,

where (Pξ)i denotes the i-th component of the vector Pξ.
In order to prove the hyperbolicity, the first step is to compute the characteristic polynomial of

the matrix A(Y, ξ). This polynomial is given by the following proposition.

Proposition 1. The characteristic polynomial of the matrix A(Y, ξ) is given by

χA(Y,ξ)(λ) =(v · ξ − λ)(d+2)(d−1)/2+1
[
(v · ξ − λ)2 − ξTPξ

]d−2
(3.1)

×
{
2ρ2δ(v · ξ − λ)(v2 − v)T

[
P − (ξTPξ)

]
ξ +

[
(v · ξ − λ)2 − ξTPξ

]
q(λ)

}
,

where

(3.2) q(λ) :=
[
(v2 · ξ − λ)2 − αρ2

] [
(v · ξ − λ)2 − 3ξTPξ − ργ

]
− ρ2δ

(
3ξTPξ + ρβ

)
.

Let us also denote A′(Y, ξ) the matrix of the simpler system (1.16) (without lift terms). The
characteristic polynomial of this system is given by

(3.3) χA′(Y,ξ) = (v2 · ξ − λ)d−1(v · ξ − λ)d(d−1)/2+1
[
(v · ξ − λ)2 − ξTPξ

]d−1
q(λ),
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where q(λ) is as in Equation (3.2).

The proof of this Proposition is technical and requires a lot of linear algebra computations. Hence
we defer it to Appendix A.

Now that we have a formula for the characteristic polynomial of the matrices A(Y, ξ) and A′(Y, ξ),
we can study the hyperbolicity of Systems (1.10) and (1.16). We will investigate the cases d = 1,
d = 2 and d = 3 separately.

3.1. Case d = 1. When d = 1, the hyperbolicity is given by the following proposition.

Proposition 2. There exists a constant C = C(ρ1, ρ2, P ) such that, in dimension 1, System (1.10)
and System (1.16) are hyperbolic when |v1 − v2| < C.

Proof. When d = 1, the second order tensor P is a scalar, as well as the vector ξ. Since we have
that |ξ| = 1, we deduce that ξ = ±1 and P − ξTPξ = 0. Hence the second line of (3.1) vanishes and
the characteristic polynomial is equal to

χA(Y,ξ) = (v · ξ − λ)
([
(v2 · ξ − λ)2 − αρ2

] [
(v · ξ − λ)2 − 3ξTPξ − ργ

]
− ρ2δ

(
3ξTPξ + ρβ

))
.

Without loss of generality, we can suppose that ξ = 1. We thus obtain that

(3.4) q(λ) =
[
(v2 − λ)2 − αρ2

] [
(v − λ)2 − 3P − ργ

]
− ρ2δ (3P + ρβ) .

We need to show that q(λ) has four real roots. Since the general study of the roots of this polynomial
is complicated, we first restrict ourselves to the case v1 = v2 = v. If we define X := (v − λ)2, then

q(λ) = (X − αρ2)(X − 3P − ργ)− ρ2δ(3P + ρβ) =: Q(X).

Hence q(λ) = 0 if and only if Q(X) = 0. Since Q is of degree 2, we have an explicit formula for its
roots denoted r±:

r± =
αρ2 + ργ + 3P ±

√
∆

2
,

where

∆ := (αρ2 + ργ + 3P )
2 − 4 [(αρ2(3P + ργ)− ρ2δ(3P + ρβ)](3.5)

= (αρ2 − ργ − 3P )
2
+ 4ρ2δ(3P + ρβ).

We recall that α, β, γ, δ are given by

α := a2 − b, β := b, γ :=
1

ρ
(ρ1a1 + ρ2b), δ :=

1

ρ
[ρ1(b− a1) + ρ2(a2 − b)].

It follows that

αρ2 + ργ = ρ1a1 + ρ2a2 > 0, αρ2 − ργ = ρ2a2 − ρ1a1 − 2ρ2b = ρδ − ρβ,

hence

∆ =(ρδ − ρβ − 3P )2 + 4ρ2δ(3P + ρβ)

=(ρδ + ρβ + 3P )2 − 4ρ1δ(3P + ρβ).

We can combine the two previous lines to obtain

∆ =
ρ1
ρ
(ρδ − ρβ − 3P )2 +

ρ2
ρ
(ρδ + ρβ + 3P )2 > 0,
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since ρβ + 3P = ρb + 3P > 0. Hence the two roots r± are real and distinct. If we now return to
(3.5), we see that

∆ = (ρ1a1 + ρ2a2 + 3P )
2 − 4 [3Pρ2(α− δ) + ρ2ρ(αγ − δβ)]

= (ρ1a1 + ρ2a2 + 3P )
2 − 4

[
3P

ρ1ρ2
ρ

(a2 + a1 − 2b) + ρ2ρ1(a1a2 − b2)

]
=(ρ1a1 + ρ2a2 + 3P )

2 − 12P
ρ1ρ2
ρ

(a2 + a1 − 2b),

where the last equality comes from the relation (1.13). From the expressions of a1, a2 and b obtained
in Section 2, we see that

(3.6) a1 + a2 − 2b = γ

(
ρ1
α1

− ρ2
α2

)2

,

where γ is a positive constant. It follows that

r± =
ρ1a1 + ρ2a2 + 3P ±

√
(ρ1a1 + ρ2a2 + 3P )

2 − 12P ρ1ρ2

ρ γ
(

ρ1

α1
− ρ2

α2

)2
2

.

We see that r+ > 0 and r− ≥ 0, with r− = 0 if and only if ρ1/α1 = ρ2/α2, i.e. if and only if the two
material densities are equal. Since by hypothesis the two material densities are different, we also
have r− > 0. Hence χA(Y,ξ) has five distinct roots, given by

λ1 = v, λ2± = v ±√
r+, λ3± = v ±√

r−.

By continuity, there exists C = C(ρ1, ρ2, P ) such that χA(Y,ξ) has five disctinct roots for every v1, v2
such that |v1 − v2| ≤ C(ρ1, ρ2, P ). Hence the matrix A(Y, ξ) is diagonalizable with real eigenvalues
and System (1.10) is strictly hyperbolic. The proof for the system without lift terms is the same
since these terms vanish when d = 1.

□

3.2. Case d = 2. We now move on to the case d = 2. Recall that we aim to prove the following
result:

Proposition 3. Let θ be defined as in Equation (1.17) of Theorem (1):

θ := ρ1ρ2 (
√
a1 −

√
a2)

2 − 1

2
(ρ1

√
a1 + ρ2

√
a2)

2
.

If ρP < θId or ρP > θId, there exists C = C(ρ1, ρ2, P ) > 0 such that Systems (1.10) and (1.16) are
hyperbolic, whenever |v1 − v2| < C.

Proof. In dimension 2, the characteristic polynomial of A(Y, ξ) is given by

χA(Y,ξ) = (v · ξ − λ)3
([
(v · ξ − λ)2 − ξTPξ

]
q(λ) + 2ρ2δ(v · ξ − λ)(v2 − v)T

[
P − (ξTPξ)

]
ξ
)
,

where q(λ) was defined in Equation (3.2). Let us first look at the polynomial

q̃(λ) :=
[
(v · ξ − λ)2 − ξTPξ

]
q(λ) + 2ρ2δ(v · ξ − λ)(v2 − v)T

[
P − (ξTPξ)

]
ξ,

such that

χA(Y,ξ) = (v · ξ − λ)3q̃(λ).

When v1 = v2 = v, q̃ reduces to

q̃(λ) =
[
(v · ξ − λ)2 − ξTPξ

]
q(λ).
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By mimicking the case d = 1, we deduce that q̃ has six roots, given by

λ1± = v · ξ ±
√
ξTPξ, λ2± = v · ξ ±√

r+, λ3± = v · ξ ±√
r−,

with

(3.7) r± =
ρ1a1 + ρ2a2 + 3ξTPξ ±

√
(ρ1a1 + ρ2a2 + 3ξTPξ)

2 − 12ξTPξ ρ1ρ2

ρ γ
(

ρ1

α1
− ρ2

α2

)2
2

.

Let us show that the six roots are all distinct. From the case d = 1, we see that λ2± and λ3± are
always distinct. We also see with Equation (3.7) that r+ > ξTPξ, hence λ1± and λ2± are also always
different. If finally we suppose that λ1± and λ3± are not distinct, we obtain from Equations (3.7)
and (3.6) the following equality:

ρξTPξ = ρ1ρ2(a1 + a2 − 2b)− 1

2
(ρ21a1 + ρ22a2 + 2ρ1ρ2b),

which yields after replacing b by
√
a1a2,

ρξTPξ = ρ1ρ2(
√
a1 −

√
a2)

2 − 1

2
(ρ1

√
a1 + ρ2

√
a2)

2 = θ,

where θ was defined in (1.17). Since we supposed that ρP > θId or that ρP < θId, and ξT ξ = 1, we
deduce that ρξTPξ ̸= θ and the six roots are real and distinct.

By continuity, there exists C = C(ρ1, ρ2, P ) such that q̃(λ) has six disctinct real roots for every
v1, v2 such that |v1−v2| ≤ C(ρ1, ρ2, P ). Up to reducing C, we can suppose that all six eigenvalues are
different from v · ξ. Since the six eigenvalues are distinct, there exist six corresponding eigenvectors.
We are thus left to find three independent eigenvectors for the eigenvalue λ = v · ξ. The matrix
A(Y, ξ)− (v · ξ)Id is given by

A(Y, ξ)− (v · ξ)Id =


v2 · ξ − v · ξ ρ2ξ

T 0 0 0
αξ ξ(v2 − v)T (β + P/ρ)ξ 0 C(ξ)
0 0 0 ρξT 0
δξ 0 (γ + P/ρ)ξ 0 C(ξ)
0 0 0 D(ξ) 0


Let X be an eigenvector of A(Y, ξ) for the eigenvalue (v ·ξ). We write X as a block vector compatible
with A(Y, ξ) and solve the linear system [A(Y, ξ)− (v · ξ)Id]X = 0. After some computations, we
obtain the following three independent eigenvectors:

(3.8) X1 =


0
0
0
0
u1

 , X2 =


0
ξ⊥

(v2−v)·ξ⊥
γ−β

0
u2

 , X3 =


ρ2

(v · ξ − v2 · ξ)ξ
ρ2δ−ρ2α+[(v2−v)·ξ]2

β−γ

0
u3

 ,

where ξ⊥, u1, u2, u3 ∈ R2 are four vectors such that

ξ⊥ ̸= 0, ξ · ξ⊥ = 0, u1 ̸= 0, C(ξ)u1 = 0, C(ξ)u2 = − (v2 − v) · ξ⊥

γ − β

(
γ +

P

ρ

)
ξ,

and

C(ξ)u3 =

[
−ρ2δ −

ρ2δ − ρ2α+ [(v2 − v) · ξ]2

β − γ

(
γ +

P

ρ

)]
ξ.

In order to see that the three vectors are well defined, we first note that γ − β = ρ1(b− a1)/ρ ̸= 0,
since otherwise b = a1 and from a1a2 = b2 one obtains a1 = a2 = b, which is incompatible with the
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assumption that a1 + a2 − 2b > 0. Furthermore, we see that the matrix C(ξ) has always a rank 2
submatrix when ξ ̸= 0, which implies that C(ξ) is onto and the dimension of its kernel is one. Thus
the vectors u1, u2, u3 are well defined. Hence the matrix A(Y, ξ) is diagonalizable and System (1.10)
is only weakly hyperbolic.

Case of the system without lift terms. Finally, let us investigate the case where the lift terms vanish.
In this case, the characteristic polynomial is given by

χA′(Y,ξ)(λ) = (v2 · ξ − λ)(v · ξ − λ)2[(v · ξ − λ)2 − ξTPξ]q(λ).

When v1 = v2 = v, it follows from the case d = 1 that q(λ) has four distinct real roots, given by

λ1± = v · ξ ±√
r+, λ2± = v · ξ ±√

r−.

Hence there exists a constant C = C(ρ1, ρ2, P ) such that q has four distinct real roots, for any
|v1 − v2| < C(ρ1, ρ2, P ). This implies that χA′(Y,ξ) also only has real roots for these values of v1, v2.
As in the previous case, up to reducing C, we can assume that the roots of q are distinct from v · ξ,
from v2 · ξ and from v · ξ ±

√
ξTPξ by using the condition ρP < θId or ρP > θId. It follows that

most of the eigenvalues have a multiplicity one, except for v · ξ, which has multiplicity two (or three
if v2 · ξ = v · ξ). Thus we need to find two eigenvectors for this eigenvalue v · ξ, and three when
v2 · ξ = v · ξ. We compute that

A′(Y, ξ)− (v · ξ)Id =


v2 · ξ − v · ξ ρ2ξ

T 0 0 0
αξ (v2 · ξ − v · ξ)Id (β + P/ρ)ξ 0 C(ξ)
0 0 0 ρξT 0
δξ 0 (γ + P/ρ)ξ 0 C(ξ)
0 0 0 D(ξ) 0


We find two independent eigenvectors, given by

(3.9) X1 =


0
0
0
0
u1

 and X3 =


ρ2

(v2 · ξ − v · ξ)ξ
ρ2(α−δ)+(v2·ξ−v·ξ)2

γ−β

0
u3

 ,

where u1 ̸= 0, C(ξ)u1 = 0 and

C(ξ)u3 =

[
−ρ2δ −

ρ2δ − ρ2α+ [(v2 − v) · ξ]2

β − γ

(
γ +

P

ρ

)]
ξ.

Note that, when v2 · ξ = v · ξ, a third eigenvector for the eigenvalue v · ξ is

(3.10) X2 =


0
ξ⊥

0
0
0

 with ξ⊥ ̸= 0 and ξT ξ⊥ = 0.

Finally, we can show that the condition ρP < θId or ρP > θId is necessary for the hyperbolicity
of System (1.16). Indeed, if this condition does not hold, one can find a vector ξ such that |ξ| = 1

and that q(v · ξ ±
√
ξTPξ) = 0, whenever v1 and v2 are close enough. In this case, v · ξ ±

√
ξTPξ

is a root of χA′(Y,ξ) of multiplicity two. However, computations show that the kernel of the matrix

A′(Y, ξ)−(v ·ξ±
√

ξTPξ)Id is always of dimension 1. Hence the matrix A′(Y, ξ) is not diagonalisable
in this case and System (1.16) is not hyperbolic.

□
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3.3. Case d = 3. In dimension 3, we need to prove the following proposition:

Proposition 4. Let θ be defined as in Equation (1.17) of Theorem (1):

θ := ρ1ρ2 (
√
a1 −

√
a2)

2 − 1

2
(ρ1

√
a1 + ρ2

√
a2)

2
.

If ρP < θId or ρP > θId, there exists C = C(ρ1, ρ2, P ) > 0 such that System (1.16) is hyperbolic,
whenever |v1 − v2| < C. Under these assumptions, System (1.10) is weakly hyperbolic.

Proof. We first prove the result concerning System (1.10). When d = 3, the characteristic polynomial
of the system is given by

χA(Y,ξ) = (v · ξ − λ)6
[
(v · ξ − λ)2 − ξTPξ

]
q̃(λ),

with

q̃(λ) =
[
(v · ξ − λ)2 − ξTPξ

]
q(λ) + 2ρ2δ(v · ξ − λ)(v2 − v)T

[
P − (ξTPξ)

]
ξ

and q(λ) was defined in Equation (3.2). When ξ is such that

(3.11) (v2 − v)T
[
P − (ξTPξ)

]
ξ = 0,

the characteristic polynomial can be written

χA(Y,ξ) = (v · ξ − λ)6
[
(v · ξ − λ)2 − ξTPξ

]2
q(λ).

Hence the algebraic multiplicity of v · ξ±
√
ξTPξ is equal to two. However, computations show that

the geometric multiplicity of this eigenvalue is equal to two if and only if the vectors v2 − v and ξ
are proportional, and is equal to one when it is not the case. Since Equation (3.11) can be satisfied
even when ξ and v2−v are not proportional (for instance when ξ is an eigenvector of P ), the matrix
A(Y, ξ) is not diagonalizable for every ξ and System (1.10) is not hyperbolic in dimension 3.

Case of the system without lift terms. Let us now consider System (1.16). When d = 3,

χA′(Y,ξ) = (v2 · ξ − λ)2(v · ξ − λ)4
[
(v · ξ − λ)2 − ξTPξ

]2
q(λ).

From the case d = 1, there exists C = C(ρ1, ρ2, P ) > 0 such that q has four distinct real roots
whenever |v1− v2| < C. Up to reducing C, we can suppose that the four roots of q are distinct from

v · ξ, from v2 · ξ and from v · ξ ±
√

ξTPξ.
We are thus left to find two independent eigenvectors for the eigenvalue v2·ξ, four for the eigenvalue

v · ξ and two for the eigenvalues v · ξ±
√
ξTPξ. First, we see that the matrix C(ξ) is of rank 3 since

it always has an invertible 3 × 3 submatrix. Thus the dimension of its kernel is also 3. Hence the
formulas for the vectors X1 and X3, that were defined in Equation (3.9) for the case d = 2 already
provide 4 independent eigenvectors. Similarly, the subspace which is orthogonal to ξ is of dimension
2 when d = 3, hence the Equation (3.10) defines two independent eigenvectors for the eigenvalue
v2 · ξ.

Finally, the matrix A′(Y, ξ)− (v · ξ ∓
√
ξTPξ)Id is equal to

v2 · ξ − v · ξ ±
√
ξTPξ ρ2ξ

T 0 0 0

αξ (v2 · ξ − v · ξ ±
√

ξTPξ)Id (β + P/ρ)ξ 0 C(ξ)

0 0 ±
√

ξTPξ ρξT 0

δξ 0 (γ + P/ρ)ξ ±
√

ξTPξId C(ξ)

0 0 0 D(ξ) ±
√

ξTPξId

 .
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We obtain two eigenvectors of the form

X4 =


0

±
√

ξTPξξ⊥

0

(v2 · ξ − v · ξ ±
√

ξTPξ)ξ⊥

∓v2·ξ−v·ξ±
√

ξTPξ√
ξTPξ

D(ξ)ξ⊥

 , where ξ⊥ ̸= 0 and ξT ξ⊥ = 0.

Hence A′(Y, ξ) is diagonalizable and System (1.16) is hyperbolic.
□

4. Other models

This section is devoted to the proofs of Theorems 2, 3 and 4. The proofs of these theorems is
very similar to the proof of Theorem 1. As a consequence, the proofs are given without detailed
computations.

4.1. Case where the turbulence is carried by one phase. In this part, we give the proof of
Theorem 2. We thus consider a two-phase flow for which one of the two phases, say the phase 2, is
turbulent. In other words, instead of assuming that the turbulence is created by the mixture of the
two phases, as it was the case in System (1.10), we supppose that it is intrinsic to the phase 2. We
choose for this two-phase flow the Lagrangian defined in Equation (1.19):

(4.1) L :=
1

2
ρ1|v1|2 +

1

2
ρ2|v2|2 − ρ1E1

(
ρ1
α1

)
− ρ2E2

(
ρ2
α2

)
− 1

2
ρ2Tr(P2).

We use the superscript 2 for the tensor P2 to insist on the fact that it is carried by the phase two.
as a consequence, we assume that the evolution of P2 is given by Equation (1.20):

(4.2) ∂tP2 + (v2 · ∇)P2 +
∂v2
∂x

P2 + P2

(
∂v2
∂x

)T

= 0.

We impose again the conservation of the two densities:

(4.3) ∂tρi + div(ρivi) = 0, i = 1, 2.

We also define, for i = 1; 2, the trajectory followed by the particles of the phase i, denoted xi, such
that

∂txi(t,X) = vi(t, xi(t,X)), xi(0, X) = X.

The action associated to the Lagrangien (4.1) is given by

A
[
x1, x2, α

l
1

]
:=

∫ T

0

∫
Ω

L.

One can apply the stationary action principle under the constraints given by (4.3) and (4.2) to
obtain the following system:

∂tρi + div(ρivi) = 0, i = 1, 2,(4.4a)

∂tv1 + (v1 · ∇v1) +∇(U1) = 0,(4.4b)

∂tv2 + (v2 · ∇v2) +∇(U2) +
1

ρ2
div(ρ2P2)

T = 0,(4.4c)

∂tP2 + (v2 · ∇)P2 +
∂v2
∂x

P2 + P2

(
∂v2
∂x

)T

= 0.(4.4d)
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The potentials U1 and U2 are defined as in Section 1. The conservation of total momentum still
holds:

∂t(ρ1v1 + ρ2v2) + div (ρ1v1 ⊗ v1 + ρ2v2 ⊗ v2 + pId + ρ2P2)
T
= 0,

as well as the conservation of energy:

∂t(e1 + e2) + div (e1v1 + e2v2 + p(α1v1 + α2v2) + ρ2P2v2) = 0,

where

e1 :=
1

2
ρ1|v1|2 + ρ1E1

(
ρ1
α1

)
, e2 :=

1

2
ρ2|v2|2 + ρ2E2

(
ρ2
α2

)
+

1

2
ρ2Tr(P2)

and

p :=

(
ρ1
α1

)2

E ′
1

(
ρ1
α1

)
=

(
ρ2
α2

)2

E ′
2

(
ρ2
α2

)
.

We now recall the main result about System (4.4):

Proposition 5. The hyperbolicity of System (4.4) can be caracterized as follows:

• When d = 1, System (4.4) is hyperbolic for small relative velocity |v1 − v2|, i.e. there exists
C = C(ρ1, ρ2, P2) > 0 such that (4.4) is hyperbolic when |v1 − v2| ≤ C.

• When d = 2, 3 let

µ := ρ1a1 −
1

2
ρ2a2

and assume that either P2 > µId or P2 < µId. Then (4.4) is hyperbolic whenever |v1−v2| ≤
C.

Proof. We use here the notations of Section 3. The matrix of System (4.4) is given by

B(Y, ξ) :=


v1 · ξ ρ1ξ

T 0 0 0
a1ξ (v1 · ξ)Id bξ 0 0
0 0 v2 · ξ ρ2ξ

T 0
bξ 0 (a2 +

P2

ρ2
)ξ (v2 · ξ)Id C(ξ)

0 0 0 D(ξ) (v2 · ξ)Id


We compute that the characteristic polynomial χB(Y,ξ) of this matrix is given by

χB(Y,ξ)(λ) = (v1 · ξ − λ)d−1(v2 · ξ − λ)d(d−1)/2+1
[
(v2 · ξ − λ)2 − ξTP2ξ

]d−2
q0(λ),

where
q0(λ) :=

[
(v1 · ξ − λ)2 − ρ1a1

] [
(v2 · ξ − λ)2 − ρ2a2 − 3ξTP2ξ

]
− ρ1ρ2b

2.

Let us show that q0 has four distinct real roots when v1 and v2 are close. When v1 = v2 = v, let us
denote X := (v · ξ − λ)2. Then

q0(λ) = X2 −
(
ρ1a1 + ρ2a2 + 3ξTP2ξ

)
X + 3ξTP2ξρ1a1 =: Q0(X).

Hence q0(λ) = 0 if and only if Q0(X) = 0. The roots of Q0 are given by

r± =
ρ1a1 + ρ2a2 + 3ξTP2ξ ±

√
∆

2
,

where

∆ :=(ρ1a1 + ρ2a2 + 3ξTP2ξ)
2 − 12ξTP2ξρ1a1

=(ρ1a1 − ρ2a2 − 3ξTP2ξ)
2 + 4ρ1ρ2a1a2 > 0.

Hence r± > 0 and q0 has four distinct real roots, given by

λ1± := v · ξ ±√
r+, λ2± := v · ξ ±√

r−.
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By continuity, there exists C = C(ρ1, ρ2, P2) > 0 such that q0 has four distinct real roots, for any
|v1 − v2| < C. For these values of |v1 − v2|, χB(Y,ξ) has only real roots. Since r± > 0, the roots of q0
are distinct from v · ξ. The assumption P2 < µId or P2 > µId ensures that the roots of q0 are also

distinct from v · ξ ±
√

ξTP2ξ. Thus, up to reducing C, we can always assume that the roots of q0
are roots of χB(Y,ξ) of multiplicity one. It follows that v1 · ξ is a root of multiplicity d− 1, v2 · ξ is

of multiplicity d(d− 1)/2 + 1 and v2 · ξ ±
√

ξTP2ξ is of multiplicity d− 1.
Let us show that B(Y, ξ) is diagonalizable. We see that we can find d − 1 eigenvectors for the

eigenvalue v1 · ξ which are of the form

X1 :=


0
ξ⊥

0
0
0

 , where ξ⊥ ̸= 0 and ξT ξ⊥ = 0.

For the eigenvalue v2 · ξ, we can find d(d− 1)/2 + 1 eigenvectors of the form

X2 :=


0
0
0
0
u1

 and X3 :=


ρ1

(v2 · ξ − v1 · ξ)ξ
(v1·ξ−v2·ξ)2−ρ1a1

b
0
u2

 ,

where u1 ̸= 0, C(ξ)u1 = 0, and

C(ξ)u2 =

[
ρ1a1 − (v1 · ξ − v2 · ξ)2

b

(
a2 +

P2

ρ2

)
− ρ1b

]
ξ.

Note that C(ξ) is a matrix of size d(d+ 1)/2× d and of rank d, hence the dimension of its kernel is
d(d− 1)/2.

Finally, we can find d− 1 eigenvectors corresponding to the eigenvalue v2 · ξ ±
√
ξTP2ξ, given by

X4 :=


0
0
0
ξ⊥

± 1√
ξTP2ξ

D(ξ)ξ⊥

 , where ξ⊥ ̸= 0 and ξT ξ⊥ = 0.

Hence B(Y, ξ) is diagonalizable and System (4.4) is hyperbolic.
□

4.2. Case where each phase is turbulent. We now give the proof of Theorem 2. We thus
consider a two-phase flow in which each phase is endowed with a Reynolds stress tensor denoted Pi,
i = 1, 2. The Lagrangian density is the following:

(4.5) L :=
1

2
ρ1|v1|2 +

1

2
ρ2|v2|2 − ρ1E1

(
ρ1
α1

)
− ρ2E2

(
ρ2
α2

)
− 1

2
ρ1Tr(P1)−

1

2
ρ2Tr(P2).

The densities are still conserved:

∂tρi + div(ρivi) = 0, i = 1, 2.

The evolution equations for P1, P2 are given by

∂tPi + (vi · ∇)Pi +
∂vi
∂x

Pi + Pi

(
∂vi
∂x

)T

= 0, i = 1, 2.
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The action associated to the Lagrangian density (1.22) is

A
[
x1, x2, α

l
1

]
:=

∫ T

0

∫
Ω

L,

where the trajectories xi are defined by

∂txi(t,X) = vi(t, xi(t,X)), xi(0, X) = X.

The stationary action principle then gives the following system of equations:

∂tρi + div(ρivi) = 0, i = 1, 2,(4.6a)

∂tvi + (vi · ∇vi) +∇(Ui) +
1

ρi
div(ρiPi)

T = 0, i = 1, 2(4.6b)

∂tPi + (vi · ∇)Pi +
∂vi
∂x

Pi + Pi

(
∂vi
∂x

)T

= 0 i = 1, 2.(4.6c)

The potentials U1 and U2 are defined as in Section 1. The conservation of total momentum still
holds:

∂t(ρ1v1 + ρ2v2) + div (ρ1v1 ⊗ v1 + ρ2v2 ⊗ v2 + pId + ρ1P1 + ρ2P2)
T
= 0,

as well as the conservation of energy:

∂t(e1 + e2) + div (e1v1 + e2v2 + p(α1v1 + α2v2) + ρ1P1v1 + ρ2P2v2) = 0,

where

e1 :=
1

2
ρ1|v1|2 + ρ1E1

(
ρ1
α1

)
+

1

2
ρ1Tr(P1), e2 :=

1

2
ρ2|v2|2 + ρ2E2

(
ρ2
α2

)
+

1

2
ρ2Tr(P2)

and

p :=

(
ρ1
α1

)2

E ′
1

(
ρ1
α1

)
=

(
ρ2
α2

)2

E ′
2

(
ρ2
α2

)
.

We now state the main result about System (4.6):

Proposition 6. The hyperbolicity of System (4.6) can be caracterized as follows:

• When d = 1, System (4.6) is hyperbolic for small relative velocity |v1 − v2|, i.e. there exists
C = C(ρ1, ρ2, P2) > 0 such that (4.4) is hyperbolic when |v1 − v2| ≤ C.

• When d = 2, 3 assume that

(4.7)
1

3
P1 ≤ P2 ≤ 3P1.

Then (4.4) is hyperbolic whenever |v1 − v2| ≤ C.

Proof. We use here the notations of Section 3. The matrix of System (4.4) is given by

C(Y, ξ) :=



v1 · ξ ρ1ξ
T 0 0 0 0

(a1 +
P1

ρ1
)ξ (v1 · ξ)Id C(ξ) bξ 0 0

0 D1(ξ) (v1 · ξ)Id 0 0 0
0 0 0 v2 · ξ ρ2ξ

T 0
bξ 0 0 (a2 +

P2

ρ2
)ξ (v2 · ξ)Id C(ξ)

0 0 0 0 D2(ξ) (v2 · ξ)Id

 ,
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where

Y :=



ρ1
v1
P̃1

ρ2
v2
P̃2


and Di(ξ) is defined as in Section 3, but with Pi instead of P (i = 1, 2). We compute that the
characteristic polynomial χC(Y,ξ) of this matrix is given by

χC(Y,ξ)(λ) =(v1 · ξ − λ)d(d−1)/2+1
[
(v1 · ξ − λ)2 − ξTP1ξ

]d−2

× (v2 · ξ − λ)d(d−1)/2+1
[
(v2 · ξ − λ)2 − ξTP2ξ

]d−2
q1(λ),

where

q1(λ) :=
[
(v1 · ξ − λ)2 − ρ1a1 − 3ξTP1ξ

] [
(v2 · ξ − λ)2 − ρ2a2 − 3ξTP2ξ

]
− ρ1ρ2b

2.

Let us show that q1 has four distinct real roots when v1 and v2 are close. When v1 = v2 = v, let us
denote X := (v · ξ − λ)2. Then

q1(λ) = X2 −
(
ρ1a1 + ρ2a2 + 3ξTP1ξ + 3ξTP2ξ

)
X + (ρ1a1 + 3ξTP1ξ)(ρ2a2 + 3ξTP2ξ)− ρ1ρ2a1a2

=: Q1(X).

Hence q1(λ) = 0 if and only if Q1(X) = 0. The roots of Q1 are given by

r± =
ρ1a1 + ρ2a2 + 3ξTP1ξ + 3ξTP2ξ ±

√
∆

2
,

where

∆ :=(ρ1a1 + ρ2a2 + 3ξTP1ξ + 3ξTP2ξ)
2 − 4

[
(ρ1a1 + 3ξTP1ξ)(ρ2a2 + 3ξTP2ξ)− ρ1ρ2a1a2

]
=(ρ1a1 + 3ξTP1ξ − ρ2a2 − 3ξTP2ξ)

2 + 4ρ1ρ2a1a2 > 0.

Hence r± > 0 and q1 has four distinct real roots, given by

λ1± := v · ξ ±√
r+, λ2± := v · ξ ±√

r−.

By continuity, there exists C = C(ρ1, ρ2, P2) > 0 such that q1 has four distinct real roots, for any
|v1 − v2| < C. For these values of |v1 − v2|, χC(Y,ξ) has only real roots. Since r± > 0, the roots of
q1 are distinct from v · ξ. The assumption (1.24) ensures that the roots of q1 are also distinct from

v · ξ ±
√
ξTPiξ for i = 1, 2. Thus, up to reducing C, we can always assume that the roots of q1 are

roots of χC(Y,ξ) of multiplicity one. It follows that vi · ξ is a root of multiplicity d(d− 1)/2 + 1 and

vi · ξ ±
√

ξTPiξ is of multiplicity d− 1, for i = 1, 2.
Let us show that C(Y, ξ) is diagonalizable. We see that we can find d(d − 1)/2 + 1 eigenvectors

for the eigenvalue v1 · ξ which are of the form

X1 :=


0
0
u1

0
0
0

 and X2 :=



ρ2a2 + 3ξTP2ξ − (v2 · ξ − v1 · ξ)2
0
u2

−ρ2b
v2·ξ−v1·ξ

ξTP2ξ−(v2·ξ−v1·ξ)2 [3ξ
TP2ξ − (v2 · ξ − v1 · ξ)2 − 2P2]bξ

1
(v2·ξ−v1·ξ)2−ξTP2ξ

D2(ξ)[3ξ
TP2ξ − (v2 · ξ − v1 · ξ)2 − 2P2]bξ

 ,
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where u1 ̸= 0, C(ξ)u1 = 0, and

C(ξ)u2 =

[
ρ2b

2 −
[
ρ2a2 + 3ξTP2ξ − (v2 · ξ − v1 · ξ)2

](
a1 +

P1

ρ1

)]
ξ.

Note that C(ξ) is a matrix of size d(d+ 1)/2× d and of rank d, hence it is onto and the dimension
of its kernel is d(d− 1)/2.

We can also find d− 1 eigenvectors corresponding to the eigenvalue v1 · ξ ±
√
ξTP1ξ, given by

X3 :=



0
ξ⊥

± 1√
ξTPξ

D(ξ)ξ⊥

0
0
0


, where ξ⊥ ̸= 0 and ξT ξ⊥ = 0.

Since the system is invariant under permutation of indices 1 ↔ 2, one can find similar eigenvectors

for the eigenvalues v2 · ξ and v2 · ξ ±
√
ξTP2ξ. Hence C(Y, ξ) is diagonalizable and System (4.6) is

hyperbolic.
□

4.3. Other systems. In the previous sections, we showed that the presence of turbulence in a two-
phase flow, modeled by a Reynolds tensor, enables to obtain a hyperbolic system coming from a
variational principle. We showed that the turbulence can be added in various ways and gave three
different examples. Theorem 4 states that the three examples given previously are the only ones for
which the system of equations obtained is hyperbolic. Recall the statement of Theorem 4:

Theorem. Consider the following general Lagrangian density:

(4.8) L :=
1

2
ρ1|v1|2 +

1

2
ρ2|v2|2 − ρ1E1

(
ρ1
α1

)
− ρ2E2

(
ρ2
α2

)
− 1

2
rTr(P ),

endowed with the constraints

(4.9) ∂tρi + div(ρivi) = 0, i = 1, 2

and

(4.10) ∂tP + (u · ∇)P +
∂u

∂x
P + P

(
∂u

∂x

)T

= 0,

where
(r, u) ∈ {ρ1, ρ2, ρ} × {v1, v2, v}.

Let us consider the system formed by Equations (4.9), (4.10) and the Euler-Lagrange equations
associated to the Lagrangian density (4.8). We denote by M the matrix of this system. Then, in
dimension 1, all the eigenvalues of M are real when v1 = v2, whatever the choice of convex internal
energies ρEi(ρ), i = 1, 2, if and only if the density r and the velocity u are compatible, i.e. the
following equation is satisfied:

∂tr + div(ru) = 0.

Proof. We treat each possible value of (r, u) ∈ {ρ1, ρ2, ρ} × {v1, v2, v} separately. The case (r, u) =
(ρ, v) was treated in the study of System (1.10). The case (r, u) = (ρ2, v2) was treated in the study
of System (4.4). By symmetry, we are left to study the three following cases:

• (r, u) = (ρ1, v2)
• (r, u) = (ρ, v2)
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• (r, u) = (ρ1, v)

4.3.1. Case (r, u) = (ρ1, v2). We obtain the following system:

∂tρi + div(ρivi) = 0, i = 1, 2,

∂tv1 + (v1 · ∇)v1 +∇(U1 +
1

2
TrP ) = 0,

∂tv2 + (v2 · ∇)v2 +∇(U2) +
1

ρ2
div(ρ1P )T − ρ1

2ρ2
∇(TrP ) = 0,

∂tP + (v2 · ∇)P +
∂v2
∂x

P + P

(
∂v2
∂x

)T

= 0.

In 1d, the characteristic polynomial is given by

χ(λ) =(v2 − λ)
[
(v1 − λ)2(v2 − λ)2 − ρ1a1(v2 − λ)2

−ρ2

(
a2 + ρ1

P

ρ22

)
(v1 − λ)2 + ρ1ρ2

[
a1

(
a2 + ρ1

P

ρ22

)
−
(
b+

P

ρ2

)2
]]

.

Let us look at the case v1 = v2 = v. If we denote X := (v − λ)2, we get that

χ(λ)

v − λ
= X2 −

(
ρ1a1 + ρ2a2 +

ρ1P

ρ2

)
X + ρ1ρ2

[
a1

(
a2 +

ρ1P

ρ22

)
−
(
b+

P

ρ2

)2
]
=: Q(X).

The discriminant of Q(X) is

∆ :=

(
ρ1a1 + ρ2a2 +

ρ1P

ρ2

)2

− 4ρ1ρ2

[
a1

(
a2 +

ρ1P

ρ22

)
−
(
b+

P

ρ2

)2
]

=

(
ρ1a1 − ρ2a2 −

ρ1P

ρ2

)2

+ 4ρ1ρ2

(
b+

P

ρ2

)2

> 0.

Hence Q has two real roots. This gives four roots for χ. In order that the roots of χ be real, the
roots of Q have to be positive. This gives the condition

0 < a1

(
a2 +

ρ1P

ρ22

)
−
(
b+

P

ρ2

)2

=
P

ρ22
(ρ1a1 − 2ρ2b− P ) .

Hence there are some admissible values of a1, b, P such that χ has complex roots.

4.3.2. Case (r, u) = (ρ, v2). We obtain the following system:

∂tρi + div(ρivi) = 0, i = 1, 2,

∂tv1 + (v1 · ∇)v1 +∇(U1 +
1

2
TrP ) = 0,

∂tv2 + (v2 · ∇)v2 +∇(U2) +
1

ρ2
div(ρP )T − ρ1

2ρ2
∇(TrP ) = 0,

∂tP + (v2 · ∇)P +
∂v2
∂x

P + P

(
∂v2
∂x

)T

= 0.
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In 1d, the characteristic polynomial is given by

χ(λ) =(v2 − λ)
[
(v1 − λ)2(v2 − λ)2 − ρ1a1(v2 − λ)2

−ρ2

[
a2 + (ρ1 + 3ρ2)

P

ρ22

]
(v1 − λ)2 + ρ1ρ2

[
a1

(
a2 + (ρ1 + 3ρ2)

P

ρ22

)
−
(
b+

P

ρ2

)2
]]

.

Let us look at the case v1 = v2 = v. If we denote X := (v − λ)2, we get that

χ(λ)

v − λ
=X2 −

(
ρ1a1 + ρ2a2 + (ρ1 + 3ρ2)

P

ρ22

)
X + ρ1ρ2

[
a1

(
a2 + (ρ1 + 3ρ2)

P

ρ22

)
−
(
b+

P

ρ2

)2
]

= : Q(X).

The discriminant of Q(X) is

∆ :=

(
ρ1a1 + ρ2a2 + (ρ1 + 3ρ2)

P

ρ22

)2

− 4ρ1ρ2

[
a1

(
a2 + (ρ1 + 3ρ2)

P

ρ22

)
−
(
b+

P

ρ2

)2
]

=

(
ρ1a1 − ρ2a2 − (ρ1 + 3ρ2)

P

ρ22

)2

+ 4ρ1ρ2

(
b+

P

ρ2

)2

> 0.

Hence Q has two real roots. This gives four roots for χ. In order that the roots of χ be real, the
roots of Q have to be positive. This gives the condition

0 < a1

(
a2 + (ρ1 + 3ρ2)

P

ρ22

)
−
(
b+

P

ρ2

)2

=
P

ρ22
[(ρ1 + 3ρ2)a1 − 2ρ2b− P ] .

Hence there are some admissible values of a1, b, P such that χ has complex roots.

4.3.3. Case (r, u) = (ρ1, v). We obtain the following system:

∂tρi + div(ρivi) = 0, i = 1, 2,

∂tv1 + (v1 · ∇)v1 + curl(v2) ∧ (v − v1) +∇(U1) +
ρ2
2ρ

∇(TrP ) +
1

ρ
div(ρ1P )T = 0,

∂tv2 + (v2 · ∇)v2 + curl(v2) ∧ (v − v2) +∇(U2)−
ρ1
2ρ

∇(TrP ) +
1

ρ
div(ρ1P )T = 0,

∂tP + (v · ∇)P +
∂v

∂x
P + P

(
∂v

∂x

)T

= 0.

In 1d, the characteristic polynomial is given by

χ(λ) =

[
(v1 − λ)2(v2 − λ)2 − ρ1

(
a1 + 3

ρ1
ρ2

P + 2
ρ2
ρ2

P

)
(v2 − λ)2 − ρ2

(
a2 + ρ1

P

ρ2

)
(v1 − λ)2

+ρ1ρ2

[(
a1 + 3

ρ1
ρ2

P + 2
ρ2
ρ2

P

)(
a2 + ρ1

P

ρ2

)
−
(
b+ (2ρ1 + ρ2)

P

ρ2

)2
]]

(v − λ).

Let us look at the case v1 = v2 = v. If we denote X := (v − λ)2, we get that

χ(λ)

v − λ
=X2 −

[
ρ1

(
a1 + 3

ρ1
ρ2

P + 2
ρ2
ρ2

P

)
+ ρ2

(
a2 + ρ1

P

ρ2

)]
X

+ ρ1ρ2

[(
a1 + 3

ρ1
ρ2

P + 2
ρ2
ρ2

P

)(
a2 + ρ1

P

ρ2

)
−
(
b+ (2ρ1 + ρ2)

P

ρ2

)2
]
=: Q(X).
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The discriminant of Q(X) is

∆ :=

[
ρ1

(
a1 + 3

ρ1
ρ2

P + 2
ρ2
ρ2

P

)
+ ρ2

(
a2 + ρ1

P

ρ2

)]2
− 4ρ1ρ2

[(
a1 + 3

ρ1
ρ2

P + 2
ρ2
ρ2

P

)(
a2 + ρ1

P

ρ2

)
−
(
b+ (2ρ1 + ρ2)

P

ρ2

)2
]

=

[
ρ1

(
a1 + 3

ρ1
ρ2

P + 2
ρ2
ρ2

P

)
− ρ2

(
a2 + ρ1

P

ρ2

)]2
+ 4ρ1ρ2

(
b+ (2ρ1 + ρ2)

P

ρ2

)2

> 0.

Hence Q has two real roots. This gives four roots for χ. In order that the roots of χ be real, the
roots of Q have to be positive. This gives the condition

0 <

(
a1 + 3

ρ1
ρ2

P + 2
ρ2
ρ2

P

)(
a2 + ρ1

P

ρ2

)
−
(
b+ (2ρ1 + ρ2)

P

ρ2

)2

<
P

ρ2
(ρ1(a1 + a2 − 2b) + 2ρ(a2 − b)− P ) .

Hence there are some admissible values of a1, a2, b, P such that χ has complex roots.
□
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Appendix A. Computation of the characteristic polynomial

We compute here the characteristic polynomial of the matrix A(Y, ξ) given at the beginning of
Section 3, in order to get the eigenvalues of this matrix. We first state two lemmas which will be
useful in the proof.

Lemma 1. For any ξ ∈ Rd, one has C(ξ)D(ξ) = (ξTPξ)Id + PξξT , where C(ξ) and D(ξ) are the
matrices defined in the beginning of Section 3.

The proof of this lemma can be obtained by a direct computation. The second lemma is also
elementary:

Lemma 2. Let x, y ∈ Rd. Consider the matrix B := Id + xyT . Then the determinant of B is given
by det(B) = 1 + x · y. Furthermore, when det(B) ̸= 0,

B−1 = Id −
1

1 + x · y
xyT .

Proof. By density and continuity of the determinant, we can restrict ourselves to the case x · y ̸= 0.
We see that the linear space y⊥ is a subspace of the eigenspace of B associated to the eigenvalue
1, of dimension d − 1. Furthermore, x is an eigenvector of B for the eigenvalue 1 + x · y. Hence B
is diagonalizable and det(B) = 1 + x · y. The formula for B−1 can be checked by computing the
product BB−1. □
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We will proceed by using the Gaussian elimination method to obtain an upper block triangular
matrix. Since the matrix A(Y, ξ) is quite large, we will perform the operations on the blocks rather
than the coefficients. When doing this, one has to be careful that blocks generally do not commute
with each other. Hence it is important to keep in mind that operations on rows of blocks are
made through left multiplication, while operations on block columns are performed through right
multiplication. By definition, the characteristic polynomial of A(Y, ξ) is given by

χA(Y,ξ)(λ) :=

∣∣∣∣∣∣∣∣∣∣
v2 · ξ − λ ρ2ξ

T 0 0 0
αξ (v · ξ − λ)Id + ξ(v2 − v)T (β + P/ρ)ξ 0 C(ξ)
0 0 v · ξ − λ ρξT 0
δξ 0 (γ + P/ρ)ξ (v · ξ − λ)Id C(ξ)
0 0 0 D(ξ) (v · ξ − λ)Id

∣∣∣∣∣∣∣∣∣∣
.

We multiply the last block column by −(v · ξ−λ)−1D(ξ) and add it to the fourth block column. By
Lemma 1, the characteristic polynomial is equal to:

(A.1) χA(Y,ξ)(λ) =

∣∣∣∣∣∣∣∣∣∣
v2 · ξ − λ ρ2ξ

T 0 0 0
αξ (v · ξ − λ)Id + ξ(v2 − v)T (β + P/ρ)ξ N0 C(ξ)
0 0 v · ξ − λ ρξT 0
δξ 0 (γ + P/ρ)ξ M0 C(ξ)
0 0 0 0 (v · ξ − λ)Id

∣∣∣∣∣∣∣∣∣∣
.

where we defined

M0 :=
1

v · ξ − λ

(
[(v · ξ − λ)2 − ξTPξ]Id − PξξT

)
,

and

N0 :=
−1

v · ξ − λ

[
(ξTPξ)Id + PξξT

]
.

We now multiply the third block column of (A.1) by −ρξT /(v · ξ−λ) and add it to the fourth block
column. We obtain that

(A.2) χA(Y,ξ)(λ) =

∣∣∣∣∣∣∣∣∣∣
v2 · ξ − λ ρ2ξ

T 0 0 0
αξ (v · ξ − λ)Id + ξ(v2 − v)T (β + P/ρ)ξ N1 C(ξ)
0 0 v · ξ − λ 0 0
δξ 0 (γ + P/ρ)ξ M1 C(ξ)
0 0 0 0 (v · ξ − λ)Id

∣∣∣∣∣∣∣∣∣∣
,

where

(A.3) N1 :=
−1

v · ξ − λ

[
(ξTPξ)Id + 2PξξT + ρβξξT

]
,

and

M1 :=
1

v · ξ − λ

([
(v · ξ − λ)2 − ξTPξ

]
Id − 2PξξT − ργξξT

)
=
(v · ξ − λ)2 − ξTPξ

v · ξ − λ

[
Id −

1

(v · ξ − λ)2 − ξTPξ
(2P + ργ) ξξT

]
.
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By Lemma 2, it follows that

M−1
1 =

v · ξ − λ

(v · ξ − λ)2 − ξTPξ

[
Id +

1

1− 2ξTPξ+ργ
(v·ξ−λ)2−ξTPξ

1

(v · ξ − λ)2 − ξTPξ
(2P + ργ)ξξT

]

=
v · ξ − λ

(v · ξ − λ)2 − ξTPξ

[
Id +

1

(v · ξ − λ)2 − 3ξTPξ − ργ
(2P + ργ)ξξT

]
(A.4)

(recall that ξT ξ = 1). We now multiply the fourth block column of (A.2) by −M−1
1 δξ to the right

and add it to the first block column. We obtain that the charactersitic polynomial is equal to the
determinant of an upper block triangular matrix:

(A.5) χA(Y,ξ)(λ) =

∣∣∣∣B1 B2

0 B3

∣∣∣∣ = |B1||B3|,

where

B1 :=

(
v2 · ξ − λ ρ2ξ

T

αξ −N1M
−1
1 δξ (v · ξ − λ)Id + ξ(v2 − v)T

)
,

B2 :=

(
0 0 0

(β + P/ρ)ξ N1 C(ξ)

)
,

and

B3 :=

 v · ξ − λ 0 0
(γ + P/ρ)ξ M1 C(ξ)

0 0 (v · ξ − λ)Id

 .

In view of (A.5), we need to compute the determinants of the matrices B1 and B3. Since B3 is block
triangular, its determinant is equal to the product of the determinants of each diagonal block. By
Lemma 2,

|B3| =(v · ξ − λ)|M1||(v · ξ − λ)Id|

=(v · ξ − λ)

[
(v · ξ − λ)2 − ξTPξ

v · ξ − λ

]d(
1− 2ξTPξ + ργ

(v · ξ − λ)2 − ξTPξ

)
(v · ξ − λ)d(d+1)/2

=(v · ξ − λ)d(d−1)/2+1
[
(v · ξ − λ)2 − ξTPξ

]d−1 [
(v · ξ − λ)2 − 3ξTPξ − ργ

]
.

We now compute the determinant of B1. Let us define

(A.6) E := (v · ξ − λ)Id + ξ(v2 − v)T = (v · ξ − λ)

[
Id +

1

v · ξ − λ
ξ(v2 − v)T

]
.

By Lemma 2,
(A.7)

E−1 =
1

v · ξ − λ

[
Id −

1

1 + v2·ξ−v·ξ
v·ξ−λ

1

v · ξ − λ
ξ(v2 − v)T

]
=

1

v · ξ − λ

[
Id −

1

v2 · ξ − λ
ξ(v2 − v)T

]
.

We now multiply the second block row of B1 by −ρ2ξ
TE−1 and add it to the first block row. We

obtain that

|B1| =
∣∣∣∣v2 · ξ − λ− ρ2ξ

TE−1(αξ −N1M
−1
1 δξ) 0

αξ −N1M
−1
1 δξ E

∣∣∣∣
=
[
v2 · ξ − λ− ρ2ξ

TE−1(αξ −N1M
−1
1 δξ)

]
|E|.

By Lemma 2,

|E| = (v · ξ − λ)d
(
1 +

v2 · ξ − v · ξ
v · ξ − λ

)
= (v2 · ξ − λ)(v · ξ − λ)d−1.
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We are left to compute the scalar
[
v2 · ξ − λ− ρ2ξ

TE−1(αξ −N1M
−1
1 δξ)

]
. First, by Equation (A.7),

ξTE−1 =
1

v · ξ − λ
ξT − 1

(v · ξ − λ)(v2 · ξ − λ)
(v2 − v)T .

It follows that

ξTE−1ξ =
1

v2 · ξ − λ
.

On the other hand, Equation (A.4) gives that

M−1
1 ξ =

v · ξ − λ

(v · ξ − λ)2 − ξTPξ

[
1 +

1

(v · ξ − λ)2 − 3ξTPξ − ργ
(2P + ργ)

]
ξ.

Equation (A.3) then yields

N1M
−1
1 ξ =

−1

(v · ξ − λ)2 − ξTPξ

[
ξTPξ +

ξTPξ

(v · ξ − λ)2 − 3ξTPξ − ργ
(2P + ργ)

+(2P + ρβ)

(
1 +

2ξTPξ + ργ

(v · ξ − λ)2 − 3ξTPξ − ργ

)]
ξ

=
−1

(v · ξ − λ)2 − 3ξTPξ − ργ

[
ξTPξ

(v · ξ − λ)2 − 3ξTPξ

(v · ξ − λ)2 − ξTPξ
+

2(v · ξ − λ)2

(v · ξ − λ)2 − ξTPξ
P + ρβ

]
ξ

=
−1

(v · ξ − λ)2 − 3ξTPξ − ργ

[
ξTPξ + ρβ + 2

(v · ξ − λ)2P − (ξTPξ)2

(v · ξ − λ)2 − ξTPξ

]
ξ.(A.8)

Hence

ξTE−1N1M
−1
1 ξ

=
−1

(v · ξ − λ)2 − 3ξTPξ − ργ

[
ξTPξ + ρβ

v2 · ξ − λ
+

2ξTPξ

v · ξ − λ

−2
(v · ξ − λ)2(v2 − v)TPξ − (ξTPξ)2(v2 − v)T ξ

(v · ξ − λ)(v2 · ξ − λ)[(v · ξ − λ)2 − ξTPξ]

]
=

−1

[(v · ξ − λ)2 − 3ξTPξ − ργ] (v2 · ξ − λ)

[
3ξTPξ + ρβ +

2(v · ξ − λ)(v2 − v)T
[
(ξTPξ)− P

]
ξ

(v · ξ − λ)2 − ξTPξ

]
,

and

v2 · ξ − λ− ρ2ξ
TE−1(αξ −N1M

−1
1 δξ)

=v2 · ξ − λ− αρ2
v2 · ξ − λ

− ρ2δ

[(v · ξ − λ)2 − 3ξTPξ − ργ] (v2 · ξ − λ)

[
3ξTPξ + ρβ +

2(v · ξ − λ)(v2 − v)T
[
(ξTPξ)− P

]
ξ

(v · ξ − λ)2 − ξTPξ

]

=

[
(v2 · ξ − λ)2 − αρ2

] [
(v · ξ − λ)2 − 3ξTPξ − ργ

]
− ρ2δ

(
3ξTPξ + ρβ

)
(v2 · ξ − λ) [(v · ξ − λ)2 − 3ξTPξ − ργ]

+
2ρ2δ(v · ξ − λ)(v2 − v)T

[
P − (ξTPξ)

]
ξ

(v2 · ξ − λ) [(v · ξ − λ)2 − 3ξTPξ − ργ] [(v · ξ − λ)2 − ξTPξ]
.

Finally,

χA(Y,ξ)(λ) =(v · ξ − λ)(d+2)(d−1)/2+1
[
(v · ξ − λ)2 − ξTPξ

]d−2

×
[
2ρ2δ(v · ξ − λ)(v2 − v)T

[
P − (ξTPξ)

]
ξ +

[
(v · ξ − λ)2 − ξTPξ

]
q(λ)

]
,
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where

q(λ) =:
[
(v2 · ξ − λ)2 − αρ2

] [
(v · ξ − λ)2 − 3ξTPξ − ργ

]
− ρ2δ

(
3ξTPξ + ρβ

)
,

as claimed in Proposition 1.

Case of the system without lift terms. When there are no lift terms the previous computations can
be adapted to compute the characteristic polynomial of the modified system. Let us also denote
A′(Y, ξ) the matrix of System (1.16). It is given by

A′(Y, ξ) =


v2 · ξ ρ2ξ

T 0 0 0
αξ (v2 · ξ)Id (β + P/ρ)ξ 0 C(ξ)
0 0 v · ξ ρξT 0
δξ 0 (γ + P/ρ)ξ (v · ξ)Id C(ξ)
0 0 0 D(ξ) (v · ξ)Id

 .

Thus the only difference is that one should replace the matrix E of (A.6) by

E′ := (v2 · ξ − λ)Id, hence E−1 =
1

v2 · ξ − λ
Id.

All computations of the proof stay unchanged until Equation (A.6). We deduce as in (A.5) that

χA′(Y,ξ) = |B1||B3|,

with

|B1| =
[
v2 · ξ − λ− ρ2ξ

TE′−1(αξ −N1M
−1
1 δξ)

]
|E′|

and

|B3| = (v · ξ − λ)d(d−1)/2+1
[
(v · ξ − λ)2 − ξTPξ

]d−1 [
(v · ξ − λ)2 − 3ξTPξ − ργ

]
as previously, substituting E′ to E. We compute that

|E′| = (v2 · ξ − λ)d, ξTE′−1ξ =
1

v2 · ξ − λ

and , with the help of (A.8),

ξTE′−1N1M1ξ = − 3ξTPξ + ρβ

[(v · ξ − λ)2 − 3ξTPξ − ργ] (v2 · ξ − λ)
.

Hence

|B1| = (v2 · ξ − λ)d−1

[
(v2 · ξ − λ)2 − ρ2α

] [
(v · ξ − λ)2 − 3ξTPξ − ργ

]
− ρ2δ[3ξ

TPξ + ρβ]

(v · ξ − λ)2 − 3ξTPξ − ργ
.

Finally, the characteristic polynomial is equal to

χA′(Y,ξ) = (v2 · ξ − λ)d−1(v · ξ − λ)d(d−1)/2+1
[
(v · ξ − λ)2 − ξTPξ

]d−1
q(λ),

where

q(λ) :=
[
(v2 · ξ − λ)2 − ρ2α

] [
(v · ξ − λ)2 − 3ξTPξ − ργ

]
− ρ2δ[3ξ

TPξ + ρβ].
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