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Abstract
Massive transfusion of blood products poses challenges in determining the need for transfusion and the 
appropriate volume of blood products. This review explores the use of machine learning (ML) models to predict 
transfusion risk during surgical procedure, focusing on the methodology, variables, and software employed to 
predict transfusion. This scoping review investigates the development and current state of machine learning 
models for predicting transfusion risk during surgical procedure, aiming to inform physicians about the field’s 
progress and potential directions.

The review was conducted using the databases Cochrane, Embase, and PubMed. The search included keywords 
related to blood transfusion, statistical models, and surgical procedures. Peer-reviewed articles were included, while 
literature reviews, case reports, and non-human studies were excluded.

A total of 40 studies met the inclusion criteria. The most frequently studied biological variables included 
haemoglobin, platelet count, international normalized ratio (INR), activated partial thromboplastin time (aPTT), 
fibrinogen, creatinine, white blood cells, and albumin. Clinical variables of importance included age, sex, surgery 
type, blood pressure, weight, surgery duration, american society of anesthesiology (ASA) status, blood loss, and 
body mass index (BMI). The software employed varied, with Python, R, SPSS, and SAS being the most commonly 
used. Logistic regression was the predominant methodology used in 20 studies.

Our scoping review highlights the need for improved reporting and transparency in methodology, variables, 
and software used. Future research should focus on providing detailed descriptions and open access to codes of 
respective models, promoting reproducibility, and enhancing the clinical relevance of transfusion risk prediction 
models.
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Introduction
Significance
Massive transfusion of blood products presents several 
challenges, such as identifying the need for transfusion 
as early as possible, and administering the most appro-
priate volume of blood products [1]. Clinical, paraclini-
cal and biological criteria are used to assess the need for 
transfusion. In patients with major haemorrhage, haemo-
dynamic, biological and haemostatic status changes rap-
idly and over a wide range [2], especially during surgery. 
This is the major reason why recommendations advocate 
transfusion ratios that allow for rapid action [3–6].

Background
During surgical procedures, standard haemostasis 
parameters are often inappropriate in massive transfu-
sion situations due to the time required for blood sample 
transport and analysis. In addition, the results of these 
analyses primarily characterise disorders of the endog-
enous or exogenous coagulation pathways but don’t allow 
the identification of specific factor deficits for targeted 
treatment. The advent of off-site monitoring tools such 
as thromboelastography (TEG®, Haemonetics Corpora-
tion ®, Boston, USA) or thromboelastometry (ROTEM®, 
Werfen ®, Barcelona, Spain) represents a significant 
improvement in perioperative bleeding management [7]. 
However, the longer turnaround times (10–20 min) and 
extensive training required for analysis and interpretation 
of results may limit their use in case of massive haemor-
rhage [8]. Both standard tests and off-site monitoring 
provide only a snapshot of the patient’s haemostatic sta-
tus at a given time and in the case of massive haemor-
rhage, making interpretation of test results potentially 
obsolete by the time results are available. The develop-
ment of machine learning (ML) or deep learning may 
provide a solution for improved guidance in the practice 
of massive transfusion [9, 10].

The term “machine learning” describes the algorithms 
used to find patterns in large amounts of data and to 
learn from these data [11]. However, the implementation 
of ML also faces several challenges, such as data retrieval 
volume, data reliability, clinical relevance, and staff train-
ing in ML and deep learning techniques [12].

Rationale
Numerous studies have attempted to model clinician 
intuition in transfusion practice to determine the opti-
mal time to initiate blood transfusion [1, 9]. These studies 
often use ML to build models, but only a small propor-
tion of them provide sufficient detail of their models to 
allow easy replication.

Aim and objectives
This scoping review examines the development and cur-
rent state of machine learning models for predicting 
transfusion risk during surgery, with the aim of inform-
ing clinicians about the progress and potential directions 
of the fields. To achieve this aim, a comprehensive review 
of currently published models was undertaken, describ-
ing the variables, software and methodology used.

Materials and methods
The protocol of this review is available on request from 
the corresponding author. The literature review and 
research protocol were submitted to the figshare® regis-
ter and approved under the reference “Skye”. Prisma and 
Moose checklists were followed [13, 14].

Sources of information
The databases analysed included the cochrane central 
register of controlled trials (CENTRAL), Cochrane sys-
tematic reviews, Embase/Ovid, and PubMed. The time 
period covered was from inception to 1 April 2022. 
There were no langage restriction. Articles in languages 
other than French or English were translated with DeepL 
Translator® (DeepL® SE, Cologne, Germany).

Search strategy
Data extraction was conducted using the following 
keywords:

“Blood Transfusion” OR blood product transfusion* 
OR red blood cell transfusion* OR red blood cells trans-
fusion* OR RBC transfusion* OR RBCs transfusion* OR 
blood cell transfusion* OR blood cells transfusion* OR 
packed cell transfusion* OR packed cells transfusion* or 
packed red blood cell* OR packed red cell* OR erythro-
cyte concentrate*.

OR fresh frozen plasma transfusion* OR plasma trans-
fusion* OR FFP transfusion* OR lyophilized plasma 
transfusion* OR “Plasma” OR fresh frozen plasma*

OR thrombocyte transfusion* OR platelet transfusion* 
OR fibrinogen OR “Fibrinogen”

OR massive transfusion*
AND
“Models, Statistical” OR “Artificial Intelligence” OR 

artificial intelligence OR machine learning
AND
“Cardiac Surgical Procedures” OR cardiac surgery OR 

heart surgery
OR “Surgical Procedures, Operative” OR “Traumatol-

ogy” OR trauma surgery
OR surgery

Eligibility criteria
Only peer-reviewed articles were included. All articles 
matching the specified keywords (transfusion prediction 
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during surgery) were included. Literature reviews, case 
reports, case series and studies on non-human subjects 
were excluded. After a thorough full-text review, articles 
that did not describe the design of a mathematical model 
but only defined variables for transfusion risk assessment 
were also excluded.

Selection process
Two reviewers independently screened the retrieved 
abstracts using the Agency for Healthcare Research 
and Quality systematic review data repository (SRDR+) 
software.

The authors screened the titles and abstracts of the 
search results. Two authors selected manuscripts based 
on their relevance to the study topic and eliminated arti-
cles with mismatched keywords. These two authors were 
blinded to each other’s results. In the event of disagree-
ment after the blind was lifted, a third, more experienced 
author made the final selection. During the data collec-
tion process, the two authors concerned excluded articles 
whose full text did not meet the study objectives.

Data collection process
Two additional authors, also blinded to each other, ana-
lysed all articles, and collected data using the same soft-
ware. Due to the specific purpose of the studyand the 
nature of the studies reviewed, suggested checklists such 
as CARE 2013 could not be used [15]. Therefore, prior 
to article analysis, all authors identified a list of 10 items 
to be completed with data from the articles. After each 
reviewer had analysed two articles, a meeting was held to 
determine the relevance of the items. At this stage, three 
items were added, resulting in a total of 13 items to be 
completed for each retrieved and included reference.

Data collected
In each article the following information was collected by 
the two authors.

  – Country.
  – Conducted in academic hospital
  – Multicentre authors
  – Study design
  – Number of patients
  – Inclusion and exclusion criteria
  – Variables collected (biological and clinical)
  – Software and statistics used
  – Model description
  – Validation (description and methodology)
  – Code description.

Assessment of risk of bias in the review process
To minimize bias, the recommendations of the Joanna 
Briggs Institute were followed [16]. The three reviewers 
performed unbiased analyses according to the objectives 
described in the checklist aboveand were completely 
blinded to each other.

Software used: description
Currently, there are only a few software tools for ML 
in healthcare. However, a distinction must be made 
between a programming language (used by several soft-
ware programs) and a software program (owned by a 
single company with proprietary functionality). The most 
important software and programming languages are 
described below.

Python® (Python Software Foundation)
Programming language (mainly used by the Anaconda® 
software), often used with packages (programming over-
lays that allow certain functions to be used directly with-
out manual programming; this implies that all parameters 
have default values that can be modified if necessary).

R® (R Core Team)
Programming language (mainly used with R Studio® soft-
ware), all actions must be manually coded.

SPSS® (IBM® Corp, Arming, NY, USA)
Software that allows direct modelling by simply specify-
ing modalities, no coding required.

SAS® (SAS Institute)
Programming language and associated software. Allows 
modelling to be done directly by simply specifying 
modalities, with minimal coding required.

Model building: description
The development of a ML model is based on statistical 
concepts, the most important of which are described in 
Table 1.

Results
Study selection
The search identified 1,329 records, with 154 duplicates 
found, resulting in 1,175 articles for review. After title 
and abstract screening, 109 articles met the eligibility 
criteria and underwent full analysis and data extraction 
by reviewers. After detailed reading of the full articles, a 
further 68 manuscripts were excluded because they did 
not meet the objective of the predefined search, but only 
described variables to be studied to determine transfu-
sion risk. A flowchart of the search results is shown in 
Fig. 1.



Page 4 of 11Duranteau et al. BMC Medical Informatics and Decision Making          (2024) 24:312 

Study characteristics
Forty studies were finally included [17–56] (Table  2). 
Supplementary Table 1 describes the number of patients 
included per study, the inclusion periods, and the inclu-
sion and exclusion criteria of each study. The type of sur-
gery at inclusion is described in Table 3. Only 5 studies 
clearly defined their research outcomes [37, 42, 43, 49, 
54] (Supplementary Table 2), 28 performed risk estima-
tion and calculation [17, 18, 20, 22, 26, 27, 29, 30, 32, 34, 
36, 38–41, 43–51, 53–56].

Variables used in included studies
Logistic regression was used as a variable selection 
method in a total of 20 studies [18, 19, 21, 23–27, 29, 31, 
33–35, 39–41, 43–48, 51, 52, 54–56] and was not well 
described in the other studies [17, 20, 22, 28, 30, 32, 36–
38, 42, 49, 50, 53] (Supplementary Table 3).

The most commonly studied biological variables were 
haemoglobin, platelet count, INR, aPTT, fibrinogen and, 
creatinine, white blood cells (WBC) and albumin. Hae-
moglobin was the only biological parameter used in a 
total of 10 trials [20, 21, 27, 35, 41–43, 47, 52, 56]. Only 
4 studies included TEG or ROTEM as monitored param-
eters [22, 23, 29, 46] (Table 4, Supplementary Table 2).

Regarding demographic data, the most commonly ana-
lysed variables were age, sex, weight, body mass index 
(BMI) and body surface area (BSA), medical history 
(American Society of Anesthesiology (ASA) physical sta-
tus, presence of diabetes mellitus or chronic obstructive 
pulmonary disease). Surgical characteristics were often 

analysed (duration, type of surgery, blood loss, intraop-
erative blood pressure and identification of the surgeon). 
Eleven studies didn’t report patient sex and age [23, 27, 
29, 30, 32, 37, 45–48, 56] (Table 3, Supplementary Tables 
1 & 2).

Software used and model created
The software used for ML (Table 1) was not described in 
6 studies [17, 18, 24, 30, 37, 53]. Eight studies used R lan-
guage [21, 23, 25, 27, 32, 42, 44, 54] or SPSS software [21, 
23, 26, 27, 39–41, 45], seven studies used SAS software 
[19, 33, 34, 43, 47, 50, 54] or Python language [20, 36, 38, 
39, 49, 52, 55], (Supplementary Table 3).

Thirty-one studies didn’t publish the code of their 
work [21–25, 28, 30–45, 47–54], 8 published it [17, 18, 
20, 26, 27, 29, 55, 56] and 1 described a pseudo code [46] 
(Table 1). The publication of the exact and precise code 
allows an identical reproduction of the protocol and thus 
a possible additional external verification by the reader. 
This is an add value for the manuscript.

More than half (23) of the studies produced a model 
based on logistic regression [17–19, 21, 31–35, 40–45, 
47, 48, 50–53, 55, 56], 6 produced a neural network 
(4,8,14,16,20,21), 5 studies used a nomogram [23, 25–27, 
44]. Ten studies defined multiples methods for the model 
used [17, 20, 24, 26, 30, 32, 36, 37, 49, 54] (Fig. 2, Supple-
mentary Table 3).

Model validation was mostly internal with data split-
ting in 16 studies [17–32, 38, 39, 42, 43, 46, 47, 49, 50, 52, 

Table 1 Model construction description
Logistic regression Used to study the relationships between a set of categorical variables Xi and a categorical variable Y. It is 

used to predict the probability of an event by optimising the regression coefficients
Decision tree non-parametric supervised training algorithm used for both classification and regression tasks. It has a hierarchical, 

tree-like structure
Random forest a composition of several decision trees trained independently on subsets of the training data set (bagging 

method). Each tree produces an estimate, and the combination of the results generates the final prediction, result-
ing in reduced variance

Neuronal network a method that learns to process data in a manner inspired by the human brain. It is a type of process that uses 
nodes, or neurons, that are interconnected in a multi-layered structure

Support Vector Machine (SVM): A set of supervised learning techniques designed to solve discrimination and regression problems. SVMs are a 
generalisation of linear classifiers

Linear Regression a linear relationship is established between a dependent variable and one or more explanatory variables
K-Nearest Neighbour: a non-parametric supervised training classifier that uses proximity to make classifications or predictions about a 

single data point’s clustering
Nomogram a graphical calculation tool consisting of graduated curves between which a ruler is placed
XG Boost algorithm Combination of multiple weak decision trees to create a powerful predictive model.
Gaussian Naïve Bayes Simple and efficient classifier that assumes independence between features
Adaboost Boosting algorithm that changes the weights of data points to focus on harder-to-learn ones
Gradient boosting machine General boosting technique that uses a gradient descent approach to improve model performance iterativel.
Maximum likelihood Statistical method for estimating the parameters of a model that maximizes the probability of observing the data
Restricted Boltzmann machine Type of neural network used for dimensionality reduction and feature learning.
Gaussian process Probabilistic model that uses Gaussian distributions to make predictions and quantify uncertainty
Mann-Whitney U Test Non-parametric test used to compare the medians of two unpaired samples
Elastic net Regularization technique that combines L1 and L2 penalties to improve model performance and reduce overfitting
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54, 56] and reality checking in 19 others (Supplementary 
Table 3). There was no validation process in 4 studies [34, 
48, 51, 53] and only one study used external validation 
[55].

Management of missing data
Eleven studies used a data imputation procedure [17, 
22, 24, 28, 32, 37, 38, 42, 44, 54] while 8 others excluded 
patients with missing data [17, 23–25, 29, 31, 34, 36, 
41, 43, 46, 49, 52, 54, 56] (Supplementary Table 2). The 
remaining studies simply did not describe how they han-
dled missing data [18–21, 26, 27, 30, 33, 35, 40, 45, 47, 48, 
50, 51, 53, 55].

Discussion
In this scoping review, we analysed the existing literature 
on modelling the indication for transfusion, highlight-
ing the diversity of methods and tools that have been 
developed. To the best of our knowledge, this is the first 
review on this topic that looks at the details of the ML 
models that have been developed to predict the need for 
transfusion.

Based on the reviewed articles, the most commonly 
used biological variables are : haemoglobin, platelets, 
haematocrit, creatinine, INR, aPTT, albumin, WBC, PT, 
TEG and fibrinogen. The most commonly used clini-
cal variables are : age, sex, surgery type, blood pressure, 
weight, duration of surgery, ASA physical status, blood 
loss, BMI and diabetes.

Fig. 1 Flow of studies through the scoping review
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Study 
N°

Reference Pub-
lica-
tion 
Date

Country Academic 
hospital

Multi-
centre 
authors

Study 
design

Funding 
sources

Registered Ethics 
committee

Soft-
ware 
used

code 
access

1 [12] 2021 China Yes Yes Retrospective public 
grant

clinical trials Local non 
de-
scribed

open (git 
hub etc.)

2 [13] 1989 USA Yes No Retrospective no 
information

no 
information

no 
information

non 
de-
scribed

open (git 
hub etc.)

3 [14] 2010 USA Yes No Retrospective none none Local SAS blinded
4 [15] 2019 China Yes Yes Retrospective none none Local Python open (git 

hub etc.)
5 [16] 2020 USA Yes Yes Retrospective none none none R

SPSS
blinded

6 [17] 2021 USA Yes No Retrospective none none National Google 
Cloud 
Plat-
form

blinded

7 [18] 2021 China Yes No Retrospective public 
grant

none Local R
SPSS

blinded

8 [19] 2022 USA Yes Yes Retrospective private 
grant

none Local non 
de-
scribed

blinded

9 [20] 2021 China Yes No Retrospective private 
grant

none Local R blinded

10 [21] 2021 China Yes Yes Retrospective none none Local SPSS open (git 
hub etc.)

11 [22] 2020 China Yes No Retrospective none none Local R
SPSS

open (git 
hub etc.)

12 [23] 2017 Austria Yes Yes Retrospective public 
grant

none none MAT-
LAB

blinded

13 [24] 2021 UK Yes Yes Retrospective public 
grant

none National age-
naRisk

open (git 
hub etc.)

14 [25] 2015 USA Yes No Retrospective public 
grant

none none non 
de-
scribed

blinded

15 [26] 2003 USA Yes No Retrospective public 
grant

none none S-plus blinded

16 [27] 2017 USA Yes Yes Retrospective none none none R blinded
17 [28] 2004 Canada Yes No Retrospective none none none SAS blinded
18 [29] 2017 USA No No Retrospective none none none SAS blinded
19 [30] 2009 France Yes No Retrospective none none Local Excel

JMP
blinded

20 [31] 2020 USA Yes Yes Prospective none none National Python blinded
21 [32] 2021 China Yes No Retrospective public 

grant
none Local non 

de-
scribed

blinded

22 [33] 2021 China Yes Yes Retrospective public 
grant

none Local Python blinded

23 [34] 2021 China Yes Yes Retrospective public 
grant

none Local Python
SPSS

blinded

24 [35] 1996 USA Yes No Retrospective no 
information

no 
information

no 
information

SPSS
BMDP

blinded

25 [36] 1995 USA Yes No Prospective no 
information

no 
information

no 
information

SPSS
BMDP

blinded

26 [37] 2017 USA No No Retrospective none none local R blinded
27 [38] 2001 Canada Yes Yes Prospective public 

grant
none Local SAS blinded

Table 2 General data on studies
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Most of the trials analysed used the same biological 
or demographic variables. For example, haemoglobin is 
an important variable in the assessment of blood prod-
uct transfusion. It should be remembered that the trans-
fusion of red blood cells, which mainly modifies this 
parameter, is both an agent (correction of haemostasis 
disorders) and a measure of haemorrhagic shock (mea-
surement of the amount of red blood cells transfused). 
The lack of studies analysing TEG or ROTEM point-of-
care devices is surprising given their increasing use in 
clinical contexts of massive haemorrhage. The frequent 
analysis of white blood cells and albumin is noteworthy. 
The evolution of white blood cells can be rapid, but this 
evolution can also be modified by several other causes. 
As for albumin, its evolution is very slow compared to 

the changes in patient’s clinical condition. Its inclusion in 
several studies suggests its potential value in predicting 
transfusion needs during massive transfusion. The demo-
graphic parameters used were also mostly classical (age, 
sex, weight, height, etc.). Furthermore, this scoping does 
not answer the question of the influence of the experi-
ence of the treating physician on patient morbidity and 
mortality, which has been reported in several articles [57, 
58].

Regarding the software used, the distribution observed 
in this review reflects current practices in ML, with a 
clear dominance of the four main tools (Python, R, SAS, 
and SPSS). Similarly, the models developed are in line 
with current advances in the field, with logistic regres-
sion modelling and the emergence of more innovative 
techniques (e.g. random forest, neural network, deci-
sion tree)being prominent. Logistic regression is easier 
to implement and understand, but the binary results 
limit detailed analysis. So far, no machine learning model 
has shown significant superiority over the others [59]. 
Similarly, the use of simple logistic or linear regression 
appears to provide as much information and relevance as 
much more complex models [60]. The relevance of using 
complex models should therefore be discussed. The prin-
ciple of Occam’s razor can be applied to this issue: “Enti-
ties are not to be multiplied without necessity.”

Table 3 Classification of type of surgery at patient inclusion
Type of surgery at patient inclusion Number of studies
Cardiothoracic surgery 12
Orthopaedic surgery 12
Traumatology 4
Surgery 4
Cranio-facial surgery 3
digestive surgery 2
Liver surgery 1
Gynaecologic surgery 1
Obstetrical surgery 1

Study 
N°

Reference Pub-
lica-
tion 
Date

Country Academic 
hospital

Multi-
centre 
authors

Study 
design

Funding 
sources

Registered Ethics 
committee

Soft-
ware 
used

code 
access

28 [39] 2016 USA Yes Yes Retrospective none none Local R
Stata

blinded

29 [40] 1997 Canada Yes No Retrospective public 
grant

none no 
information

SPSS blinded

30 [41] 2015 USA Yes No Prospective none none none JustNN pseudo 
code

31 [42] 2004 Canada Yes No Retrospective none none Local SAS blinded
32 [43] 2001 Japan Yes No Prospective none none none Stat-

View
blinded

33 [44] 2021 China Yes No Retrospective public 
grant

ChiCTR Local Python blinded

34 [45] 2013 Israel Yes No Retrospective none none Local SAS blinded
35 [46] 2017 Italy Yes No Retrospective none none none Stata blinded
36 [47] 2021 Egypt Yes No Retrospective none none National Python blinded
37 [48] 2014 Brazil Yes No Retrospective none none none non 

de-
scribed

blinded

38 [49] 2018 USA Yes Yes Retrospective none none none R
SAS
Julia

blinded

39 [50] 2020 South 
Korea

Yes No Retrospective none none Local Python open (git 
hub etc.)

40 [51] 2003 USA Yes No Retrospective none none Local Stata open (git 
hub etc.)

Table 2 (continued) 



Page 8 of 11Duranteau et al. BMC Medical Informatics and Decision Making          (2024) 24:312 

If we were to propose a list of factors that would pre-
dict the need for massive transfusion, we would make 
the following list. For clinical variables: Age, sex, type of 
surgery, weight, duration of surgery, ASA status, blood 
loss. For biological variables: Haemoglobin, platelets, 

creatinine, INR, APTT. The model to be used would be 
logistic regression.

The studies analysed have several limitations. The first 
limitation is the non-publication of the model which 
severely limits the external validity of the publications. 
Publication of the model would increase the transparency 
and thus the quality of the study by avoiding possible bias 
and allowing the reader to reproduce the study. Secondly, 
only five studies clearly described their primary objec-
tives, and most lacked clarity, making it difficult to fully 
accept the results. In addition, it was often difficult to 
understand the methodology used to select data for anal-
ysis, as data collection, cleaning and missing data man-
agement were rarely described. Finally, very few studies 
published their a priori research protocol in a registry 
database and none published the exact research method-
ology, raising concerns about potential data trawling (i.e. 
including as much data as possible with as many models 
as possible and then seeing which set is most relevant).

This literature review is innovative in that it examines 
not only the variables collected but also the ML meth-
odology used to predict transfusion in massive transfu-
sion scenarios. It is important to understand the machine 
learning processes involved in model design and variable 
selection methodology. This allows the clinician to cri-
tique the results reported by the authors, just as the anal-
ysis of a correlation coefficient can be used to moderate 
the results of a prediction study.

In summary, numerous models are described, some 
of which apply to the same populations with the same 
analysed values. The question arises as to the clinical 
relevance of these models, as most of the articles do not 
suggest any change in practice that should (or could) be 
made locally. Only two manuscripts lead to the produc-
tion of easily accessible online resources.

Further work in the field of haemorrhagic risk predic-
tion in surgery would be to describe the implementation 

Table 4 Variables studied, ranked according to the number of 
studies in which the variable was studied
Biological variables Number of 

studies
Clinical 
variables

Number 
of studies

Haemoglobin 31 Age 28
Platelets 16 Sex 21
Haematocrit 14 Surgery Type 18
Creatinine 14 Blood pressure 14
INR 12 Weight 14
APTT 9 Surgery 

duration
14

Albumin 8 ASA Status 13
White blood Cells 7 Blood loss 12
PT 6 BMI 11
TEG 5 Diabetes 10
Fibrinogen 5 BSA 7
ASAT 4 Height 6
RBC 4 COPD 6
Thrombin time 4 Surgeon 6
PaCO2 3 LVEF 5
Urea 3 Charlson Index 3
MCV 3 RR 2
PaO2 3
Base deficit 2
Lactate 2
INR: International Normalized Ratio, APTT: Activated Partial Thromboplastin 
Time, PT: Prothrombin Time, TEG: Thromboelastography, ASAT: Aspartate 
Aminotransferase, RBC: Red Blood Cell, PaCO2: Partial Pressure of Carbon 
Dioxide in Arterial Blood, MCV: Mean Corpuscular Volume, PaO2: Partial Pressure 
of Oxygen in Arterial Blood, ASA Status: American Society of Anesthesiologists 
Physical Status, BMI: Body Mass Index, BSA: Body Surface Area, COPD: Chronic 
Obstructive Pulmonary Disease, LVEF: Left Ventricular Ejection Fraction, RR: 
Respiratory Rate

Fig. 2 Model described and constructed in the different studies. Model type on the x-axis in descending order of the number of studies with this inclu-
sion criterion. Each model is descripted in Table 1
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of these models prospectively as an aid to prescribing and 
then to look at the effects on mortality, morbidity and the 
amount of transfusion given. A proposed checklist of the 
various items of information that should be included in 
the publication of a manuscript describing the design of 
a machine learning model is given in Table 5. It lists the 
various items that were evaluated during the course of 
this review.

Conclusion
This scoping review provided a descriptive overview 
of ML modelling of transfusion risk conception during 
surgery. We found that most studies investigated simi-
lar biological and clinical variables and used comparable 
methodologies. Unfortunately, the majority of articles 
inadequately described their methodology making repro-
ducibility difficult. Future publications should include an 
appendix detailing the various methodological aspects of 
the ML methods used, thus promoting transparency and 
facilitating replication.

Glossary of terms
ML  Machine learning
INR  International normalized ratio
aPTT  activated partial thromboplastin time
ASA  American society of anesthesiology
BMI  Body mass index
WBC  White blood cells
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