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Abstract

The presence of conspecifics is a fundamental and arguably invariant prerequisite
of social cognition across numerous animal species. While the influence of social pres-
ence on behavior has been among the focal points of investigation in social psychol-
ogy for over a century, its underlying neural mechanisms remain largely unexplored.
Here, we attempt to bridge this gap by investigating how the presence of conspecifics
changes synaptic efficacy from measurements across spatiotemporal brain scales, and
how such changes could lead to modulations of task performance in monkeys and hu-
mans. In monkeys performing an association learning task, social presence increased
excitatory synaptic efficacy in attention-oriented regions dorsolateral prefrontal cor-
tex and anterior cingulate cortex. In humans performing a visuomotor task, the
presence of conspecifics facilitated performance in one of the subject groups, and
this facilitation was linked to enhanced excitatory synaptic efficacy within the dorsal
and ventral attention networks. We propose that presence-induced improvements in
task performance arise from attentional modulation mediated by changes in excita-
tory synaptic efficacy across three spatiotemporal brain scales, namely, micro-scale
(single neurons), meso-scale (cortical columns) and macro-scale (whole-brain). Our
findings from Bayesian learning converge to establish a novel, multi-scale framework
for understanding the neural underpinnings of social presence effects. This prob-
abilistic framework offers a fresh perspective on social presence research, and lays
the groundwork for future investigations into the complex interplay between social
presence, neural dynamics, and behavior.

Keywords: Social facilitation and impairment effects, Attentional modulation, Multi-scale
inference, Deep neural density estimators, Effective connectivity, Synaptic efficacy

1. Introduction

Social isolation wreaks havoc upon the brain [1]. Social cognition –with cognition
going beyond the scope of simple perception–, as with non-social cognition, hinges
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first and foremost on the capacity to perceive relevant stimuli in the environment,
namely social agents. Perception of members of the same species, formally referred
to as conspecifics, is therefore an integral –and seemingly primordial– prerequisite for
many forms of interaction, from cooperation to competition [2]. Despite the tremen-
dous effort for delineating the neural correlates of social cognition [3, 4], the literature
surrounding the exact neurobiological mechanism of the perception/awareness of oth-
ers’ mere presence –the most fundamental invariant aspect of social cognition in many,
if not all, animal species– is surprisingly scant. This sparsity might potentially stem
from the difficulty of decomposition of presence ‘stimuli’. While social perception is
undoubtedly a pivotal part of cognition in many mammalian species, it would stand
to reason that such a perception in each species would be predicated upon the sensory
modality towards which they are most adapted. For instance, humanoid primates
rely primarily on vision, while rodents rely on olfaction for recognition of other social
agents [5]. Decomposition of neural correlates of simple ‘presence’ from other as-
pects of perception might prove to be an intricate and highly complex endeavor. The
closest –and potentially feasible– logical avenue of investigation would be to analyze
the behavioral modulations resulting from the mere presence of conspecifics. Fortu-
itously, this avenue of research is among the oldest and most well-explored areas of
experimental social psychology [6, 7, 8, 9]. Indeed, social presence has been repeat-
edly shown to modulate behavior in a variety of animal species including human and
non-human primates [10, 11, 12, 13], and could be conceived as the closest avenue of
inquiry for investigating mere presence effects. Although such a modulation is com-
monly referred to as ‘social facilitation’, mere presence may actually either improve
(social facilitation) or impair (social impairment) performance, compared to isolation
depending on task complexity [8] and the more or less threatening and/or evaluative
nature of social presence [7]. While social facilitation/impairment (SFI) effects have
been relatively well-researched from a behavioral perspective, much remains to be
understood regarding its neural underpinnings [10].

Two main frameworks have been proposed regarding the underlying mechanisms
of SFI effects. Zajonc (1965) was the first to notice that the presence of others
(as observers or coactors) typically facilitates performance on easy or well-learned
tasks and impairs performance on difficult or poorly learned tasks. On the basis of
the Hull-Spence behaviorist theory of learning, conditioning, and motivation (well
accepted in the 1950s and 1960s), Zajonc suggested that the mere presence of con-
specifics energizes the emission of the dominant (habitual/prepotent or automatic)
responses. According to the Hull-Spence theory, the energization of dominant re-
sponses indeed improves performance in well-learned tasks in which, by definition,
correct responses are dominant and deteriorates performance in poorly learned tasks
in which errors are the most likely responses. Zajonc’s view of SFI effects found sup-
port in many studies using very different species whose dominant responses–whether
correct or incorrect–increased under social presence, compared with isolation. How-
ever, although Zajonc’s classic view remains the most common interpretation of SFI
effects (see also [14] for a motivational account close to Zajonc’s), there is a large
body of evidence that these effects can also involve attentional mechanisms [6], at
least in humans and nonhuman primates, either by facilitating attentional focusing
or by undermining cognitive control (which heavily relies on executive attention) in
self-threatening circumstances [13]. As for the neural correlates of other’s presence,
the scant number of existing studies provide further support for modulation of at-
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tentional regions/networks [15, 16, 10, 11]. However, the specific neural mechanisms
underlying SFI effects remain unclear. Given that some recent inquiries have pointed
to the existence of context-sensitive neural populations in prefrontal regions that are
preferentially active either during conspecific’s presence or absence, it would stand to
reason that the representative characteristics of the recruited neural ensembles during
others’ presence would differ from those observed during isolation [10]. Upon initial
glance, empirical investigations of these characteristics in higher primates face seem-
ingly insurmountable challenges. For one, the timescale of social facilitation effects
–by definition– precludes the possibility of in-vitro analyses in non-human primates.
Second, neuroimaging techniques in humans only provide derived measures of neural
activity (such as the scalp potential generated by the collective neuronal activity of
large populations in EEG or hemodynamic activity in fMRI), making it challenging to
directly reveal potential hidden causal mechanisms at the synaptic level. Through the
choice of appropriate computational models and probabilistic inference, however, one
could reasonably approximate the relation between measured neural activities and
specific model configurations (i.e., generative parameters). Dynamic causal modeling
(DCM; [17]) is a well-established statistical framework to reveal the hidden causal
mechanisms within neural subsystems –at lower levels– (e.g. synapses), from mea-
surements such as event-related potentials (ERPs) or EEG. In other words, such
Bayesian approach allows for creation and testing of in-silico hypotheses regarding
the causal mechanisms within biological neural networks and their contribution to
various cognitive processes or behaviors. In this context, the causal influence exerted
by one neural subsystem on another is commonly referred to as effective connectivity
[18, 19]. A large body of work supports the associations between attentional modu-
lation in the brain and changes in effective connectivity [20]. For instance, evidence
points to associations between motion-oriented area V5 and posterior parietal cortex
in attending to actions [20], prefrontal and premotor cortices during attention to vi-
sual motion [21], and between visual cortex and medial temporal lobe [22]. There has
even been evidence supporting a positive relation between increased attentional de-
mands of a task and enhanced effective connectivity within the descending attention
pathway [23]. This attentional modulation is supposedly achieved via optimization of
neural communication at the synaptic level through selective modification of synaptic
efficacy (SE), which serves as the neurobiological proxy for modulations in effective
connectivity [24]. It is important to note that synaptic inputs can stem from either
excitatory or inhibitory presynaptic cells, modulations of either of which could bear
strong consequences for Excitation/Inhibition (E/I) balance (i.e. in a degenerate
manner [25]). The E/I balance in neural networks is critical for maintaining stable
network activity, enabling efficient information processing. Moreover, disruptions
in E/I balance are commonly linked to cognitive deficits and various neurological
disorders, including ASD [26].

We hypothesize that modulation of brain dynamics –and their subsequent influ-
ence on behavior– due to mere presence could be reliably detected as variations of SE
across principal spatiotemporal scales of the primate brain. To test this hypothesis,
we employed the framework of DCM based on the data from our facilitation tasks
involving non-human and human primates (which are done either in the presence or
absence of a social conspecific), in order to link the modulations of task performance
to adaptations of SE across three brain scales, namely microscale (single neurons),
mesoscale (cortical columns), and macroscale (whole-brain).
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Although challenging, conducting DCM across brain scales can provide a more
comprehensive understanding of neural dynamics, potentially revealing a universal
principle of brain function. When leveraged with advanced probabilistic machine
learning techniques [27, 28, 29], this approach can operate across brain scales, en-
hancing the accuracy of models inferring the neural mechanisms underlying social
facilitation, as we demonstrate in this study. We achieved this by estimating synap-
tic efficacies across said scales using state-of-the-art deep neural density estimators
[30, 31, 29]. Tailored to Bayesian learning, a family of these generative models called
normalizing flows [31] applies a series of invertible mappings in order to efficiently
transform a simple base distribution into any complex target distribution. We em-
ploy this framework in the current study in order to calculate the distribution of
synaptic efficacies, given the summary statistics of empirical evidence. This is mo-
tivated by the theory of structured flows on manifold ([32, 33]), which posits that
brain dynamics and behavior are both constrained to low-dimensional subspaces and
are topologically equivalent.

In the following we will outline the association-learning and lateral-interception
tasks conducted in monkeys and humans, respectively. Subsequently, we will demon-
strate how presence modulates behavioral dynamics and identify neural correlates
of this modulation in the previously mentioned tasks. Finally, we use these neural
correlates as informative data features, in order to agnostically estimate synaptic ef-
ficacies across three spatiotemporal brain scales, namely microscale (single neurons),
mesoscale (cortical columns), and macroscale (whole-brain).

2. Results

2.1. Association learning in presence vs absence
Monkeys were trained on a touchscreen task to associate abstract cues with spe-

cific targets. The experiment consisted of two conditions: social presence and isola-
tion (details on housing and experimental setup provided in Supplementary subsec-
tion 6.1). During social presence trials (Figure 1A), monkeys faced each other, with
each taking on the role of either the actor (performing the task) or the passive spec-
tator (observing the actor). Only the actor interacted with the touchscreen, receiving
rewards for correct choices. Spectators remained unrewarded and never participated
in the same session as actors to prevent observational learning. Conversely, during
isolation trials (Figure 1B), monkeys performed the task alone, deprived of any vi-
sual, auditory, or olfactory contact with their conspecific. The behavioral data obtain
through this task indicated a social facilitation effect in both monkeys (see Figure S2,
generated from [10]).

2.2. Presence/Absence oriented neural ensembles
We discovered neural subpopulations in both dorsolateral prefrontal cortex (dlPFC)

and anterior cingulate cortex (ACC) that were preferentially active under one of the
two experimental conditions [10]. Neurons that fired more during the presence condi-
tion were thus categorized as ‘social neurons’, and those that fired more under social
isolation, as ‘asocial neurons’. This firing rate strongly correlated with both learning
speed and accuracy (trial-to-criterion) in the neurons’ preferred conditions (social
neurons under presence; asocial neurons under isolation), while exhibiting negative
correlations in the non-preferred conditions (Learning speed (Les): p < 0.001 for both
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Figure 1. Inference of microscale synaptic efficacy. A) Association learning task outline in Mon-
keys, during which subjects had to associate which of the four corners of the touchpad was associated
with the cue in order to obtain a food reward. B) The two experimental conditions in the association
learning task. C) Sample firing rates (top) and spike-rasters (bottom) of social (left) and asocial
(right) neurons. D) Correlation of the firing rate of social/asocial neurons with task performance.
E) Peak firing rate of all categorized neurons in the presence condition (blue) compared to the
absence (red) (p < 0.001). F) Average firing rate of the same neurons as in panel E. G) Linear
latent dynamics of single-neuron firing rates in the two experimental conditions. H) Sample firing
rate histogram (top) and spike-raster of simulations of the balanced spiking network. I) Sample
firing rate of simulations with random values of parameter g from prior distribution. J) Peak firing
rate of the model based on varying values of SE (bottom), and the histogram of said peaks (top).
This peak firing rate is used for training the deep neural density estimators. K) Empirical (dotted
lines) and posterior predictive fits (solid lines) of average firing rates in presence/absence. L) Pooled
distribution of inferred SE across all neurons (p < 0.0001). M) Distribution of inferred SE from the
average firing rates of the recorded regions (p < 0.0001).
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conditions, Accuracy (Acc): p < 0.01 in preferred, and p < 0.001 in non-preferred
conditions; Figure 1C,D). In addition, we found that the peak firing rates of neurons
in both of these subpopulations were significantly elevated in the presence condition
compared to the absence condition (p < 0.001; Figure 1E,F). To validate these
findings, we fitted the firing rate of all neurons in each condition to a linear dynam-
ical system to infer the latent dynamics (Methods subsection 5.13) in the presence
and absence conditions. By sampling from these learned dynamics, we observed that
changes in firing rate could be seen as variations in the decay rate (relaxation of
population activity; [34, 35]), which reflects the rate of convergence to the stable
fixed point of the linear system (Figure 1G). Functionally speaking, this framework
enabled us to estimate the rate by which the linear system (i.e. neural activity)
returns to its equilibrium after a perturbation in its measured output, revealing a
slower decay rate in the presence condition, compared to absence, which could hint
at a potential neuromodulatory role for others’ presence. However, none of the above
findings can directly elucidate how SE is altered in the presence of others.

2.3. Enhanced effective connectivity during conspecific presence at microscale
Understanding the underlying neurobiological mechanisms that drive changes in

neural firing rates is crucial for unraveling the complexities of neural computation
and communication. Task-oriented single neurons exhibit specific firing rate patterns
that are thought to influence the coarse-grain network dynamics. However, delineat-
ing the precise relationship between individual neuron activity and network dynamics
remains non-trivial. By using a balanced spiking neural network model [36], we aim
to bridge this gap. This model allows us to simulate and analyze how changes in SE
within the network can lead to changes in firing rates. The balanced nature of the
model ensures that excitatory and inhibitory inputs are finely tuned, mirroring the
conditions found in biological neural networks. This model (see Equation 1) com-
prises of one excitatory (n = 10000) and one inhibitory (n = 2500) subpopulation of
neurons (Figure 1H). The strength of connections between the two subpopulations
is scaled by negative g, where g parameter denotes the ratio of inhibitory to excita-
tory weights across the entire population. In other words, higher values of g in this
model translate to lower overall (regional) network activity (Figure 1J). To estimate
the posterior distribution of parameter g, we trained deep neural density estimators
(called neural spline flows; [31], Methods subsection 5.14) on the maximum firing rate
of the excitatory subpopulation from n = 10000 random simulations (Figure 1I,J).
After training, empirical data were used to estimate connectivity values that best
represent the averaged firing rate in each experimental condition. By random sam-
pling from the estimated posterior distribution, we achieved a close fit around the
peaks while maintaining a consistent baseline (Figure 1K). We found significant
decreases in parameter g not only in condition averages, but also when comparing
conditions across all neurons (p < 0.0001 for both pooled, and average firing rates;
Figure 1L,M). In sum, these findings demonstrate that conspecific’s presence leads
to an increase in effective connectivity between single neurons in attention-oriented
regions.

2.4. Increased local recurrent excitation during conspecific presence at mesoscale
A global change to effective connectivity between single neurons does not inform

us of the intricacies of how connectivity between different cortical subpopulations
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might be altered within a cortical column. To this end, we computed ERPs during
presence and absence conditions. We observed that not only the ERPs in the pres-
ence condition possess a significantly higher peak compared to the absence condition
(p < 0.001; Figure 2A,B), but also that the ratio of ERP peaks between conditions
was correlated with the ratio of behavioral performance (accuracy per session) be-
tween conditions (ρpearson = 0.33; Figure 2C). This finding is further validated by
the clear separation of the embeddings of ERPs (Methods subsection 5.5) between the
experimental conditions (Figure 2D). Evoked potentials typically measure synaptic
activity at the population level, making it computationally implausible to infer the
synaptic connection between every possible cortical subpopulation. Our model of
choice is a modified derivation of the Jansen-Rit neural mass model [37, 38] –capable
of generating evoked potentials (Figure 2E)– with three subpopulations comprising
pyramidal neurons (PNs), interneurons (INs), and stellate cells (SCs), which provides
a balance between computational efficiency and biological plausibility. The subpop-
ulations are connected by four effective connectivity parameters g1−4. The biological
plausibility of this model, however, translates to model degeneracy, where different
sets of input parameters could lead to identical model output. By fixing the model
time-scales at biological values (i.e., placing informative prior in Bayesian setting),
we therefore trained neural density estimators on peak evoked values obtained from
n = 10000 random simulations to approximate the joint posterior distribution of
effective connectivities. Our inferred distribution of peak evoked activity –in each
condition– shares similar characteristics with that of the empirical data, up to the
second order of statistical moments (p < 0.001; Figure 2F). To further validate the
estimation, we generated nonlinear latent dynamics from the learned connectivity
values for each experimental session/condition (Figure 2G). These dynamics collec-
tively formed the calculated embedding manifold, illustrating higher evoked activity
in the presence condition compared to absence (Figure 2H). Pooling the connec-
tivity distributions across all sessions, we found a significant difference between the
experimental conditions only with respect to the parameter g2, which provides local
recurrent excitation to pyramidal neurons (p < 0.0001, KS = 0.28; Figure 2I). This
parameter could therefore serve as the causal mechanism behind the observed in-
crease in ERP peak during the presence of conspecifics. Since the mean-field model
used in this scale makes the inference process computationally tractable, we ran
the current gold standard sampling algorithm for an asymptotically exact estima-
tion of connectives from ERPs (Supplementary subsection 6.6). Our results indicate
similar findings regarding the increased g2 during the presence of conspecifics, thus
enhanced SEe (see Supplementary Figure S10). This algorithmic consistency vali-
dates our Bayesian learning using low-dimensional data features for training neural
density estimators to conduct causal inference on SE. Finally, we computed the ex-
citatory (e) and inhibitory (i) postsynaptic potentials (EPSPs/IPSPs; Figure 2J) by
inserting the median of the pooled effective connectivity into the following equation:

PSPe/i = (ge/i
he/i

τe/i
)te

−t
τe/i where ge = g1 + g2 + g3 and gi = g4. This shift in g2

increases the E/I ratio, which could, in turn, be responsible for the observed increase
in peak evoked activity within the column (Figure 2J). While E/I ratios themselves
could be non-identifiable, in our case, the similar values of IPSPs from our results in
conjunction with elevated EPSPs during the presence condition alleviates this issue.
Therefore, we posit that mere presence effects could be only driven by enhanced SEe.
In the following, we investigate this hypothesis by performing inference from EEG
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recordings of a lateral-interception task at the whole-brain scale.

Figure 2. Inference of mesoscale synaptic efficacies. A) Feedback-locked empirical evoked po-
tentials across all sessions. B) Maximum amplitude of the empirical ERPs in presence vs absence
(p < 0.001). C) Correlation of between-condition ratio of ERP peak with behavioral performance
(accuracy). D) Embedding manifold of empirical ERPs. E) Sample of simulations used for training
the posterior density estimator. F) Peak amplitude of pyramidal neuron activity from posterior
predictive checks across the conditions (p < 0.001). G) Nonlinear latent space of the posterior
predictive check done on empirical ERPs. H) Embedding manifold of pyramidal neuron activity.
I) Pooled distribution of mesoscale synaptic efficacies across sessions. J) Computed excitatory and
inhibitory postsynaptic potentials in presence versus absence.

2.5. Motor responses in presence vs absence
While an increase in effective connectivity at micro/mesoscale is observed within

single regions, this finding does not immediately translate to modulations of whole-
brain dynamics. However, it is reasonable to hypothesize that sheer presence of
conspecifics would exert disparate dynamics in functional brain networks involved
in attention-modulated tasks. Not only that, the effects of social presence should
theoretically manifest across a wide array of cognitive tasks [11, 39]. To this end, we
designed a counter-balanced lateral interception task in which participants (n = 27,
nfemale = 14, nmale = 13) played a virtual game with varying ball velocities and
trajectories. The task involved intercepting a downward-moving ball on a large dis-
play using a handheld slider to control a virtual paddle on-screen (Figure 3A). After
each interception attempt, visual feedback was provided to the participant by briefly
changing the paddle color to green/red for successful or failed trials, respectively.
In the presence condition, the ‘observer’ sat in the participant’s peripheral vision,
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sometimes monitoring the hands of the ‘actor’ but not the screen, so as to minimize
evaluation-induced anxiety during the presence condition [40] (Figure 3B). Partici-
pants were unaware of the observer’s true purpose and were informed that they were
present to monitor equipment. In general, participants learned the task goal very
quickly and were consistent in pursuing the ball across trials (Figure 3C). Kinematic
and electrophysiological data (paddle movement and EEG activity) were recorded
during the task (see Methods subsection 5.8). Previous studies on social facilita-
tion have outlined the importance of using kinematic measures of performance in
motor tasks, such as movement speed/duration –and features thereof– as opposed
to outcome-based metrics such as accuracy or hit-rate [41]. Therefore, we analyzed
average and peak paddle velocity within a 700 ms window (half-width of the longest
trials) before the feedback time (Figure 3D). We found that average paddle speed
was significantly higher in the female subject group in the presence condition com-
pared to absence (p < 0.05; Figure 3E, left panel), whereas there was no significant
difference between the experimental conditions in the male subject group (p > 0.05;
Figure 3E, right panel), indicating a social facilitation effect for one subject group
only.

2.6. Increased intra-network integration during conspecific presence
Previous investigations have outlined the potential role of attention-oriented re-

gions/networks in social facilitation [10]. If attentional modulation could indeed
serve as the driving force underlying mere presence effects, one would expect to ob-
serve a higher correlation of activity in attention-oriented functional networks such
as dorsal/ventral attention network, and frontoparietal network, compared to other
functional networks. We thus focused solely on alpha-band activity, not only due
to the prominence of alpha peak in the vast majority of the participants (see Sup-
plementary Figure S5C), but also since it is prominently associated with distractor
suppression, top-down attentional control, and selective attention [42, 43]. In or-
der to investigate how attention could affect the organization of brain networks, we
source-localized the participants’ EEG (Figure 3G) and extracted the source activity
of seven functional networks [44]. These networks comprise dorsal attention network
(DAN), ventral attention network (VAN), somatomotor network (SMN), visual net-
work (VIS), frontoparietal network (FPN), default-mode network (DMN), and limbic
network (LIM) (see Supplementary Figure S4). The source activity was subsequently
used to compute functional connectivity (FC) for each subject (Figure 3F). The sum
of FC within a network –henceforth referred to as intra-network integration–, could
be used to quantify the overall level of integration (or interconnectedness) of brain
regions within that network. A higher intra-network integration (INI) suggests a
more integrated network with stronger communication across regions, and thereby
could serve as a suitable ‘observable’ proxy for increased effective connectivity within
functional brain networks [45]. We found that conspecific presence significantly in-
creases intra-network integration of attentional networks such as DAN, VAN, and
FPN –compared to other networks– in the female subject group (p < 0.001; Fig-
ure 3H, left). As for the male subject group, we found decreased measures of INI
during conspecific presence, however, this difference was not significant (p > 0.05;
Figure 3H, right).
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Figure 3. Inference of macroscale synaptic efficacy. A) Outline of the lateral-interception task. B)
Schema of the lateral interception task. C) Covariance of ball and paddle trajectories in time, along
the axis of interception. D) Sample paddle movement trajectories. E) Average paddle speed across
conditions and subject groups. F) Sample functional connectivity from one participant, obtained
by sorting according to the brain networks parcellation. G) Source time-courses of an example
participant’s EEG. H) Median of the intra-network integration of the two subject groups across
the seven functional networks. I) Average structural connectivity template used for whole-brain
simulations. J) An example simulation from the Jansen-Rit model. K) Intra-network integration of
random simulations used as the data feature for training the neural density estimators. L) Pooled
estimated posterior distribution of SEe in dorsal and ventral attention networks across subject
groups. M) Median of inferred SEe in female versus male subjects. N) Correlation of between-
condition ratios of inferred SEe versus behavioral performance (average paddle speed).
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2.7. Increased SEe in attentional networks during conspecific presence
Intra-network integration might convey some useful information about changes to

effective brain connectivity [46, 47]. However, it is not a direct measure and therefore
cannot be readily relied upon for direct interpretation of changes to this connectivity.
As mentioned before, we identified local recurrent excitation (the parameter g2 in the
Jansen-Rit model, given by Equation 2; Figure 2) as the most significant driver be-
tween presence and absence in dlPFC and ACC. A reasonable prediction therefore
entails recurrent excitation also increasing in attentional networks during conspecific
presence. To test this hypothesis, we employed the framework of Bayesian learn-
ing on a whole-brain model of brain comprised of interconnected Jansen-Rit mass
models (given by Equation 3, with 400 regions using Schaefer atlas; Figure 3I).
We constrained the values of the connectivity (g2) to those corresponding to the
alpha band (Figure 3J), and trained the neural density estimators to per-network
INI values obtained from random simulations (n = 20000), given the linear rela-
tionship between g2 and INI values (Figure 3K). Empirical INIs were subsequently
used to obtain joint posterior distributions of local recurrent excitation in the brain
functional networks. In the female subject group, pooling the estimated posterior
distributions across subjects showed a significant increase in DAN, VAN, and FPN
in the presence condition compared to the absence condition (p < 0.001, WS = 0.52,
WS = 0.25, WS = 0.42, respectively; Figure 3L left panel, Figure S6). The male
subject group however, exhibited a significant decrease of SE in DAN and VAN, and a
-negligible- decrease in FPN, during the presence condition (p < 0.001, WS = 0.14,
WS = 0.22, WS = 0.08, respectively; Figure 3L, right panel). In both subject
groups, the aggregate distribution of g2 across the networks showed a striking resem-
blance to the mapping of empirical INI values (Figure 3, panel H vs M). Since raw
values of effective connectivity might not necessarily be linked to the aforementioned
behavioral modulations, we calculated per-subject between-condition ratio (percent
change) of average effective connectivity and that of behavioral performance (average
paddle speed). The most significant finding was in the facilitated subject group (fe-
males), where we found a significantly high correlation between effective connectivity
and behavior in both DAN and VAN (ρPearson = 0.79, ρSpearman = 0.45 for DAN,
and ρPearson = 0.73, ρSpearman = 0.51 for VAN; Figure 3N). As for FPN, while
we found a strong linear correlation with behavioral performance, the significance of
this correlation quickly diminished after computing correlations on ranked data using
spearman test (ρPearson = 0.68, ρSpearman = 0.12; Figure 3N). These results provide
support for the potential role of effective connectivity in presence-induced attentional
modulations. Similar to FPN, we found high linear correlations in SMN and DMN,
which significantly diminished when correlations were computed on ranked datasets
(e.g. ρSpearman = (0.31, 0.09) for SMN, and DMN in the female subject group, re-
spectively; Figure 3N). We found no significant correlation with behavior within
any of the attentional networks in the non-facilitated group (Figure 3N, lower pan-
els). Finally, we found a negative correlated relation between effective connectivity
and behavioral performance in the VIS network in both subject groups. The female
subject group exhibited a much stronger negative correlation of SE with behavioral
performance compared to the male subject group (ρSpearman = (−0.54,−0.34) for
the female and male subject groups, respectively; Figure 3N). This finding further
alludes to the potential contribution of attentional modulation of visual stimuli –as
opposed to sheer perception of visual cues– to the observed social facilitation effects
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in our visuomotor task. However, we should note that due to the limited number of
subjects per group, the generalizability of these findings needs to be further explored
in future investigations.

3. Discussion

Despite the wide array of research regarding the influence of social stimuli on
both brain and behavioral dynamics [48, 49, 50], the majority of this work largely re-
volves around some form of explicit interaction or communication between the social
agents. Yet, a basic, and perhaps most fundamental component of social cognition
is the awareness of other’s being present in the immediate environment, without
any overt interaction. Modulations of performance during the mere presence of con-
specifics have been hypothesized to largely stem from attentional processes, via the
activity of context-specific neural substrates [10, 11]. However, our understanding of
the neurobiological mechanisms underlying such a modulation is still severely lacking.
One reason could be the difficulties in making inferences, particularly across scales.
These challenges notwithstanding, recent advances in probabilistic machine learning,
such as simulation-based inference (SBI; [27, 28, 51, 29, 52, 53]) have helped bridge
this gap, as demonstrated in this work. We have further advanced this progress by
opting for SBI that operates across brain scales. This enabled us to universally eval-
uate our hypothesis informed by low-dimensional features such as firing rate or level
of integration. Notably, SBI bypasses the need for Monte Carlo sampling, whose
gradient-based variants becomes computationally expensive when dealing with infer-
ence at the whole-brain scale, or inapplicable at the micro-scale due to the discrete
nature of spike events. Moreover, this approach is amenable to an amortized strategy
[28, 52], allowing the use of the same trained model, validated on synthetic data (see
subsection 6.5), immediately on empirical data. From a computational perspective,
this is exceedingly beneficial as it enables parallel simulations, whereas Monte Carlo
is embarrassingly parallel by running different chains on different computational units
[54].

In this study, we leveraged an efficient form of Bayesian learning with deep neural
density estimators, to investigate the link between attentional modulation and effec-
tive connectivity –as a proxy for the activity of context-specific neural populations–
during others’ presence in visual/visuomotor tasks across three spatiotemporal brain
scales. In single neurons (microscale), we found that others’ presence strongly in-
creases the overall SEe (or a decrease in the ratio of inhibitory to excitatory weights)
in regions dlPFC and ACC, both of which are highly involved in attentional mod-
ulation. Our findings for the ERPs (mesoscale) further supported these results, as
we observed a significant increase in local recurrent excitation in the presence con-
dition. The observed facilitation of learning during conspecific presence supports
the hypothesis of re-allocation of attentional resources due to the suppression of vi-
sual distractors. These findings are consistent with the previous research on the
interplay between connectivity and attentional modulation in ACC and dlPFC. For
one, stronger cooperation (i.e. the presence of significant effective connectivity) be-
tween the two regions has been reported to be critical for attention shifting [55]. In
addition, alterations to the connectivity of these regions have also been linked to
clinical measures of inattention and impaired cognitive control [56, 57]. Finally, the
synaptic specializations in ACC suggest its potentially great impact in reducing noise
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in dorsolateral areas during challenging cognitive tasks, and the disruption of said
mechanisms in neuropathologies such as schizophrenia and major depressive disorder
(MDD) [58, 59].

Given our hypothesis, one would expect functional brain networks involved in
attention to be more predictive of behavioral performance compared to others; The
lateral interception task in humans complemented our findings at the preceding scales
by attempting to answer this question. We found that the female subject group ex-
hibited significantly faster average paddle movements during the presence condition
compared to the absence condition, while the male subject group showed no differ-
ence in performance between the two. Similar to our findings in the micro/mesoscale,
we observed an increase in effective connectivity during conspecific presence, but in-
terestingly only in the facilitated subject group (females). Remarkably, we found
that effective connectivity is strongly correlated with task performance but only in
attention-oriented functional networks such as DAN and VAN. One can interpret the
mutual correlation of both attentional networks with behavior as a dynamic interplay
between these two networks, influenced by the task’s attentional demands [60]. This
co-activation may involve the transfer of response decisions from focused targets to
high-level centers [61], and is often associated with changes in synchronization and
functional connectivity [62, 63]. The involvement of the DAN in attentional orient-
ing and the modulatory influence of the VAN during reorienting [60] further support
the idea of a dynamic interplay between these networks. The significant elevation
of SE in the FPN during conspecific presence in the facilitated subject group, cou-
pled with the lack of significant correlations between SE and task performance might
seem initially perplexing. However, one potential explanation might stem from the
lower cognitive demands of the lateral interception task compared to the association
learing task. Taken together, these findings suggest that the social facilitation effect
observed in females is mediated by changes in the way attentional networks coor-
dinate and process information during presence. The observed increase in effective
connectivity within these networks could reflect a more synchronized and efficient
neural processing mode, ultimately leading to faster and more accurate motor per-
formance. In sum, we suggest facilitative effects arising from others’ mere presence
could largely stem from an increase in SEe (i.e., effective connectivity) in attentional
brain networks, the influences of which could be observed across spatiotemporal brain
scales.

3.1. Alpha-band coherence and attentional modulation
In our opinion alpha band FC can serve as a more reliable measure of attentional

modulation than power, despite the existence of alpha peak in the majority of our
subjects (see Supplementary Figure S5C). This approach focuses on the level coor-
dination of activity between the nodes, which is a hallmark of focused attention [64].
Imagine an orchestral composition, the power analysis of which would provide us
with a measure of ‘loudness’ of the instruments. In contrast, phase synchronization
(or activity correlation) of the instruments would allow us to understand if they are
playing in time, which is crucial for a cohesive melody. Indeed, alpha-band synchro-
nization reportedly plays a crucial role in attentional modulation (particularly in the
context of visuospatial attention), is reportedly modulated by the orienting of at-
tention, and is associated with decreased reaction times to attended stimuli [42, 43].
Moreover, attention has been reported to drive the synchronization of alpha and beta
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rhythms between the right inferior frontal and primary sensory neocortex [65]. Fi-
nally, alpha-band phase has been shown to modulate bottom-up feature processing
and is modulated by the nature of the recruited attentional mechanisms [66, 67].

3.2. Homeostatic framework of effective connectivity in social brain networks
The assumption of behavioral modulation observed during conspecific presence

stemming from the activity of context-aware (or social) neurons, alongside our find-
ings of altered E/I ratio during presence, leads one to expect perturbations to the
functioning of said cells in social neuropathologies such as ASD and schizophrenia.
Indeed, alterations in E/I balance within neural microcircuitry have been linked to
these social neuropathologies [68]. Neural communication and disruptions in E/I
balance in autism, stemming from atypical brain connectivity, have been linked to
changes in attentional modulation and social interactions [69]. Functional connec-
tivity between the cerebellum and cortical social brain regions is also reported to
be altered in autism [70]. In schizophrenia, elevated activation of frontal control
networks and association cortices has been proposed as a compensatory mechanism
for impairments in connectivity within the social brain networks [71]. In addition,
resting-state networks are reported to be differentially affected in schizophrenia, with
reduced segregation between the default mode and executive control networks [72],
as well as reduced connectivity in the dorsal attention and executive control net-
works [73]. Direct comparisons between the two pathologies have also found a re-
duction of activity in regions within the social-cognitive network in autism compared
to schizophrenia [74]. It should be noted, however, that the specific nature of these
changes in connectivity, the direction of said changes, and their relationship to social
neuropathologies remain a topic of ongoing research [75, 76].

3.3. Scope and limitations
As previously mentioned, the literature surrounding the neurobiological underpin-

nings of the mere presence of others in higher primates is rather sparse. We attempted
to address this sparsity by employing our Bayesian learning framework across three
spatiotemporal brain scales– an endeavor which, to the best of our knowledge, has
not been undertaken neither in the field of computational neuroscience, nor when
pertaining to mere presence effects. However, there are some limitations in both of
the previously outlined tasks that need to be addressed rigorously in order to obtain
an accurate perspective on mere presence. The longitudinal nature of the associa-
tion learning task is highly informative as it provides insights into facilitation over a
much longer timescale, and partially complements our lateral interception task, but
remains limited by factors such as number of subjects and sex. And considering the
somewhat bold claim of ubiquity of context-aware ‘social’ neurons across the brain,
future investigations in non-human primates should aim to cover a wider range of
brain regions. We addressed some of these restrictions in the lateral-interception
task, but there is still much to be done to refine an impeccable task outline for SFI
effects. For instance, the lack of improvements of kinematic performance during con-
specific presence in the male subject group might partially stem from the level of
perceived rank within the immediate social environment (in this case, the task space;
[77]). Thus, one should take care as to not generalize the lack of improvements during
the presence condition in the male (or any) subject group as an inherent difference
between the subject groups in every facilitation task. And while we set the number
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of participants to an acceptable threshold for between-group comparisons, another
potential limitation stems from the low number of subjects in the lateral intercep-
tion task. We believe that inquiries on social facilitation –by definition– require an
expansive array of participants, in order to thoroughly analyze the effects of others’
presence across relevant subject groups. Finally, it is important to note that while so-
cial facilitation effects could range from extremely significant, to barely noticeable [9],
such effects have been repeatedly observed in a vast array of previous investigations.
Therefore, this phenomenon could currently serve as the best proxy to investigation
of ‘pure’ mere presence effects. Nonetheless, the development of alternative cognitive
frameworks on the underpinnings of mere presence would be invaluable for gaining
a deeper understanding of the contribution of such stimuli in social cognition as a
whole.

4. Conclusion

This study investigated the neural mechanisms underlying social facilitation, the
phenomenon of improved performance in the presence of others. By conducting a
multi-scale inference across monkeys and humans, we provide evidence that mere
presence effects are mediated by increased effective connectivity within attentional
brain networks. In monkeys performing an association learning task, the presence of
an observer led to a rise in only excitatory synaptic efficacy, SEe, in the dlPFC and
ACC, brain regions crucial for attention. Human participants performed a lateral
interception task while being observed by a non-interacting spectator. We observed
facilitated performance in one subject group, characterized by faster average paddle
speeds during social presence. We were able to link this facilitation to increased SEe

within the DAN and VAN, suggesting a more synchronized and efficient processing
mode. These findings offer a novel perspective on social facilitation, highlighting the
role of attentional networks and effective connectivity. Furthermore, the observed
alterations in E/I balance suggest potential links to social neuropathologies such as
autism and schizophrenia. Future research should explore the generalizability of these
findings across a wider range of tasks, subject groups, and social contexts. Overall,
this study sheds light on the neural underpinnings of social facilitation and paves
the way for further investigation into the complex interplay between mere presence,
attentional modulation, and brain network dynamics.

5. Materials and Methods

5.1. Between-Condition ratio
We defined the between-condition differences to behavioral and neural metrics X

in all three scales, as the percent change of X between the presence P and absence
A conditions: XRatio =

XP
XP+XA

× 100.

5.2. Association learning: Subjects
The subjects comprised of two adult male Rhesus monkeys (Macaca mulatta).

They were housed together since the age of 3 years and weighed 8-12 kg at the
time of the study. They had established stable and spontaneous social interactions,
with monkey A being the dominant as revealed by the ‘access to water and food’
test. Animal care, housing, and experimental procedures conformed to the European
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Directive (2010/63/UE) on the use of nonhuman primates in scientific research. The
two monkeys were maintained on a dry diet, and their liquid consumption and weight
were carefully monitored. While both subjects exhibited social facilitation effects,
the neural recordings from Monkey M were highly laden with noise, and we thus
opted to only use the neural/behavioral data obtained from Monkey A.

5.3. Association learning: Behavioral procedures
Monkey A (the actor) was trained to associate abstract images with targets on

a touchscreen, either in presence of monkey M (the spectator) or in absence (Fig-
ure 1A−B). Under social presence, the two monkeys were positioned in primate
chairs facing each other, with their head immobilized (Supplementary subsection 6.2).
Only the actor had access to the touchscreen, and thus performed the task and re-
ceived rewards on correct trials. The spectator was not rewarded, had no incentive
to produce any particular behavior, was never tested (as actor) during the same day,
and when tested, a new set of stimuli was used (therefore preventing any observa-
tional learning from occurring). When the actor was tested in absence, the other
remained in the housing room located at a distance such that the actor was truly
alone in the testing box, deprived of any communicative means with the conspecific
through visual, auditory, or olfactory channels. During task, the actor started trials
by touching a white rectangle, which triggered the presentation of a cue at the center
of the screen. The monkey was required to indicate among the four white squares
(targets), the one associated with this cue. After a variable delay (500-700 ms), the
cue went off (go signal) and the monkey had to move the hand and touch the chosen
target. If correct, a green circle (positive feedback) informed the monkey that the
choice was correct, and a reward (fruit juice) was delivered after 1 s. If the choice
was incorrect, a red circle signaled the error (negative feedback), and no reward was
delivered.

5.4. Association learning: neuronal firing rates
Social and asocial neurons were found in similar proportions in both prefrontal

areas (n = 376 in dlPFC and n = 216 in ACC), and histological reconstruction
revealed no spatial segregation within individual areas. Because of similar profiles
and proportions of outcome-related activations in dlPFC and ACC, the data were
pooled together into a single neuronal sample. The correlation of firing rates with
behavior was conducted on the entire neural dataset, from which we chose a subset
of neurons (n = 92) oriented to negative feedback –as performance in this condition
correlates highly with neural firing rate– which belonged to Monkey A and were
strictly categorized as social or asocial. A time window of 500 ms before and after
the feedback time was used. Since we were interested in the difference of firing rate
between the conditions per neuron, the neural firing rates were normalized by dividing
by the maximum firing rate of each neuron.

5.5. Association learning: event-related potentials
Local-field potentials (LFPs) across four channels were epoched by time-locking

the signals to a 350 ms time window before the feedback timestamps. A high-pass
filter of 2 Hz was applied to the LFPs before epoching, and electrodes with flat signals
were removed from the analysis. The electrodes were further filtered by including
only those with excellent and good signal quality in the calculation of ERPs. Trials
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with negative feedback were averaged during the presence or absence to obtain the
raw ERPs (n = 117) in each task condition. A low-pass (butterworth) filter of 20
Hz was then applied to the evoked potentials, which were then up-sampled to 1000
time-steps. Subsequently, evoked potentials in each conditions were normalized with
respect to the maximum amplitude of their session in order to retain across-session
comparability. These normalized evoked potentials were then used as input to the
machine learning method CEBRA [78] to obtain low-dimensional embeddings of the
data. Using the PyMC [79, 80] package, the embeddings themselves were fed to a
Bayesian neural network using variational inference with a perceptron network with
two hidden layers and 5 nodes per layer. This process aimed to obtain a smooth
probability grid of the likelihood of an ERP embedding belonging to one of the
experimental conditions.

5.6. Lateral interception: participants
A total of 28 healthy right-handed participants (14 women and 14 men, with an

average age of 23.6 ± 2.1 years) were recruited for the study. All participants provided
written consent before participating in the study. One male participant was removed
from the study due to a recording error (nmale = 13). The study procedures were
approved by the Central Ethics Board of the University Medical Centre of Groningen
(UMCG) and according to the Declaration of Helsinki (World Medical Association).

5.7. Lateral interception: experimental setup
In the presence condition, a ‘spectator’ sat across from the participant in their

peripheral vision at a distance of 1.5 meters, meaning that the spectator sat in the
participants’ social space, as defined by Hall [81]. The spectator’s sex and age were
controlled to be close to those of the participants, and participants were unaware of
the true purpose of the spectator’s presence, as they were informed through a cover
story that the spectator was present to monitor the equipment, with the spectator
appearing to focus on a laptop. To prevent the spectator from inducing a sense of
evaluation, they avoided looking at the screen and focused approximately 70% of the
time on observing the participants’ hands, thereby creating a sense of being observed.

5.8. Lateral interception: data preprocessing
Behavioral data were epoched to a 700 ms time window preceding the feedback

events. This duration was long enough to encompass the majority of paddle move-
ments, but also allowed for the preclusion of the starting flat tails of paddle move-
ments. A low-pass 5 Hz filter (order = 2) was subsequently applied to the movement
data. Paddle data for each subject were then normalized with respect to ball arrival
positions and subsequently converted to absolute values to ensure uniform compu-
tation of paddle speeds. In addition, artefactual trials (with misaligned starting
position) were excluded from the analysis.

Preprocessing of whole-brain recordings was conducted automatically and agnos-
tically, minimizing biases in preprocessing pipeline due to experimenter’s subjective
choices–, and was entirely performed using the MNE-python package [82, 83, 84].
First, we identified and interpolated bad EEG channels. This was done (per-subject)
by creating trials from -500 ms to 1000 ms after ball movement (with a baseline of
-500 ms to -200 ms), which were given to the Ransac module of the AutoReject pack-
age [85]. EEG channels were then re-referenced using average referencing. Second,
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we removed blinks and saccades components from EEG via independent component
analysis (ICA). EEG data were first filtered using an FIR band-pass filter from 1
to 45 Hz (using the ‘fastica’ method), of which, epochs of equal lengths alongside
a rejection threshold were computed, which were then given to the ICA algorithm
for computation of the independent components. General templates for blink and
saccade components were initially computed and saved from a single subject (p01).
Subsequently, these components were template-matched and projected out of the
data (threshold = 0.9) for all participants. Due to the portable nature of the EEG
setup, which was specifically designed for movement in the natural environment, we
did not have access to subject-specific MRI scans. Therefore, source-localiztion was
performed via the freesurfer [86] template ‘fsaverage’ (for comparison between experi-
mental conditions, the data need to be morphed to a representative ‘template subject’
regardless, even in the presence of per-subject structural imaging). The source space
model ‘fsaverage-ico-5-src’) and boundry-element model (‘fsaverage-5120-5120-5120-
bem-sol’) were used to compute the general forward solution (mindist = 5mm).
Noise covariance was computed from broadband epochs spanning from -500 ms be-
fore to 1000 ms after ball movement, and a baseline of -500 ms to -200 ms (with a
tmax = −0.2 ms). The forward solution and the noise covariance were then used to
create the inverse operator (with regularization parameter loose = 0.2).

Extraction of source time-courses is as follows. The data were first band-passed
(multi-taper method) to the alpha band (8-12 Hz), and subsequently epoched for a
time window of 500 ms starting from ball movement (with a baseline from -200 to 0,
cropped before saving the epochs). We chose this window as attentional modulation
should theoretically occur before modulations to behavior, and closer to the visual
cue. Subsequently, the precomputed inverse operator was used with the MNE algo-
rithm to obtain source activity in vertex format, which was in turn used alongside the
Schaefer 2018 atlas (400 parcels) to extract the source time-courses for the activity
of the functional brain networks [44, 87].

5.9. Lateral interception: functional connectivity
Functional connectivity (FC) was calculated as the Pearson correlation between

the sources/labels (or nodes in case of simulations). For the correlation matrix FC,
the element FCij representing the statistical dependency between two labels i and j,
was calculated as FCij =

Cij√
Cii∗Cjj

, where Cij is defined as the covariance between

said labels, and Cii as the variance of i [18]. Elements of the FC matrix were sub-
sequently sorted and isolated into separate masks according to the aforementioned
functional networks (with left and right hemispheres concatenated together, as we are
interested in the activity of the entire network). The sum of their upper triangular
was used to obtain intra-network integration: INI =

∑
FCnetwork.

Our choice for this coherence measure is supported by previous research, as not
only the strength of distractor suppression is reportedly influenced by the intrinsic
connectivity within and between attentional networks, but within-network connec-
tivity was found to be a better predictor of this suppression [88].

5.10. Generative Model of Spiking Neurons
The model employed at microscale is a network of spiking neurons with alpha

synapses, comprising two subpopulations: excitatory (n = 10000) and inhibitory
(n = 2500) leaky integrate-and-fire (LIF) neurons [36]:
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dVm

dt
= −Vm − EL

τm
+

Isyn + Iext + Istim
Cm

Isyn(t) = Isyn,e(t) + Isyn,i(t)

Isyn,x(t) =
∑
n

Jn
∑
k

isyn,x(t− tkj − dj)

Ji = −gJe

isyn,x(t) =
e

τsyn,x
te

− t
τsyn,x Θ(t).

(1)

If Vm(tk) < Vth and Vm(tk+1) ≥ Vth, then a spike is emitted at timestep t∗ =
tk+1 and the membrane potential is reset to Vm(t) = Vreset for t∗ ≤ t < t∗ + tref.

With regards to the synaptic currents Isyn,x, subscript x represents either excita-
tory (e) or inhibitory (i) synapses, and both synaptic subtypes share an identical time
constant τsyn. Here, n serves as the index for neurons within either the inhibitory or
excitatory subpopulation. For a neuron with index n, then k and dj represent the
index for spike times of, and the delay from said neuron, respectively. The remaining
parameters and their representations are as follows:

Parameter Representation Value
τsyn Synaptic time constant 0.5 ms

τm Membrane time constant 20.0 ms

τref Duration of refractory period 2.0 ms

Cm Membrane capacitance 250.0 pF

Vth Spike threshold 20.0 mV

EL Resting membrane potential 0.0 mV

Vr Reset potential of the membrane 10.0 mV

Vm Membrane potential 0.0 mV

Table 1. Parameters for LIF neurons.

Moreover, the external current Iext is modeled as a Poisson generator with a rate
of prate = 13341.8 Hz, which is calculated based on the in-degree of the excitatory
synapses, the external rate relative to threshold rate, and a number of other param-
eters (see [89] and [36] for in-depth discussion of the external current). In order to
simulate the effects of feedback anticipation in the population, a step current Istim
from 350 ms to 900 ms was applied to the population of neurons in each simulation,
with mean of 150 pA and standard deviation of 1 pA. During each simulation neu-
rons received a different realization of the current based on the standard deviation
of the current: Istim(t) = µ+σNw, where Nw is a sample drawn from the zero-mean
unit-variance normal distribution for each time-step during the current’s activation
interval w.

We employed the NEST simulator [89] and simulated the model (n = 10000) for
1000 ms (dt = 0.1 ms) with varying values of the parameter g, which represents
inhibitory/excitatory weight ratio. For each simulation, the value of g was randomly
sampled from a truncated prior uniform distribution g ∈ [5, 8]. All other parameters
of including external input, leak time constant, and synaptic current time constants
were fixed (Table 1). Consequently, simulation firing rates were computed by first
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calculating the histogram of the spike times (nbins = 100), which were then smoothed
with a Butterworth low-pass filter of order = 5 and critical frequency of 2 Hz (20 Hz
in the original sampling rate). Firing rate time series were then normalized between
0 to 1, and the maximum value of each time series was computed. After training
the deep neural density estimators (see Methods subsection 5.14), empirical firing
rates were used as low-dimensional data features to efficiently obtain the posterior
distributions of effective connectivity given each condition and neuron. The training
took approximately two minutes, while the sampling took less than a minute.

5.11. Generative Model of ERPs
The generative model of ERPs used for the inference at the single column (mesoc-

spoic level) is based on a modified iteration of the Jansen-Rit neural mass model
(NMM; [90]) developed for dynamical causal modeling (DCM; [17]). The model
comprises ten parameters as g1,2,3,4 (connection strengths), τe/i (membrane rate-
constants), he/i (post-synaptic potential maximum amplitude), δ (intrinsic delay),
and u (external input). The NMM model comprises nine ordinary differential equa-
tions of hidden neuronal states x(t) that are a first-order approximation to delay-
differential equations, i.e., using x(t−δ) = x(t)−δẋ(t). The dynamics of three neural
populations: pyramidal neurons x9, spiny-stellate cells x1, and inhibitory interneu-
rons x7 are given by:

dx1(t)

dt
= x4(t)

dx2(t)

dt
= x5(t)

dx3(t)

dt
= x6(t)

dx7(t)

dt
= x8(t)

dx4(t)

dt
=

he(g1(
1

e−0.56x9(t−δ)+1
− 0.5) + u)

τe
− x1(t)

τ2e
− 2x4(t)

τe

dx5(t)

dt
=

g2(
1

e−0.56x1(t−δ)+1
− 0.5)

τe
− x2(t)

τ2e
− 2x5(t)

τe

dx6(t)

dt
=

g4(
1

e−0.56x7(t−δ)+1
− 0.5)

τi
− x3(t)

τ2i
− 2xt6

τi

dx8(t)

dt
=

g3(
1

e−0.56x9(t−δ)+1
− 0.5)

τe
− x7(t)

τ2e
− 2x8(t)

τe
dx9(t)

dt
= x5(t)− x6(t)

(2)

The fixed parameters for the simulations are given in Table 2. For the inference
at mesocspoic scale, the samples were drawn from a uniform random distributions
with minima and maxima set given in Table 3.

5.12. Generative Model of Whole-brain EEG
Taking a network-based approach and connectome-based modeling [91, 92, 93],

we generated whole-brain EEG simulations by placing the Jansen-Rit neural mass
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Parameter Representation Value
δ Intrinsic delay 8.41
τi Inhibitory membrane rate constant 7.77
hi Inhibitory maximum PSP amplitude 27.87
τe Excitatory membrane rate constant 5.77
he Excitatory maximum PSP amplitude 1.63
u External input strength 3.94

Table 2. Parameters for ERP model.

Parameter Representation Min Max
g1 Average number of synapses from PNs to SCs 0.01 0.1
g2 Average number of synapses from SCs to PNs 0.02 1.5
g3 Average number of synapses from PNs to INs 0.01 0.1
g4 Average number of synapses from INs to PNs 0.01 0.3

Table 3. Prior range for ERP model parameters.

models at each parcelled brain region, connected through a structural connectivity
(SC) matrix:

dy0,i(t)

dt
= y3,i(t)

dy1,i(t)

dt
= y4,i(t)

dy2,i(t)

dt
= y5,i(t)

dy3,i(t)

dt
= Aa Sig(y1,i(t)− y2,i(t))− 2ay3,i(t)− a2y0,i(t)

dy4,i(t)

dt
= Aa

(
P (t) + g2 Sig(g1y0,i(t)) +G× Couplingi

)
− 2ay4,i(t)− a2y1,i(t)

dy5,i(t)

dt
= Bb

(
g4 Sig(g3y0,i(t))

)
− 2by5,i(t)− b2y2,i(t)

Sig(v) =
vmax

1 + exp(r(v0 − v))

Couplingi =
∑
j

SCijSig(y1,j − y2,j)

(3)
The SC matrix was obtained using tractography techniques [94], with Schae-

fer Atlas (400 regions), averaged across subjects, and subsequently normalizing by
SCnorm = log (SC + 1). The external current P (t) was modeled as a Gaussian ran-
dom noise with mean 0.295 and zero standard deviation. All simulations were done
using an Euler integration method with dt = 0.05 sec. The fixed model parame-
ters are given in Table 4, whereas we inferred g2 (i.e., average number of synapses
from SCs to PNs). The prior distribution for this parameter was defined as a trun-
cated uniform distribution g2 ∈ [101.25, 110.7]. This range was selected to induce
alpha-band oscillations in all simulations.

Specifically, we simulated the model (n = 20000 simulations) for 3000 ms (the first
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Parameter Representation Value
A Maximum amplitude of EPSP 3.25 mV

B Maximum amplitude of IPSP 22.0 mV

1/a Rate constant of EPSP 0.01 s

1/b Rate constant of IPSP 0.05 s

G Global coupling 1
g1 Average number of synapses from PNs to SCs 135.0
g3 Average number of synapses from PNs to INs 33.75
g4 Average number of synapses from INs to PNs 33.75

vmax Maximum firing rate 6.0 Hz

v0 Potential at half-maximum of firing rate 6.0 mV

r Sigmoid function slope at v0 0.56 mV −1

Table 4. Parameters for whole-brain EEG model.

2000 ms of which were cropped as transients). Simulations were then used to com-
pute functional connectivity and intra-network integration (Methods subsection 5.9).
Sampled parameters from the prior alongside INIs –as data features– were then used
to train the posterior density estimators (Methods subsection 5.14). Empirical INI
values were then used to sample from the learned posterior distributions of effective
connectivity for each brain subnetwork.

5.13. Linear Dynamical Systems (LDS)
Linear dynamical systems (LDS; [95]) are widely used to model data whose evolu-

tion functions over time are linear, making them mathematically tractable for learn-
ing and inference. At time-step t, we observe a high-dimensional emission yt ∈ RN ,
which is driven by low-dimensional hidden states xt ∈ RD. The state dynamics obey
the equation xt = Axt−1 + V ut + b + wt, where A is the dynamics matrix, V is the
(the input-to-state) control matrix, ut is a control input, b is an offset vector, and
w ∼ N (0, Σw) denotes the process noise. To fully specify an LDS, we also need to
describe how the emissions yt are generated from the hidden states xt. A simple
linear-Gaussian emission model is given by yt = Cxt + Fut + d+ vt, where C is the
measurement matrix, F is the feed-through (input-to-emission) matrix, d is an offset
or bias term, and v ∼ N (0, Σv) denotes the observation noise.

We used the open-source state space modeling package (ssm; [96]) for parameter
estimation in LDS, streamlining the estimation of hidden states and model param-
eters from observed time series data (using Expectation-Maximisation algorithm).
An LDS was constructed and fitted to the firing rate time series in each condition
(n = 92), assuming Gaussian dynamics and emission, to learn the vector fields driven
by the measurement matrix A, for each condition. For stability, all eigenvalues of A
must lie strictly within the unit circle in the complex plane, which means their magni-
tudes must be less than 1. The fitted systems were subsequently sampled (n = 5000)
to forecast the system dynamics for each condition.

5.14. Simulation-based Inference (SBI)
We adopted a Bayesian framework for likelihood-free inference and uncertainty

quantification of effective connectivity at micro, meso, and macro scales. Across

22

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 4, 2024. ; https://doi.org/10.1101/2024.09.09.612006doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.09.612006
http://creativecommons.org/licenses/by-nc-nd/4.0/


different brain scales, the likelihood function (i.e., the conditional probability of ob-
taining data given parameters) can become computationally prohibitive, rendering
Monte Carlo estimation of posterior (i.e., the conditional probability of obtaining
parameters given data) inapplicable. This is due to either the high-dimensional na-
ture of the data (e.g., the large number of neurons or brain regions), or the complex
relationships between variables and parameters (e.g. nonlinearity, and numerous
measures of effective connectivity), leading us to employ simulation-based inference
(SBI; [27]) leveraged by deep neural density estimators [28, 29]. Taking prior distri-
bution p(θ⃗) over the parameters of interest θ⃗, a limited number of N simulations are
generated for training step as {(θ⃗i, x⃗i)}Ni=1, where θ⃗i ∼ p(θ⃗) and x⃗i is the simulated
data features given model parameters θ⃗i. After the training the generative models of
probability distributions, so-called normalizing flows [31], we are able to efficiently
estimate the approximated posterior qϕ(θ⃗ | x⃗) with learnable parameters ϕ, so that
for the observed data features x⃗obs: qϕ(θ⃗ | x⃗obs) ≃ p(θ⃗ | x⃗obs).

Through a series of invertible transformations, implemented by deep neural net-
works, normalizing flows convert a simple initial distribution (uniform prior) into any
complex target distribution (multimodal posterior). The state-of-the art neural spline
flows (NSFs; [97]) offer efficient and exact density evaluation and sampling from the
joint distribution of high-dimensional random variables with low-cost computation.
NSFs leverage splines as a coupling function, enhancing the flexibility of the transfor-
mations while retaining exact invertibility. To conduct SBI, we used an NSF model
consists of 5 flow transforms, two residual blocks of 50 hidden units each, ReLU non-
linearity, and 10 spline bins, all as implemented in the public sbi toolbox [98]. By
training NSFs on the spiking network, neural mass model of ERPs, and whole-brain
network model of EEG, we were able to readily estimate the approximate posterior
of effective connectivity from low-dimensional data features, such as maximum firing
rates, peak ERP amplitude, and intra-network integration. For validation of SBI on
synthetic data, across brain scales see Supplementary subsection 6.5.

Data and code availability

All computations were run on a linux machine with an AMD Ryzen 9 5900HX
CPU, RTX 3070Ti GPU, and 32 GBs of RAM. All code will be available on a private
github repository during the review process and all data will be available on zenodo
after publication.
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6. Supplementary

6.1. Association learning: Behavioral data
During each testing sessions, which occurred once per day, monkey A learned a set

of two associations under the absence condition, and an equivalent set under in the
presence of monkey M . Each condition block consisted of 80 trials. We employed this
format first and foremost due to the subject’s reluctance to performing the task in the
absence block if it preceded the presence block, potentially due to anxiolytic effects
of familiar conspecific’s presence with regards to learning [99, 7, 100]. In addition,
previous research has alluded to lingering effects of others’ presence whilst in the
absence condition, thus complicating interpretation of results in the former condition
[101]. We thus chose a test-retest framework as our control, where monkeys perform
the task twice in the absence condition.

The behavioral data consisted of a total of 181 sessions for monkey A. In order
to assess the influence of mere presence on learning speed –i.e., trials-to-criterion
(TTC)–, we set the sessions as the unit of analysis. TTC was defined as the third of
five consecutive correct trials. We observed that mere presence reduced the number of
TTC compared to the absence condition (from 11.02 to 9.26 across sessions in monkey
A, F (1, 180) = 10.84; p < 0.001, η2p = 0.06) but a null effect of task repetition for
test-retest control sessions. This indicates a social facilitation effect, which we further
validated using the non-parametric Mann-Whitney U-test (ps < 0.05).

6.2. Association learning: Surgery and recording
Monkeys underwent surgery for implantation of a recording chamber over the

hemisphere contralateral to the hand used for the task, along with a bolt for head
immobilization. Pre-operative magnetic resonance imaging (MRI) scans of each mon-
key’s brain were used for chamber placement, which chamber provided access to the
dorsolateral prefrontal cortex (dlPFC) and anterior cingulate cortex (ACC). A focal
craniotomy was performed in the area covered by the chamber, which was sealed
with a removable plastic cap during recording sessions.

We utilized a multi-channel recording system (Alpha Omega Alphalab) to ac-
quire extracellular neuronal signals from the brain. Single tungsten microelectrodes
(impedance 0.8− 1.2 MΩ, FHC Instrument) were advanced into the targeted corti-
cal regions, the dlPFC and ACC, guided by pre-operative MRI data. During each
recording session, up to four electrodes were employed simultaneously, with two in
the dlPFC and two in the ACC. The precise locations of the electrodes within each
area were varied across sessions to sample extensively from the neuronal populations
(See Supplementary Figure S1B). The raw signals captured by the electrodes un-
derwent analog processing, including high-pass filtering at 6 kHz, low-pass filtering
at 250 Hz, and amplification via the Alphalab software suite. These neuronal signals
were temporally aligned and synchronized with key task events, such as the onset
and offset of visual stimuli, behavioral responses executed by the animal, and the
delivery of fluid rewards. Timing information for these events was acquired from the
Cortex software [102]. The processed analog signals were stored for subsequent offline
analysis. For spike sorting and absence of individual neuronal waveforms, we utilized
a custom MATLAB toolbox in conjunction with the MClust Spike Sorting Toolbox
[103]. This procedure aimed to disambiguate the action potentials emanating from
distinct neurons, separating their activity patterns from background noise and the
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spiking output of neighboring cells. The isolated spike clusters, now representing
the firing of putative single units, were further processed within the Neuroexplorer
software to categorize the neurons based on their response profiles to various task
events and stimuli.

Figure S1. Activity and distribution of context-oriented neurons in the association learning task,
during presence (in purple), and absence (in blue) conditions. A) Rasterplot of activity of feed-
back oriented (social/asocial) neurons (top), and their respective firing rates (bottom) in both
experimental conditions (Presence in purple, absence in blue). B) Sub-areas sampled in dlPFC and
ACC across the experimental sessions. Figure was adapted from our previous study [10].

For the primary analysis, we focused on the neuronal firing patterns time-locked
to the onset of feedback delivery (Supplementary S1A). To enable statistical com-
parisons across conditions, we normalized the spike data by computing z-scores in 10
millisecond time bins. The z-score transformation was calculated using the following
formula:

Z(BC)i,j =
BCi,j −BCBi

σBCBi

. (4)

Here, BC and BCBi represent the bin-counts and their baselines, i the trial
number, and j the bin number. Therefore, BCi,j is the number of spikes in bin j of
trial i during the epoch of interest, BCBi is the average baseline firing rate during the
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fixation period for that trial, and σBCBi is the standard deviation of the baseline firing
rates. This normalization procedure expressed the spike counts in each bin relative to
the baseline activity on a trial-by-trial basis, yielding z-scored spike rasters. We then
constructed peri-stimulus time histograms (PSTHs) from these normalized rasters to
visualize the neuronal response profiles. The PSTHs were analyzed to categorize the
neurons based on three key parameters of their discharge patterns in relation to the
feedback signal: response latency, amplitude, and duration. A neuron was classified
as feedback-related if its PSTH exceeded a z-score of 1.96 (95% confidence interval)
for at least three consecutive bins. The latency was defined as the first bin where
this threshold was crossed, while the response termination was marked by the first
of three consecutive bins with Z < 1.96. Across the two task conditions (absence
and presence), we compared the neuronal activity within each analysis epoch (See
Supplementary Figure S2A,B) using Mann-Whitney U tests (p < 0.05). This allowed
us to determine if individual neurons exhibited preferential firing in one condition
over the other during the same temporal epoch.

Figure S2. Differences of behavioral and neural patterns in presence versus absence. A) Correla-
tion between the firing rate of context-specific (social/asocial) neurons and task performance. B)
Difference of firing rate of the same neurons between the presence and absence conditions. Figure
was generated using methods and data from our previous study [10].

6.3. Association learning: context-oriented neurons
The presence of a spectator modulated the outcome-related activity of a substan-

tial majority of prefrontal neurons, whether they encoded errors (85%) or rewards
(82%). Through our analysis, we identified two principal categories of neurons based
on how their firing rate amplitudes were influenced by social presence. This cate-
gorization relied on Mann-Whitney U tests comparing the PSTHs across conditions.
The first category, termed ‘social neurons’, exhibited increased firing rates when the
social partner was present compared to when the animal was alone. These neurons
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constituted 41% and 38% of the populations responding to negative and positive
feedback, respectively. The second category, labeled ‘asocial neurons’, displayed the
opposite pattern, with higher firing rates during the absence condition relative to so-
cial presence. Asocial neurons represented 41% and 47% of the negative and positive
feedback-related activations, respectively. To validate our categorization of neurons
into social and asocial groups, we performed an unsupervised hierarchical cluster-
ing analysis on the data. This analysis corroborated the existence of two primary
neuronal categories, corresponding closely (with less than 3% overlap) to the social
and asocial groups identified through the Mann-Whitney U tests. Some finer sub-
clustering was also observed within each main category. Importantly, we found that
social and asocial neurons were distributed in similar proportions across the two pre-
frontal regions under investigation, the dlPFC, and ACC. Furthermore, histological
reconstructions revealed no apparent spatial segregation of these neuronal categories
within either cortical area.

6.4. Lateral interception: EEG experimental setup
The participants were stationed at a table positioned 2 meters away from a large

55-inch Samsung LED television screen with a resolution of 1920 x 1080 pixels and
a refresh rate of 120 Hz. They were provided with a handheld knob connected to an
in-house developed slider, which allowed them to laterally control a virtual paddle
displayed on the screen. The objective was to intercept a virtual ball that descended
vertically across the screen. Supplementary Figure S3 presents a schematic overview
of the experimental setup. The positions of the slider were continuously recorded
using a National Instruments data acquisition card. Kinematic data pertaining to
the movements of the virtual paddle and ball were collected, along with information
regarding whether the ball was successfully intercepted or not. The experiment was
built and controlled using the PsychoPy software platform [104]. Concurrent with the
behavioral task, electroencephalographic (EEG) signals were recorded using a TMSi
SAGA data recorder and a 64-electrode TMSi infinity gel headcap (TMSi, Enschede,
The Netherlands). The ground electrode was placed on the left wrist of the partic-
ipant, and an online average reference was employed. To ensure consistent cortical
recordings across participants, skull measurements were taken, and the Cz electrode
was positioned at the intersection of the midline between the inion and nasion, and
the midline between the tragus of each ear. Electrode impedances were maintained
below 10 kΩ, and shielded cables (TMSi) were utilized to minimize artifacts arising
from cable movements. The EEG signals were sampled at a frequency of 2048 Hz.
Furthermore, an in-house developed software system was integrated to send triggers
to the EEG docking station, marking the onset of stimuli and the precise moment
when the ball crossed the invisible interception axis or made contact with the paddle.

Participants were randomly assigned to one of two counterbalanced groups and
engaged in a game where they had to intercept a virtual ball (ball radius = 16 px)
descending on the screen using a virtual paddle (width = 48 px, height = 13 px). The
mapping was such that 16 px corresponded to 1 cm on the screen. Supplementary
Figure 1B illustrates the experimental design employed in the present study. To
initiate a trial, participants had to position their virtual paddle within a red box
located at the center of the screen. After maintaining their paddle inside the box for
100 frames (less than 1 second), the box turned green, signaling the start of the trial
and the appearance of the ball. The ball velocities and trajectories were manipulated
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to ensure that participants achieved an intended success rate ranging between 80%
and 85% successful interceptions. The ball velocities were configured such that the
balls could descend the screen in either 1.4 seconds, 1.2 seconds, or 0.6 seconds. The
ball trajectories were constructed in a way that allowed the balls to depart from one
of five ball departure positions (BDP) along the X-axis: -672, -336, 0, 336, 672, with
a fixed Y-coordinate of 501. Similarly, the balls could arrive at one of five ball arrival
positions (BAP) along the X-axis: -672, -336, 0, 336, 672, with a fixed Y-coordinate
of -508. To prevent any effects of familiarization, a random offset was added to the
BDP and BAP on each trial. Participants first completed a 10-trial practice block
to familiarize themselves with the task, followed by two 80-trial experimental blocks.
During the practice block, participants encountered only trajectories of 1.4 seconds
and 1.2 seconds. In the experimental blocks, participants faced 36 trajectories of
1.4 seconds and 1.2 seconds, as well as 8 fast balls (0.6 seconds) that were often
un-interceptable, to maintain interest in the task and their attention levels high
(Supplementary Figure S3).

Figure S3. Block design of the lateral-interception task.

Figure S4. The cortical parcellation (400 parcels) based on the Schaefer atlas.

The EEG signals were recorded from all participants throughout the entire ex-
periment. Prior to the start of the experiment, the EEG caps were fitted to each
participant’s individual head size. During the process of applying conductive gel to
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the electrodes and securing the EEG cap, the experimenter began introducing a cover
story, mentioning potential slider defects and the possibility of someone entering the
room to ‘read the slider resistance’. Before the actual experiment commenced, the
experimenter informed the participant that she would leave the room ‘to look for
technical support to test the equipment’. Participants were told that the experiment
would run entirely without interference from the experimenter, meaning they could
continue uninterrupted. Between the 10-trial practice block and the first experimen-
tal block, a 30-second break was programmed to allow a time to enter the room (in
the case where the first block was the ‘presence’ condition). Similarly, an automatic
2-minute break was inserted between the two experimental blocks, during which the
spectator could either enter or leave the room. The presence and absence condi-
tions of the experimental blocks were counterbalanced, meaning that the spectator
sometimes entered during the first block and sometimes during the second block. All
female participants encountered the same female spectator, while all male partici-
pants encountered the same male spectator. Participants were instructed beforehand
not to interact with the spectator, as this could introduce noise into the EEG signal.

Figure S5. EEG preprocessing steps. A) Average evoked activity across electrodes of one partici-
pant, from a 500 ms time-window starting from the ball movement events. B) Template of saccade
and eye-blink components which are projected out of the data for each participant, following ICA
analysis. C) Average power spectra of all participants.

6.5. Inference validation
SBI framework across all scales was validated via in-silico observation, as shown

in Supplementary Figure S7, Figure S8, Figure S9). Crucially, due to our amortized
approach [28, 29], the trained network can be directly applied to make inference on
empirical recordings. This eliminates the need for repeated training for each new
data point, leading to significant efficiency gains. The validation has also been ap-
plied to non-parametric Hamiltonian Monte Carlo (HMC) sampling, but only at the
mesoscopic level (see Supplementary Figure S11), since it becomes computationally
prohibitive at the whole-brain scale and impractical at the microscale due to the
divergence of such gradient-based methods given the discrete nature of spikes.
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Figure S6. Pooled Distribution of SE at each brain network, across subject groups.

6.6. MCMC-based inference of condition-ERPs
Inferring multiple measures of effective connectivity concurrently presents a sig-

nificant challenge, as the biological plausibility of the Jansen-Rit model translates to
complex relationship between parameter, such as nonlinear degeneracy, and hence
multi-modal distributions. Although this type of degeneracy benefits the brain by
providing more degrees of freedom, adaptation, and resilience, it poses a waste of
computational effort from an inference perspective. However, the use of mean-field
approximations in neural mass models (such as sigmoid functions for population fir-
ing rates) makes the likelihood function tractable at mesoscale, hence enabling the
feasibility of non-parametric inference using Markov chain Monte Carlo (MCMC)
sampling. Nevertheless, the efficiency of MCMC sampling methods such as Hamilto-
nian Monte Carlo (HMC; [105]) is highly sensitive to user-specified algorithm param-
eters. Therefore, we employed an adaptive version of HMC algorithm known as the
No-U-Turn Sampler (NUTS; [106]) to address this challenge. NUTS uses a recursive
algorithm to adaptively determine the trajectory of the Markov chain during sam-
pling. This adaptive approach, in conjunction with gradient information from the
target posterior density, facilitates efficient exploration of the target distribution in
high-dimensional spaces that may exhibit strong correlations [107, 51]. To alleviate
the computational cost associated with sampling using NUTS, we leveraged JAX
(from NumPyro [108]), a high-performance numerical computation library special-
izing in composable function transformations and automatic differentiation. With
the use of efficient parameterization and weakly informative prior, JAX’s capabili-
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Figure S7. SBI validation at the microscale model. A) Prior distribution (in gray) and posterior
distribution (in blue) given the ground truth (in black), versus the predicted value of g (in orange).
B) The observed spike rasters generated with ground truth (upper panel) versus predicted (lower
panel) generated with posterior samples. Here we used a budget of n = 10000 random simulations
and maximum firing rate was chosen as the low-dimensional data features for training the neural
spline flows.

Figure S8. SBI validation at the mesoscale model. A) Prior distribution (in gray) and posterior
distribution of effective connectivities g1−4 (in blue) given the ground truth (in black), versus the
predicted parameter values (in orange). We observe a large posterior shrinkage (i.e., Bayesian
learning) for g2, compared to the other parameters. B) The observed ERPs generated with ground
truth (in black) versus predicted (in orange) generated with posterior samples. Here we used a
budget of n = 10000 random simulations, and the peak ERP amplitude values were again selected
as the low-dimensional data features for training the neural spline flows.

ties substantially accelerated our simulations, enabling NUTS sampling of ERPs to
converge in less than 1 minute.

Using a neural mass model of ERPs (Methods subsection 5.11), effective connec-
tivity parameters were drawn from a gamma distribution Γ(α, β) with:

Parameter g1 g2 g3 g4
α 18.16 29.9 29.14 30.770
β 33.33 50.00 20.00 142.86

Table 5. Prior distribution of synaptic efficacies in HMC.

For each ERP, we run 4 chains with nwarmup = 2000 as transitory stage to learn
the relation between parameters, and nsamples = 1000 for sampling. The hyper
parameters were set as a max tree depth of 12 and target acceptance probability
of 0.6. After monitoring the convergence diagnostics (Gelman-Rubin R̂; [109]), the
median of the posterior distributions obtained for each ERP was used to calculate
the latent space trajectories and manifold embeddings (Methods subsection 5.5). Not
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Figure S9. SBI validation at the macroscale model. A) Prior distribution (in gray) and posterior
distribution of g2 (in blue) for the functional networks, given the ground truth (in black), versus
the predicted parameter values (in orange). B) The observed FC at each network, alongside their
respective INI, generated with ground truth (upper panels) versus predicted (lower panels) generated
with posteriors samples. Here we used a budget of n = 20000 random simulations and INI values
were used as the low-dimensional data features for training the neural spline flows.

only HMC was able to provide excellent fits to our empirical ERPs (Supplementary
Figure S10B), but the posterior distribution of our chosen SE parameters closely
resembled that of SBI (Supplementary Figure S10C). The slight difference in g3
stem from the fact that HMC samples from parameter distributions by going through
the timesteps of the time series one by one, without explicit focus on data features
relevant to the experimenter (such as maximum amplitude), and therefore obtains
parameter distributions that best represent the entirety of the time series.

Figure S10. Inference of mesoscale synaptic efficacies using Hamiltonian Monte Carlo (HMC)
sampling. A) Sample simulations obtained from drawing parameters randomly from the prior
distribution. B) Fit of observed ERPs from two sessions. C) Posterior distribution of SE in the
mesoscale model.
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Figure S11. A) Prior predictive check (simulations using samples drawn from prior, in grey)
versus the observed data (black). B) Log probability of the four HMC chains, ran with random
initial conditions, converged to the same stationary distribution. C) Posterior predictive check
(simulations using samples drawn from posterior, in orange) versus the observed data (black). D)
Estimated posterior distributions using HMC. We observe a large posterior shrinkage (i.e., Bayesian
learning) for g2, compared to the other parameters.
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