Multifunctional Organometallic Compounds: An Interesting Luminescent NLO-Active Alkynylplatinum (II) Complex

Alessia Colombo, ^[a] Claudia Dragonetti, ^[a] Francesco Fagnani,^{*[a]} Dominique Roberto, ^[a] Véronique Guerchais, ^[b] Thierry Roisnel, ^[b] and Daniele Marinotto ^[c]

[a] Prof. A. Colombo, Prof. C. Dragonetti, Dr. F. Fagnani, Prof. D. Roberto
Department of Chemistry
Università degli Studi di Milano and UdR-INSTM di Milano
Via C. Golgi 19, I-20133 Milan, Italy
E-mail: francesco.fagnani@unimi.it

[b] Dr. V. Guerchais, Dr. T. RoisnelUniv. Rennes, CNRSISCR-UMR 6226, F-35000 Rennes, France

[c] Dr. D. Marinotto
Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" (SCITEC)
Consiglio Nazionale delle Ricerche (CNR)
via C. Golgi 19, 20133 Milan, Italy

Contents

I. General Information	2
II. NMR spectra	3
III. Photophysical data in solution	5
IV. X-ray diffraction data	9

European Journal of Inorganic Chemistry

Supporting Information

Multifunctional Organometallic Compounds: An Interesting Luminescent NLO-Active Alkynylplatinum (II) Complex

Alessia Colombo, Claudia Dragonetti, Francesco Fagnani,* Dominique Roberto, Véronique Guerchais, Thierry Roisnel, Simona Fantacci, and Daniele Marinotto

I. General Information

Solvents and all commercially available chemicals were used without further purification. Air- and water-sensitive reactions were performed in flame-dried glassware under argon atmosphere.

NMR spectra were recorded on a Bruker AC 400 spectrometer. Chemical shifts δ are given in ppm and coupling constants J in Hz. Multiplicities are presented as follows: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet.

Electronic absorption spectra were recorded at room temperature using a Shimadzu UV3600 spectrophotometer and quartz cuvettes with 1 cm optical path length.

The absolute photoluminescence quantum yield (Φ) was measured using a C11347 Quantaurus Hamamatsu Photonics K.K spectrometer; steady state and time-resolved fluorescence data were obtained using a FLS980 spectrofluorimeter (Edinburgh Instrument Ltd). Emission spectra were corrected for background intensity and quantum efficiency of the photomultiplier tube, while excitation spectra were corrected for the intensity fluctuation of a 450 W Xenon arc lamp. Quartz cuvettes with 1 cm optical path length were used for the measurements.

The structure's parameters were determined performing the X-ray analysis using a D8 VENTURE Bruker AXS diffractometer, Mo-K α radiation ($\lambda = 0.71073$ Å), T = 150 K.

II. NMR spectra

Figure S1. ¹H NMR spectrum (THF-*d*₈, 400 MHz) of complex **1**.

Figure S2. ¹H NMR spectrum (THF-*d*₈, 400 MHz) of complex 1, aromatic region.

Figure S3. ${}^{19}F{}^{1}H$ NMR spectrum (THF- d_8 , 282.36 MHz) of complex **1**.

III. Photophysical data in solution

Luminescence measurements

Luminescence measurements were carried out in CH₂Cl₂ solution after three cycles of the Freeze-Pump-Thaw (FPT) procedure, required to remove dissolved oxygen.

The absolute photoluminescence quantum yield (Φ) in solution was calculated through Equation:

$$\Phi = \frac{PN(Em)}{PN(Abs)}$$

where PN(Em) is the number of emitted photons, PN(Abs) the number of absorbed photons. The error made was estimated at around 5%.

Time-resolved fluorescence measurements were performed through the time-correlated single photon counting technique, and time-resolved fluorescence curves were fitted using a multi-exponential function:

$$I(\lambda, t) = \sum_{i=1}^{m} \alpha_i(\lambda) exp\left(\frac{-t}{\tau_i}\right)$$

where *m* is the number of exponentials, $\alpha_i (\lambda)$ is the amplitude at wavelength λ and τ_i is the lifetime of the component *i*. The quality of the fit was evaluated through the reduced χ^2 values. In case of multi-exponential decay, it is possible define an average lifetime as:

$$\tau_{av} = \frac{\sum_{n=1}^{m} \alpha_n \tau_n^2}{\sum_{n=1}^{m} \alpha_n \tau_n}$$
, $m =$ multi-exponential decay number of the fit.

Absorption vs Concentration

Figure S4. Absorption spectra of complex 1 in CH_2Cl_2 at different concentrations. The weak bands at longer wavelengths are shown on an expanded scale for clarity.

Figure S5. Lambert-Beer relationship for complex 1 in CH₂Cl₂.

Excitation spectra

Figure S6. Excitation spectra of complex **1** in CH_2Cl_2 at $1\cdot 10^{-5}$ M at different emission wavelengths.

Excited state decay measurement

Figure S7. Excited state decay measurement of complex 1 in CH_2Cl_2 at $1\cdot 10^{-5}$ M, excitation wavelength 427 nm, emission wavelength 496 nm.

IV. X-ray diffraction data

Figure S8. Different views of the crystal packing of complex 1. Different colors indicate symmetry-independent molecules.

CCDC number	2357874
Empirical formula	$C_{25}H_{16}F_2N_2Pt$
Formula weight	577.49 g/mol
Temperature	150 K
Wavelength	0.71073 Å
Crystal system, space group	monoclinic, P $2_1/n$ (I.T.#14)
Unit cell dimensions	a = 9.6784(11) Å
	b = 29.183(3) Å
	c = 14.1219(14) Å
	$\beta = 106.454(4)^{\circ}$
Volume	3825.4(7) Å ³
Ζ	8
Calculated density	2.005 g cm ⁻³
Absorption coefficient	7.370 mm ⁻¹
F(000)	2208
Crystal size	0.360 x 0.220 x 0.070 mm
Theta range for data collection	2.282 to 27.489 °
Limiting indices	$-12 \le h \le 12, -37 \le k \le 37, -16 \le l \le 18$
Reflections collected / unique	28200 / 8715 [R(int) ^a = 0.0368]
Reflections [I>2 σ]	7300
Completeness to theta max	0.992
Absorption correction	Multi-scan
Max. and min. transmission	0.597, 0.336
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	8715 / 0 / 543
Goodness-of-fit on F^2	0.867
Final R indices [I>2sigma(I)]	$R1^c = 0.0377, wR2^d = 0.1258$
R indices (all data)	$R1^c = 0.0474, wR2^d = 0.1370$
Largest diff. peak and hole	1.967 and -1.866 e ⁻ .Å ⁻³

 Table S1. Key crystallographic data for complex 1.