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Abstract

We consider a multi-layer transmission problem,
which can be used for example to describe the
light scattering in meta-materials (assemblings
of various concentric penetrable materials). Our
goal is to solve the multi-layer problem accu-
rately with optimal discretization. Generally,
the costs to solve this problem grow as more
layers are introduced - solving this problem is
thus particularly challenging for 3D models. For
this reason, we use boundary integral equation
(BIE) methods: they reduce the dimensional-
ity of the problem and can provide high order
accuracy. However, BIE methods suffer from
the so-called close evaluation problem. We ad-
dress it using modified representations. We fur-
ther examine how to improve the speed of our
method by optimizing the accuracy over number
of discretization points ratio. In particular, we
investigate whether the usual rule of thumb to
mesh interfaces, based on the most constraining
material, is necessary for the multi-layer trans-
mission problem.
Keywords: boundary integral methods, close
evaluation, multi-layered media, mesh adapta-
tion, time-harmonic acoustic scattering

1 Problem Setting

We seek to describe how waves propagate through
a medium of N concentric material layers Li,
with smooth boundary Γi, characterized by some
wavenumber ki ∈ C, i = 0, . . . , N − 1 (this
wavenumber depends on the speed of light in the
layer, therefore it contains the material proper-
ties of the layer). The light scattering by a plane
wave uin = eik0α⃗·x⃗, with wavenumber k0 > 0
and angle α ∈ [0, 2π] in this medium leads to
solving the transmission problem: ∆uj+k2juj =
0 in L̊j := Lj\{Γj−1 ∪ Γj}, uj+1 = uj on Γj ,
∂njuj+1 = βj∂njuj on Γj , where uj is the to-

tal field solution in the jth layer Lj , nj is the
outward unit normal on the boundary Γj , and

βj :=
k2j

k2j+1
denotes the contrast between adja-

cent layers Lj , Lj+1. Note that the Sommerfeld
radiation condition needs to be satisfied at in-
finity (in L0).

Figure 1: Schematic and notations of the problem.

2 Boundary Integral Equation System

We use boundary integral equation (BIE) meth-
ods to solve the transmission problem. This al-
lows to reduce the problem by one dimension.
Additionally, using representation formulae one
can evaluate the field everywhere within the lay-
ers once the boundary data (trace ui and normal
trace ∂niui of the field on Γi, i = 0, . . . , N−1) is
known. This leads to solving the following BIE
system:

( I2 −D00)[u0] + S00[∂n0u0] = uin on Γ0,

Dj−1,j [uj−1] + βj−1Sj−1,j [∂nj−1uj−1]

+ ( I2 −Djj)[uj ] + Sj,j [∂njuj ] = 0 on Γj ,

DN−1,N [uN−1]− βN−1SN−1,N [∂nN−1uN−1]

+ uN = 0 on ΓN−1.
(1)

Above, Di,j , Si,j represent the double-layer po-
tential and single-layer potential, respectively,
defined on Γi for i = j − 1, j, evaluated on Γj :

Di,j [uj ](x) =

∫
Γi

∂Φj

∂ni
(x, y)uj(y)dσy, x ∈ Γj
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Si,j [∂niuj ](x) =

∫
Γi

Φj(x, y)∂niuj(y)dσy, x ∈ Γj

with the fundamental solution to the Helmholtz
equation Φj(x, y) := i

4H
(1)
0 (kj |x − y|) with H1

0

denoting the Hankel function of first kind.
Discretizing (1) requires to pay attention to the
following: (i) layer potentialsDi,i, Si,i are weakly
singular integrals (singularities appear when x =
y in the associated kernel), (ii) Di−1,i, Si−1,i are
nearly singular integrals (especially when the
layers are thin), and (iii) the use of high con-
trasts βi may require we solve larger linear sys-
tems (more quadrature points). We will use the
Kress product rule with Nyström’s method [1] to
address (i), classically used to tackle weakly sin-
gular integrals with log singularities. We present
below how we address (ii) and (iii).

3 Treating Close Evaluation Error

We treat the close evaluation problem where
it occurs with the boundary regularized inte-
gral equation formulation (BRIEF) method [2].
This method relies on modified representations
of layer potentials using auxiliary functions solu-
tions of the equation. Given an evaluation point
xbi on Γi, we define ψj , j ∈ J0, N − 1K:

ψj(x) = uj(x
b
i)gj(x) + ∂niuj(x

b
i)fj(x), x ∈ Γj

with gj and fj satisfying the Helmholtz equation
associated to kj in L̊j , with the boundary con-
ditions gj(xbi) = 1, ∂nigj(x

b
i) = 0, fj(xbi) = 0,

∂nifj(x
b
i) = 1.

We consider the case when two adjacent bound-
aries are sufficiently close together such that they
impose this nearly-singular behavior on each other.
Then for boundaries Γj−1 and Γj , xbj−1 is the
corresponding closest point to xbj and vice versa.
Then we modify (1) so that the boundary data
satisfies on Γj ,

1
2uj(x

b
j) =

1
2ψj(x

b
j)−Dj−1,j [uj−1 − ψj−1]

+ βj−1Sj−1,j

[
∂nj−1uj−1 − ∂nj−1ψj−1

]
+Dj,j [uj − ψj ]− Sj,j

[
∂njuj − ∂njψj

]
(xbj).

The method is also applicable in the layers to
treat close evaluation error for x ∈ L̊j close to
some xbi . Figure 2 shows an example of how
BRIEF reduces the near-singular error in a 3-
layer problem defined by ks = (k0, k1, k2) and
circular interfaces of radii Rs = (R0, R1).

Figure 2: Error in the PTR solution without (left)
and with BRIEF (right). Higher orders of error in
the solution occur in the regions near the interfaces
of radii Rs.

4 Mesh Adaptation

We are interested in developing a grid adaptiv-
ity method that optimally discretizes the bound-
ary data such that we can accurately represent
the solutions. A general assumption is that the
highest wavenumber at each interface should de-
termine how to refine our mesh. Consider for
example the two-layer scattering problem (see
Figure 3). For contrast β0 < 1 (aka k1 > k0),
the general rule typically sets the discretization
based on k1, in order to capture the highly oscil-
latory scattered field in the interior. However,
since waves are trapped by this configuration,
the solution in the exterior layer does not need
as much refinement to be accurate. We propose
to determine a new, more optimal discretization
particular to this problem that depends on the
contrasts βj in the system, characterizing the
interactions between successive layers.

Figure 3: Real part of the scattered field for a two-
layer problem with β0 = 1

9 for sound-hard (left) ver-
sus transmission (right) boundary conditions.
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