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Most semiconductors, in particular III-V compounds, have a complex valence band structure near
the band edge, due to degeneracy at the zone center. One peculiar feature is the warping of the
electronic dispersion relations, which are not isotropic even in the vicinity of the band edge. When
the exciton, all important for the semiconductor optical properties, is considered, this problem is
usually handled by using some kind of angular averaging procedure, that would restore the isotropy
of the hole effective dispersion relations. In the present paper, we consider the problem of the
exciton ground-state energy for semiconductors with zinc-blende crystal structure, and we solve it
exactly by a numerical treatment, taking fully into account the warping of the valence band. In the
resulting four-dimensional problem, we first show exactly that the exciton ground state is fourfold
degenerate. We then explore the ground-state energy across the full range of allowed Luttinger
parameters. We find that the correction due to warping may in principle be quite large. However,
for the semiconductors with available data for the band structure we have considered, the correction
turns out to be in the 10% − 15% range.

PACS numbers: 03.65.-w , 31.15.-p , 71.35.-y

I. INTRODUCTION

Optical properties of semiconductors are of utmost interest both for fundamental and applied purposes [1, 2]. With
respect to these properties, excitonic excitations play a prominent role, especially in the visible light spectrum. Hence,
knowing the exciton ground-state properties in these compounds is of fundamental importance. However, this is in
general not a simple matter theoretically, since generically the valence band of the most relevant semiconductors is
degenerate at the band edge. In the standard case of semiconductors with cubic zinc-blende crystal structure, the
states at the valence band edge have a p-wave character which leads to a sixfold degeneracy, when spin is taken into
account. When spin-orbit coupling is strong enough to make a twofold degenerate split-off subband far enough in
energy from the valence band edge, so that it becomes irrelevant to the excitonic structure, one is left with a fourfold
degeneracy. This is the situation we will consider.

Unfortunately, it has been long recognized that, even in the vicinity of the band edge, the resulting valence band
dispersion relations are not isotropic, while respecting the cubic symmetry of the crystal. As a result, the equal energy
surfaces are warped, and this whole matter makes the hole properties difficult to handle. This complexity is usually
disposed of by taking an appropriate angular average to go back to an isotropic situation. In the present paper, we
will not make use of such a simplification, but rather explore the exciton ground-state energy in these zinc-blende
semiconductors in full generality.

In the next section, we recall the hole effective kinetic energy Hamiltonian, standard for these compounds. In
the following section III, we write the Schrödinger equation for the exciton under the form of an integral equation
appropriate for our study. We show in section IV in full generality that, due to the cubic symmetry, the exciton ground
state has a fourfold degeneracy (omitting the twofold additional degeneracy coming from the conduction electronic
spin). Finally, in section V we solve numerically our integral equation. We show that in principle the warping leads
to an increase of the exciton binding energy, which may be quite important. However, in practice, for the tabulated
semiconductors we have found, this increase is limited to a 10% − 15% range. Nevertheless, markedly higher values
are possible, considering the imprecision of the known valence band parameters data, or other semiconductors yet to
be investigated.

II. FORMALISM

In the semiconductor compounds we are considering, the bottom of the conduction band located at the zone center
is non-degenerate (except for the spin degree of freedom), but the top of the valence band located at the zone center
is, in the absence of spin-orbit coupling, threefold degenerate (forgetting the hole spin), with a p-wave-like character
for the corresponding wave functions. As the exciton wave function is predominantly made of electron and hole states

ar
X

iv
:2

30
2.

01
25

7v
2 

 [
co

nd
-m

at
.s

tr
-e

l]
  8

 F
eb

 2
02

3



2

in the vicinity of the zone center, this degeneracy has to be taken into account in the exciton wave function. Taking
spin into account, this threefold degeneracy becomes a sixfold degeneracy. When spin-orbit coupling is taken into
account, this degeneracy is lifted into a fourfold degeneracy, plus a twofold one. In standard compounds, these last
two degenerate electronic states are shifted to energy low enough, so that they are irrelevant to the building of the
exciton. This is the situation we will restrict ourselves to in the following. The four-dimensional hole subspace we
now focus on has the symmetry character of a J = 3/2 angular momentum [3], resulting from the composition of the
p-wave-like wave functions and of the 1/2 spin. For the present purpose, it is more convenient to use the notations
|1〉 ≡ |3/2〉, |2〉 ≡ |1/2〉, |3〉 ≡ | − 1/2〉 and |4〉 ≡ | − 3/2〉 to denote the standard fourfold hole basis.

Following the approach of Luttinger and Kohn [3, 4] (with slightly different notations [5]) in the absence of magnetic
field, the hole kinetic energy part Hh(k) of the exciton Hamiltonian is given by

Hh(k) =
~2

2m0

 G+ ∆ D F 0
D∗ G−∆ 0 F
F ∗ 0 G−∆ −D
0 F ∗ −D∗ G+ ∆

 ≡ ~2

2m0
(G1 + hh) (1)

where m0 is the vacuum electron mass (providing a mass scale), and G,∆, D and F are defined from the hole
wavevector k by

G = γ1k
2 ∆ = γ2(k2 − 3k2z) (2)

D = −2
√

3γ3(kx − iky)kz

F = −
√

3γ2(k2x − k2y) + 2i
√

3γ3kxky

where x, y and z are the cubic axes, and γ1, γ2 and γ3 are the Luttinger [3] constants characterizing the semiconductor.
One may notice that, within a multiplicative factor, h2h reduces to the unit matrix(

2m0

~2
Hh(k)−G1

)2

= h2h = λ2 1 (3)

with

λ2 ≡ ∆2 + |D|2 + |F |2 = 4γ22k
4 + 12(γ23 − γ22)

[
k2xk

2
y + k2yk

2
z + k2zk

2
x

]
(4)

so that the doubly degenerate eigenvalues E±(k) of Hh(k) are given by the well-known result [6]

2m0

~2
E±(k) = γ1k

2 ± 2
[
γ22k

4 + 3(γ23 − γ22)
[
k2xk

2
y + k2yk

2
z + k2zk

2
x

] ]1/2
(5)

The square root on the right-hand side gives rise to the well-known warping, implying in general a departure from
a dispersion relation with simple spherical symmetry. This symmetry is recovered only in the particular case where
γ2 = ±γ3. In this specific case, one finds the standard heavy and light holes, with mass mH and mL, related to our
coefficients by (assuming γ2 > 0)

m0

mH
= γ1 − 2γ2

m0

mL
= γ1 + 2γ2 (6)

In order to make sense as a hole dispersion relation, E±(k) which gives the hole kinetic energy should naturally
be positive for any k. This implies some limitations on the Luttinger coefficients, from the explicit expression given
by Eq.(5). Indeed, considering the negative branch E−(k), this requires the square root on the right-hand side to be
less than γ1k

2. If we consider first the case where γ3 < γ2, the square root is maximal when the bracket multiplying
γ23 − γ22 is zero, which occurs when kx = ky = 0, or ky = kz = 0, or kz = kx = 0, that is, when k is on one of the cubic
axes. In this case, the positivity condition is merely

γ1 > 2γ2 (7)

In the opposite case where γ3 > γ2, in order to maximize the square root, we instead look for the maximal value of
the bracket multiplying (γ23 − γ22). For fixed k, it is found when ±kx = ±ky = ±kz = k/

√
3, that is, when k is along

one of the principal cubic diagonals. In this case, the square root is merely equal to γ3k
2, and the positivity condition

is (assuming γ3 > 0)

γ1 > 2γ3 (8)

In the particular case where γ3 = γ2, these conditions merely reduce to the fact that mH should be positive, which is
physically obvious.
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III. INTEGRAL EQUATION FOR EXCITONIC EIGENSTATES

The Hamiltonian for the exciton is merely obtained by adding to the hole kinetic energy the electronic kinetic energy
p2
e/2me, where pe is the conduction band electronic momentum, and me the corresponding electronic band mass. We

assume that the electronic dispersion relation is isotropic [7]. The electronic spin does not bring any complication,
except that naturally all the degeneracies are multiplied by two; so, we do not indicate it explicitly. Finally, we
have to include in the Hamiltonian the electron-hole attractive Coulomb interaction V (re − rh), where re and rh
are respectively the electron and hole position, with V (r) = −e2/(4πεscr) where εsc is the semiconductor dielectric
constant. Since this interaction depends only on the relative position of the hole and the electron, it is translationally
invariant, so the excitonic momentum is conserved. In the present paper, we restrict ourselves to the case where this
momentum is zero, so that the electron and hole momentum are opposite pe = −ph = −~k. Hence, the electron term
merely adds a contribution ~2k2/2me to the hole kinetic energy Eq.(1), and we are back to a one-body problem. The
potential term is the Coulomb interaction, and the kinetic energy is still given by Eq.(1), provided γ1 is replaced by

γ̄1 = γ1 +
m0

me
(9)

Considering the complexity of the hole kinetic energy, it is more convenient to write the excitonic Schrödinger
equation in momentum space, which leads to an integral equation. This is much easier to handle numerically than
the four-dimensional partial differential equation one would find if one worked in real space. We denote the k
representation of the four-components wave function as a(k) ≡

(
a1(k), a2(k), a3(k), a4(k)

)
. This four-dimensional

Schrödinger equation then reads

H̄h(k) a(k) +

∫
dk′

(2π)3
V (k− k′) a(k′) = E a(k) (10)

where V (q) = −e2/(εscq2) is the Fourier transform of the Coulomb interaction, and E is the exciton energy to be
solved for. H̄h(k) is just given by Eq.(1), except that γ1 has to be replaced by γ̄1. Note that the Coulomb interaction
is diagonal in our representation, while H̄h(k) is not.

It is convenient to rewrite this equation so that only dimensionless quantities appear. The natural energy unit is
the Rydberg, so we write the exciton energy as E = −Ē m0(e2/4πεsc)

2/(2~2) where Ē is the dimensionless exciton
binding energy. The corresponding natural length unit is the Bohr radius, so we also go to a dimensionless wavevector
k̄ defined by k = k̄m0(e2/4πεsc)/~2. Taking into account that H̄h(k) is a quadratic function of the wavevector, our
Schrödinger equation becomes (

H̄r(k̄) + Ē
)
a(k̄) =

1

π2

∫
dk̄′

1

(k̄− k̄′)2
a(k̄′) (11)

where we have also defined a reduced dimensionless hole kinetic energy H̄r(k̄) = (2m0/~2)H̄h(k̄).
Furthermore, it is clear from Eq.(1) and Eq.(9) that the important parameters are the ratios γ2/γ̄1 and γ3/γ̄1.

Setting

γ̄2 =
γ2
γ̄1

γ̄3 =
γ3
γ̄1

(12)

it is convenient to have only these parameters appearing. This requires a further rescaling, obtained by setting
k̄ = K/γ̄1 and Ē = ε̄/γ̄1. This leads to

(
(K2 + ε̄)1 + h̄h(K)

)
a(K) =

1

π2

∫
dK′

1

(K−K′)2
a(K′) (13)

where h̄h(K) has exactly the same expression as hh(k) in Eq.(1) (with k replaced by K) except that, in the explicit
expressions for its elements given in Eq.(2), one has to replace γ2 and γ3 by γ̄2 and γ̄3 respectively.

We note that, corresponding to our above request for the positivity of the hole kinetic energy, we have to require
that the kinetic energy for the exciton one-body problem is always positive. Proceeding as in the above derivation of
Eq.(7) and Eq.(8), we find that our coefficients must satisfy

|γ̄2| <
1

2
|γ̄3| <

1

2
(14)
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For numerical work, it is more convenient to apply to Eq.(13) the inverse of the 4× 4 matrix (K2 + ε̄)1 + h̄h(K).
Since we have noted in Eq.(3) and Eq.(4) that h̄2h = λ21 is proportional to the unit matrix (with γ2,3 and k replaced
in λ by γ̄2,3 and K), this inverse is merely

(
(K2 + ε̄)1− h̄h(K)

)
/((K2 + ε̄)2 − λ2). Hence Eq.(13) becomes

a(K) =
(K2 + ε̄)1− h̄h(K)

(K2 + ε̄)2 − λ2
1

π2

∫
dK′

1

(K−K′)2
a(K′) (15)

Note that the conditions Eq.(14) correspond to the requirement that the denominator (K2+ ε̄)2−λ2 is always positive,
in particular for large K.

To conclude this section, it is useful to consider the particular case where our exciton problem reduces to the case
of the hydrogen atom. This corresponds merely to the case where h̄h(K) = 0 and the integral equation (15) reduces
to a one-dimensional equation

a(K) =
1

π2(K2 + ε̄)

∫
dK′

1

(K−K′)2
a(K′) (16)

We readily know the solution which is the Fourier transform of the ground-state wave function exp(−r/a0) of the
hydrogen atom, that is (omitting the unimportant constant prefactor) a(K) = 1/(1+K2)2. Taking into account that,
with our reduced units, the ground-state energy is merely ε̄ = 1, one can easily check analytically that this expression
of a(K) is indeed solution of the integral equation (16).

It is important to note that the explicit large K behaviour a(K) ∼ 1/K4 of this solution, which insures the large
K convergence of the integral on the right-hand side, is actually a generic feature of the general equation (15).
Indeed, making use of this convergence consistently allows us to write in this large K regime 1/(K −K′)2 ' 1/K2

in the integral. Then, the resulting 1/K2 factor, together with the explicit prefactor of the integral, indeed leads to
a(K) ∼ 1/K4 for the large K behaviour of a(K). This behaviour is naturally of particular interest for the numerical
solution of this integral equation.

IV. GROUND STATE DEGENERACY

One might think at first that Eq.(15) gives for the exciton ground state a single non-degenerate solution, with
a specific symmetry. This is not what happens. Instead, we find that quite generally the exciton ground state, at
zero total momentum, has an exact fourfold degeneracy (without taking into account the conduction electron spin
degeneracy). This comes directly from the cubic symmetry of the crystal. This is fully analogous to what would
occur if we had a complete rotational invariance. In this last case, this would naturally imply a full degeneracy, with
the eigenstates having in this four-dimensional subspace an angular dependence given by the spherical harmonics
Y`m(θ, ϕ) with ` = 3/2 and m = (±3/2,±1/2). In the present case, we have actually the lower cubic symmetry, but
it is enough to similarly insure the complete degeneracy of the ground state.

This result may at first look surprising if one naively considers the situation with spherical symmetry γ̄2 = γ̄3.
Since in this case one has heavy and light holes, one could think of two possible exciton states, made respectively with
a heavy or a light hole (each one being doubly degenerate). But this omits the fact that the Coulomb interaction is
not diagonal in this heavy-light hole representation. Indeed, it has been shown [8] that the proper treatment of this
specific case leads to a fourfold degeneracy. Here, we extend this result to the general case.

To see this in a more specific way, we have to consider the symmetry properties of the solutions. We rewrite the
Schrödinger equation Eq.(13) for the exciton, making explicit the wave function and matrix components. It reads,
with (m,n) = 1, 2, 3, 4

4∑
n=1

(
(K2 + ε̄)δmn + h̄mn(K)

)
an(K) =

1

π2

∫
dK′

1

(K−K′)2
am(K′) (17)

where h̄mn(K) are the matrix elements of h̄h(K) and δmn is the Kronecker symbol. The fact that this equation satisfies
time-reversal invariance implies that, if an(K) is solution of this equation, (−1)n−1a∗5−n(K) is also solution with the
same energy. This transformation can be understood from the spin-3/2 nature of our components. This property can
be checked directly from the explicit expression of the hole kinetic energy terms h̄mn(K), given by Eq.(2).

Let us first consider the symmetry properties under a π/2 rotation Rz around our quantization axis z. Under
this rotation, the component of the wave function an(K) becomes an(R−1z (K)), that is, an(Kx,Ky,Kz) becomes
an(Ky,−Kx,Kz). For clarity, we denote as ān the transform of an, that is, ān(Kx,Ky,Kz) = an(Ky,−Kx,Kz).
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Similarly, if we perform an additional π/2 rotation Rz on the wave function, amounting to a total π rotation, we
end up with ¯̄an(Kx,Ky,Kz) = an(−Kx,−Ky,Kz). Finally, an additional π/2 rotation leads to ¯̄̄an(Kx,Ky,Kz) =
an(−Ky,Kx,Kz).

However, if we want to rotate the state |a〉 =
∑
n an|n〉 by a π/2 rotation Rz, we have to take into account that our

basis states |3/2〉 ≡ |1〉, |1/2〉 ≡ |2〉, |−1/2〉 ≡ |3〉 and |−3/2〉 ≡ |4〉 change under rotation by acquiring a phase factor
through the action of the rotation operator e−iπJz/2~. Disregarding the unimportant overall phase factor e−3iπ/4, this
leads for the various components an of our wave function to an additional phase factor ei(n−1)π/2 = in−1 coming from
our basis states.

If we now make in Eq.(17) the change of variables Kx → Ky and Ky → −Kx (and similarly for K′ on the right-
hand side), an(K) becomes ān(K) while we see from their explicit expressions Eq.(2) that D(K) becomes iD(K),
F (K) becomes −F (K) and ∆(K) is unchanged. Comparing with the original equation (17) before the change of
variables, one finds the following symmetry property: if an is solution of Eq.(17), then in−1 ān is also solution of
this equation with the same energy. That is, if we have a solution, the wave function obtained by a π/2 rotation is
also a solution. This physically corresponds to the fact that our Hamiltonian is invariant under a π/2 rotation Rz.
Naturally, repeating the π/2 rotation, we find that (−1)n−1 ¯̄an and (−i)n−1 ¯̄̄an are also solutions.

This situation is analogous to the simple one-dimensional case where the Hamiltonian is invariant under the trans-
formation x→ −x: if ψ(x) is a solution of the Schrödinger equation, ψ(−x) is also a solution with the same energy. So,
we can build the two solutions ψS(x) = ψ(x) + ψ(−x), and ψA(x) = ψ(x)− ψ(−x) which are respectively symmetric
and antisymmetric under x→ −x.

In the same way, in our case, if an(K) is a solution of the Schrödinger equation (17), then by adding the solutions
obtained by performing rotations around the z axis by π/2, π and 3π/2 respectively, we obtain a solution with the
same energy which is invariant by π/2 rotation. This solution is explicitly

a(1)n = an + in−1 ān + (−1)n−1 ¯̄an + (−i)n−1 ¯̄̄an (18)

If we perform on this solution the change of variables Kx → Ky and Ky → −Kx, we find that a
(1)
n is changed into

(−i)n−1 a(1)n , that is ā
(1)
n = (−i)n−1 a(1)n .

But, as possible solutions of Eq.(17), we can more generally take solutions a
(p)
n , with p = 1, 2, 3, 4, which transform

as ā
(p)
n = (−i)n−p a(p)n . Generalizing the preceding case p = 1, they are obtained explicitly from a solution an(K) by

a(p)n = an + in−p ān + (−1)n−p ¯̄an + (−i)n−p ¯̄̄an (19)

Performing the changes Kx → Ky and Ky → −Kx, we check as for Eq.(18) that they indeed transform as we have
indicated. These are the appropriate generalizations to the present case of choosing solutions which are either even
or odd under x → −x, when the Hamiltonian is invariant under this transformation x → −x. These four solutions
are orthogonal since the scalar product of two different solutions is naturally unchanged when one performs on K in
the integral the change of variables Kx → Ky and Ky → −Kx corresponding to the π/2 rotation, while it is changed
due to the different way the two different solutions with p 6= q transform under the rotation

4∑
n=1

∫
dK a(p) ∗n (K)a(q)n (K) =

4∑
n=1

∫
dK ā(p) ∗n (K)ā(q)n (K) = iq−p

4∑
n=1

∫
dK a(p) ∗n (K)a(q)n (K) = 0 (20)

In our one-dimensional case, if we start with an even solution ψ(x) = ψS(x), the corresponding odd solution ψA(x)
is found equal to zero. And conversely, if we start with ψA(x), the corresponding even solution is equal to zero.

Similarly, in our case with π/2 rotation, one finds easily that if our starting an has a a
(p)
n symmetry, the resulting

solutions with different symmetry a
(q)
n , with q 6= p, are identically equal to zero.

We note that the time-reversal counterpart of a
(1)
n , that is (−1)n−1a

(1)∗
5−n, transforms like a

(4)
n , and similarly a

(2)
n

and a
(3)
n are linked in the same way. A solution and its time-reversed function can not be identical because they have

different symmetries. Hence, the time reversability automatically implies that there is a twofold degeneracy for the
exciton eigenstates (this is Kramer’s degeneracy theorem with respect to hole states). In order to reach the conclusion
that the degeneracy is actually fourfold, we have to search for a further symmetry of the Hamiltonian.

For this purpose let us now consider the symmetry corresponding to a π/2 rotation Rx around the x axis. With re-
spect to the orbital variables, the situation is analogous to the one we had above with Rz: an(K) becomes an(R−1x (K)),
that is, an(Kx,Ky,Kz) becomes ãn(Kx,Ky,Kz) = an(Kx,Kz,−Ky). However, in order to obtain the transform of
our four-dimensional wave function, we again have naturally to take into account the fact that our basis states are
strongly modified under this rotation, that is, to calculate e−iπJx/2~|n〉. This is a standard calculation, that we will
not detail here. It can be done for example by finding the evolution of the matrix elements fn(ϕ) = 〈n|e−iϕJx/~|m〉
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as a function of ϕ. For example for m = 1 one writes the first-order differential equations obtained by evaluating
~∂fn(ϕ)/∂ϕ = −i〈n|Jx e−iϕJx/~|1〉 (for example ∂f1(ϕ)/∂ϕ = (−i

√
3/2)f2(ϕ) from the explicit expression of Jx) and

one integrates these equations.
One obtains in this way the transform |n〉x ≡ e−iπJx/2~|n〉 of our basis states by the Rx rotation as

|1〉x =
1

2
√

2

[
|1〉 − i

√
3 |2〉 −

√
3 |3〉+ i |4〉

]
(21)

|2〉x =
1

2
√

2

[
− i
√

3 |1〉 − |2〉 − i |3〉 −
√

3 |4〉
]

|3〉x =
1

2
√

2

[
−
√

3 |1〉 − i |2〉 − |3〉 − i
√

3 |4〉
]

|4〉x =
1

2
√

2

[
i |1〉 −

√
3 |2〉 − i

√
3 |3〉+ |4〉

]
Hence, the solutions

∑
n a

(p)
n |n〉 are transformed into

∑
m,n ã

(p)
n |m〉〈m|n〉x, where the matrix elements 〈m|n〉x are

given by Eq.(21). These transformed solutions are naturally also solutions of the initial Schrödinger equation (17). If

the solutions a
(p)
n are fourfold degenerate, this implies that the transformed solutions are linear combinations of the

a
(p)
n , that is, there exists a set of coefficients λ

(q)
p such that∑

n

ã(q)n (K)〈m|n〉x =
∑
p

λ(q)p a(p)m (K) (22)

These simple linear relations between the solutions of Eq.(17) are fairly remarkable, since the solutions of Eq.(17) are
not expected to be simple. Since we have no analytical solutions of Eq.(17), we have no way to check them in the
general case.

However, there is a limiting situation where we can solve analytically Eq.(17) and check these relations. This is the
limit of large wavevectors K, corresponding physically to short distances. In this case, since on the right-hand side of
Eq.(17) the am(K′) have a limited range, we can write in the integral 1/(K−K′)2 ' 1/K2, which provides an explicit
solution for an(K) in terms of the integrals In =

∫
dK an(K), by merely inverting the matrix K2δmn + h̄mn(K) as

we have done in Eq.(15) (ε̄ is negligible in this large K limit). This gives explicitly

am(K) =

4∑
n=1

K2δmn − h̄mn(K)

K4 − λ2
In

π2K2
(23)

If we take the particular case of the a
(p)
n solutions, we notice that, when we make in I

(p)
n =

∫
dK a

(p)
n (K) the change

of variables on K corresponding to the Rz rotation, the integral is naturally unchanged. On the other hand, taking

into account that a
(p)
n (K) is transformed into ā

(p)
n (K) = (−i)n−p a(p)n (K) in this change of variables, we find that I

(p)
n

is multiplied by (−i)n−p. Hence I
(p)
n is zero unless n = p, so that I

(p)
n ≡ I(p) δn,p. Actually we can even choose to

have I(p) = 1 by taking an appropriate norm for the a
(p)
n solutions. Hence, in this case Eq.(23) simplifies into

a(p)m (K) =
K2δmp − h̄mp(K)

π2K2(K4 − λ2)
(24)

In particular, one can check on these explicit expressions that the symmetry properties ā
(p)
n = (−i)n−p a(p)n are indeed

satisfied.
Integrating Eq.(22) over K, and noting that

∫
dK ã

(q)
n (K) =

∫
dK a

(q)
n (K) = δn,q by change of variables, we obtain

the coefficients λ
(q)
p in Eq.(22) as λ

(n)
m = 〈m|n〉x, and in particular λ

(n)
n = 〈n|n〉x. One can then substitute in Eq.(22)

the explicit solutions a
(q)
n (K) given by Eq.(24), and check after a simple but tedious calculation that it is satisfied.

For example, taking the case q = 1 and the component m = 1, we have to check from Eq.(21) that

ã
(1)
1 (K)− i

√
3ã

(1)
2 (K)−

√
3ã

(1)
3 (K) + iã

(1)
4 (K) = a

(1)
1 (K)− i

√
3a

(2)
1 (K)−

√
3a

(3)
1 (K) + ia

(4)
1 (K) (25)

where we have omitted the common denominator 2
√

2 occuring in all the terms from Eq.(21). Using the definition

ãn(Kx,Ky,Kz) = an(Kx,Kz,−Ky), and noting that ã
(1)
4 (K) = a

(4)
1 (K) = 0, we are left with checking that

[K2 − γ̄2(K2 − 3K2
y)] + 6iγ̄3(Kx + iKz)Ky − [3γ̄2(K2

x −K2
z ) + 6iγ̄3KxKz] = (26)

[K2 − γ̄2(K2 − 3K2
z )]− 6iγ̄3(Kx − iKy)Kz − [3γ̄2(K2

x −K2
y)− 6iγ̄3KxKy]
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where we have omitted the denominator π2K2(K4 − λ2) common to all the terms. We see that this equality Eq.(26)
is indeed satisfied, but in a nontrivial way.

It is now clear that the degeneracy of all the four solutions a
(p)
n is necessary in order to satisfy such an identity.

Indeed, if on the contrary a
(1)
n (together with its time-reversed conjugate a

(4)
n ) and a

(2)
n (together with a

(3)
n ) had

different energies, the transformed of a
(1)
n by the rotation Rx would have to be a linear combination of a

(1)
n and a

(4)
n

only, since the two other solutions had a different energy. This would lead to relations analogous to Eq.(25), but
with only two solutions (a(1) and a(4)) on the right-hand side instead of four as in Eq.(25). This is a much more
stringent algebraic requirement, that clearly can not be satisfied. Indeed, one can check in the large K limit that the
corresponding relation is algebraically incompatible with the explicit solution. This provides an explicit proof that

the four solutions a
(p)
n are indeed degenerate [9].

V. NUMERICAL RESULTS

We numerically find the ground state energy (and the corresponding wave function) by applying an iterative
procedure, to this Schrödinger equation under the form written in Eq.(15). Let us call A the linear operator that
acts on the four-dimensional wave function a(K) on the right-hand side of Eq.(15). Solving Eq.(15) is equivalent to
finding an eigenvector of A with the eigenvalue Λ = 1. In the case of a very large binding energy ε̄, the operator A
goes to zero and all its eigenvalues are quite small. Hence, none of them can be equal to 1, and there is no state with
very large binding energy, as expected. If we decrease ε̄, the largest positive eigenvalue Λmax of A will grow. When
this eigenvalue of A reaches 1, we will have obtained the largest possible value for ε̄ corresponding to an eigenstate.
In other words, we will have found the ground-state energy.

It is easy to obtain the largest eigenvalue of A by applying iteratively A to some convenient starting wave function
a(K). A practical choice for the starting wave function is to take the first component a1(K) equal to the hydrogen atom
ground-state wave function we have discussed above, and the other components equal essentially to zero. Indeed,
iterating n times is equivalent to applying the operator An to a(K). But for large n values, An is dominated by
its largest eigenvalue (Λmax)n and is essentially equivalent to a projection on the corresponding eigenvector and
multiplication by (Λmax)n. This allows us to identify conveniently Λmax and the corresponding eigenvector. Actually
this procedure works only if the spectrum of A does not have nasty features, such as closely spaced largest and second
largest eingenvalues, or large negative eigenvalues. Fortunately, in our case, this procedure happens to work quite
nicely. We have found that, in practice, typically 20 iterations, or less, gave already a satisfactory convergence for
the precision we have considered. It is also convenient, in order to find the ground-state energy, to start from the
hydrogen atom situation γ̄2 = γ̄3 = 0 where the solution is known, and to crank up γ̄2 and γ̄3 progressively. In this
way, the range where the ground-state energy lies is fairly well known at each stage of the calculation.

In the practical task of performing the integral on the right-hand side of Eq.(15), it is much better to get rid of the
Coulomb interaction term and its singular behaviour. This is done conveniently by performing the change of variables
K′ = K + Q. In this way the integral becomes∫

dK′
1

(K−K′)2
a(K′) =

∫ ∞
0

dQ

∫ π

0

dθ sin θ

∫ 2π

0

dϕ a(Kx +Q sin θ cosϕ,Ky +Q sin θ sinϕ,Kz +Q cos θ) (27)

where θ and ϕ are the polar and azimuthal angles for Q. However, this change of variables makes it necessary, in
order to conveniently perform numerically the integrals, to evaluate a(Kx,Ky,Kz) for any values of Kx,Ky and Kz.
This can be done by sampling a number of Kx,Ky,Kz values and infer any a(Kx,Ky,Kz) value by interpolation. In
practice, it is rather (1 +K2)2 a(Kx,Ky,Kz) that we have interpolated, since in the case of the hydrogen atom, this
function is just a constant equal to 1. So, in our exciton case, we do not expect it to have strong variations. This
has allowed us to use a simple three-dimensional linear interpolation. Naturally, we have also restricted the range of
variation of our variables by the change of variables Kx,y,z = tan tx,y,z, with the regular discretization being on the
tx,y,z’s.

It is convenient to reduce the range of the K variables by making use of symmetries, for example planar re-
flexions. If we consider first the change Kz → −Kz, it produces a change of sign for D in Eq.(2), all the
other terms being unchanged. As a result, one checks easily that, if an(Kx,Ky,Kz) is solution of Eq.(15), then
(−1)n−1an(Kx,Ky,−Kz) is also solution. As above, we can build a solution that is even under this transform
(and is expected to correspond to the ground state). It satisfies an(Kx,Ky,−Kz) = (−1)n−1an(Kx,Ky,Kz). Note
that the time-reversed solution aTn (K) = (−1)n−1a∗5−n(K) transforms as the odd combination in this transform

aTn (Kx,Ky,−Kz) = (−1)naTn (Kx,Ky,Kz).
Similarly, in the change Kx → −Kx, F is changed into F ∗ and D into −D∗. One checks that, if an(Kx,Ky,Kz) is

solution, then a5−n(−Kx,Ky,Kz) is solution. Hence, we can take a solution with the symmetry an(−Kx,Ky,Kz) =
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a5−n(Kx,Ky,Kz). Finally Ky → −Ky changes F into F ∗ and D into D∗. So, if an(Kx,Ky,Kz) is solution,
then (−1)n−1a5−n(Kx,−Ky,Kz) is solution, and we can take a solution with the symmetry an(Kx,−Ky,Kz) =
(−1)n−1a5−n(Kx,Ky,Kz). Note that, with this choice of solution satisfying simultaneously these three symmetries, if
we perform a symmetry with respect to the origin Kx → −Kx,Ky → −Ky and Kz → −Kz, we find that our solution
is invariant, as we expect from the ground-state wave function. These symmetries allow us to restrict the range of
our variables to Kx ≥ 0,Ky ≥ 0,Kz ≥ 0.

We want to explore the whole range of γ̄2 and γ̄3 values allowed by the condition Eq.(14). However, we note that if
we change the sign of both γ̄2 and γ̄3, from Eq.(2) ∆, D and F change sign, that is, hh defined by Eq.(1) is changed
into −hh. But hh and −hh must have the same eigenvectors, and moreover have also the same doubly degenerate
eigenvalues ±λ as seen in Eq.(3) and Eq.(4). In other words, going from hh to −hh amounts to merely relabeling
the eigenvectors corresponding to the two positive eigenvalues as corresponding to the two negative eigenvalues, and
conversely. It is clear that such a relabeling, which is merely a basis change, does not change the eigenvalue spectrum of
the whole Hamiltonian we are interested in. Accordingly, in particular, the exciton ground-state energy is unchanged
when changing the sign of both γ̄2 and γ̄3. If we have a solution for a given sign of the γ̄’s, we are able to obtain a
solution having the same groud-state energy for the γ̄’s with opposite sign.

Let us now consider what happens if we change only the γ̄2 sign, γ̄3 being unchanged. From Eq.(2), one finds that
∆ is changed into −∆, and F into −F ∗, while D is unchanged. Moreover, as we have seen above, in the change of
variables Kx → Ky and Ky → −Kx, D(K) becomes iD(K), while F (K) becomes −F (K). But we notice that a
further simple change of functions a2 → −ia2, a4 → −ia4 is equivalent to changing D into iD. Combining these three
changes, we have changed ∆ into −∆, F into F ∗ and D into −D. But the resulting equations for Eq.(13), or Eq.(15),
are identical to the original ones provided we make the additional change of functions a1 ↔ a3, a2 ↔ a4. Hence, we
conclude that γ̄2 → −γ̄2 leaves the energy spectrum invariant. Combining now the two changes of signs for the γ’s,
we obtain that the ground-state energy depends only on |γ̄2| and |γ̄3|, so we can restrict our study to 0 ≤ γ̄2 < 1/2,
0 ≤ γ̄3 < 1/2.

Let us finally examine the limiting cases γ̄2 → 1/2, γ̄3 → 1/2. As we have seen below Eq.(6), when either γ̄2 = 1/2
or γ̄3 = 1/2, there are some K directions for which K2−λ2 = 0. As a result, if in Eq.(15) ε̄ is fixed, for large values of
K, the denominator in the first factor of the right-hand side will go to zero. This implies that a(K) will not behave for
all K directions as 1/K2, as we have found in Eq.(16). This leads to a divergent behaviour in the integral of Eq.(15).
The natural way to escape this problem is to let ε̄ be very large, so this divergent behaviour of a(K) is pushed to ever
higher values of K, and one avoids an actual singularity in the limits γ̄2 → 1/2, γ̄3 → 1/2.

Unfortunately, an explicit handling of this behaviour is not so easy in general because it arises from the behaviour
of a(K) around some specific directions of K. Nevertheless when we let both γ̄2 → 1/2, γ̄3 → 1/2 at the same time,
it is possible to extract the divergent behaviour of ε̄ by a simple rescaling. Let us set 2 γ̄2 = 1 − η2, 2 γ̄3 = 1 − η3,
and consider η2 → 0, η3 → 0 with r = η3/η2 fixed to a finite value. We perform the rescaling K = K̄/η2, while at the
same time setting ε̄ = α/η2. This leads, for the denominator on the right-hand side of Eq.(15), to (K2 + ε̄)2 − λ2 =
(2/η32)[K̄4 +αK̄2 + 3(r− 1)(K̄2

x K̄
2
y + K̄2

y K̄
2
z + K̄2

z K̄
2
x)]. In this rescaling, the numerator provides a factor 1/η22 , while

another factor 1/η2 comes from the rescaling of the variable K′ into K̄′ in the integral. Hence, the scaling factor η2
disappears completely and we are left with the following equation, free of singularity

b(K̄) =
K̄21− h̄h(K̄)

2[αK̄2 + K̄4 + 3(r − 1)(K̄2
x K̄

2
y + K̄2

y K̄
2
z + K̄2

z K̄
2
x)]

1

π2

∫
dK̄′

1

(K̄− K̄′)2
b(K̄′) (28)

where b(K̄) = a(K̄/η2). We have solved numerically this equation for the scaling factor α in the energy, in the case
r = 1, and we have found α = 0.43. This is in fair agreement with the corresponding reduced energy ε̄ = 4.77 we have
found by a direct numerical solution of Eq.(15) for η2 = η3 = 0.1.

Following the procedure indicated above, we have calculated the reduced exciton ground-state energy ε̄ from Eq.(15)
as a function of γ̄2 and γ̄3, on a grid with spacing 0.05 for these two parameters. Rather than presenting these extensive
results as a table, we have used them to evaluate ε̄ for any value of γ̄2 and γ̄3 by a two-dimensional spline interpolation,
and then obtain the level lines for various values of ε̄ in the γ̄2 − γ̄3 plane. They are displayed in Fig.1. We have
chosen not to smooth out the small irregularities which are apparent along these level lines, since they result from
the imprecision of our calculations and accordingly give a fairly direct information on it. In particular, the results for
ε̄ close to 1 are very sensitive to this imprecision, and the resulting line for ε̄ = 1.05 would be pretty bad. Hence, to
draw this line, we have rather relied on a quadratic interpolation from the γ̄2 = 0.1 and γ̄3 = 0.1 results, rather than
using our γ̄2 = 0.05 and γ̄3 = 0.05 results.

The numerical results are fairly regular, with the represented level lines being not so far from quarter circles,
provided we do not go too close to the boundaries γ̄2 = 0.5 and γ̄3 = 0.5. This means that, roughly speaking, ε̄

depends only on γ̄22 + γ̄23 ≡ 2γ̄2. Correspondingly, we find that ε̄− 1 ' 2.5(1/
√

1− 4γ̄2 − 1) provides an approximate
representation of the numerical results. In particular, it is quadratic for small γ̄ and it diverges for γ̄ → 1/2. It gives
ε̄ ' 4.23 for γ̄ = 0.45, not so different from the result from our numerical ε̄ = 4.77 mentioned above.
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FIG. 1: Reduced ground-state exciton binding energy ε̄ in the γ̄2 − γ̄3 plane. The level lines for ε̄ = 1.05, 1.1, 1.2, 1.3, 1.5, 1.7
and 2. are represented, as indicated in the figure.

Regarding the size of the results, we note that taking our reduced ground-state exciton binding energy as unity
ε̄ = 1 corresponds to making use, in the standard expression E = −µX(e2/4πεsc)

2/(2~2), of a reduced mass µX given
by 1/µX = 1/me + 1/µh, where from Eq.(6) and Eq.(9) the reduced hole mass µh itself is taken equal to the half-sum
of the reduced heavy and light hole masses 1/µh = (1/mH + 1/mL)/2. This is a frequently done approximation, for
lack of better knowledge. Fig.1 shows that in principle we may have a fairly important departure from this simple
approximation.

However, we have considered in practice a few semiconductors where reliable data exist for the valence band as well
as the conduction band parameters [1, 2, 10, 11]. One can still see sizeable theoretical and experimental uncertainties
in the knowledge of these band parameters [2, 11]. Remarkably, the strong variations among compounds in the
basic Luttinger parameters and conduction electron mass, provide a much reduced variation in our reduced Luttinger
parameters γ̄2 and γ̄3. We note that a light electronic mass increases γ̄1 from Eq.(9), which leads to a reduction of the
size of γ̄2 and γ̄3. We find that γ̄2 is mostly in the range 0.1− 0.15, while γ̄3 takes slightly higher values in the range
0.1−0.2. From our results, the warping leads to an increase of the exciton binding energy by about 10%. This should
be taken into account as soon as one looks for some precision in the exciton binding energy. The largest correction we
have found for a compound with specifically known parameters is in the case of BN [2], where γ̄2 = 0.12 and γ̄3 = 0.2
leads to a 15% increase from the warping in the exciton binding energy. However, it should be kept in mind that this
binding energy is quite sensitive to the parameters values in this range. For example having γ̄2 = γ̄3 = 0.2 would lead
to a 20% increase in the binding energy, and γ̄2 = γ̄3 = 0.25 would give a 35% increase. Hence, keeping in mind the
uncertainties on the valence band parameters, the effect of warping on the exciton binding energy may happen to be
quite important.

VI. CONCLUSION

In this paper, we have addressed the effect on the exciton ground-state energy of the warping of the valence band
near its edge. We have specifically considered the case of bulk exciton for semiconductors with zinc-blende crystal
structure. Assuming as usual that the split-off subband due to spin-orbit coupling is energetically far enough to play
a negligible role, we have considered the four-dimensional problem for the hole kinetic energy. We have shown that,
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due to the cubic symmetry, the exciton ground state has a fourfold degeneracy.
We have introduced, by a simple scaling, reduced Luttinger parameters γ̄2 and γ̄3, whose absolute value are less than

1/2. We have studied systematically the exciton ground-state energy as a function of these reduced Luttinger param-
eters, by solving numerically the integral equation corresponding to the Schrödinger equation in Fourier transform.
We find that, compared to its standard expression in the absence of warping (corresponding to the case γ̄2 = γ̄3 = 0),
the exciton binding energy can in principle increase without limitations. For moderate increases, we have provided an
approximate analytical expression for the increase in terms of the Luttinger parameters. Going through the values of
band structure parameters, and in particular Luttinger parameters, for tabulated semiconductors, we find a typical
10%−15% increase in the exciton binding energy. However, this energy is fairly sensitive to the values of the Luttinger
parameters, and a slight increase in their values due to experimental or/and theoretical uncertainties could lead to a
markedly larger increase in the exciton binding energy.
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