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Abstract

We consider the scattering of an incident plane
wave by a penetrable obstacle characterized by some
material parameter ¢ € C. We consider a Trefftz
Discontinuous Galerkin (DG) approach, with a ba-
sis comprised of plane waves. This approach chooses
solutions of the homogeneous Helmholtz equation as
basis functions in each cell. This reduces the com-
putational cost by eliminating the volumic portion
of the weak form. Additionally, the basis functions
are chosen to better mimic the expected behavior of
the solutions (compared to standard polynomial ap-
proaches). Due to the penetrable scatterer, the be-
havior of the basis function will change with respect
to the parameter ¢, leading to challenges especially
for the so-called sign-changing problem (¢ < 0). We
derive the approach and show well-posedness at the
discrete level. Numerical examples (with application
to surface plasmons for sign-changing problems) will
be presented.
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1 Problem setting

For simplicity we consider time-harmonic scat-
tering of a plane wave by a penetrable obstacle
D in a homogeneous background medium in two
dimensions. We consider the plane wave u™ =
e™*% with wavenumber k > 0, D is a smooth,
positively oriented convex scatterer character-
ized by ¢ = &, € C (while the background is
such that e = 1). The goal is to accurately solve
the transmission problem: Let e(z) = 1,2 €
E = R?2\ D and e(z) = ¢, € (—00,—1) U
(0,400), z € D denote the piece-wise constant
permittivity characterizing this problem. The
total field u satisfies the following boundary value
problem:

Find u = v + v € H}.(R?) such that:
V- (e 'Vu)+ k*u=0, inR?
[ulop =0, [e ' Ophulop =0
lim /r(0, —ik)u™ =0
r—r00

(1)

It is well-known that (1) is well-posed for ¢,, €
C\ R_, and as well as for ¢, € R_\ {-1}
using the T-coercivity theory [1]. While Finite
Element Method (FEM) can be used to approx-
imate (1), in some cases (especially when ¢, <
—1) there exist scattering resonances close to
the real axis impeding FEM to capture, in prac-
tice, the solution [3]. This is due to exponential
behaviors at the boundary of the scatterer, due
to the underlying resonance. Therefore we use
the Plane Wave Discontinuous Galerkin Method
(PWDG) framework to address this challenge.

2 PWDG Method

In the spirit of [4], we artificially truncate the
domain to a disk 2 D D and impose the radi-
ation condition at 02 (a Dirichlet-to-Neumann
map could also be applied). We consider a mesh
triangulation €2, conforming at 9D (and locally
symmetric to guarantee well-posedness of the
discrete problem when e, € R_\ {-1} [2]).
We denote our mesh skeleton I', = I'f T2
(the union of interior faces and boundary faces).
The PWDG is a Trefftz method, it uses in each
cell of Q) basis functions which are solutions
of the given Helmholtz-like problem. As plane
waves form a natural solution to the Helmholtz
equation, we introduce the space: PW] (R?) =
{v e CFR)|v = 38_, pje**,Vj,¢; € C},
where d; = (dg,dy) € C* (with y/d2 +d2 = 1)
denotes the incidence and amplitude (it contains
both propagative and evanescent plane waves),
k. is the material wavenumber (k. =k in Q\ D
and ke = \/e,k in D). We then introduce the
discrete space V(Qy) = {v € L*(Q) : v|x €
PW (X) VX € Q}. From (1) we derive a
discrete weak form on the skeleton I'j: for all
v E V(Qh),

/ E(n . ik&)dl“h - / 871871@@ dl', =0 (2)
Ty Ty

where @ and ¢ are auxiliary variables represent-
ing numerical fluxes in the solution and its gra-
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dient. These variables are defined as follows:

ik — e 'Vu}} — aik[[u]], in F{L
Vu — (1 —6)(—=Vu+ ikun + gn), in T2

. {{{u}} — 1BV, T}

u—é(%@nu—u—%g), inI‘f

where the average {{-}} and jump [[-]] between
adjacent cells are defined as

(o} = 50" +o7)

[ =7 e
ot -nt 4+ o~ -n7 if ¢ is vector valued

if ¢ is scalar valued

with o, 3,6 € RT as chosen parameters. Con-
trary to standard PWDG, the numerical fluxes
depend on € (consistent with the problem’s trans-
mission conditions), which may lead to addi-
tional difficulties when ¢,, < 0. In order to ob-
tain these boundary fluxes, we assume a first or-
der impedance boundary condition (g = d,u™ —
iku'™ in the numerical experiments). Then one
can show that (2) boils down to solving the weak
form: Find w € V(Qy,) such that

A(u,v) = f(v) Yo e V() (3)

Afu,v) = | [[0]]- {{e7' Vu}} — adk([7]] - [[u]]

r

— 7'Vl {{u}} - %5[[6‘1W]][[€‘1W]] dT,
+ /Ff? —(1 = 9)ikuv + (2 — 6)Opuv
-41+®umv—5%%m%ﬁﬂf

and f(v) = fFE 9(5£0,7 + (1 — 0)v) dT'P. We
can show that

Proposition 1 Problem (3) is well-posed in V (§2,).

The scheme of the proof is as follows: show that

vlba =k |82 ol + & ot (e

I
1—‘h

+k H(l - 5)1/%H2 e Hal/Zanv

B
Fh

‘2
B
Fh

defines a norm, then establish Fredholmness of

the bilinear form A(-,-) (or A(-, T-) for sign-changing

e [2]) over L%(Q) x L?(Y,) via a Garding in-
equality, and Holmgren uniqueness theorem. Er-
ror estimates should hold, and stability issues
should be overcome as we use also evanescent
plane waves [5].

3 Near-resonance Regime

We apply the method to parameters k, &, excit-
ing a scattering resonant mode. In this regime,
the solution is locally given by high amplitude,
rapidly decaying Bessel and Hankel functions
near the interface (see Figure 1). Due to this
faster than polynomial decay, we propose to use
a basis of evanescent plane waves in the Trefftz
space chosen to well-approximate the expected
decay of these functions [5]. Preliminary nu-
merical experiments are underway and will be
presented.
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Figure 1: Sample scattering resonant mode.
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