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Abstract  30 

The speed at which we move is linked to the speed at which we decide to make these 31 

movements. Yet, the principles guiding such relationship remain unclear: while some 32 

studies point towards a shared invigoration process boosting decision and movement 33 

speed jointly, others rather indicate a tradeoff between both levels of control, with 34 

slower movements accompanying faster decisions. Here, we aimed (1) at further 35 

investigating the existence of a shared invigoration process linking decision and 36 

movement and (2) at testing the hypothesis that such a link is masked when 37 

detrimental to the reward rate. To this aim, we tested 62 subjects who performed the 38 

tokens task in two experiments (separate sessions): Experiment 1 evaluated how 39 

changing decision speed affects movement speed while Experiment 2 assessed how 40 

changing movement speed affects decision speed. In the latter experiment, subjects 41 

were either encouraged to favor decision speed (fast decision group) or decision 42 

accuracy (slow decision group). Various mixed model analyses revealed a 43 

coregulation of decision (urgency) and movement speed in Experiment 1 and in the 44 

fast decision group of Experiment 2, but not in the slow decision group despite the fact 45 

that these same subjects displayed a coregulation effect in Experiment 1. Altogether, 46 

our findings support the idea that coregulation occurs as a default mode but that this 47 

form of control is diminished or supplanted by a tradeoff relationship, contingent on 48 

reward rate maximization. Drawing from these behavioral observations, we propose 49 

that multiple processes contribute to shaping the speed of decisions and movements.  50 
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New & NoteWorhty  57 

The principles guiding the relationship between decision and movement speed are 58 

unclear. In the present behavioral study involving two experiments conducted on 62 59 

human subjects, we report findings indicating a relationship that varies as a function of 60 

the task goals. Coregulation emerges as a default mode of control that fades when 61 

detrimental to the reward rate, possibly due to the influence of other processes that 62 

can selectively shape the speed of our decisions and movements. 63 

 64 
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Introduction 77 

Every day of our life, we make decisions to interact with our environment in a 78 

goal-directed manner. Several models have been developed to explain how we select 79 

actions by describing decision making as a process of noisy accumulation of evidence: 80 

during deliberation, sensory evidence is accumulated until the total evidence in favor 81 

of one of the potential actions reaches a certain threshold, at which point the decision 82 

is made and an action is initiated (Gold & Shadlen, 2007; Hanks et al., 2014; Ratcliff 83 

et al., 2016). In the context of motor behavior, such accumulation directly converts into 84 

an increase of neural activity in the motor cortex, from a starting point to a consistent 85 

decision threshold (Cisek & Thura, 2022; Kelly et al., 2021; Ratcliff & Smith, 2004). In 86 

these models, the time taken to select a motor act is a direct function of the speed with 87 

which motor activity grows (based on evidence) and of the amount of activity required 88 

to reach the threshold, which sets the accuracy criterion.  89 

Decisions can be made even when evidence is low or absent, suggesting that 90 

the accuracy criterion can be reduced if necessary. For instance, if we unexpectedly 91 

reach a junction when driving a car, we must rapidly decide whether to turn left or right, 92 

regardless of readiness and evidence, increasing the risk of an inappropriate choice. 93 

Past studies have suggested that this decrease in accuracy criterion can be 94 

implemented by an evidence-independent rising “urgency signal” pushing motor 95 

activity close to decision threshold, which is mathematically equivalent to a lowering of 96 

the latter (Churchland et al., 2008; Cisek et al., 2009; Ditterich, 2006; Murphy et al., 97 

2016; O’Connell et al., 2018; Thura, 2020). Computationally, this urgency signal is 98 

typically modelled as increasing linearly over time (Cisek et al., 2009; Derosiere et al., 99 

2019, 2021, 2022; Kelly et al., 2021) it includes an intercept, which reflects the degree 100 

to which motor activity is upregulated already at the onset of the decision process (i.e., 101 
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context-sensitive effect), and a slope, which reflects how fast motor activity will be 102 

pushed towards the decision threshold as time elapses (i.e., time-sensitive effect).  103 

Reward plays an important role in animal behavior and “reward rate” 104 

maximization is a prominent principle in the field of decision making (Lemon, 1991; 105 

Shadmehr et al., 2019). More precisely, the reward rate is the sum of all rewards 106 

acquired through our actions, minus the costs implied over the total time spent (Carland 107 

et al., 2019; Yoon et al., 2018). Critically, the urgency signal described in models of 108 

decision making is typically considered as useful for maximizing the reward rate 109 

(Carland et al., 2019; Charnov, 1976; Thura et al., 2012). That is, by its context-110 

sensitive effect, the urgency signal can shorten the time invested to obtain the reward. 111 

In addition, by its time-sensitive effect, it allows to make decisions without waiting 112 

indefinitely, even when there is only little or no evidence. 113 

Several observations in both human and non-human primates indicate that the 114 

time one takes to decide impacts the speed of the movement implementing the 115 

decision (Churchland et al., 2008; Thura et al., 2014; Drugowitsch et al., 2012). That 116 

is, faster decisions are typically followed by quicker movements. Interestingly, the 117 

reverse relationship has been observed too: one study in our lab has revealed that 118 

when the context requires movements to be performed in a shorter time period, the 119 

decisions leading to them arise faster, compared to contexts in which subjects have 120 

more time to perform the same movement (Carsten et al., 2023). Altogether, these 121 

findings suggest that the urgency signal implemented in decision making models may 122 

not solely operate at this restricted level but may shape behavior in a global manner, 123 

coregulating the speed of both decisions and movements (Carsten et al., 2023; Thura, 124 

2020). This “coregulation hypothesis” is consistent with the view that the urgency signal 125 

serves to maximize reward rate, as in most situations a speeding up of both decision 126 
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and movement will shorten the time required to obtain a reward (Shadmehr et al., 127 

2019). Also consistent with this hypothesis is the fact that some studies have reported 128 

a time-sensitive effect of decision urgency on movement speed: that is, within a given 129 

context, movements that are initiated following a longer deliberation are typically faster 130 

than movements associated with earlier decisions, reflecting well the linear increase in 131 

urgency over time (Thura et al., 2014; Thura, 2020).  132 

The “coregulation hypothesis” has received systematic support from studies 133 

investigating the impact of decision urgency on movement speed (Carsten et al., 134 

2023;Thura et al., 2014; Thura, 2020). By contrast, studies that have addressed this 135 

relationship inversely, by looking at the impact of movement speed on the pattern of 136 

decision speed, have reported mixed findings (Carsten et al., 2023; Kita et al.,2023; 137 

Reynaud et al., 2020; Saleri Lunazzi et al., 2021). As mentioned above, we recently 138 

observed changes in decision speed in relation to context-dependent adjustments in 139 

movement speed that are consistent with the coregulation hypothesis (Carsten et al., 140 

2023). It is interesting to note that in the latter study, the increase in decision speed 141 

when subjects had to perform faster movements occurred even when there was no 142 

possibility of saving time by doing so; that is, making faster decisions did not allow to 143 

shorten the trial/block duration. This led us to think that coregulation of decision and 144 

movement may be a ubiquitous feature of human behavior, one that occurs by default 145 

even when not required, arising from a neural organization that has developed 146 

because most real-life (urgent) situations require rapid actions (i.e., including fast 147 

decisions and fast movements). Yet, in their recent work, Thura and his team have 148 

reported a slowdown of decision speed (rather than a speedup) in contexts requiring 149 

subjects to perform faster movements (Reynaud et al., 2020; Saleri Lunazzi et al., 150 

2021), reminiscent of a tradeoff rather than a coregulation effect. Yet importantly, this 151 
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bunch of work used an experimental design in which subjects knew that a block would 152 

only end after a fixed number of correct decisions. Hence, here speeding up decisions 153 

was detrimental to the reward rate, as the gain of time on a trial basis would have led 154 

to lengthening the experiment, given the decline in accuracy that typically accompanies 155 

faster decisions. 156 

Based on these collective findings, it appears that if an urgency mechanism exists in 157 

the brain, it must interact with other processes that provide human beings with a flexible 158 

control of decision and movement for adaptive behavior according to the task goals, 159 

as previously suggested (Saleri Lunazzi et al., 2021) but never tested directly. Here, 160 

we addressed this idea in two behavioral experiments on healthy young human 161 

participants who performed a variant of the Tokens task in different contexts. 162 

Specifically, we tested the prediction that decision and movement durations would be 163 

linked by default in this task but that this coregulation would disappear in the same 164 

subjects when detrimental in terms of reward rate, as a function of the context in which 165 

they perform the task. 166 

Methods 167 

Participants and ethical statement 168 

A total of 62 healthy human volunteers were recruited for this study, but due to 169 

technical issues the data were processed on 56 subjects (30 women, 24.6 ± 3.4 years 170 

old). All participants were right-handed according to the Edinburgh Questionnaire 171 

(Oldfield, 1971) and had normal or corrected-to-normal vision. None of them had any 172 

neurological disorder or history of psychiatric illness or drug or alcohol abuse; and no 173 

one was following any clinical treatment that could have influenced performance. The 174 

protocol was approved by the Ethics Committee of the Université catholique de 175 

Louvain (UCLouvain), Brussels, Belgium (approval number: 2018/22MAI/219) and 176 
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adhered to the principles expressed in the Declaration of Helsinki. Participants were 177 

financially compensated for their participation and provided written informed consent. 178 

Setup and task 179 

Experiments were conducted in a quiet and dimly lit room. Participants were seated in 180 

front of a 21-inches cathode ray tube computer screen, placed at 60 cm from the 181 

participant’s eyes and used to display stimuli during the task. The display was gamma-182 

corrected, and its refresh rate was set at 75 Hz. Participants’ forearms were positioned 183 

in a neutral position (i.e., at 0 degree of pronation and supination) on a Canadian board, 184 

used to standardize and fix the resting position of the index fingers with elastic bands. 185 

Moreover, two lasers (targeting the tip of each index finger) were used to indicate the 186 

resting position (i.e., 0 degree of index flexion) and the minimum amplitude of the left 187 

or right index finger movement required in the task (i.e., 30 degrees of flexion, see Fig. 188 

1.A and below for more details).  189 

We used a variant of the Tokens task (Cisek et al., 2009;Thura et al., 2014) which has 190 

already been exploited in various ways in several past studies of our lab (Derosiere et 191 

al., 2019, 2022; Fievez et al., 2022) The current version of the task was implemented 192 

with Matlab 2016 (The Mathworks, Natick, Massachusetts, USA) and the Cogent 2000 193 

toolbox (Functional Imaging Laboratory, Laboratory of Neurobiology and Institute of 194 

Cognitive Neuroscience at the Welcome Department of Imaging Neuroscience, 195 

London, UK).  196 
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 197 

Figure 1. Experimental material A. Setup.  Participant forearms were positioned in a neutral 198 

position on a Canadian board, with elastic bands maintaining the index fingers in a resting 199 

position. Two lasers (targeting the tip of each index finger) were used to indicate the resting 200 

position (i.e., 0 degree of flexion; laser 1) and the minimum amplitude (i.e., 30 degrees of 201 

flexion; laser 2) of the left or right index finger movement required in the task.  B. Task. Each 202 

trial starts with an initiation phase during which participants have to perform a bilateral flexion 203 

of index fingers to signal their readiness. When index fingers return to their resting position, 204 

the 3 circles remain empty for a variable pre-decision period (150-300 ms). Then, 15 tokens 205 

appear in the central circle and start jumping one by one every 200 ms. Subjects are required 206 

to determine, as soon as they feel ready, which lateral circle will end up with the largest number 207 

of tokens (left one in this example), and to report their decision with a left or right index finger 208 

movement triggering a pacman animation (more details can be found in the main text). Once 209 

the movement phase is over, the central circle finishes to empty with the final token jumps. 210 

The trial ends with a feedback (fully successful trial in this example; more in the main text) 211 

followed by a blank screen of variable intertrial duration (1800-2000 ms). 212 

 213 

Sequence of events in a trial 214 

The overall sequence of events for each trial of our task is depicted in Figure 1.B. Each 215 

trial starts with the appearance of 3 empty blue circles (4 cm diameter each), placed 216 

on a horizontal axis, with the sentence “Ready to start” displayed below them. During 217 

this initiation phase, subjects are required to perform a bilateral flexion of index fingers 218 

to indicate that they are ready to start the trial. When index fingers return to their resting 219 

position, the 3 circles remain empty for a short pre-decision phase of random duration 220 
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(150-300 ms). The decision phase then starts with the appearance of 15 randomly 221 

arranged tokens (0.3 cm diameter) in the central circle that start to jump one by one 222 

from the center to one of the 2 lateral circles, every 200 ms. The task of the subjects 223 

is to determine which of the two lateral circles will end up with the largest number of 224 

tokens and to report their decision with a left or right index finger movement. The 225 

movement phase involves a pacman animation that will be described below in more 226 

details. Once this phase is over, the final tokens continue to jump until the central circle 227 

is empty (i.e., until the 15th token jump; Jump-15). Note that subjects are told that they 228 

are expected to respond before Jump-15, as soon as they feel sufficiently confident. 229 

The trial always ends with a feedback (see below for more details) which is followed 230 

by a blank screen during a variable intertrial interval (1800-2000 ms).  231 

Trial types and success probability 232 

The difficulty of the decision in each trial of the task depends on the dispersion of 233 

tokens along the jumps, which could point more or less obviously to one of the lateral 234 

circles. This pattern of token distribution and the degree to which it affects success of 235 

the subjects can be formalized with what is called the “success probability”. That is, for 236 

each trial i, and at each moment in time, we can define the success probability pi(t) 237 

associated with choosing a response (left or right). If at a moment, the left (L) circle 238 

contains NL tokens, the right (R) once contains NR tokens, and NC tokens remain in 239 

the central (C) circle, then the probability that the left response is ultimately the correct 240 

one (i.e., the success probability of guessing left) is described as follows: 241 

𝑝(𝐿|𝑁𝐿, 𝑁𝑅, 𝑁𝐶) =
𝑁𝐶!

2𝑁𝐶
   ∑

1

𝑘! (𝑁𝐶 − 𝑘)!

min (𝑁𝐶,7−𝑁𝑅)

𝑘=0

   242 (1) 
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Calculating this quantity for the 15 token jumps allowed us to characterize the temporal 243 

profile of success probability pi(t) for each trial. As such, as far as the participants knew, 244 

the individual token jumps and the correct choice were completely random. However, 245 

we interspersed distinct trial types within the full sequence of trials. First, in 60% of 246 

trials, the pi(t) remained between 0.33 and 0.66 up to Jump-8, that is, the initial token 247 

jumps were balanced between the lateral circles, keeping the pi(t) close to 0.5 until late 248 

in these “ambiguous” trials. As such, in ambiguous trials, the tokens jumped 249 

alternatively to the correct and incorrect lateral circles until Jump-8, such that the 250 

number of tokens was equal in both lateral circles after each even jump (i.e., after 2, 251 

4, 6 and 8 jumps) and a difference of one token was present after each odd jump (i.e., 252 

after 1,3,5 and 7 jumps). Second, in 20% of trials, the pi(t) was above 0.7 after Jump-3 253 

and above 0.8 after Jump-5, that is, the initial jumps consistently favored the correct 254 

choice in these “obvious” trials. In the remaining 20% of trials, the pi(t) was below 0.4 255 

after Jump-3, that is, the initial jumps favored the incorrect choice and the following 256 

ones favored the correct choice in these “misleading” trials.   257 

Sensory evidence and SumLogLR 258 

As in previous studies (Cisek et al., 2009; David Thura et al., 2014; Derosiere et al., 259 

2022), we assumed that participants would estimate the level of evidence based on 260 

the number of tokens that have already jumped into the two side circles rather than by 261 

calculating the probability of success. This estimation can be computed as a first-order 262 

approximation of the real probability function after each jump (see Eq. 1), called the 263 

sum of log-likelihood ratios (SumLogLR): 264 

𝑆𝑢𝑚𝐿𝑜𝑔𝐿𝑅(𝑛) =    ∑ 𝑙𝑜𝑔
𝑝(𝑒𝑗|𝐶) 

𝑝(𝑒𝑗|𝑈)

n

𝑗=1

   265 (2) 
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In this equation, p(ej |C) is the likelihood of a token event ej (a token favoring either the 266 

chosen or the unchosen response) during trials in which the chosen response C is 267 

correct, and p(ej |U) is the likelihood of ej during trials in which the unchosen response 268 

U is correct. The SumLogLR is proportional to the difference between the number of 269 

tokens that favored each of the 2 possible choices (i.e., that moved toward each lateral 270 

circle) at any given time.  271 

Index finger movement and pacman animation 272 

As explained in more detail below in the “Experimental design” section, testing our 273 

predictions required us to characterize and/or to manipulate the movement features of 274 

index finger responses. To allow us to do so, we asked the subjects to provide their 275 

response, not with a single finger movement as we usually do, but with a tapping 276 

movement involving a repetition of 4 index finger flexions, with the left or right hand 277 

depending on their decision in the Tokens task. Moreover, this tapping movement was 278 

associated with a pacman animation. That is, as soon as the first tap was completed 279 

(i.e., flexion of at least 30 degrees, as indicated by the laser device), a pacman 280 

appeared together with 3 additional tokens in front of it, on a horizontal axis, as shown 281 

on Figure 1.B. Subjects knew that each further tap would allow the pacman to “eat” 282 

one of these supplementary tokens. The pacman was presented together with a ghost 283 

which will be described in the “Experimental Design” section, as its features depended 284 

on the experimental condition the subjects were in. Notably, the pacman animation 285 

often ended with a blank screen to cover the minimum 3000 ms period of the 286 

movement phase: as such, completing the tapping movement faster never allowed to 287 

shorten the trial duration, as in Carsten et al, 2023. Finally, note also that trials in which 288 

subjects did not provide a response before Jump-15 did not involve any pacman 289 
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animation; in this case participants had instead to remain still in front of a blank screen 290 

for a period corresponding to the movement phase duration.  291 

Trial feedback and score calculation 292 

As a feedback at the end of the trial, the chosen circle turned either green or red, 293 

depending on whether the choice was correct or incorrect, respectively. The feedback 294 

also included a numerical score presented below the central circle, which depended 295 

on both the decision and movement requirements of the task. Subjects got +5 points 296 

for a correct decision and another +5 points for a correct tapping movement (see below 297 

for specific movement requirements). Hence, fully successful trials were worth +10 298 

points (i.e., +5+5), as illustrated on Figure 1.B. Then, any failure, whether at the level 299 

of the decision or the movement, was penalized by -2 points. Hence, a partially 300 

successful trial was worth +3 points (i.e., +5-2 or -2+5), while a fully failed trial led to -301 

4 points (i.e., -2-2). Finally, in the absence of response before Jump-15 (i.e., a no-302 

response trial), the displayed score corresponded to 0 point and came along with a 303 

‘Time Out” message at the bottom of the screen. All trial scores were summed up and 304 

displayed at the end of each block, providing a global feedback on the block to maintain 305 

motivation of participants. 306 

Experimental Design 307 

Participants performed two experiments as part of the current study. These 308 

experiments occurred on separate days (average interval of 9 ± 8 days) and in a 309 

counterbalanced order. In Experiment 1, we designed the task such that, in separate 310 

blocks, subjects were either encouraged to make slow or fast decisions. The purpose 311 

here was to further investigate the existence of a shared invigoration process linking 312 

decision and movement by looking at how contextual changes in decision speed would 313 

influence movement speed. Inversely, in Experiment 2, we aimed at testing the reverse 314 
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relationship, thus how contextual changes to movement speed (slow or fast) influence 315 

decision speed. In addition, to test the hypothesis that such a link is masked when 316 

detrimental to the reward rate, we separated subjects in two groups who performed 317 

the slow and fast movement blocks in a context that either favored fast (fast decision 318 

group) or slow decisions (slow decision group). As such, we predicted that fast 319 

movement blocks would involve faster decisions (as compared to slow movement 320 

blocks) in the fast decision group (where coregulation is beneficial) but not in the slow 321 

decision group (where coregulation is detrimental). The specific features of these two 322 

experiments are described in the sections below. 323 

Experiment 1 324 

All subjects (n=56) took part in Experiment 1. This experiment required participants to 325 

perform the Tokens task in two different block types, where a small adjustment to one 326 

trial event (the final jumps phase) allowed us to promote either slow (accurate) or fast 327 

decisions (see Fig. 2.A). That is, in the “slow decision” blocks, tokens kept on jumping 328 

every 200 ms during the final jump phase, as in the decision phase, until the central 329 

circle was empty. In contrast, in the “fast decision” blocks, final tokens jumped much 330 

faster (i.e., every 50 ms), such that deciding faster allowed subjects to finish the trial 331 

earlier. Because blocks had a fixed duration of 265 sec, deciding earlier in fast decision 332 

blocks allowed subjects to perform more trials and thus to accumulate more points. 333 

This was not the case in the slow decision blocks, where it was a better strategy to 334 

decide later and reach a higher accuracy, given the fixed number of trials (26) that they 335 

would be able to do over the same block duration (always about 265 sec). All of this 336 

was made explicit to the subjects to enhance the change in decision policy between 337 

the two block types. Finally, as mentioned above, the pacman animation during the 338 

movement phase also involved a ghost which, in this experiment, always chased the 339 
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pacman at a fixed speed established during pilot tests. Subjects knew that they had to 340 

avoid the ghost and would get a negative feedback (-2 points, as explained in the 341 

feedback section above) if they tapped so slowly that they got caught, in which case 342 

the pacman turned into a skull. Yet this happened very rarely because the imposed 343 

speed was easy to attain, as it was just there to exhort subjects to do their tapping 344 

movement in a row, as opposed to encourage them to go as fast as possible. That is, 345 

subjects were able to escape the ghost on most trials, regardless of the block type (see 346 

Fig. S1 in supplementary materials). 347 

 348 

Figure 2. Protocol of Experiment 1. A. Task. In this experiment, participants performed two 349 

block types that differed according to the speed at which the final tokens jumped in the lateral 350 

circles at the end of the trial (after the finger tapping movement). That is, fast final jumps (every 351 

50 ms) led participants to prioritize decision speed (fast decision blocks) while slow jumps 352 

(every 200 ms) led subjects to rather prioritize decision accuracy (slow decision blocks). B. 353 

Manipulation check. Participants adjusted their decision policy depending on the type of block 354 
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by making faster (shorter decision duration) and less accurate (lower %Correct) decisions in 355 

fast (blue bars) relative to slow (white bars) decision blocks. Error bars represent SE. ***p < 356 

0.001. 357 

 358 

Experiment 2 359 

All subjects also performed Experiment 2 but due to a lack of data after cleaning, 2 360 

subjects had to be excluded from the analysis (n=54; 32 Women, 24.5 ± 3.3 years old). 361 

As shown on Figure 3.A, in this experiment again there were two different block types, 362 

which here differed according to the movement speed requirement. That is, subjects 363 

were explicitly asked to report their decision in the Tokens task with a tapping 364 

movement that was either fast, in the “fast movement” blocks, or slow, in the “slow 365 

movement” blocks. The exact speed that subjects had to adopt in both block types 366 

depended on their spontaneous speed. In the fast movement blocks, subjects had to 367 

tap at a speed that was twice the spontaneous speed (± 20%), while the speed in the 368 

slow movement blocks had to be equal to the spontaneous speed or to any value below 369 

it. The spontaneous tapping speed was calculated during a calibration phase at the 370 

beginning of the experiment, by asking subjects to perform a block of 15 trials of the 371 

Tokens task in a neutral condition, with no specific instruction regarding decision or 372 

movement speed. Once the average spontaneous speed was determined based on 373 

these trials, the participants were then specifically trained to perform fast tapping 374 

movements at the required speed (i.e., twice the spontaneous speed) during 4 blocks 375 

for each index finger. In these blocks, subjects repetitively tapped their index finger 376 

and each of these movements was followed by a feedback indicating if the tapping was 377 

“ok”, “too fast” (>20% above the targeted speed) or “too slow” (<20% below the 378 

targeted speed). A block ended as soon as subjects had completed 9 tapping 379 
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movements at the targeted speed. There was no training for the speed of slow 380 

movement blocks as this speed was the one obtained spontaneously. 381 

382 
Figure 3. Protocol of Experiment 2. A. Task. In this experiment, participants performed two 383 

block types that differed according to the speed at which they had to perform the finger tapping 384 

movement; that is, at twice the spontaneous speed (fast movement blocks: pacman chased 385 

by ghost) or at about the spontaneous speed (slow movement blocks; pacman preceded by 386 

ghost). Moreover, subjects were split into two experimental groups according to whether they 387 

performed the version of the task that led them to prioritize decision speed due to fast (every 388 

50 ms) final jumps (fast decision group, upper panel), or to prioritize decision accuracy due to 389 

slow (every 200 ms) final jumps (slow decision group, lower panel). B. Manipulation check. 390 

As required by the instruction in this Experiment, participants displayed shorter (faster) tapping 391 

movements in the fast (red bar) than slow (white bar) movement blocks, regardless of whether 392 

they belong to the fast or slow decision group. Error bars represent SE. ***p < 0.001. 393 

 394 
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As in Experiment 1, tapping movements in the Tokens task were performed in relation 395 

to a pacman (and ghost) animation, where each tap provided the opportunity to “eat” 396 

an additional token placed on a horizontal axis. Yet, here the animation served the 397 

further purpose to control for the movement speed instruction in each block type. First, 398 

to provide a guide to subjects, the ghost here was either moving behind the pacman, 399 

chasing it, in the fast movement blocks, while it was preceding the pacman, in the slow 400 

movement blocks (see Fig. 3.A). Given the continuous requirement to avoid a collision 401 

with the ghost, this feature reminded the subjects to tap rapidly (to escape the ghost) 402 

in the fast movement blocks and incited them to tap tranquilly (to avoid bumping into 403 

the ghost) in the slow movement blocks.  404 

Importantly, a specificity of Experiment 2 is that we separated subjects in two groups 405 

who performed the slow and fast movement blocks in slightly different contexts, due to 406 

a small difference in the Tokens task. That is, the final tokens either jumped every 50 407 

ms or every 200 ms, allowing subjects to shorten the trial duration by deciding faster 408 

in the group performing the task in the former condition (fast decision group) but not in 409 

the group using the latter version (slow decision group). Here, the number of trials was 410 

always fixed such that shortening the trial duration never allowed to do more trials. Yet, 411 

by responding faster, subjects could save time and finish the experiment earlier. Even 412 

if these specificities remained implicit in this experiment, we expected that they would 413 

lead subjects to adjust their decision speed such that it would be generally faster in the 414 

fast decision group (n=27; 15 women, 25.1 ± 3.6 years old), and generally slower in 415 

the slow decision group (n=27; 17 women, 23.9 ± 2.9 years old). With these two 416 

groups, we aimed at testing the hypothesis that a default mode of coregulation can be 417 

observed when it naturally serves the reward rate; but it would disappear in situations 418 

where it is detrimental to the reward rate. As such, we predicted that tapping faster in 419 
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the fast movement blocks will translate into faster decisions, compared to the decisions 420 

in the slow movement blocks, but that this effect will only be observed in the group of 421 

subjects incited to make fast decisions but not in the slow decision group where 422 

subjects should better favor decision accuracy. Importantly, each subject completed 423 

the short version of the UPPS-P Impulsive Behavior (UPPS) scale (Eben et al., 2020). 424 

We also evaluated their ability to follow movement instructions in order to make sure 425 

that the repartition of participants in the two groups was not creating a bias in our 426 

results. The analyses showed no significant difference between the two groups of 427 

participants, considering their UPPS scores (see Table S1 in supplementary materials) 428 

or their movement performance (see Fig. S2 in supplementary materials). 429 

Time course of the experiments 430 

Experiments 1 and 2 had a largely similar time course. They both started with a 431 

familiarization phase during which subjects performed a neutral block of 10 trials to 432 

become acquainted with the basic features of the Tokens task. Subjects were then 433 

informed about the two types of blocks they would realize in the experiment. This led, 434 

after a phase of calibration (in Experiment 2 only to establish the fast tapping speed), 435 

to a training phase during which subjects practiced for 4 blocks (2 blocks of each type), 436 

each involving 15 trials (or a few more in fast decision blocks of Experiment 1). The 437 

actual experiment then started and involved a total of 18 blocks (9 blocks of each type), 438 

each involving 26 trials (or a few more in fast decision blocks of Experiment 1). Each 439 

block lasted on average 4,36 minutes and a break of 2 to 5 minutes was provided 440 

between blocks.  441 

Both experiments then ended with blocks consisting of a choice reaction time (CRT) 442 

version of the Tokens task. The task in these blocks (always 40 trials) was the same 443 

as in the main experiment: subjects had to respond with a left or right index finger 444 
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tapping movement according to token jumps but here the 15 tokens jumped all at once 445 

in the left or right circle. Experiment 1 entailed 1 CRT block with no restriction on 446 

movement speed (i.e., “free” movements), whereas Experiment 2 entailed 1 CRT block 447 

for each tapping speed (slow or fast) condition, considering that tapping speed may 448 

impact reaction time (RT).  449 

Computational approach 450 

In our work we simulated the decision data by using an implementation of the urgency 451 

gating model (UGM; Cisek et al., 2009; Thura et al., 2014), in which evidence is 452 

multiplied by a linearly increasing urgency, as follows:  453 

 𝑥𝑖(𝑡) =  𝐸𝑖(𝑡)   × [𝑔𝑡 + 𝑏]+  < 𝑇,     454 

where 𝑥𝑖(𝑡) represents the activity of motor neurons at time t in trial i, obtained by 455 

multiplying the momentary evidence 𝐸𝑖(𝑡)  by an urgency signal. g and b are the slope 456 

and the y-intercept of the urgency signal, and [ ]+ denotes half-wave rectification (which 457 

set all negative values to zero). To estimate the level of evidence accumulation, we 458 

used the computation of the SumLogLR (see above, equation 2) that we low-pass 459 

filtered for dealing with intra-trial stimulus noise when calculating evidence such as the 460 

evidence accumulation. The accumulation of evidence can thus be expressed as 461 

follows:  462 

𝜏
𝑑𝐸𝑖(𝑡)

𝑑𝑡
=  −𝐸𝑖(𝑡) + (𝑆𝑢𝑚𝐿𝑜𝑔𝐿𝑅(𝑡) + 𝑁(𝑡)) 463 

The Term 𝑁(𝑡) represents Gaussian noise with a mean of zero and a SD of 0.7 and, 464 

we used a linear differential equation with a time constant 𝜏 = 200 ms as low-pass filter 465 

(Cisek et al., 2009). 466 

(3) 

(4) 
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The model has three parameters: g, b and T. To fit the data, we performed an 467 

exhaustive parameter grid search, with g ranging from 1 x 10-7 to 4, b from - 1 to 3 and 468 

T from 1 to 3. This was performed separately for each subject and each block condition, 469 

and the quality of fit was assessed by using the mean square-error between data 470 

distributions of the model and the real data distributions for all decision durations in the 471 

interval between 600 and 3000 ms. Importantly, the threshold was not fixed between 472 

participants (i.e., ranged from 1 to 3) but was fixed across block conditions (i.e., for fast 473 

and slow conditions of the same experiment) to be able to compare the urgency 474 

parameters between them. After determining the best fitting parameters for each 475 

dataset, we generated a subsequent grid search from the average of the gain and 476 

slope of all subjects to determine the best pairs of parameters for a given threshold. 477 

This procedure was repeated up to 100 times to ensure parameter optimality 478 

convergence, we computed the mean shape (linear function based on g and b 479 

parameters) of the resulting urgency functions. 480 

Data analyses 481 

Behavioral data were collected by means of custom Matlab scripts (MathWorks, 482 

Natick, Massachusetts, USA). Statistical analyses were performed using JASP 483 

(Wagenmakers et al., 2018) for repeated-measures analyses of variance (ANOVARM), 484 

t-tests and Spearman’s correlations, and using the package gamlj in jamovi (ŞAHİN & 485 

AYBEK, 2020) for linear mixed models. 486 

Data processing and definition of endpoint measures 487 

In general, trials with poor performance in the decision phase and/or in the movement 488 

phase of the Tokens task were excluded in both experiments. This concerned trials 489 

with no response before Jump-15 or with an anticipated response (before Jump-3). This 490 
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also involved removing trials where the pacman was caught by the ghost and, for 491 

Experiment 2, also trials in which the participants did not move at the required speed. 492 

Finally, the laser sometimes failed to report the index finger movements and these 493 

trials were removed too. As a result, overall, 24% of trials were removed for the 494 

analyses (17% for Experiments 1 and 31% for Experiment 2). The same procedure 495 

was followed to clean the data in the CRT task, which led to an overall removal of 11% 496 

of trials (1% and 20% for Experiments 1 and 2, respectively). 497 

The endpoint measures were the same for Experiment 1 and 2. To characterize the 498 

speed at which subjects made their choice, we considered the time they took to decide. 499 

This decision duration was computed as the average RT in the Tokens task (computed 500 

separately for fast and slow blocks with all trial types pooled together) minus the 501 

average RT in the corresponding CRT block (Ferrucci et al., 2021). It should be noted 502 

that the majority of studies have used the RT in simple reaction time (SRT) tasks to 503 

compute the decision duration (Carsten et al., 2023; Cisek et al., 2009; Derosiere et 504 

al., 2022; Thura, 2020), but as we were using different constraints on movement speed, 505 

we chose the CRT in order to obtain a measure of the time required to prepare each 506 

type of movement (i.e., for free, fast and slow movements). Indeed, there is some 507 

evidence that even if subjects prepare their movement in advance in both the SRT and 508 

the CRT tasks, their level of preparation is lower in the CRT than in the SRT (Quoilin 509 

et al., 2019). Then, decision accuracy was calculated as the percentage of trials in 510 

which subjects choose the correct lateral circle, referred to as %Correct. Thanks to the 511 

UGM, we also obtained the intercept and the slope of an urgency signal for each 512 

participant and each type of block, as an additional primary endpoint measure. These 513 

two parameters then enabled us to estimate the evolution of the urgency level over 514 

time. To characterize the speed at which subjects moved, we considered the time it 515 
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took for participants to perform the index flexion movements. Hence, movement 516 

duration corresponds to the mean duration of a single tap averaged over the four 517 

flexions participants performed in each trial of the task.  518 

Statistical analyses 519 

Experiment 1 520 

The purpose of this experiment was to further investigate the existence of a shared 521 

invigoration process linking decision and movement by looking at how contextual 522 

changes in decision speed influence movement speed. 523 

Effect of decision-related instructions on decision endpoint measures 524 

In order to check whether subjects followed instructions and changed their decision 525 

policy between fast and slow decision blocks, we first ran paired t-tests on decision 526 

duration and decision accuracy. We then considered the urgency signal estimated for 527 

each type of block, running a mixed model with BlockType (fast decision, slow 528 

decision) as a factor, Time (elapsed during the decision phase) as a covariate and 529 

subject number as a cluster variable (Urgency ~ BlockType * Time + (BlockType * 530 

Time|Subject)). Since we hypothesized a relationship between urgency and decision 531 

duration that would hold true across subjects, the covariable was not scaled.  532 

Effect of decision-related instructions on movement endpoint measures 533 

To investigate the context and time-sensitive effect of decision duration, we ran general 534 

mixed models on movement duration with BlockType (fast decison, slow decision) as 535 

a factor, decision duration as a covariate and subject number as a cluster variable 536 

(Movement duration ~ BlockType * Decision duration + (BlockType * Decision 537 

duration|Subject)). Our hypothesis was that movement and decision duration correlate 538 
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within- but not necessarily between-subjects. Hence to get rid of individual average 539 

differences in decision duration, we used Z-scores clusterwise to scale the covariable 540 

(i.e., decision duration). Post-hoc comparisons were conducted using t-tests with 541 

Bonferroni correction for multiple comparisons. Monotonic relationships between 542 

block-related changes in movement and block-related changes in urgency/decision 543 

were tested using Spearman’s rank correlations.  544 

Experiment 2 545 

Here, we aimed at investigating the reverse relationship, as compared to Experiment 546 

1; that is, how contextual changes to movement speed influence decision speed. In 547 

addition, this experiment aimed at testing the hypothesis that such a link is masked 548 

when detrimental to the reward rate. 549 

Effect of movement-related instructions on movement endpoint measures 550 

In order to check whether subjects followed instructions in both groups and changed 551 

their movement speed between fast and slow movement blocks, we performed a two-552 

way ANOVARM on movement duration with BlockType (fast movement, slow 553 

movement) and Group (fast decision group, slow decision group) as within-subject 554 

factors. 555 

Effect of movement-related instructions on decision endpoint measures 556 

The analyses for Experiment 2 were similar to those for Experiment 1, except that here, 557 

we looked at the reverse relationship by running a general mixed model on decision 558 

duration with BlockType (fast movement, slow movement) and Group (fast decision, 559 

slow decision) as factors, movement duration as covariable and subject number as a 560 

cluster variable (Decision duration ~ Group * BlockType * Movement duration + (Group 561 

* BlockType * Movement duration|Subject)). 562 
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Exploratory investigation of pupil dilation 563 

In Experiment 1, we recorded pupil diameter from 19 of the 62 participants during task 564 

performance. However, one participant did not finish the experiment, so pupil data 565 

were analyzed on 18 participants (11 Women, 24.5 ± 3.7 years old). This allowed us 566 

to investigate the involvement of the arousal system (proxied by pupil size) in 567 

generating the urgency signal (McGinley et al., 2015; Wagenmakers et al., 2018). To 568 

this end, the pupil diameter was acquired with an EyeLink 1000+ eye tracker video-569 

based system (SR Research), recording monocularly pupil size (in arbitrary units) and 570 

eye movements with a sampling frequency of 1000 Hz. Before analyzing the data, pupil 571 

traces were preprocessed to remove eye-blinks, which were identified by the blink 572 

detection algorithm implemented in Matlab (https://github.com/alexandre-573 

zenon/pupil/), and replaced by linear interpolations. Furthermore, traces were first 574 

filtered by a high-pass filter of 0.01 Hz, then downsampled to 10 Hz to facilitate the 575 

analysis. In order to characterize block-related changes in pupil size during the 576 

decision phase, we extracted the peak of pupil dilation following the first flexion 577 

initiation in each trial (see Fig. S3 in supplementary materials). We then analyzed these 578 

Peak pupil data by means of a mixed model with BlockType (fast decision, slow 579 

decision) as a factor, decision duration as covariable and subject number as a cluster 580 

variable (Peak pupil ~ BlockType * Decision duration + (BlockType * Decision 581 

duration|Subject)). Similarly to the urgency signal analysis, we did not scale the 582 

covariable. This analysis allowed us to investigate whether Peak pupil size would 583 

evolve as a function of decision duration, as shown for urgency, both in the fast and 584 

slow decision blocks. Then, in an additional analysis aimed at further characterizing 585 

the evolution of Peak pupil size over time elapsed during deliberation, we obtained for 586 

each subject the mean Peak pupil dilation in 8 bins of decision duration (from short to 587 
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long) and fitted these pupil data with a linear regression to obtain an intercept and a 588 

slope. These pupil parameters (intercept and slope) were put in relation to those 589 

extracted from the urgency signal (intercept and slope) with Spearman’s rank 590 

correlations.  591 

Results 592 

Experiment 1 593 

Subjects adjusted their decision duration according to the block instruction 594 

In this experiment, we had participants perform the Tokens task in fast and slow 595 

decision blocks, which required them to favor either decision speed or accuracy, 596 

respectively. Consistently, participants took less time to decide in the fast (1647 ± 276 597 

ms) than in the slow decision blocks (2220 ± 111 ms; t1,55 = - 15.236, p < 0.001, 598 

Cohen’s d = - 2.036, see Fig. 2.B). This shortening in decision duration influenced 599 

choice accuracy: participants were less accurate when deciding in the fast decision 600 

blocks (84 ± 5 % of correct choices) than in the slow decision ones (94 ± 2 %; t1,55= - 601 

14.175, p < 0.001, Cohen’s d = - 1.894). These findings indicate that participants 602 

followed the instructions by adopting a strategy favoring speed in the fast decision 603 

blocks and accuracy in the slow decision blocks.  604 

Block-related changes in decision duration were reflected in the level of urgency (Thura 605 

et al., 2014; Derosiere et al., 2022). Indeed, the mixed model analysis on the urgency 606 

signal revealed a main effect of the factor BlockType (see Fig. 4.A, F1,55 = 101, p < 607 

0.001): as expected, the level of urgency was on average higher in the fast (0.327 ± 608 

0.166 a.u) than in the slow decision blocks (0.059 ± 0.107 a.u.). Importantly, this effect 609 

was also true when considering the decision period in separate temporal bins (see 610 

Table S2 in supplementary materials): the urgency level was higher in the fast than in 611 
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the slow decision blocks, regardless of the bin considered, up to the last temporal one 612 

(all t1,55 > 3.760, all p < 0.001, all Cohen’s d > 0.500). Moreover, the mixed model 613 

analysis revealed a significant effect of the factor Time (F1,55 = 112, p < 0.001), 614 

indicating that urgency increased as the time elapsed during deliberation in both fast 615 

and slow decision blocks, as also previously shown (Cisek et al., 2009; Thura et al., 616 

2014; Derosiere et al., 2022; Murphy et al., 2016; Steinemann et al., 2018). Finally, we 617 

observed a significant BlockType x Time interaction (F1,951 = 475, p < 0.001), 618 

suggesting that the time course of urgency differed between the two block types. To 619 

further address this point, we considered the intercept and the slope of the urgency 620 

signal (estimated with the urgency gating model) in both block types. Interestingly, 621 

paired-t-tests revealed a significantly higher intercept in fast decision blocks (0.195 ± 622 

0.140 a.u.) compared to the slow decision ones (- 0.200 ± 0.251 a.u.; t1,55 = 11.097, p 623 

< 0.001, Cohen’s d = 1.483), indicating a greater urgency at decision onset in the 624 

former blocks. However, the urgency exhibited a slower increase in the fast than in the 625 

slow decision blocks. That is, although the slope was significantly positive in both block 626 

types (both t1,55 > 5.000, both p < 0.001, both Cohen’s d > 0.700), it was nevertheless 627 

smaller in the fast (0.097 ± 0.125 a.u.) than in the slow decision blocks (0.192 ± 0.119 628 

a.u.; t1,55 = - 5.241, p < 0.001, Cohen’s d = - 0.700). Hence, the urgency was generally 629 

higher when subjects were in a context promoting fast decisions, with a peak difference 630 

at decision onset; from there on urgency increased over time in both block types but 631 

did so slower in the fast decision blocks, thus reducing the gap with the slow decision 632 

blocks, although the difference remained significant until the end of the decision 633 

process. 634 

 635 
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 636 

Figure 4. Results for Experiment 1. A. Urgency signal. The block-related changes in 637 

decision duration were reflected in the level of urgency (left panel), with a higher level of 638 

urgency in fast (blue bar) than slow decision blocks (white bar). Consistent with the literature, 639 

the evolution of the urgency signal over time (right panel) depended on the type of block: it 640 

was higher at decision phase onset (greater intercept, top left inset) and increased more slowly 641 

(lower slope, top right inset) in fast compared to the slow decision blocks. B. Movement 642 

duration. Decisions were implemented by shorter (faster) movements in fast decision 643 

compared to slow decision blocks (left panel) even if such a coregulation was not beneficial to 644 

the reward rate. Notable, we also found that movement duration shortened with increasing 645 

decision duration, but this was only true in slow decision blocks (negative slope, the inset) C. 646 

Correlations. The more participants responded with a high level of urgency in fast decision 647 

compared to slow decision blocks, the more their movements became shorter (faster) in the 648 

fast compared to the slow decision blocks (left panel). Similarly, those participants with the 649 

largest reduction in decision duration were also those who shortened their movements the 650 

most in the fast compared to the slow decision blocks (right panel). Error bars represent SE. # 651 

t-test against 0 p < 0.025. ***p < 0.001. 652 

 653 

Movement duration was influenced by increasing decision urgency  654 

In this first experiment, we assessed the coregulation hypothesis by investigating the 655 

impact of changes in decision urgency on movement duration. Based on this 656 
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hypothesis and in line with prior work (Carsten et al., 2023; Thura et al., 2014; Thura, 657 

2020), we expected that the higher urgency in the fast decision blocks would also 658 

fasten the motor response, resulting in shorter (faster) movements in fast decision 659 

blocks. Consistently, the mixed model analysis on movement duration revealed a main 660 

effect of the factor BlockType (F1,55.1 = 24.46, p < 0.001), with shorter values in fast (46 661 

± 12 ms) than in slow decision blocks (51 ± 18 ms, see Fig. 4.B). Moreover, the analysis 662 

revealed a significant BlockType x decision duration interaction (F1,47.2 = 11.14, p = 663 

0.002). In order to consider further this interaction, we grouped the movement duration 664 

data in 8 bins of decision duration (see Fig. 4.B). Then, we calculated a delta on the 665 

global movement duration of the first and the last bins in order to express the change 666 

in movement duration (Delta movement). The same delta was calculated on decision 667 

duration (Delta decision) to finally compute a slope representing how much movement 668 

duration varied as a function of changes in decision duration (i.e., Delta movement 669 

/Delta decision). A negative slope would indicate a shortening of movement duration 670 

with increasing decision duration while a positive slope would reflect the opposite 671 

relationship, that is, a lengthening of movement duration with decision duration. 672 

Interestingly, the slope was negative in the slow decision blocks (- 2.11 ± 5.14; t1,55 = - 673 

3.076, p < 0.025 with Bonferroni correction, Cohen’s d = - 0.411 when compared to 0 674 

using Student’s t-tests) but it was null in the fast decision blocks (0.438 ± 2.779; t1,55 = 675 

1.180, p = 0.243, Cohen’s d = 0.158). Consistently, the slope was found significantly 676 

lower in the slow than in the fast decision blocks (paired t1,55 = 3.159, p < 0.01, Cohen’s 677 

d = 0.422). Hence, altogether the analyses indicate globally shorter movement 678 

durations in the fast (higher urgency) than in the slow decision blocks but with an 679 

acceleration of movement execution over deliberation time occurring in the latter but 680 

not in the former decision blocks.  681 
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We then continued to investigate the relationship between decision urgency and 682 

movement duration by means of correlations. To do so, we computed deltas of 683 

movement duration between the fast and slow decision blocks (delta fast-slow decision 684 

blocks) and considered the degree to which changes in movement duration between 685 

the two block types were related to the instructed changes in decision speed. To 686 

characterize the latter, we computed both the delta of urgency and the delta of decision 687 

duration, as depicted on the left and right sides of Figure 4.C., respectively. 688 

Interestingly, Delta movement duration correlated negatively with Delta urgency (Rho 689 

= - 0.343, p = 0.01, 95%-confidence intervals [CI] = [-0.553, - 0.079]), indicating that 690 

the more urgency got high in fast compared to slow decision blocks (higher delta 691 

values), the more movements became short (fast) in this type of block (lower delta 692 

values). Considering deltas in decision duration instead of urgency led to the same 693 

result, which here was manifest as a positive correlation (Rho = 0.364, p = 0.006, CI = 694 

[0.114, 0.577]): the more subjects shortened their decision duration in fast compared 695 

to slow decision blocks (lower deltas), the more the movements became shorter (lower 696 

deltas). Altogether, these findings are consistent with a coregulation of decision and 697 

movement speed (Carsten et al., 2023; Spieser et al., 2017; Thura, 2020).  698 

Experiment 2 699 

Subjects adjusted their movement duration according to the block instruction 700 

In this experiment, we had participants perform the Tokens task in fast and slow 701 

movement blocks, which required them to report their decision with either fast or slow 702 

index finger flexions. Consistent with these instructions and as shown on Figure 3.B, 703 

the ANOVARM revealed that movements were on average of shorter duration in the fast 704 

(37 ± 11 ms) than in the slow movement blocks (59 ± 24 ms; F1,53 = 106.879, p < 0.001, 705 

partial eta-squared (ɳP
2) = 0.673). Moreover, participants in this experiment were split 706 
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in two groups where they were implicitly encouraged to either favor decision speed 707 

(fast decision group) or decision accuracy (slow decision group). Participants in both 708 

groups displayed equivalent movement durations according to the specific instructions 709 

of the two block types, as indicated by the absence of factor Group or BlockType X 710 

Group interaction on movement duration (all F1,53 = [0.111, 1.257], p = [0.267, 0.740], 711 

ɳP
2 = [0.002, 0.024]).   712 

Decision duration was influenced by movement duration 713 

In this experiment, we assessed the coregulation hypothesis by investigating the 714 

impact of block-related changes in movement duration on decision urgency. Based on 715 

this hypothesis and in line with prior work (Carsten et al., 2023; Kita, et al.,2023.), we 716 

expected that the requirement to move fast would naturally increase the urgency, 717 

resulting in shorter (faster) decisions in fast than slow movement blocks. Yet, as 718 

explained in the introduction, we expected that this should only occur if such a 719 

coregulation is not detrimental to the reward rate. In other words, we predicted that 720 

moving faster in the fast movement blocks would only translate into faster decisions 721 

(higher urgency) in the group favoring decision speed anyway (fast decision group) but 722 

not in the group prioritizing decision accuracy (slow decision group).  723 

Unsurprisingly, the mixed model analysis revealed a significant effect of the factor 724 

Group on decision duration (F1,55.9 = 6.32, p = 0.015). As such, decision durations were 725 

shorter in the fast decision group (1997 ± 175 ms) than in the slow decision group 726 

(2104 ± 158 ms), as implicitly promoted in this experiment. Furthermore, we found a 727 

significant Group x BlockType interaction on decision duration (F1,143.3 = 6.82, p = 728 

0.010; see Fig. 5.A). As such, changes in movement duration from the slow to the fast 729 

movement blocks elicited distinct effects on decision duration depending on the group. 730 

That is, post-hoc analyses revealed that participants in the fast decision group made 731 
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shorter decisions in fast (1990 ± 183 ms) than slow movement blocks (2004 ± 170 ms; 732 

t161.1 = 2.957, p < 0.025 with Bonferroni correction). Such an effect was not found in the 733 

slow decision group, where decision durations were not significantly different between 734 

the fast (2112 ± 164 ms) and slow movement blocks (2096 ± 154 ms; t126.4 = - 0.667, 735 

p = 1.000). Hence, faster movements led participants to decide faster when such a 736 

coregulation was consistent with their task goal, in the fast decision group, but not 737 

when it would have been detrimental, in the slow decision group.  738 

The mixed model analysis also revealed a main effect of the factor movement duration 739 

(F1,16459.4 = 8.21, p = 0.004) on decision duration. Similar to the analysis run in 740 

Experiment 1, we grouped decision duration in bins of movement duration (here we 741 

used 4 bins) in order to calculate a delta between the first and the last bins on decision 742 

(Delta decision) and movement durations (Delta movement). These deltas were then 743 

used to compute a slope expressing changes in decision duration as a function of 744 

changes in movement duration (Delta decision/Delta movement). A Student’s t-test 745 

against 0 showed that the slope was significantly negative (t1,53 = - 3.152, p < 0.01, 746 

Cohen’s d = - 0.429) indicating that long movement durations were associated with 747 

short decision durations. However, this effect interacted with the factor Group 748 

(Movement duration x Group F1,16459.4 = 5.00, p < 0.05). More precisely, following 749 

Student’s t-tests against 0, the slope was significantly negative in the fast decision 750 

group (– 4.606 ± 5.824; t1,26 = -4.109, p < 0.001, Cohen’s d = - 0.791) but not in the 751 

slow decision group (– 0.177 ± 4.392; t1,26 = - 0.210, p = 0.835, Cohen’s d = - 0.040). 752 

This suggests that, only in the fast decision group, movement duration varied as a 753 

function of deliberation time, as observed in Experiment 1. All other effects of the mixed 754 

model were nonsignificant (p = [0.092 0.509]).  755 
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 756 

Figure 5. Results for Experiment 2. A. Decision duration. As expected, participants in the 757 

fast decision group made faster decisions than those in the slow decision group (left panel). 758 

Moreover, as also shown on the left panel, only in the fast decision group were decision 759 

durations affected by the movement block type, with shorter (faster) decisions accompanying 760 

faster movements (red bar). On the right panel you can also see that long movement durations 761 

were associated with short decision durations only in fast decision group (see insets displaying 762 

specifically the slope in the fast and slow decision groups). B. Urgency signal. The overall 763 

urgency level did not differ significantly between the two groups and the two types of block (left 764 

panel). However, as shown on the right panel, its evolution over time differed between the two 765 

groups of subjects. More precisely, the movement block type affected the intercept and the 766 

slope of the urgency signal in the fast decision group with only a marginal effect on the slope 767 

in the slow decision group. Indeed, the urgency signal was higher at the decision phase onset 768 

(greater intercept, top left inset) and increased more slowly (lower slope, top right inset) in fast 769 

(red bar) block relative to slow (black bar) movement blocks in the former group only.  Error 770 

bars represent SE. # t-test against 0 p < 0.05, *p < 0.05, ***p < 0.001. 771 

 772 

We then assessed the impact of varying the movement speed in the two different block 773 

types on decision urgency itself (see Fig. 5.B). The mixed model analysis revealed a 774 
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main effect of the factor Time on the urgency signal, consistent with an increasing 775 

urgency over time (F1,47.9 = 197.94, p < 0.001). Moreover, we found that this main effect 776 

interacted with the factor BlockType, indicating that the urgency signal generally 777 

increased faster in slow relative to fast movement blocks (BlockType x Time 778 

interaction; F1,916 = 266.65, p < 0.001). Most interestingly, this interaction depended on 779 

the Group (Group x BlockType x Time interaction; F1,916 = 32.30, p < 0.001). To better 780 

understand this triple interaction, we ran further analyses on the intercept and the slope 781 

of the urgency signal (as in Experiment 1). More precisely, paired t-tests revealed a 782 

higher urgency intercept in fast (0.013 ± 0.186 a.u.) than slow movement blocks (- 783 

0.053 ± 0.215 a.u.; t1,26 = 2.854, p < 0.01, Cohen’s d = 0.549) for the fast decision 784 

group, whereas the urgency intercept was around 0.093 ± 0.163 a.u. in both block 785 

types for the slow decision group (t1,26 = 0.915, p = 0.369, Cohen’s d = 0.176). Hence, 786 

urgency was greater at the decision onset in the fast than in the slow movement blocks 787 

only for the fast decision group. Yet, it seems that urgency then increased more slowly 788 

in fast movement blocks, especially in fast decision group. Indeed, for this group, the 789 

urgency slope was lower in fast (0.110 ± 0.079; t1,26 = - 3.645) than slow movement 790 

blocks (0.147 ± 0.103 a.u.; t1,26 = - 3.645, p = 0.001, Cohen’s d = - 0.701). The 791 

difference between fast (0.160 ± 0.061 a.u.) and slow movement blocks (0.178 ± 0.078 792 

a.u.) was still present in the slow decision group, although smaller and marginal (t1,26 793 

= - 1.83, p = 0.079, Cohen’s d = - 0.351).  In other words, the urgency signal was higher 794 

at the decision phase onset (greater intercept) and increased slower (lower slope) in 795 

fast relative to slow movement blocks in the group pushed to decide quickly while it 796 

remained mostly unchanged between the two block types in the group pushed to 797 

decide slowly. All other effects of the mixed model were nonsignificant (p = [0.154 798 

0.558]). These results suggest that the instruction to boost movement speed in the fast 799 
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movement blocks induced a parallel increase of urgency when this was consistent with 800 

the task goals, in the fast decision group. By contrast, boosting movement speed did 801 

not have such an effect in the slow decision group, when it would have been 802 

detrimental. In this case, the subjects decided at a similar speed during both slow and 803 

fast movement blocks. 804 

Finally, we investigated how the switch in movement speed between fast and slow 805 

movement blocks impacted urgency and decision duration. To do so, we computed, 806 

as in the Experiment 1, the deltas between the fast and slow movement blocks (delta 807 

fast-slow movement blocks) and looked at how Delta urgency and Delta decision 808 

duration correlated with Delta movement duration in both decision groups, as depicted 809 

on Figure 6. Interestingly, their relationship differed from the Experiment 1. In the fast 810 

decision group, there was no relationship with Delta movement duration whether we 811 

considered the Delta urgency (Rho = 0.217, p = 0.276, CI = [- 0.191, 0.538]) or the 812 

Delta decision duration (Rho = -0.105, p = 0.601, CI = [- 0.451, 0.318]). In the slow 813 

decision group, we also found no significant correlation between Delta urgency and 814 

Delta movement duration (Rho = 0.176, p = 0.377, CI = [- 0.213, 0.539]). Surprisingly, 815 

we found in this group a relationship between changes in movement duration and 816 

decision duration, but here Delta decision duration correlated negatively with Delta 817 

movement duration (Rho = -0.510, p = 0.007, CI = [-0.779, - 0.141]), suggesting that 818 

participants with shorter movements in fast relative to slow movement blocks (lower 819 

deltas) were those who waited the longest to make their decisions (higher deltas).  820 
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 821 

Figure 6. Correlations for Experiment 2. For the fast decision group (upper panel), we did 822 

not find any relationship between block-related changes in movement duration (Ranks of Delta 823 

movement) and block-related changes in decision features, whether we considered changes 824 

in urgency level (Ranks of Delta urgency, left) or changes in decision duration (Ranks of Delta 825 

decision, right). For the slow decision group (lower panel), Delta Movement did not correlate 826 

with Delta urgency (left) but correlated negatively with Delta decision (right).  827 

 828 

In summary, our data in Experiment 2 also indicate a natural coregulation between 829 

decision and movement speed when considering the fast decision group in Experiment 830 

2. In contrast, movement speed instructions in the slow decision group did not seem 831 

to have any impact on decision speed or on urgency. If anything, the correlations 832 
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revealed a negative relationship between block-related changes in movement and 833 

decision speed in that group favoring accuracy in Experiment 2.  834 

Analyses of pupil dilation 835 

Pupil dilation increased with both urgency and accuracy requirements 836 

Previous studies have shown that increases in urgency induce pupillary dilation (Gross 837 

& Dobbins, 2021; Murphy et al., 2016; Reppert et al., 2023; Steinemann et al., 2018). 838 

However, the link between pupil dilation and decision urgency is still much debated in 839 

the literature. That is, while some have suggested that pupil dilation reflects the 840 

involvement of the arousal system in the generation of the urgency signal (Murphy et 841 

al., 2016), others have proposed that the urgency-related pupillary dilation rather 842 

results from an increased recruitment of the arousal system to ensure decision 843 

accuracy under time pressure (Steinemann et al., 2018). In order to directly address 844 

this question in the current study, we analyzed pupil dilation as a function of decision 845 

duration, in 18 of the subjects who took part in Experiment 1.  846 

The mixed model on Peak pupil dilation did not reveal any significant effect of the factor 847 

BlockType (F1,8257 = 0.616, p = 0.433; 111 ± 57 a.u. for fast decision blocks and 163 ± 848 

74 a.u. for slow decision blocks; see Fig. 7). However, the analysis revealed a main 849 

effect of the factor decision duration (F1,8265 = 30.173, p < 0.001), indicating that pupil 850 

dilation increased with decision duration in both types of blocks. Interestingly, this effect 851 

interacted with the factor BlockType (BlockType x decision duration interaction; F1,8265 852 

= 30.173, p < 0.001). In order to understand this interaction, we estimated the intercept 853 

and slope of the pupil function in each block type by means of linear regressions (see 854 

related section in Methods for more details) and compared them across block types. 855 

The intercept, which thus reflects pupil size at the onset of the decision phase did not 856 
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differ between block types (t1,17 = 1.049, p = 0.309, Cohen’s d = 0.247; 85 ± 71 a.u. 857 

and 50 ± 152 a.u. in fast and slow decision blocks). However, the slope (reflecting the 858 

speed at which the pupil expanded over decision duration) was steeper in slow (50 ± 859 

152 a.u.) relative to fast decision blocks (5 ± 71; t1,17 = - 2.107, p = 0.05, Cohen’s d = - 860 

0.497). This result was supported by multiple paired t-tests (Bonferroni corrected) 861 

looking at the difference in Peak pupil dilation between fast and slow decision blocks 862 

in the 8 bins of decision duration. As such, this additional analysis showed that, in early 863 

bins, pupil dilation did not differ significantly between block types but that it became 864 

progressively larger in slow than fast decision blocks in the last bins of decision 865 

duration (see Table S3 in supplementary material).  866 

 867 

Figure 7. Peak pupil data in Experiment 1 (n=18). Peak pupil dilation was comparable in 868 

fast (blue bar) and slow (white bar) decision blocks (left panel). Consistent with the literature, 869 

Peak pupil dilation increased with decision duration in both types of blocks (right panel). 870 

However, while the pupil dilation seemed similar between the two types of block at the 871 

beginning of the decision phase (similar pupil intercepts, top left inset), its dilation tended to 872 

increase faster in slow decision blocks relative to fast decision ones (higher pupil slope, top 873 

right inset), leading to a progressively more dilated pupil in the former. Error bars represent 874 

SE. 875 

 876 
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To further investigate the link between pupil dilation and urgency, we put into relation 877 

the block-related changes in parameters of both functions. In other words, we looked 878 

at how block-related changes in pupil intercept (slope) were linked to block-related 879 

changes in urgency intercept (slope). These changes were quantified by obtaining 880 

delta values (delta fast-slow decision blocks) for the intercept and slope of both the 881 

pupil (Delta pupil intercept and Delta pupil slope) and urgency (Delta urgency intercept 882 

and Delta urgency slope) functions in all subjects, with thus positive deltas indicating 883 

greater values in fast than slow decision blocks. Interestingly, a Spearman correlation 884 

on Delta intercept values revealed a tendency toward a positive correlation (Figure 8; 885 

Rho = 0.459, p = 0.057, CI = [0.012, 0.779]), suggesting that participants who showed 886 

a greater urgency increase at the onset of decisions in fast than slow decision blocks 887 

were also those displaying the larger increase in pupil dilation. Moreover, a positive 888 

correlation was found when considering the Delta slope values (Rho = 0.478, p = 889 

0.047, CI = [- 0.022, 0.803]), indicating that participants whose urgency signal 890 

increased more over time in fast relative to slow decision blocks also showed a larger 891 

increase in pupil dilation over time.  892 

 893 

Figure 8. Correlations for Peak pupil data in Experiment 1 (n=18). Block-related changes 894 

in the intercept and slope of the Peak Pupil function (Ranks of Delta pupil intercept and slope) 895 

were related to block-related changes in the same parameters of the urgency function (Ranks 896 
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of Delta urgency intercept and slope). That is, the participants showing a greater increase in 897 

pupil intercept (slope) in fast compared to slow decision blocks were also those showing a 898 

greater increase in urgency intercept (slope).  899 

 900 

Altogether, the effects described above are consistent with a tight relationship 901 

between urgency and pupil dilation. Indeed, both urgency and pupil dilation clearly 902 

increased with decision duration, and more so in slow decision blocks. Moreover, 903 

block-related increases in urgency intercept and slopes were associated with parallel 904 

enlargements in pupil size (though marginal for the intercept). However, we also found 905 

that, pupil size tended to be smaller in fast than in slow decision blocks (and 906 

significantly so in later bins), contrary to urgency which showed the reverse effect. 907 

Such an effect on the Peak pupil data was not related to differences in baseline (tonic) 908 

levels of pupil dilation as these values were equivalent in both block types (see Fig. S4 909 

in supplementary materials). Nor was this effect due to the fact that decision durations 910 

differed across block types within the same bins (see Fig. 7). Indeed, when considering 911 

only a set of equivalent ambiguous trials with long decision durations (i.e., decisions 912 

falling between Jump-9 and Jump-10) and a constant level of evidence (i.e., with a 913 

success of probability at decision time equal to 0.8125 in all trials), we found that pupil 914 

dilation remained greater in slow decision blocks, although the difference with fast 915 

decision blocks was marginal (137 ± 70 a.u. and 105 ± 54 a.u., respectively; t1,15 = 916 

1.97, p = 0.067, Cohen’s d = 0.493; 2 subjects had to be excluded from this analysis, 917 

because of a lack of data).  918 

We then considered the possibility that the larger pupil size observed in slow 919 

decision blocks was due to a special focus on accuracy in this condition. As such, 920 

subjects had a fixed number of trials here (contrary to fast decision blocks) and they 921 

then plausibly recruited all available resource’s to be as accurate as possible, including 922 
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increased arousal. To test this hypothesis, we considered again the subgroup of 923 

ambiguous trials described above for which we computed a block-related delta (fast-924 

slow) for the accuracy and pupil data. Interestingly, in those particular trials, the Delta 925 

pupil size was positively correlated with the Delta accuracy (Rho = 0.758, p < 0.001, 926 

CI = [0.501, 0.873]). In other words, the more the pupil was dilated in the slow decision 927 

blocks compared to the fast decision blocks (i.e., the more the delta pupil was 928 

negative), the more subjects exhibited better accuracy in the slow than in the fast 929 

blocks (i.e., the more the delta accuracy was negative). In conclusion, variations in 930 

pupil-related arousal in the current study seemed to be driven by two overlapping 931 

factors: the level of urgency, as expected, and the strategic allocation of resources to 932 

promote accuracy.  933 

 934 

 935 

Figure 9.  Peak pupil data in ambiguous trials of Experiment 1 (n=16). Peak pupil dilation 936 

tended to be larger in slow decision blocks (white bar) than in fast decision blocks (blue bar). 937 

Given that deltas were computed by measuring the difference in peak pupil dilation between 938 

fast and slow conditions, the more the subjects showed a greater peak pupil in slow decision 939 

blocks, the more they displayed a negative delta, which corresponds to a low rank value. 940 

Interestingly, we found that the greater this pupil enlargement in slow compared to fast decision 941 

blocks (i.e., lower rank value), the greater the gain in accuracy in slow compared to fast 942 

decision blocks (i.e., lower rank value).  943 
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Discussion 944 

The aim of our study was to provide a principled explanation to the relation 945 

between decision and movement speed. Consistent with this, our data supports the 946 

hypothesis that coregulation operates as a default mode. However, our findings also 947 

show that this form of control can fade or even be replaced by a tradeoff relationship, 948 

depending on the task goals. Based on these behavioral observations, we propose 949 

that several processes come into play to shape the speed of our decisions and 950 

movements either selectively or jointly, the latter mode being best observed when a 951 

default coregulation of decision and movement allows to maximize the reward rate, or 952 

at least, when it is not detrimental to it.  953 

The relationship between decision and movement speed adapts to context-954 

dependent task goals 955 

 Context-dependent changes in decision speed, as elicited in Experiment 1, led 956 

to clear changes in movement speed that are consistent with a coregulation of both 957 

levels of control. Indeed, subjects made faster movements in fast decision blocks than 958 

in slow decision blocks, and these changes in movement speed were correlated with 959 

the strength of changes in decision speed: the more subjects adjusted their decision 960 

speed according to the instruction, the more they showed a parallel change in 961 

movement speed. Note that, similar to Carsten et al (2023), changes in movement 962 

speed accompanied block-related variations in decision speed despite its absence of 963 

impact on the reward rate, substantiating the view that such coregulation type of control 964 

occurs naturally.  965 

Context-dependent changes in movement speed, as required in Experiment 2, 966 

also affected decision speed. Yet, the direction of the effect differed according to the 967 
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group that was considered. That is, the group whose reward rate was maximized by a 968 

strategy favoring decision speed (i.e., the fast decision group) showed faster decisions 969 

in fast movement compared to slow movement blocks. Even if this coregulation effect 970 

was not as strong as in Experiment 1, it was still significant, pointing to a similar form 971 

of coregulation. In contrast, the group whose reward rate was maximized by a strategy 972 

favoring decision accuracy (i.e., the slow decision group) did not show such a 973 

covariation of decision speed between the slow and fast movement blocks. Quite the 974 

contrary, in this group we even observed the reverse relationship. More precisely, 975 

although decision speed was similar between fast and slow movement blocks, the 976 

changes in movement speed correlated negatively with changes in decisions speed: 977 

the more subjects accelerated their movement speed in fast compared to slow 978 

movement blocks, the more they slowed down their decision. This is consistent with a 979 

tradeoff type of relationship in this (slow decision) group, contrasting with the 980 

coregulation effect observed in the other (fast decision) group, despite the fact that 981 

subjects from both groups displayed a coregulation effect when manipulating decision 982 

speed in Experiment 1. 983 

 Interestingly, similar observations regarding context-dependent variations in 984 

Experiments 1 and 2 were made when considering directly the relationship between 985 

movement speed and decision urgency itself (and not only decision speed), as done 986 

for the first time in this study. As such, in Experiment 1, the decision urgency was 987 

clearly higher in fast decision blocks compared to slow decision blocks and this 988 

upregulation was found to significantly correlate with the changes in movement speed 989 

that occurred between the two contexts: the greater the context-dependent increase in 990 

urgency level, the more subjects accelerated their movement speed from one block 991 

type to the other. Similarly, the coregulation observed in the fast decision group of 992 
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Experiment 2 was also apparent when considering the urgency: fast movement blocks 993 

were associated with a higher urgency intercept than slow movement blocks in this 994 

group of individuals. Such a relationship was not found when the other (slow decision) 995 

group was considered. Hence, altogether, these findings indicate that the relationship 996 

between decision speed/urgency and movement speed can shift from a coregulation 997 

to a tradeoff according to the task goals, which provides an explanation for the 998 

apparent discrepancy between findings of past studies (Carsten et al., 2023; Kita et 999 

al.,2023.; Reynaud et al., 2020; Saleri Lunazzi et al., 2021).  1000 

The deliberation time impacts on movement speed 1001 

In our experiment, the level of urgency did not only vary in a context-dependent 1002 

manner (i.e., between blocks) but also in a time-dependent manner (i.e., over the 1003 

course of a trial). That is, as shown in many past studies, urgency increased during a 1004 

trial, pushing the subjects to respond as the trial comes to an end. Consistent with a 1005 

natural coregulation of decision speed and movement, we observed a time-dependent 1006 

speeding up of movements over the course of a trial, as already reported in past 1007 

studies (Thura et al., 2014; Thura, 2020; Thura et al., 2012). Interestingly, this was 1008 

generally true, whether considering results from Experiment 1 or Experiment 2: overall, 1009 

movement speed increased as deliberation time (and thus urgency) increased, in a 1010 

given context.  1011 

Yet, an intriguing finding here, is that in Experiment 1, this effect was only 1012 

observed in the slow decision blocks (generally associated with slow movements) but 1013 

not in the fast decision blocks (where movements were generally faster due to the 1014 

context-dependent change in urgency elicited by the task instruction to decide fast). A 1015 

possible explanation for this is that the slope of the urgency function was smaller in the 1016 

fast than slow decision blocks of this experiment, as shown in the past. That is, when 1017 
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subjects put the emphasis on decision speed, the intercept is higher but then the 1018 

urgency increases more slowly as evident by a smaller slope in fast decision blocks 1019 

(Thura et al., 2014; Thura, 2020). Hence, the weaker increase in urgency over the 1020 

course of the trial in the latter block type may be responsible for the absence of time-1021 

dependent effect on movement speed in that condition, compared to the slow decision 1022 

blocks where the slope is steeper following a lower intercept. Nevertheless, previous 1023 

studies have shown an acceleration of movements with the passage of time, 1024 

irrespective of the slope size of the urgency signal (Thura et al., 2014; Thura, 2020). 1025 

Another plausible explanation is that the impact of urgency on movement speed is 1026 

counteracted by a process controlling the energy cost. More precisely, the energy 1027 

expenditure as a function of movement duration is represented by a concave upward 1028 

function for many types of movement (Shadmehr et al., 2016; Steudel-Numbers & 1029 

Wall-Scheffler, 2009; Yoon et al., 2018; Zarrugh et al., 1974). As the speed of 1030 

movement is slower in the slow decision blocks than in the fast decision blocks, it is 1031 

possible that accelerating the movement speed decreases energy expenditure in the 1032 

former and increases it in the latter. Increasing the energetic cost of movement in the 1033 

fast decision blocks would lead to a decrease in the value of the reward, and thus the 1034 

rate of reward. Therefore, limiting the impact of the urgency signal depending on the 1035 

energy cost seems entirely credible. The fact that previous studies did not observe a 1036 

ceiling effect for the urgency signal could be linked to the type of movement involved 1037 

in the task. Indeed, in these studies, the task involved reaching movements, whereas 1038 

our experiment required index finger tapping movements. Unlike the latter, reaching 1039 

movements are large and involve several joints (at least the three articulations of the 1040 

arm). It is likely that such multi-joint movements offer a wider range of movement 1041 

speeds than single-joint (tapping) movements.   1042 
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Pupil dilation reflects an increase in arousal related to urgency and decision 1043 

accuracy 1044 

Converse to previous studies (Gross & Dobbins, 2021; Murphy et al., 2016; 1045 

Steinemann et al., 2018), the pupil dilation did not differ significantly between fast and 1046 

slow decision blocks. However, we found an increase in dilation as a function of 1047 

decision duration, suggesting that pupil dilation may be partly linked to the urgency 1048 

signal (Gross & Dobbins, 2021; Lawlor et al., 2023; Murphy et al., 2011, 2016; 1049 

Steinemann et al., 2018). This idea is supported by the similarity found between pupil 1050 

dilation and urgency signal as well as the positive correlations that were found between 1051 

their parameters (see Fig. S5 in supplementary material).  Yet surprisingly, unlike the 1052 

urgency signal, pupil size tended to be more dilated in slow compared to fast decision 1053 

blocks. Contrasting with previous studies (Gross & Dobbins, 2021; Murphy et al., 2016; 1054 

Steinemann et al., 2018), this result suggests a recruitment of the arousal system as a 1055 

function of both urgency and accuracy. One possible explanation is that the emphasis 1056 

on decision accuracy in slow decision blocks was particularly high in our design. This 1057 

pressure could arise from the fact that using a fixed number of trials limits the possibility 1058 

of increasing the rate of reward, giving importance to each trial. The positive correlation 1059 

between pupil dilation and performance in ambiguous trials supports this idea, showing 1060 

that the more the pupil was dilated in slow decision blocks, the more subjects increased 1061 

their accuracy in this condition for a same level of evidence.  1062 

Altogether, these results suggest that pupil dilatation reflects two overlapping actions. 1063 

More precisely, the recruitment of the arousal system would, on the one side, increase 1064 

the gain of sensory information at the decision level with the increase in urgency in the 1065 

fast decision blocks, and on the other side, increase the attention to enhance accuracy 1066 

in a context where it is prioritized regardless of urgency, as in our slow decision blocks. 1067 
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The mechanisms through which the arousal system can enhance performance 1068 

accuracy are still unclear, but may involve enhancing processing of sensory 1069 

information (Zénon, 2019). This hypothesis is in line with a report by Steinemann and 1070 

his colleagues, who showed that pupil dilation is associated with better encoding of 1071 

sensory evidence in the visual cortex. Nevertheless, further studies are needed to 1072 

investigate the involvement of the arousal system in decision making using causal 1073 

approaches, using for example techniques such as transcutaneous vagus nerve 1074 

stimulation (Hilz, 2022).   1075 

Several neural mechanisms are likely to shape the relationship between decision 1076 

and movement speed 1077 

Plausible neural source underlying the natural coregulation of decision speed and 1078 

movement speed 1079 

A possible candidate for the coregulation effects observed in our two 1080 

experiments is the basal ganglia (Chen & Yang, 2021; Dudman & Krakauer, 2016; 1081 

Kaduk et al., 2023;  Desmurget & Turner, 2010). As such, this structure could be at the 1082 

source of a signal invigorating behavior as a whole to maximize reward rate, as 1083 

hypothesized in several studies of the last decade (Carsten et al., 2023; Cisek & Thura, 1084 

2022; Thura, 2020; Thura et al., 2022; Thura & Cisek, 2017). Reward-sensitivity of the 1085 

dopaminergic system has been extensively studied in the past (Berridge & Robinson, 1086 

2016; Salamone & Correa, 2024; Schultz et al., 2017; Weinstein, 2023) Consistently, 1087 

dopamine seems strongly implicated in the control of decision speed and movement 1088 

vigor (Bourgeois et al., 2016; Coddington & Dudman, 2019; Niv, 2007; Pietro Mazzoni 1089 

et al., 2007). Interestingly, it is believed that it amplifies motor gain (Park et al., 2020; 1090 

Yttri & Dudman, 2018), which seems to rely, at least in part, on inhibitory influences 1091 

increasing the signal-to-noise ratio in motor neural activity (Duque et al., 2017; 1092 
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Greenhouse, 2022; Vassiliadis et al., 2020; Wilhelm et al., 2022). This dopamine-1093 

mediated invigoration may be thus responsible for the increased surround inhibition, a 1094 

phenomenon observed in studies applying transcranial magnetic stimulation (TMS) 1095 

during movement preparation, which has traditionally been associated with an increase 1096 

in movement vigor (Dudman & Krakauer, 2016; Shadmehr et al., 2019) but which has 1097 

also recently been linked to an increase in decision urgency (Derosiere et al., 2022).  1098 

Neural source underlying the occurrence of a tradeoff between decision urgency and 1099 

movement speed  1100 

 The context-dependent modulations of decision speed as a function of the 1101 

movement blocks in the slow decision group of Experiment 2 reflects a tradeoff rather 1102 

than a coregulation of decision and movement speed, despite the fact that there is 1103 

evidence for a coregulation in this same group in Experiment 1 (see Fig. S6 in 1104 

supplementary materials). This suggests that the requirement to focus on decision 1105 

accuracy led this group of subjects to recruit processes allowing to maintain the 1106 

appropriate level of accuracy despite the fact that switching from slow to fast movement 1107 

blocks let to a joint invigoration of decision with movement speed. Such hypothesis is 1108 

supported by a negative correlation found between the UPPS score for urgency and 1109 

the delta of decision duration in the slow decision group (see Fig. S.7 in supplementary 1110 

material). Although marginally nonsignificant (p-tendency of 0.083), this correlation 1111 

suggests that the more impulsive the subjects (higher UPPS urgency score), the less 1112 

they were able to slow down their decisions (lower delta) in fast movement blocks. In 1113 

other words, this suggests lesser ability to counteract the effect of common 1114 

invigoration. Therefore, it is plausible that a cognitive control process (less efficient in 1115 

impulsive individuals) can come into play and selectively shape decision parameters 1116 

in a goal-directed manner, helping to “hold your horses”. This type of inhibitory control 1117 
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mechanism has been widely studied during conflict resolution and during action 1118 

stopping as an extreme case of braking (Frank et al., 2007; Mosher et al., 2021). 1119 

Several lines of evidence indicate that it relies on the hyperdirect pathway from medial 1120 

frontal cortex to subthalamic nucleus (Cavanagh et al., 2011; Forstmann et al., 2008; 1121 

Herz et al., 2017), producing broad, non-specific inhibition in motor areas to slow down 1122 

the action selection process (Aron et al., 2016; Duque et al., 2016; Klein et al., 2014; 1123 

Wessel & Aron, 2017). This effect would be associated with a broad motor cortex 1124 

suppression as already observed in past TMS studies, showing for instance reduced 1125 

excitability in leg muscles during cautious finger responses (Derosiere et al., 2022; 1126 

Duque et al., 2017). 1127 

Conclusion 1128 

In conclusion, the interaction between decision and movement speed seems 1129 

influenced by different mechanisms. Our findings highlight two of them; a common 1130 

invigoration mechanism responsible for a natural coregulation between decision and 1131 

movement speed, and a cognitive mechanism, which slows down decisions when the 1132 

reward is linked to the precision of the choices. Contrary to expectations, although the 1133 

urgency signal was influenced by changes in movement speed, it did not always 1134 

correlate with it, suggesting that this signal reflects a combination of the different 1135 

mechanisms involved in decision making and not just that of invigoration. Interestingly, 1136 

our results support a link between pupil dilation and decision urgency, but here also 1137 

with the additional influence of an accuracy-promoting factor. 1138 

 1139 

 1140 

 1141 
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Supplementary materials 1402 

 1403 

Figure S1. Movement performance in Experiment 1. Participants successfully escaped the 1404 

ghost (Pacman Success) equally in fast decision blocks (blue bar) and slow decision blocks 1405 

(white bar). Error bars represent SE. 1406 

 1407 

 1408 

 1409 

Figure S2. Movement performance in Experiment 2. On average, participants had more 1410 

difficulty keeping up with the speed imposed in the fast movement blocks (red bars) than in the 1411 

slow movement blocks (white bars). More precisely, the success rate was lower in fast relative 1412 

to slow movement blocks for both the first tapping movement (higher percentage of incorrect 1413 

first movement, left panel) and the following ones in the movement phase (lower percentage 1414 

of incorrect following movements, right panel). Error bars represent SE. ***p < 0.001. 1415 
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 1417 

Figure S3. Typical pupil dilation signal. In order to characterize block-related changes in 1418 

pupil size during the decision phase, we extracted the peak of pupil dilation (Peak pupil dilation) 1419 

following the first flexion initiation (Movement initiation) in each trial. This figure shows the 1420 

evoked pupil dilation aligned to movement initiation (0) in one subject. 1421 

 1422 

Figure S4. Control analyses on pupil dilation in Experiment 1 (n=18). As a control analysis, 1423 

we considered a window of 250 ms before the trial onset to measure tonic pupil dilation. As 1424 

shown on the left panel, such tonic pupil dilation was similar in fast (blue bar) and slow decision 1425 

blocks (white bar). Furthermore, block-related changes in tonic dilation (Ranks of Delta tonic) 1426 

did not correlate significantly with change in Peak pupil dilation (Ranks of Delta phasic), ruling 1427 

out any pupil bias in our results (right panel). 1428 
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 1431 

Figure S5. Peak pupil data in Experiment 1 (n=18) as a function of urgency at decision 1432 

time.  Peak pupil dilation was smaller in fast (blue bar) than slow (white bar) decision blocks 1433 

(left panel). Consistent with the positive correlation found between pupil dilation and urgency 1434 

signal, Peak pupil dilation increased with urgency level in both types of blocks (right panel). 1435 

Furthermore, this increase in pupil dilatation with urgency was similar between the two block 1436 

types as emphasize by the similar slopes (see inset). Error bars represent SE. ***p < 0.001. 1437 
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 1445 

Figure S6. Control analyses on behavior in Experiment 1 (n=27). A. Movement duration. 1446 

The results showed faster movements in fast decision (blue bar) relative to slow decision (white 1447 

bar) blocks (left panel). The duration of movements as a function of decision duration evolved 1448 

differently between the two types of blocks (right panel). Although the slopes did not differ from 1449 

0 for both fast and slow decision blocks (see inset), the slope for slow decision blocks still 1450 

tended to be lower. B. Correlations. Given that deltas were computed by measuring the 1451 

difference in duration between fast and slow conditions, the more the subjects showed an 1452 

effect of the condition (or coregulation), the more they displayed a negative delta, which 1453 

corresponds to a low rank value. So, here you can see that the more participants responded 1454 

faster in fast decision blocks compare to slow ones (i.e., the smaller the rank value), the more 1455 

they accelerated their movement (i.e., the smaller the rank value) in this block type. Error bars 1456 

represent SE. #: t-test against 0 p < 0.025. ***p < 0.001. 1457 
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 1464 

Figure S7. Correlation with UPPS-score in slow decision group of Experiment 2. Given 1465 

that deltas were computed by measuring the difference in duration between fast and slow 1466 

conditions, the more the subjects showed an effect of the condition (or tradeoff), the more they 1467 

displayed a positive delta, which corresponds to a high rank value. Subjects who were more 1468 

impulsive (higher rank value) tended to show less ability to slow down (lower rank value). 1469 
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 Fast decision Slow decision BF10 Error % 

gender (M/F) 12/15 10/17 0.309 0.008 

Age 25.11 ± 3.65 23.81 ± 2.87 0.651 0.008 

Urgency 8.52 ± 3.19 8.37 ± 3.20 0.277 0.008 

Positive urgency  10.63 ± 2.82 10.56 ± 1.85 0.275 0.008 

Lack of Perseverance 7.85 ± 2.52 7.30 ± 2.45 0.361 0.008 

Lack of Premeditation 6.70 ± 2.46 7.33 ± 2.45 0.396 0.008 

Sensation seeking 11.07 ± 2.05 10.33 ± 3.06 0.430 0.008 

Table S1. Demographic description of fast decision and slow decision groups. The table 1485 

includes the Bayesian independent t-tests for the sex, the age and the five facets of trait 1486 

impulsivity of the short-UPPS. BF10 grades the strength of evidence for the alternative 1487 

hypothesis against the null hypothesis. The error percentage (Error %) indicates the numeric 1488 

robustness of the results, with low values of the Error % corresponding to a greater numerical 1489 

stability of results. The gender of the participants was transformed into a numerical score to 1490 

compare the average between the two groups (i.e., 1 for female (F) and 0 for male (M)). 1491 
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BinDD t-value df p-value Cohen’s d 

1 12.784 55 < 0.001 1.708 

2 10.122 55 < 0.001 1.353 

3 8.298 55 < 0.001 1.109 

4 7.261 55 < 0.001 0.970 

5 6.421 55 < 0.001 0.858 

6 5.676 55 < 0.001 0.758 

7 4.816 55 < 0.001 0.644 

8 3.761 55 < 0.001 0.503 

 1507 
Table S2. Paired Student’s t-tests of urgency level over decision duration.   The critical 1508 
t-value, the p-value and the Cohen’s d as a measure of the effect size are represented for each 1509 
bin of decision duration (BinDD). Significant p-value (with a Bonferroni-corrected threshold of 1510 
.05/8) are highlighted in bold and blue. 1511 
 1512 
 1513 

BinDD t-value df p-value Cohen’s d 

1 -3.086 17 0.007 -0.727 

2 -4.007 17 < 0.001 -0.944 

3 -2.352 17 0.031 -0.554 

4 -3.561 17 0.002 -0.839 

5 -4.408 17 < 0.001 -1.039 

6 -3.884 17 0.001 -0.915 

7 -3.191 17 0.005 -0.752 

8 -5.583 17 < 0.001 -1.316 

 1514 
Table S3. Paired Student’s t-tests of pupil dilation over decision duration.   The critical t-1515 
value, the p-value and the Cohen’s d as a measure of the effect size are represented for each 1516 
bin of decision duration (BinDD). Significant p-value (with a Bonferroni-corrected threshold of 1517 
.05/8) are highlighted in bold and blue. 1518 
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