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Shape optimization involving the Tresca friction law in a
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November 14, 2024

Abstract

The aim of this work is to analyse a shape optimization problem in a mechanical friction
context. Precisely we perform a shape sensitivity analysis of a Tresca friction problem, that
is, a boundary value problem involving the usual linear elasticity equations together with the
(nonsmooth) Tresca friction law on a part of the boundary. We prove that the solution to
the Tresca friction problem admits a directional shape derivative which moreover coincides
with the solution to a boundary value problem involving tangential Signorini’s unilateral con-
ditions. Then an explicit expression of the shape gradient of the Tresca energy functional
is provided (which allows us to provide numerical simulations illustrating our theoretical re-
sults). Our methodology is not based on any regularization procedure, but rather on the twice
epi-differentiability of the (nonsmooth) Tresca friction functional which is analyzed thanks to
a change of variables which is well-suited in the two-dimensional case. The obstruction in the
higher-dimensional case is discussed.

Keywords: Shape optimization, shape sensitivity analysis, contact mechanics, Tresca’s friction
law, Signorini’s unilateral conditions, variational inequalities, twice epi-differentiability.

AMS Classification: 49Q10, 49Q12, 49J40, 74M10, 74M15, 74P10.

1 Introduction
Shape optimization problems involving (nonsmooth) mathematical models from contact me-

chanics (including for instance Signorini’s unilateral conditions, Tresca’s friction law, etc.) have
already been investigated in the literature (see, e.g., [9, 17, 18, 19, 21, 23] and references therein).
They can be treated by using, for example, regularization procedures (see [8, 13, 14]) or dualiza-
tion procedures (see [34, Chapter 4] and [35]). In order to avoid distorting the physical meaning
of the contact models or obtaining abstract results involving dual elements, we have introduced
in a recent series of papers [3, 4, 10, 11, 24] a new methodology based on the notion of twice
epi-differentiability from the nonsmooth analysis literature (see, e.g., [29, 30]). In particular, this
methodology has been successfully applied in [4] in order to analyze a shape optimization problem
involving the Tresca friction law. Precisely, thanks to the twice epi-differentiability of the (nons-
mooth) Tresca friction functional, we proved that the solution to the corresponding Tresca friction
problem admits a directional shape derivative, which moreover coincides with the solution to a
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boundary value problem involving Signorini’s unilateral conditions, and we provided an explicit
expression of the shape gradient of the associated Tresca energy functional (which allowed us to
provide numerical simulations illustrating our theoretical results).

However, as indicated in its title, the above paper [4] deals only with the scalar case (which
has no physical sense from the point of view of contact mechanics). Therefore the objective of
the present paper is to discuss the applicability of our methodology to the elastic case (which
is the natural framework in contact mechanics). Here we would like to insist on the fact that
this extension to the elastic case is not a simple replica of our previous paper [4]. Indeed, in
addition to the obvious and significant difficulties inherent in calculations, our methodology leads
in the elastic case to a major technical obstruction (that does not appear in the scalar case). The
main contribution of the present paper is to show that a well-suited change of variables allows to
overcome this obstruction in the two-dimensional elastic case. However, as discussed later in this
introduction, the higher-dimensional elastic case remains an open challenge.

This long introduction is divided into several paragraphs in order to highlight (as concisely as
possible) the major technical obstruction that appears in the application of our methodology in
the general elastic case and how it can be overcome in the two-dimensional case.

Description of the shape optimization problem. In the sequel we will use standard nota-
tions, terminologies and assumptions that are precised in Section 2.1. Let d ≥ 2, f ∈ H1(Rd,Rd), g ∈
H2(Rd,R) such that g > 0 a.e. on Rd, and Ωref be a nonempty connected bounded open subset
of Rd with a C1-boundary Γref := bd(Ωref) (see Remark 2.3 for comments on this C1-regularity
assumption) such that Γref = ΓD ∪ ΓTref

, where ΓD and ΓTref
are two measurable (with positive

measure) disjoint subsets of Γref . In this paper we consider the shape optimization problem with
volume constraint given by

minimize
Ω∈Uref

|Ω|=|Ωref |

J (Ω), (1.1)

where the set of admissible shapes is defined by

Uref :=

{
Ω ⊂ Rd | Ω nonempty connected bounded open subset of Rd

with a C1-boundary Γ := bd(Ω) such that ΓD ⊂ Γ

}
,

where J : Uref → R is the Tresca energy functional defined by

J (Ω) :=
1

2

∫
Ω

Ae (uΩ) : e (uΩ) +

∫
ΓT

g ∥uΩτ∥ −
∫
Ω

f · uΩ,

for all Ω ∈ Uref , where uΩ ∈ H1
D(Ω,Rd) stands for the unique weak solution to the Tresca friction

problem (see, e.g., [16, Chapter 3 Section 5.2] or [11, Section 2.1.3]) given by
−div(Ae(u))− f = 0 in Ω,

u = 0 on ΓD,
σn(u) = 0 on ΓT,

∥στ (u)∥ ≤ g and uτ · στ (u) + g ∥uτ∥ = 0 on ΓT,

(TPΩ)

where Γ := bd(Ω), ΓT := Γ\ΓD and

H1
D(Ω,Rd) :=

{
v ∈ H1(Ω,Rd) | v = 0 a.e. on ΓD

}
.

The tangential boundary conditions on ΓT in (TPΩ) are known as the Tresca friction law. Finally
recall that the unique weak solution uΩ ∈ H1

D(Ω,Rd) to (TPΩ) is characterized by the variational
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inequality∫
Ω

Ae(uΩ) : e(v − uΩ) +

∫
ΓT

g ∥vτ∥ −
∫
ΓT

g ∥uΩτ∥ ≥
∫
Ω

f · (v − uΩ) , ∀v ∈ H1
D(Ω,Rd),

and can be expressed as uΩ = proxϕΩ
(FΩ), where FΩ ∈ H1

D(Ω,Rd) is the unique solution to the
Dirichlet-Neumann problem (see, e.g., [11, Section 2.1.1]) given by −div(Ae(F ))− f = 0 in Ω,

F = 0 on ΓD,
Ae(F )n = 0 on ΓT,

(1.2)

and proxϕΩ
: H1

D(Ω,Rd) → H1
D(Ω,Rd) stands for the proximal operator (see Definition A.1) asso-

ciated with the (convex) Tresca friction functional ϕΩ : H1
D(Ω,Rd) → R defined by

ϕΩ : H1
D(Ω,Rd) −→ R

v 7−→
∫
ΓT

g ∥vτ∥ .

Application of the classical strategy from (smooth) shape optimization literature. To
deal with the numerical treatment of the above shape optimization problem, a suitable expression
of the shape gradient of J is required. For this purpose, we follow the classical strategy developed
in (smooth) shape optimization literature (see, e.g., [7, 22]). Consider Ω0 ∈ Uref and a direction θ ∈
C2,∞
D (Rd,Rd) where

C2,∞
D (Rd,Rd) :=

{
θ ∈ C2(Rd,Rd) ∩W2,∞(Rd,Rd) | θ = 0 on ΓD

}
.

For any t ≥ 0 sufficiently small such that id+ tθ is a C2-diffeomorphism of Rd, where id : Rd → Rd
stands for the identity map, we denote by Ωt := (id+tθ)(Ω0) ∈ Uref and by ut := uΩt

∈ H1
D(Ωt,Rd)

(note that ut is defined on the moving domain Ωt). To get an expression of the shape gradient
of J at Ω0 in the direction θ, defined by J ′(Ω0)(θ) := limt→0+

J (Ωt)−J (Ω0)
t (if it exists), the usual

first step consists in introducing ut := ut ◦ (id + tθ) ∈ H1
D(Ω0,Rd) (note that ut is defined on

the fixed domain Ω0) and obtaining an expression of the derivative (if it exists) of the map t ∈
R+ 7→ ut ∈ H1

D(Ω0,Rd) at t = 0, denoted by u′0 ∈ H1
D(Ω0,Rd) and called directional material

derivative. Then the directional shape derivative is defined by u′0 := u′0 −∇u0θ which corresponds
(roughly speaking) to the derivative of the map t ∈ R+ 7→ ut ∈ H1

D(Ωt,Rd) at t = 0. We refer
to Remark 2.12 for a short discussion on the terminology directional that has been added with
respect to the classical literature on shape optimization.

To get an expression of the directional material derivative, we use the change of variables id+tθ
and the equality

nt ◦ (id + tθ) =
(I + t∇θ⊤)−1n0
∥(I + t∇θ⊤)−1n0∥

,

(see, e.g., [34, Chapter 2 Proposition 2.48]) in order to prove that ut ∈ H1
D(Ω0,Rd) is the unique

solution to the parameterized variational inequality∫
Ω0

JtA
[
∇ut (I + t∇θ)−1

]
: ∇(v − ut) (I + t∇θ)−1

+

∫
ΓT0

gtJTt

∥∥∥∥∥v −
(
v · (I + t∇θ⊤)−1n0

∥(I + t∇θ⊤)−1n0∥2

)
(I + t∇θ⊤)−1n0

∥∥∥∥∥
3



−
∫
ΓT0

gtJTt

∥∥∥∥∥ut −
(
ut ·

(I + t∇θ⊤)−1n0

∥(I + t∇θ⊤)−1n0∥2

)
(I + t∇θ⊤)−1n0

∥∥∥∥∥
≥
∫
Ω0

ftJt · (v − ut) , ∀v ∈ H1
D(Ω0,Rd), (1.3)

where ft := f ◦(id+tθ) ∈ H1(Rd,Rd), gt := g◦(id+tθ) ∈ H2(Rd,R), Jt := det(I+t∇θ) ∈ L∞(Rd,R)
is the Jacobian determinant, JTt

:= det(I + t∇θ)∥(I + t∇θ⊤)−1n0∥ ∈ C0(Γ0,R) is the tangential
Jacobian and I is the identity matrix of Rd×d. Thus we get that

ut = proxϕt
(F t), (1.4)

where F t ∈ H1
D(Ω0,Rd) is the unique solution to the parameterized variational equality∫

Ω0

JtA
[
∇F t (I + t∇θ)−1

]
: ∇v (I + t∇θ)−1

=

∫
Ω0

ftJt · v, ∀v ∈ H1
D(Ω0,Rd),

and proxϕt
: H1

D(Ω0,Rd) → H1
D(Ω0,Rd) is the proximal operator associated with the parameterized

convex functional ϕt : H1
D(Ω0,Rd) → R defined by

ϕt : H1
D(Ω0,Rd) −→ R

v 7−→
∫
ΓT0

gtJTt

∥∥∥∥∥v −
(
v · (I + t∇θ⊤)−1n0

∥(I + t∇θ⊤)−1n0∥2

)
(I + t∇θ⊤)−1n0

∥∥∥∥∥ .
(1.5)

Application of our methodology and facing a major obstruction. Now the difficulty
(that does not appear in standard smooth shape optimization problems) is that, from (1.4), the
differentiability of the map t ∈ R+ 7→ ut ∈ H1

D(Ω0,Rd) at t = 0 is related to the differentiability (in
a generalized sense) of the parameterized proximal operator proxϕt

. For this purpose, the method-
ology that we have developed in [3, 4, 10, 11, 24] invokes the notion of twice epi-differentiability
for convex functions (introduced by Rockafellar in [29]) which ensures the proto-differentiability
of the corresponding proximal operators. Actually, since the work by Rockafellar deals only with
nonparameterized convex functions, we used instead the recent work [2] in which the notion of
twice epi-differentiability has been extended to parameterized convex functions. The content of
Proposition A.5 in Appendix A (extracted from [2, Theorem 4.15]) invites us to analyze the twice
epi-differentiability of the parameterized convex function ϕt in order to obtain from (1.4) the differ-
entiability of the map t ∈ R+ 7→ ut ∈ H1

D(Ω0,Rd) at t = 0 and a characterization of the directional
material derivative u′0.

However, at this step, a major technical obstruction appears in the elastic case (that does
not appear in the scalar case in our previous paper [4]). Indeed the twice epi-differentiability of
the parameterized convex functional ϕt is naturally related to the twice epi-differentiability of the
parameterized convex integrand that appears in (1.5). As a reminder, in the scalar case [4], the
parameterized convex functional ϕt is given by the (simpler) expression

ϕt : H1
D(Ω0,R) −→ R

v 7−→
∫
ΓT0

gtJTt |v|,

[scalar case]

and the twice epi-differentiability of the (simple) parameterized convex integrand can be analyzed.
On the contrary, in the elastic case, the heavy expression of the parameterized convex integrand
in (1.5) does not allow, to our best knowledge, a tractable analysis of its twice epi-differentiability.
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At this step of our researches, we arrive to the conclusion that, even if our methodology based
on the notion of twice epi-differentiability allows to analyze a shape optimization problem involving
the Tresca friction law in the scalar case (see our previous paper [4]), we are not able, at least for
now, to pursue our methodology in the general elastic case.

Overcoming the major obstruction in the two-dimensional case d = 2. In the two-
dimensional case d = 2, one can fix τ0 ∈ C0(Γ0,R2) an oriented (with an orientation arbitrarily
fixed) orthonormal vector to n0 ∈ C0(Γ0,R2) and get that (I + t∇θ)τ0 · (I + t∇θ⊤)−1n0 = 0 on Γ0.
Therefore Inequality (1.3) can be rewritten as∫

Ω0

JtA
[
∇ut (I + t∇θ)−1

]
: ∇(v − ut) (I + t∇θ)−1

+

∫
ΓT0

gtJTt

∥(I + t∇θ)τ0∥
|v · (I + t∇θ)τ0|

−
∫
ΓT0

gtJTt

∥(I + t∇θ)τ0∥
|ut · (I + t∇θ)τ0| ≥

∫
Ω0

ftJt · (v − ut) , ∀v ∈ H1
D(Ω0,R2).

Therefore we introduce ut := (I + t∇θ⊤)ut ∈ H1
D(Ω0,R2) which satisfies∫

Ω0

JtA
[
∇
((

I + t∇θ⊤
)−1

ut

)
(I + t∇θ)−1

]
: ∇
((

I + t∇θ⊤
)−1 (

v − ut
))

(I + t∇θ)−1

+

∫
ΓT0

gtJTt

∥(I + t∇θ)τ0∥
|v · τ0| −

∫
ΓT0

gtJTt

∥(I + t∇θ)τ0∥
|ut · τ0|

≥
∫
Ω0

(I + t∇θ)−1
ftJt ·

(
v − ut

)
, ∀v ∈ H1

D(Ω0,R2), (1.6)

and thus can be expressed as ut = prox
ϕt

(F t) where F t ∈ H1
D(Ω0,R2) is the unique solution to

the parameterized variational equality∫
Ω0

JtA
[
∇
((

I + t∇θ⊤
)−1

F t

)
(I + t∇θ)−1

]
: ∇
((

I + t∇θ⊤
)−1

v
)
(I + t∇θ)−1

=∫
Ω0

(I + t∇θ)−1
ftJt, ∀v ∈ H1

D(Ω0,R2), (1.7)

and prox
ϕt

: H1
D(Ω0,R2) → H1

D(Ω0,R2) is the proximal operator associated with the parameterized

convex functional ϕt : H1
D(Ω0,R2) → R defined by

ϕt : H1
D(Ω0,R2) −→ R

v 7−→
∫
ΓT0

gtJTt

∥(I + t∇θ)τ0∥
|v · τ0|.

(1.8)

As we will see in the present paper (see Section 2.2), the parameterized convex integrand in
the expression (1.8) (simpler than the one in (1.5)) allows a tractable analysis of its twice epi-
differentiability, and therefore allows to continue our methodology (but only in the two-dimensional
case d = 2). Precisely, thanks to the twice epi-differentiability of the parameterized convex func-
tional ϕt, we are able to obtain from Proposition A.5 a characterization of the derivative of the
map t ∈ R+ 7→ ut ∈ H1

D(Ω0,Rd) at t = 0, denoted by u
′
0 ∈ H1

D(Ω0,Rd), and then to deduce
successively a characterization of the directional material derivative given by u′0 = u

′
0 −∇θ⊤u0 ∈

H1
D(Ω0,R2), then a characterization of the directional shape derivative given by u′0 := u′0 −∇u0θ,

and finally an expression of the shape gradient J ′(Ω0)(θ). These results are summarized in the
next paragraph.
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Remark 1.1. As described above, the changes of variables used in this paper lead to ut =

prox
ϕt

(F t) where the proximal operator is defined on the Hilbert space H1(Ω0,R2) endowed with
the parameterized scalar product given by

(v1, v2) ∈
(
H1

D(Ω0,R2)
)2 7−→∫

Ω0

JtA
[
∇
((

I + t∇θ⊤
)−1

v1

)
(I + t∇θ)−1

]
: ∇
((

I + t∇θ⊤
)−1

v2

)
(I + t∇θ)−1 ∈ R,

thus Proposition A.5 cannot be applied. This difficulty can be overcome by adding the t-independent
scalar product ⟨·, ·⟩H1(Ω0,R2) (see (2.1)) to both members of Inequality (1.6) which leads us to re-

place F t by another solution that satisfies a more complex variational equality than Equality (1.7).
Actually, this difficulty also appears in the three-dimensional case d = 3 which can be overcomed
in the same manner, and also (in an easier way) in the scalar case in our previous paper [4].

Main results in the two-dimensional case d = 2. We summarize here our main theoretical
results (given in Theorems 2.8 and 2.13). However we present the directional material and shape
derivatives, and the shape gradient of J , under some additional regularity assumptions, precisely
in the framework of Corollaries 2.9, 2.11 and 2.14, because their expressions are more elegant in
that case. Furthermore, to ease the notations, we will use the notations n := n0 and τ := τ0.

(i) Under some appropriate assumptions described in Corollary 2.9, the map t ∈ R+ 7→ ut ∈
H1

D(Ω0,R2) is differentiable at t = 0, and the directional material derivative u′0 ∈ H1
D(Ω0,R2)

is the unique weak solution to the tangential Signorini problem (see, e.g., [11, Section 2.1.2])
given by 

−div (Ae(u′0)) + div (Ae (∇u0θ)) = 0 in Ω0,

u′0 = 0 on ΓD,

σn(u
′
0)− ξm(θ)n = 0 on ΓT0

,

στ (u
′
0) + p(θ)

u0τ

∥u0τ ∥
− ξm(θ)τ = 0 on ΓT0

u0,g

N
,

u′0τ +
(
∇θ⊤u0

)
τ
= 0 on ΓT0

u0,g

D
,(

u′0τ +
(
∇θ⊤u0

)
τ

)
∈ R−

στ (u0)
g(

στ (u
′
0)− p(θ)στ (u0)

g − ξm(θ)τ

)
· στ (u0)

g ≤ 0(
u′0τ +

(
∇θ⊤u0

)
τ

)
·
(
στ (u

′
0)− p(θ)στ (u0)

g − ξm(θ)τ

)
= 0 on ΓT0

u0,g

S
.

where ξm(θ) :=
(
(Ae (u0))∇θ⊤ +A(∇u0∇θ) + (∇θ − div(θ)I)Ae (u0)

)
n ∈ L2(ΓT0

,R2) and
p(θ) := ∇g·θ+g (divτ (θ)−∇θτ · τ) ∈ L2(ΓT0

), and where ΓT0
is decomposed, up to a null set,

as ΓT0
u0,g

N
∪ΓT0

u0,g

D
∪ΓT0

u0,g

S
(see details in Theorem 2.8). We emphasize the notable fact that

the boundary conditions which appear on ΓT0
u0,g

S
are called tangential Signorini’s unilateral

conditions because they are very close to the classical Signorini unilateral conditions (see,
e.g., [32, 33]) except that, here, they are concerned with the tangential components (instead
of the normal components in the classical case).

(ii) We deduce in Corollary 2.11 that, under appropriate assumptions, the directional shape
derivative, defined by u′0 := u′0 − ∇u0θ ∈ H1

D(Ω0,R2), is the unique weak solution to the

6



tangential Signorini problem given by

−div (Ae(u′0)) = 0 in Ω0,

u′0 = 0 on ΓD,

σn(u
′
0)− ξs(θ)n = 0 on ΓT0

,

στ (u
′
0) + p(θ)

u0τ

∥u0τ ∥
− ξs(θ)τ = 0 on ΓT0

u0,g

N
,

u′0τ −W (θ)τ = 0 on ΓT0
u0,g

D
,

(u′0τ −W (θ)τ ) ∈ R−
στ (u0)
g

and
(
στ (u

′
0)− p(θ)στ (u0)

g − ξs(θ)τ

)
· στ (u0)

g ≤ 0

and (u′0τ −W (θ)τ ) ·
(
στ (u

′
0)− p(θ)στ (u0)

g − ξs(θ)τ

)
= 0 on ΓT0

u0,g

S
.

where W (θ) := −∇θ⊤u0 −∇u0θ ∈ H1(Ω0,R2) and

ξs(θ) := θ · n (∂n (Ae (u0) n)− ∂n (Ae (u0)) n) + Ae (u0)∇τ (θ · n)−∇(Ae (u0) n)θ

+ (∇θ − divτ (θ)I)Ae (u0) n ∈ L2(ΓT0
,R2),

(iii) Finally the two previous items are used to obtain Corollary 2.14 asserting that, under ap-
propriate assumptions, the shape gradient of J at Ω0 in the direction θ is given by

J ′(Ω0)(θ) =

∫
ΓT0

θ · n
(
Ae(u0) : e(u0)

2
− f · u0 − στ (u0) · ∂n(u0) + ∥u0τ∥ (Hg + ∂ng)

)
+

∫
ΓT0

u0nστ (u0) · τ (∇τθτ −∇θτ) · n,

where H stands for the mean curvature of Γ0. One can notice that J ′(Ω0) depends only on u0
(and not on u′0). Hence its expression is explicit and linear with respect to the direction θ and
allows us to exhibit a descent direction for J at Ω0 (see Section 3 for details). Then, using
this descent direction together with a basic Uzawa algorithm to take into account the volume
constraint, we perform in Section 3 numerical simulations to solve the shape optimization
problem (1.1) on a toy example.

Obstruction in the higher-dimensional case d ≥ 3 and additional comments. In the
higher-dimensional case d ≥ 3, the parameterized convex functional is given by (1.5) and, to the
best of our knowledge, we did not find any change of variables in order to simplify the expression
of its integrand. Therefore, for almost all s ∈ ΓT0

, we would have to investigate the twice epi-
differentiability of the parameterized convex map

x ∈ Rd 7−→ gtJTt

∥∥∥∥∥x−

(
x · (I + t∇θ⊤)−1n

∥(I + t∇θ⊤)−1n∥2

)
(I + t∇θ⊤)−1n

∥∥∥∥∥ ∈ R+,

that we did not succeed to prove and to compute. This is an highly nontrivial work and an
interesting topic for further researches.

Remark 1.2. During our bibliographical researches, we discovered a surprising hypothesis made
in the paper [35] that is concerned, as the present work, with a shape optimization problem in a
two dimensional case, involving the Tresca friction law in a linear elastic model, but with a different
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methodology based on dualization. With our notations and framework, this hypothesis consists in
assuming that, for sufficiently small t ≥ 0, it holds that

(I + t∇θ)n0 =
(I + t∇θ⊤)−1n0

∥(I + t∇θ⊤)−1n0∥2
.

With this hypothesis, we have observed that our methodology can be continued (even in the elastic
case) by applying a well-suited change of variables in the expression of ϕt in order to get the simpler
expression v ∈ H1

D(Ω0,R2) →
∫
ΓT0

gtJTt
∥(I+ t∇θ)τ0∥|v · τ0|, that allows a tractable analysis of the

twice epi-differentiability of its integrand but which differs from (1.8). In this regard, we refer to our
paper [24] (concerned with a shape optimization problem involving Signorini’s unilateral conditions
in the elastic case) in which the same change of variables has been applied (but without assuming
the above hypothesis which is useless in the context of [24]). However we emphasize that the
above hypothesis is not satisfactory. Indeed, one can easily construct numerous counterexamples
for which the above equality is not satisfied. For example, in the two-dimensional case d = 2, one
can easily construct a situation where

∇θ =
(

1 1
−1 0

)
and n0 =

(
1
0

)
,

for which the above equality is not true. We refer to [25, Remark A.2.2. p.198] for additional
comments on this hypothesis and what its implies on the direction θ.

Remark 1.3. We mention that our methodology has already been successfully applied in the
elastic case (in any dimension) in our previous paper [11] (with also the emergence of tangential
Signorini’s unilateral conditions), but in order to solve an optimal control problem. To be clear, we
underline that the obstruction encountered in the present paper does not appear in the (simpler)
context of [11].

Organization of the paper. The paper is organized as follows. Section 2 is the core of the
present work, where the main results are stated and proved. In Section 3, numerical simulations
are performed to solve the shape optimization problem (1.1) on a toy example. Finally, Appen-
dices A and B are dedicated to recalls on the notion of twice epi-differentiability and on differential
geometry respectively.

2 Main results in the two-dimensional case d = 2

The whole paper is now dedicated to the two-dimensional case d = 2. Furthermore, all along the
present section, variational equalities and variational inequalities will be involved, as well as bound-
ary value problems (Dirichlet-Neumann problem, tangential Signorini problem, Tresca friction
problem). We refer to [11, Section 2.1] for notions of strong/weak solutions, existence/uniqueness
results and proximal expressions of the solutions.

This section is organized as follows. In Section 2.1, we precise the notations, terminologies and
assumptions used in our linear elastic model involving the Tresca friction law. Section 2.2 is the
technical part of the present paper. There, the notion of twice epi-differentiability and Proposi-
tion A.5 are used in order to characterize the derivative u′0 as the unique solution to a variational
inequality (see Proposition 2.5). From that result, we deduce in Section 2.3 a characterization of
the directional material derivative u′0 as the unique solution to a variational inequality (see Theo-
rem 2.8). Then, under additional regularity assumptions, we characterize the directional material
derivative u′0 and the directional shape derivative u′0 as the unique weak solutions to tangential
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Signorini problems (see Corollaries 2.9 and 2.11). Finally, in Section 2.4, we provide an expres-
sion of the shape gradient J ′(Ω)(θ) of the Tresca energy functional J (see Theorem 2.13 and
Corollary 2.14).

2.1 Precisions on the notations, terminologies and assumptions used in
our model

Consider the shape optimization problem (1.1) in the two-dimensional case d = 2 and let us
give some precisions on the notations, terminologies and assumptions used in our model.

First, the notation · stands for the standard inner product on R2 and || · || for the corresponding
Euclidean norm. We denote by B(0, 1) the unit open ball of R2 centered at 0, with its boundary
denoted by bd(B(0, 1)). Finally we denote by : the scalar product on R2×2 defined by B : C =∑2
i=1 Bi ·Ci for all B, C ∈ R2×2, where Bi ∈ R2 (resp. Ci ∈ R2) stands for the transpose of the i-th

line of B (resp. C) for all i ∈ {1, 2}.
Second, in the Tresca friction problem (TPΩ) for some Ω ∈ Uref , recall that A ∈ L∞(Ω,R24)

stands for the stiffness tensor, assumed to be linear with constant coefficients (denoted by aijkl
for all (i, j, k, l) ∈ {1, 2}4), and e is the infinitesimal strain tensor defined by e : v ∈ H1(Ω,R2) 7→
(∇v + ∇v⊤)/2 ∈ L2(Ω,R2×2). In this paper we assume that there exists a constant α > 0 such
that all coefficients of A and e (denoted by ϵij for all (i, j) ∈ {1, 2}2) satisfy

aijkl = ajikl = alkij and
2∑
i=1

2∑
j=1

2∑
k=1

2∑
l=1

aijklϵij(v1)(x)ϵkl(v2)(x) ≥ α

2∑
i=1

2∑
j=1

ϵij(v1)(x)ϵij(v2)(x),

for all v1, v2 ∈ H1(Ω,R2) and for a.e. x ∈ Ω. From the symmetry assumption on A, note
that Ae(v) = A∇v for all v ∈ H1(Ω,R2). Moreover, since ΓD has a positive measure, it follows
that

⟨·, ·⟩H1
D(Ω,R2) :

(
H1

D(Ω,R2)
)2 −→ R

(v1, v2) 7−→
∫
Ω

Ae(v1) : e(v2),

(2.1)

is a scalar product on H1
D(Ω,R2) (see, e.g., [16, Chapter 3]) and we denote by ∥·∥H1

D(Ω,R2) the
corresponding norm.

Finally, for any Ω ∈ Uref , the notation n ∈ C0(Γ,R2) stands for the outward-pointing unit
normal vector to Γ and, since we deal with the two-dimensional case d = 2, we can fix τ ∈ C0(Γ,R2)
an oriented (with an orientation arbitrarily fixed) orthonormal vector to n. For any v ∈ L2(Γ,R2),
one has the decomposition v = vnn + vτ , where vn := v · n ∈ L2(Γ,R) and vτ := v − vnn =
(v · τ)τ ∈ L2(Γ,R2). In particular, if the stress vector Ae(v)n belongs to L2(Γ,R2) for some v ∈
H1(Ω,R2), then Ae(v)n = σn(v)n + στ (v), where σn(v) := Ae(v)n · n ∈ L2(Γ,R) is the normal
stress and στ (v) := Ae(v)n− σn(v)n = (Ae(v)n · τ)τ ∈ L2(Γ,R2) is the shear stress.

2.2 Twice epi-differentiability and the derivative u
′
0

As in Introduction, let Ω0 ∈ Uref and θ ∈ C2,∞
D (R2,R2) be fixed for the whole section. For

any t ≥ 0 sufficiently small, we denote by Ωt := (id+tθ)(Ω0) ∈ Uref and by ut := uΩt
∈ H1

D(Ωt,R2).
Then we introduce ut := ut ◦ (id + tθ) ∈ H1

D(Ω0,R2) and ut := (I + t∇θ⊤)ut ∈ H1
D(Ω0,R2). In the

sequel, to ease the notations, we denote by n := n0 and τ := τ0.
In this section our objective is to get a characterization of the derivative u′0 ∈ H1

D(Ω0,R2) (if it
exists). For this purpose, our methodology relies on the equality ut = prox

ϕt

(F t) (established in
Introduction) and on the application of Proposition A.5. However, as mentioned in Remark 1.1,
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the equality ut = prox
ϕt

(F t) holds true, but considered on the Hilbert space H1
D(Ω0,R2) endowed

with the parameterized scalar product given by

(v1, v2) ∈
(
H1

D(Ω0,R2)
)2 7−→∫

Ω0

JtA
[
∇
((

I + t∇θ⊤
)−1

v1

)
(I + t∇θ)−1

]
: ∇
((

I + t∇θ⊤
)−1

v2

)
(I + t∇θ)−1 ∈ R.

Therefore one cannot apply Proposition A.5 directly. To overcome this difficulty, as in [4], let us
add

〈
ut, v − ut

〉
H1

D(Ω0,R2)
to both members of Inequality (1.6). Then, by using the equality B :

CD = BD⊤ : C which is true for all B, C, D ∈ R2×2, we obtain that

〈
ut, v − ut

〉
H1

D(Ω0,R2)
+

∫
ΓT0

gtJTt

∥(I + t∇θ)τ∥
|v · τ | −

∫
ΓT0

gtJTt

∥(I + t∇θ)τ∥
|ut · τ |

≥ −
∫
Ω0

JtA
[
∇
((

I + t∇θ⊤
)−1

ut

)
(I + t∇θ)−1

] (
I + t∇θ⊤

)−1
: ∇
((

I + t∇θ⊤
)−1 (

v − ut
))

+

∫
Ω0

(I + t∇θ)−1
ftJt · (v − ut) +

∫
Ω0

Ae
(
ut
)
: e
(
v − ut

)
, ∀v ∈ H1

D(Ω0,R2),

and thus we get the equality ut = prox
ϕt

(Et) where Et ∈ H1
D(Ω0,R2) is the unique solution to the

parameterized variational equality

⟨Et, v⟩H1
D(Ω0,R2) =

∫
Ω0

(I + t∇θ)−1
ftJt

−
∫
Ω0

JtA
[
∇
((

I + t∇θ⊤
)−1

ut

)
(I + t∇θ)−1

] (
I + t∇θ⊤

)−1
: ∇
((

I + t∇θ⊤
)−1

v
)

+

∫
Ω0

Ae
(
ut
)
: e (v) , ∀v ∈ H1

D(Ω0,R2),

considered on the Hilbert space H1
D(Ω0,R2) endowed with the nonparameterized scalar prod-

uct ⟨·, ·⟩H1
D(Ω0,R2).

Furthermore, to be in accordance with the notations of Proposition A.5, we introduce the
parameterized convex functional Φ : R+ ×H1

D(Ω0,R2) → R defined by

Φ : R+ ×H1
D(Ω0,R2) −→ R

(t, v) 7−→ Φ(t, v) := ϕt(v) =

∫
ΓT0

gtJTt

∥(I + t∇θ)τ∥
∥vτ∥.

(2.2)

Hence, from the equality ut = proxΦ(t,·)(Et) satisfied on the Hilbert space H1
D(Ω0,R2) endowed

with the nonparameterized scalar product ⟨·, ·⟩H1
D(Ω0,R2), we are now in a satisfactory setting in

order to apply Proposition A.5 (if its assumptions are satisfied of course). The first step is to
analyze the differentiability of the map t ∈ R+ 7→ Et ∈ H1

D(Ω0,R2) at t = 0. For this purpose, let
us recall from [22] that:

(i) the map t ∈ R+ 7→ Jt ∈ L∞(R2) is differentiable at t = 0 with derivative given by div(θ);

(ii) the map t ∈ R+ 7→ (I + t∇θ)−1 ∈ L∞(R2,R2×2) is differentiable at t = 0 with derivative
given by −∇θ;

(iii) the map t ∈ R+ 7→
(
I + t∇θ⊤

)−1 ∈ L∞(R2,R2×2) is differentiable at t = 0 with derivative
given by −∇θ⊤;
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(iv) the map t ∈ R+ 7→ (I + t∇θ)−1
ftJt ∈ L2(R2,R2) is differentiable at t = 0 with derivative

given by div
(
fθ⊤

)
−∇θf ;

(v) the map t ∈ R+ 7→ gtJTt

∥(I+t∇θ)τ∥ ∈ L2(ΓT0
) is differentiable at t = 0 with derivative given

by p(θ) := ∇g · θ + g (divτ (θ)−∇θτ · τ).

Lemma 2.1. The map t ∈ R+ 7→ Et ∈ H1
D(Ω0,R2) is differentiable at t = 0 and its derivative,

denoted by E′
0 ∈ H1

D(Ω0,R2), is the unique solution to the variational equality given by

⟨E′
0, v⟩H1

D(Ω0,R2) =

∫
Ω0

(
div
(
fθ⊤

)
−∇θf

)
· v

+

∫
Ω0

(
(Ae (u0))∇θ⊤ +A(∇u0∇θ) + Ae

(
∇θ⊤u0

)
− div(θ)Ae (u0)

)
: ∇v

+

∫
Ω0

Ae (u0) : e
(
∇θ⊤v

)
, ∀v ∈ H1

D(Ω0,R2). (2.3)

Proof. Using the Riesz representation theorem, we denote by Z ∈ H1
D(Ω0,R2) the unique so-

lution to the above variational inequality (2.3). From linearity and using differentiability re-
sults (i), (ii), (iii), (iv), one gets∥∥∥∥Et − E0

t
− Z

∥∥∥∥
H1

D(Ω0,R2)

≤

C(Ω0,A, θ)

(∥∥∥∥∥ (I + t∇θ)−1
ftJt − f

t
−
(
div
(
fθ⊤

)
−∇θf

)∥∥∥∥∥
L2(R2,R2)

+
∥∥ut − u0

∥∥
H1

D(Ω0,R2)
+
o(t)

t

∥∥ut∥∥H1
D(Ω0,R2)

)
,

for all t > 0 sufficiently small, where C(Ω0,A, θ) > 0 is a constant which depends on Ω0, A and θ,
and where o stands for the standard Bachmann–Landau notation, with |o(t)|

t → 0 when t → 0+.
Therefore, to conclude the proof, we only need to prove the continuity of the map t ∈ R+ 7→ ut ∈
H1

D(Ω0,R2) at t = 0. For this purpose, take v = u0 in the variational formulation of ut and v = ut
in the variational formulation of u0 to get that∥∥ut − u0

∥∥
H1

D(Ω0,R2)
≤

C(Ω0,A, θ)

(∥∥(I + t∇θ⊤
)
ftJt − f

∥∥
L2(R2,R2)

+

∥∥∥∥ gtJTt

∥(I + t∇θ)τ∥
− g

∥∥∥∥
L2(ΓT0

,R)

+
∥∥ut∥∥H1

D(Ω0,R2)
(t+ o(t))

)
,

for all t ≥ 0 sufficiently small. Hence, to conclude the proof, we only need to prove that the
map t ∈ R+ 7→

∥∥ut∥∥H1
D(Ω0,R2)

∈ R is bounded for t ≥ 0 sufficiently small. For this purpose,
take v = 0 in the variational formulation of ut to get that∥∥ut∥∥2H1

D(Ω0,R2)
≤

C(Ω0,A, θ)

(∥∥(I + t∇θ⊤
)
ftJt

∥∥
L2(R2,R2)

+

∥∥∥∥ gtJTt

∥(I + t∇θ)τ∥

∥∥∥∥
L2(ΓT0 ,R)

)∥∥ut∥∥H1
D(Ω0,R2)

11



+ C(Ω0,A, θ)
∥∥ut∥∥2H1

D(Ω0,R2)
(t+ o(t)) ,

for all t ≥ 0 sufficiently small. Thus one deduces

∥∥ut∥∥H1
D(Ω0,R2)

≤
C(Ω0,A, θ)

(∥∥(I + t∇θ⊤
)
ftJt

∥∥
L2(R2,R2)

+
∥∥∥ gtJTt

∥(I+t∇θ)τ∥

∥∥∥
L2(ΓT0 )

)
1− C(Ω0,A, θ) (t+ o(t))

,

for all t ≥ 0 sufficiently small, and using the continuity of the map t ∈ R+ 7→ (I + t∇θ⊤)ftJt ∈
L2(R2,R2) (see (iv)) and of the map t ∈ R+ 7→ gtJTt

∥(I+t∇θ)τ∥ ∈ L2(ΓT0
) (see (v)), the proof is

complete.

Now the second step is to investigate the twice epi-differentiability of the parameterized convex
functional Φ defined in (2.2), as we did in our previous paper [11] from which the next two lemmas
are extracted. Precisely, to derive the next two lemmas, one has to apply [11, Propositions 2.18
and 2.23] on the particular case given by the expression (2.2). For the needs of these lemmas, and
to avoid any confusion, we recall that the notation ∂ stands for the notion of subdifferential (see
Appendix A). We also introduce the notation xτ(s) := (x · τ(s))τ(s) for all x ∈ R2 and all s ∈ Γ0.
Similarly we will use, for all s ∈ Γ0, the tangential norm map given by

∥∥·τ(s)∥∥ : x ∈ R2 7→
∥∥xτ(s)∥∥ =

|x · τ(s)| ∈ R+.

Lemma 2.2 (Second-order difference quotient functions of Φ). For all t > 0, u ∈ H1
D(Ω0,R2)

and v ∈ ∂Φ(0, ·)(u), it holds that

∆2
tΦ(u | v)(φ) =

∫
ΓT0

∆2
tG(s)(u(s) | στ (v)(s))(φ(s)) ds, (2.4)

for all φ ∈ H1
D(Ω0,R2), where, for almost all s ∈ ΓT0

, ∆2
tG(s)(u(s)|στ (v)(s)) stands for the

second-order difference quotient functions of G(s) at u(s) ∈ R2 for στ (v)(s) ∈ ∂G(s)(0, ·)(u(s)) =
g(s)∂||·τ(s)||(u(s)), with G(s) defined by

G(s) : R+ × R2 −→ R

(t, x) 7−→ G(s)(t, x) :=
gt(s)JTt

(s)

∥(I + t∇θ(s))τ(s)∥
∥∥xτ(s)∥∥ .

Remark 2.3. The assumption that Γ0 is of class C1 is made to ensure that n ∈ C0(Γ,R) which
gives us, for all s ∈ ΓT0 and all x ∈ R2, the continuity of the map s ∈ ΓT0 7→

∥∥xτ(s)∥∥ ∈ R+. This
property is used in the proof of [11, Proposition 2.18] (precisely, in the proof of [11, Lemma 2.16]).

Lemma 2.4 (Second-order epi-derivative of G(s)). Assume that, for almost all s ∈ ΓT0
, g has a

directional derivative at s in any direction. Then, for almost all s ∈ ΓT0
, the map G(s) is twice

epi-differentiable at any x ∈ R2 for all y ∈ ∂G(s)(0, ·)(u(s)) = g(s)∂||·τ(s)||(x) with

D2
eG(s)(x | y)(z) :=

{
p(θ)(s)

xτ(s)

∥xτ(s)∥ · z if xτ(s) ̸= 0,

ιN
B(0,1)∩(Rn(s))⊥ ( y

g(s)
)(z) + p(θ)(s) y

g(s) · z if xτ(s) = 0,

for all z ∈ R2, where p(θ) ∈ L2(ΓT0) is defined as the derivative at t = 0 of the map t ∈ R+ 7→
gtJTt

∥(I+t∇θ)τ∥ ∈ L2(ΓT0
) (see (v)), N

B(0,1)∩(Rn(s))⊥(
y
g(s) ) is the normal cone to B(0, 1) ∩ (Rn(s))⊥

at y
g(s) given by

N
B(0,1)∩(Rn(s))⊥

(
y

g(s)

)
=

{
Rn(s) if y

g(s) ∈ B(0, 1) ∩ (Rn(s))⊥ ,
Rn(s) + R+

y
g(s) if y

g(s) ∈ bd(B(0, 1)) ∩ (Rn(s))⊥ ,
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and ιN
B(0,1)∩(Rn(s))⊥ ( y

g(s)
) stands for the indicator function of N

B(0,1)∩(Rn(s))⊥(
y
g(s) ) which is defined

by ιN
B(0,1)∩(Rn(s))⊥ ( y

g(s)
)(z) := 0 if z ∈ N

B(0,1)∩(Rn(s))⊥(
y
g(s) ), and ιN

B(0,1)∩(Rn(s))⊥ ( y
g(s)

)(z) := +∞
otherwise.

We are now in a position to prove, under appropriate assumptions, that the map t ∈ R+ 7→
ut ∈ H1

D(Ω0,R2) is differentiable at t = 0.

Proposition 2.5 (The derivative u′0). Assume that:

(H1) for almost all s ∈ ΓT0
, g has a directional derivative at s in any direction.

(H2) the parameterized convex functional Φ defined in (2.2) is twice epi-differentiable (see Defini-
tion A.4) at u0 for E0 − u0 ∈ ∂Φ(0, ·)(u0), with

D2
eΦ(u0 | E0 − u0)(φ) =

∫
ΓT0

D2
eG(s)(u0(s) | στ (E0 − u0)(s))(φ(s)) ds, (2.5)

for all φ ∈ H1
D(Ω0,R2).

Then the map t ∈ R+ 7→ ut ∈ H1
D(Ω0,R2) is differentiable at t = 0 and its derivative u′0 ∈ K0 is

the unique solution to the variational inequality〈
u
′
0, φ− u

′
0

〉
H1

D(Ω0,R2)
≥ −

∫
Ω0

div
(
div (Ae(u0)) θ

⊤) · (φ− u
′
0

)
+

∫
Ω0

(
(Ae (u0))∇θ⊤ +A(∇u0∇θ) + Ae

(
∇θ⊤u0

)
− div(θ)Ae (u0)

)
: ∇
(
φ− u

′
0

)
+
〈
Ae(u0)n,∇θ⊤

(
φ− u

′
0

)〉
H−1/2(Γ0,R2)×H1/2(Γ0,R2)

−
∫
Γ
T0

u0,g
N

p(θ)
u0τ
∥u0τ ∥

·
(
φτ − u

′
0τ

)
+

∫
Γ
T0

u0,g
S

p(θ)
στ (u0)

g
·
(
φτ − u

′
0τ

)
, ∀φ ∈ K0,

where K0 is the nonempty closed convex subset of H1
D(Ω0,R2) given by

K0 =

{
φ ∈ H1

D(Ω0,R2) | φτ = 0 a.e. on ΓT0
u0,g

D
and φτ ∈ R−

στ (u0)

g
a.e. on ΓT0

u0,g

S

}
, (2.6)

and where ΓT0 is decomposed, up to a null set, as ΓT0
u0,g

N
∪ ΓT0

u0,g

D
∪ ΓT0

u0,g

S
with

ΓT0
u0,g

N
:= {s ∈ ΓT0

| u0τ (s) ̸= 0} ,
ΓT0

u0,g

D
:=
{
s ∈ ΓT0

| u0τ (s) = 0 and στ (u0)(s)
g(s) ∈ B(0, 1) ∩ (Rn(s))⊥

}
,

ΓT0
u0,g

S
:=
{
s ∈ ΓT0

| u0τ (s) = 0 and στ (u0)(s)
g(s) ∈ bd(B(0, 1)) ∩ (Rn(s))⊥

}
.

Proof. From Hypotheses (H1), (H2) and Lemma 2.4, it follows that

D2
eΦ(u0 | E0 − u0)(φ) =

∫
Γ
T0

u0,g
N

p(θ)
u0τ
∥u0τ ∥

· φτ +
∫
ΓT0\ΓT0

u0,g
N

p(θ)
στ (E0 − u0)

g
· φτ

+

∫
ΓT0

\Γ
T0

u0,g
N

ι
N

B(0,1)∩(Rn(s))⊥ (
στ (E0−u0)(s)

g(s)
)
(φ(s)) ds,
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which can be rewritten as

D2
eΦ(u0 | E0 − u0)(φ) =

∫
Γ
T0

u0,g
N

p(θ)
u0τ

∥u0τ ∥
· φτ +

∫
ΓT0

\Γ
T0

u0,g
N

p(θ)
στ (E0 − u0)

g
· φτ + ιK0(φ),

for all φ ∈ H1
D(Ω0,R2), where K0 is the nonempty closed convex subset of H1

D(Ω0,R2) defined by

K0 :=

{
φ ∈ H1

D(Ω0,R2) | φ(s) ∈ N
B(0,1)∩(Rn(s))⊥

(
στ (E0 − u0) (s)

g(s)

)
for almost all s ∈ ΓT0\ΓT0

u0,g

N

}
.

Moreover, since E0 = FΩ0 ∈ H1
D(Ω0,R2) is solution to the Dirichlet-Neumann problem (1.2)

with Ω = Ω0, then στ (E0) = 0 a.e. on ΓT0
. Thus it follows that K0 is given by (2.6). Now,

since D2
eΦ(u0|E0−u0) is a proper function on H1

D(Ω0,R2) and the map t ∈ R+ 7→ Et ∈ H1
D(Ω0,R2)

is differentiable at t = 0 with its derivative E′
0 ∈ H1

D(Ω0,R2) being solution to the variational
inequality (2.3), we apply Proposition A.5 to deduce that the map t ∈ R+ 7→ ut ∈ H1

D(Ω0,R2) is
differentiable at t = 0, and its derivative u′0 ∈ H1

D(Ω0,R2) satisfies

u
′
0 = proxD2

eΦ(u0|E0−u0)(E
′
0),

which, from the definition of the proximal operator (see Definition A.1), leads to〈
E′

0 − u
′
0, φ− u

′
0

〉
H1

D(Ω0,R2)
≤ D2

eΦ(u0 | E0 − u0)(φ)−D2
eΦ(u0 | E0 − u0)(u

′
0),

for all φ ∈ H1
D(Ω,R2). Hence we get that〈

E′
0 − u

′
0, φ− u

′
0

〉
H1

D(Ω0,R2)
≤ +ιK0

(φ)− ιK0
(u

′
0)

+

∫
Γ
T0

u0,g
N

p(θ)
u0τ
∥u0τ ∥

·
(
φτ − u

′
0τ

)
+

∫
ΓT0

\Γ
T0

u0,g
N

p(θ)
στ (E0 − u0)

g0
·
(
φτ − u

′
0τ

)
,

for all φ ∈ H1
D(Ω,R2). Since φτ = 0 a.e. on ΓT0

u0,g

D
for all φ ∈ K0, one deduces that u′0 ∈ K0

satisfies〈
u
′
0, φ− u

′
0

〉
H1

D(Ω0,R2)
≥
∫
Ω0

(
div
(
fθ⊤

)
−∇θf

)
·
(
φ− u

′
0

)
+

∫
Ω0

(
(Ae (u0))∇θ⊤ +A(∇u0∇θ) + Ae

(
∇θ⊤u0

)
− div(θ)Ae (u0)

)
: ∇
(
φ− u

′
0

)
+

∫
Ω0

Ae (u0) : e
(
∇θ⊤

(
φ− u

′
0

))
−
∫
Γ
T0

u0,g
N

p(θ)
u0τ
∥u0τ ∥

·
(
φτ − u

′
0τ

)
+

∫
Γ
T0

u0,g
S

p(θ)
στ (u0)

g
·
(
φτ − u

′
0τ

)
,

for all φ ∈ K0. Using the equality −div (Ae(u0)) = f in H1(Ω0,R2) and the divergence formula
(see Proposition B.1), the proof is complete.

Remark 2.6. Note that Hypothesis (H2) corresponds to the inversion of the symbols ME-lim
and

∫
ΓT0

in Equality (2.4), which is an open question in general. We refer to [10, Appendix A]
and [11, Remark 2.26] for additional comments and some sufficient conditions for this inversion.
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Remark 2.7. In Proposition 2.5 (and in its proof), note that the set K0 corresponds to the
set K

u0,
στ (E0−u0)

g

with the notations introduced in our previous paper [11] (see [11, proof of Theo-

rem 2.25]).

2.3 Directional material derivative u′
0 and directional shape derivative u′

0

From Proposition 2.5 and since ut =
(
I + t∇θ⊤

)−1
ut for all t ≥ 0, it is possible now to state and

prove the first main result of this paper that characterizes the directional material derivative u′0.

Theorem 2.8 (Directional material derivative u′0). Consider the framework of Proposition 2.5.
Then the map t ∈ R+ 7→ ut ∈ H1

D(Ω0,R2) is differentiable at t = 0 and its derivative u′0 ∈
K0 −∇θ⊤u0 (that is, the directional material derivative) is the unique solution to the variational
inequality

⟨u′0, v − u′0⟩H1
D(Ω0,R2) ≥ −

∫
Ω0

div
(
div (Ae(u0)) θ

⊤) · (v − u′0)

+

∫
Ω0

(
(Ae (u0))∇θ⊤ +A(∇u0∇θ)− div(θ)Ae (u0)

)
: ∇(v − u′0)

+
〈
Ae(u0)n,∇θ⊤ (v − u′0)

〉
H−1/2(Γ0,R2)×H1/2(Γ0,R2)

−
∫
Γ
T0

u0,g
N

p(θ)
u0τ
∥u0τ ∥

·
(
vτ − u′0τ

)
+

∫
Γ
T0

u0,g
S

p(θ)
στ (u0)

g
·
(
vτ − u′0τ

)
, ∀v ∈ K0 −∇θ⊤u0, (2.7)

where

K0 −∇θ⊤u0 =

{
v ∈ H1

D(Ω0,R2) | vτ = −
(
∇θ⊤u0

)
τ

a.e. on ΓT0
u0,g

D

and
(
vτ +

(
∇θ⊤u0

)
τ

)
∈ R−

στ (u0)

g
a.e. on ΓT0

u0,g

S

}
.

Proof. Since ut =
(
I + t∇θ⊤

)−1
ut for all t ≥ 0, one deduces from Proposition 2.5 that the map t ∈

R+ 7→ ut ∈ H1
D(Ω0,R2) is differentiable at t = 0 with u′0 = u

′
0 −∇θ⊤u0 ∈ H1

D(Ω0,R2). Moreover,
from the variational inequality satisfied by u′0, one deduces that

〈
u′0 +∇θ⊤u0, φ−∇θ⊤u0 − u′0

〉
H1

D(Ω0,R2)
≥ −

∫
Ω0

div
(
div (Ae(u0)) θ

⊤) · (φ−∇θ⊤u0 − u′0
)

+

∫
Ω0

(
(Ae (u0))∇θ⊤ +A(∇u0∇θ) + Ae

(
∇θ⊤u0

)
− div(θ)Ae (u0)

)
: ∇
(
φ−∇θ⊤u0 − u′0

)
+
〈
Ae(u0)n,∇θ⊤

(
φ−∇θ⊤u0 − u′0

)〉
H−1/2(Γ0,R2)×H1/2(Γ0,R2)

−
∫
Γ
T0

u0,g
N

p(θ)
u0τ
∥u0τ ∥

·
(
φτ −

(
∇θ⊤u0

)
τ
− u′0τ

)
+

∫
Γ
T0

u0,g
S

p(θ)
στ (u0)

g
·
(
φτ −

(
∇θ⊤u0

)
τ
− u′0τ

)
,

for all φ ∈ K0, and this is also

〈
u′0 +∇θ⊤u0, v − u′0

〉
H1

D(Ω0,R2)
≥ −

∫
Ω0

div
(
div (Ae(u0)) θ

⊤) · (v − u′0)
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+

∫
Ω0

(
(Ae (u0))∇θ⊤ +A(∇u0∇θ) + Ae

(
∇θ⊤u0

)
− div(θ)Ae (u0)

)
: ∇(v − u′0)

+
〈
Ae(u0)n,∇θ⊤ (v − u′0)

〉
H−1/2(Γ0,R2)×H1/2(Γ0,R2)

−
∫
Γ
T0

u0,g
N

p(θ)
u0τ
∥u0τ ∥

· (vτ − u′0τ ) +

∫
Γ
T0

u0,g
S

p(θ)
στ (u0)

g
· (vτ − u′0τ ) ,

for all v ∈ K0 −∇θ⊤u0, which concludes the proof.

The presentation of Theorem 2.8 can be improved under additional regularity assumptions.

Corollary 2.9. Consider the framework of Proposition 2.5 with the additional assumption that u0 ∈
H3(Ω0,R2). Then the directional material derivative u′0 ∈ K0−∇θ⊤u0 is the unique weak solution
to the tangential Signorini problem given by

−div (Ae(u′0)) + div (Ae (∇u0θ)) = 0 in Ω0,

u′0 = 0 on ΓD,

σn(u
′
0)− ξm(θ)n = 0 on ΓT0

,

στ (u
′
0) + p(θ)

u0τ

∥u0τ ∥
− ξm(θ)τ = 0 on ΓT0

u0,g

N
,

u′0τ +
(
∇θ⊤u0

)
τ
= 0 on ΓT0

u0,g

D
,(

u′0τ +
(
∇θ⊤u0

)
τ

)
∈ R−

στ (u0)
g

and
(
στ (u

′
0)− p(θ)στ (u0)

g − ξm(θ)τ

)
· στ (u0)

g ≤ 0

and
(
u′0τ +

(
∇θ⊤u0

)
τ

)
·
(
στ (u

′
0)− p(θ)στ (u0)

g − ξm(θ)τ

)
= 0 on ΓT0

u0,g

S
.

where ξm(θ) :=
(
(Ae (u0))∇θ⊤ +A(∇u0∇θ) + (∇θ − div(θ)I)Ae (u0)

)
n ∈ L2(ΓT0

,R2).

Proof. Since u0 ∈ H2(Ω0,R2) and θ ∈ C2,∞
D (R2,R2), it holds that

div
(
(Ae (u0))∇θ⊤ +A(∇u0∇θ)− div(θ)Ae (u0)

)
∈ L2(Ω0,R2).

Thus, using the divergence formula (see Proposition B.1) in Inequality (2.7), we get that

⟨u′0, v − u′0⟩H1
D(Ω0,R2) ≥

∫
ΓT0

ξm(θ) · (v − u′0)

−
∫
Ω0

div
(
div(Ae(u0))θ

⊤ + (Ae (u0))∇θ⊤ +A(∇u0∇θ)− div(θ)Ae (u0)
)
· (v − u′0)

−
∫
Γ
T0

u0,g
N

p(θ)
u0τ
∥u0τ ∥

·
(
vτ − u′0τ

)
+

∫
Γ
T0

u0,g
S

p(θ)
στ (u0)

g
·
(
vτ − u′0τ

)
, (2.8)

for all v ∈ K0−∇θ⊤u0. Furthermore, one has div (Ae (∇u0θ)) ∈ L2(Ω0,R2) from the fact that u0 ∈
H3(Ω0,R2). Thus, using the equality

div (Ae (∇u0θ)) = div
(
div(Ae(u0))θ

⊤ + (Ae (u0))∇θ⊤ +A(∇u0∇θ)− div(θ)Ae (u0)
)
,

in L2(Ω0,R2), it follows that
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⟨u′0, v − u′0⟩H1
D(Ω0,R2) ≥ −

∫
Ω0

div (Ae (∇u0θ)) · (v − u′0) +

∫
ΓT0

ξm(θ) · (v − u′0)

−
∫
Γ
T0

u0,g
N

p(θ)
u0τ
∥u0τ ∥

·
(
vτ − u′0τ

)
+

∫
Γ
T0

u0,g
S

p(θ)
στ (u0)

g
·
(
vτ − u′0τ

)
,

for all v ∈ K0 − ∇θ⊤u0, which corresponds to the weak formulation of the expected tangential
Signorini problem (see [11, Section 2.1.2] for details).

Remark 2.10. Note that, from the proof of Corollary 2.9, one can get, under the weaker as-
sumption u0 ∈ H2(Ω0,R2), that the directional material derivative u′0 is the solution to the varia-
tional inequality (2.8) which is, from [11, Section 2.1.2], the weak formulation of a tangential Sig-
norini problem, with the source term given by −div(div(Ae(u0))θ

⊤+(Ae(u0))∇θ⊤+A(∇u0∇θ)−
div(θ)Ae(u0)) ∈ L2(Ω0,R2).

Thanks to Corollary 2.9, we are now in a position to characterize the directional shape deriva-
tive u′0.

Corollary 2.11 (Directional shape derivative u′0). Consider the framework of Proposition 2.5 with
the additional assumptions that u0 ∈ H3(Ω0,R2) and that Γ0 is of class C3. Then the directional
shape derivative, defined by u′0 := u′0 −∇u0θ ∈ K0 −∇θ⊤u0 −∇u0θ, is the unique weak solution
to the tangential Signorini problem

−div (Ae(u′0)) = 0 in Ω0,
u′0 = 0 on ΓD,

σn(u
′
0)− ξs(θ)n = 0 on ΓT0

,

στ (u
′
0) + p(θ)

u0τ

∥u0τ ∥
− ξs(θ)τ = 0 on ΓT0

u0,g

N
,

u′0τ −W (θ)τ = 0 on ΓT0
u0,g

D
,

(u′0τ −W (θ)τ ) ∈ R−
στ (u0)
g

and
(
στ (u

′
0)− p(θ)στ (u0)

g − ξs(θ)τ

)
· στ (u0)

g ≤ 0

and (u′0τ −W (θ)τ ) ·
(
στ (u

′
0)− p(θ)στ (u0)

g − ξs(θ)τ

)
= 0 on ΓT0

u0,g

S
.

where W (θ) := −∇θ⊤u0 −∇u0θ ∈ H1(Ω0,R2),

ξs(θ) := θ · n (∂n (Ae (u0) n)− ∂n (Ae (u0)) n) + Ae (u0)∇τ (θ · n)−∇(Ae (u0) n)θ

+ (∇θ − divτ (θ)I)Ae (u0) n ∈ L2(ΓT0
,R2),

where ∂n (Ae (u0) n) := ∇(Ae (u0) n)n stands for the normal derivative of Ae (u0) n, and ∂n (Ae (u0))
is the matrix whose the i-th line is the transpose of the vector ∂n (Ae (u0)i) := ∇(Ae (u0)i)n,
where Ae (u0)i is the transpose of the i-th line of the matrix Ae (u0), for all i ∈ {1, 2}.

Proof. Since u′0 := u′0 − ∇u0θ, one deduces from the weak formulation of u′0 and the divergence
formula (see Proposition B.1) that

⟨u′0, v − u′0⟩H1
D(Ω0,R2) ≥∫

Ω0

(
div (Ae(u0)) θ

⊤ + (Ae(u0))∇θ⊤ +A(∇u0∇θ)−Ae (∇u0θ)
)
: ∇(v − u′0)
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−
∫
Ω0

div(θ)Ae(u0) : e (v − u′0) +

∫
ΓT0

Ae(u0)n · ∇θ⊤ (v − u′0)−
∫
Γ0

(θ · n) div (Ae(u0)) · (v − u′0)

−
∫
Γ
T0

u0,g
N

p(θ)
u0τ
∥u0τ ∥

·
(
vτ − u′0τ

)
+

∫
Γ
T0

u0,g
S

p(θ)
στ (u0)

g
·
(
vτ − u′0τ

)
,

for all v ∈ K0 −∇θ⊤u0 −∇u0θ. Moreover, one has∫
Ω0

div (Ae(u0)) θ
⊤ : ∇φ =

∫
Ω0

div (Ae(u0)) · ∇φθ = −
∫
Ω0

Ae(u0) : ∇(∇φθ) +
∫
Γ0

Ae(u0)n · ∇φθ,

and also

−
∫
Ω0

div(θ)Ae(u0) : e(φ) =

∫
Ω0

θ · ∇(Ae(u0) : e(φ))−
∫
Γ0

θ · n (Ae(u0) : e(φ)) ,

for all φ ∈ C∞(Ω0,R2). Therefore, using the equality(
(Ae(u0))∇θ⊤ +A(∇u0∇θ)−Ae (∇u0θ)

)
: ∇φ+ θ · ∇(Ae(u0) : e(φ))−Ae(u0) : ∇(∇φθ) = 0,

which holds true a.e. on Ω0, one deduces from the divergence formula that∫
Ω0

(
div (Ae(u0)) θ

⊤ + (Ae(u0))∇θ⊤ +A(∇u0∇θ)−Ae (∇u0θ)
)
: ∇φ

−
∫
Ω0

div(θ)Ae(u0) : e (φ)+

∫
Γ0

∇θ (Ae(u0)n)·φ−
∫
Γ0

(θ · n) div (Ae(u0))·φ−
∫
Γ
T0

u0,g
N

p(θ)
u0τ

∥u0τ ∥
·φτ

+

∫
Γ
T0

u0,g
S

p(θ)
στ (u0)

g
· φτ =

∫
Γ0

θ · n (−Ae(u0) : e(φ)− div (Ae(u0)) · φ)

+

∫
Γ0

∇φ⊤(Ae(u0)n) · θ+∇θ(Ae(u0)n) · φ−
∫
Γ
T0

u0,g
N

p(θ)
u0τ
∥u0τ ∥

· φτ +
∫
Γ
T0

u0,g
S

p(θ)
στ (u0)

g
· φτ ,

for all φ ∈ C∞(Ω0,R2). Furthermore, since Γ0 is of class C3 and u0 ∈ H3(Ω0,R2), Ae(u0)n
can be extended into a function defined in Ω0 such that Ae(u0)n ∈ H2(Ω0,R2). Thus, it holds
that Ae(u0)n · φ ∈ W2,1(Ω0,R2), for all φ ∈ C∞(Ω0,R2), and one can use Proposition B.2 to get
that∫

Γ0

θ · n (−Ae(u0) : e(φ)− div (Ae(u0)) · φ) +
∫
Γ0

∇φ⊤(Ae(u0)n) · θ +∇θ(Ae(u0)n) · φ

−
∫
Γ
T0

u0,g
N

p(θ)
u0τ

∥u0τ ∥
· φτ +

∫
Γ
T0

u0,g
S

p(θ)
στ (u0)

g
· φτ

=

∫
Γ0

θ · n (−Ae(u0) : e(φ)− div (Ae(u0)) · φ+ ∂n (Ae(u0)n · φ) +HAe(u0)n · φ)

−
∫
Γ0

(∇(Ae(u0)n)θ −∇θ(Ae(u0)n) + divτ (θ)Ae(u0)n) · φ−
∫
Γ
T0

u0,g
N

p(θ)
u0τ

∥u0τ ∥
· φτ

+

∫
Γ
T0

u0,g
S

p(θ)
στ (u0)

g
· φτ ,
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where H is the mean curvature of Γ0. By Proposition B.3 it follows that∫
Γ0

θ · n (−div (Ae(u0)) +HAe(u0)n) · φ =

∫
Γ0

Ae(u0) : ∇τ (φ (θ · n))− (θ · n) ∂n (Ae(u0)) n · φ,

for all φ ∈ C∞(Ω0,R2). Therefore, using the following two equalities

Ae(u0) : ∇τ (φ (θ · n)) = θ · n (Ae(u0) : ∇τφ) + Ae(u0)∇τ (θ · n) · φ, a.e. on Γ0,

and
Ae(u0) : ∇τφ = Ae(u0) : e(φ)−∇φ⊤(Ae(u0)n) · n a.e on Γ0,

one gets∫
Γ0

θ · n (−Ae(u0) : e(φ)− div (Ae(u0)) · φ+ ∂n (Ae(u0)n · φ) +HAe(u0)n · φ)

−
∫
Γ0

(∇(Ae(u0)n)θ −∇θ(Ae(u0)n) + divτ (θ)Ae(u0)n) · φ−
∫
Γ
T0

u0,g
N

p(θ)
u0τ

∥u0τ ∥
· φτ

+

∫
Γ
T0

u0,g
S

p(θ)
στ (u0)

g
· φτ =

∫
Γ0

(θ · n (∂n (Ae(u0)n)− ∂n (Ae(u0)) n) + Ae(u0)∇τ (θ · n)) · φ

+

∫
Γ0

(−∇(Ae(u0)n)θ + (∇θ − divτ (θ)I)Ae(u0)n)·φ−
∫
Γ
T0

u0,g
N

p(θ)
u0τ
∥u0τ ∥

·φτ+
∫
Γ
T0

u0,g
S

p(θ)
στ (u0)

g
·φτ ,

and thus∫
Ω0

(
div (Ae(u0)) θ

⊤ + (Ae(u0))∇θ⊤ +A(∇u0∇θ)−Ae (∇u0θ)
)
: ∇φ−

∫
Ω0

div(θ)Ae(u0) : e (φ)

+

∫
ΓT0

Ae(u0)n·∇θ⊤φ−
∫
Γ0

(θ · n) div (Ae(u0))·φ−
∫
Γ
T0

u0,g
N

p(θ)
u0τ
∥u0τ ∥

·φτ+
∫
Γ
T0

u0,g
S

p(θ)
στ (u0)

g
·φτ

=

∫
Γ0

(θ · n (∂n (Ae(u0)n)− ∂n (Ae(u0)) n) + Ae(u0)∇τ (θ · n)) · φ

+

∫
Γ0

(−∇(Ae(u0)n)θ + (∇θ − divτ (θ)I)Ae(u0)n)·φ−
∫
Γ
T0

u0,g
N

p(θ)
u0τ
∥u0τ ∥

·φτ+
∫
Γ
T0

u0,g
S

p(θ)
στ (u0)

g
·φτ ,

for all φ ∈ C∞(Ω0,R2). Finally, one deduces from the density of C∞(Ω0,R2) in H1(Ω0,R2) that

⟨u′0, v − u′0⟩H1
D(Ω0,R2) ≥

∫
ΓT0

(θ · n (∂n (Ae(u0)n)− ∂n (Ae(u0)) n) + Ae(u0)∇τ (θ · n)) · (v − u′0)

+

∫
ΓT0

(−∇(Ae(u0)n)θ + (∇θ − divτ (θ)I)Ae(u0)n) · (v − u′0)−
∫
Γ
T0

u0,g
N

p(θ)
u0τ

∥u0τ ∥
· (vτ − u′0τ )

+

∫
Γ
T0

u0,g
S

p(θ)
στ (u0)

g
· (vτ − u′0τ ) ,

for all v ∈ K0 − ∇θ⊤u0 − ∇u0θ, which corresponds to the weak formulation of the expected
tangential Signorini problem (see [11, Section 2.1.2] for details).

Remark 2.12. Note that u′0 and u′0 are not linear with respect to the direction θ. This nonlinearity
is standard in shape optimization for variational inequalities (see, e.g., [4, 23] or [34, Section 4]),
and justifies the names of directional material and shape derivatives.
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2.4 Shape gradient of the Tresca energy functional
Thanks to the characterization of the directional material and shape derivatives obtained in

the previous section, we are now in a position to derive an expression of the shape gradient of the
Tresca energy functional J at Ω0 in the direction θ.

Theorem 2.13. Consider the framework of Proposition 2.5. Then the Tresca energy functional J
admits a shape gradient at Ω0 in the direction θ given by

J ′(Ω0)(θ) =

∫
Ω0

div (θ)
Ae (u0) : e (u0)

2
−
∫
Ω0

div (Ae (u0)) · ∇u0θ −
∫
Ω0

Ae (u0) : ∇u0∇θ

−
∫
ΓT0

θ · n (f · u0)−
〈
Ae(u0)n,∇θ⊤u0

〉
H−1/2(Γ0,R2)×H1/2(Γ0,R2)

+

∫
Γ
T0

u0,g
N

(∇g · θ + g (divτ (θ)−∇θτ · τ)) ∥u0τ ∥ .

Proof. By taking v = ut in the variational inequality satisfied by ut, one can obtain that

J (Ωt) = −1

2

∫
Ωt

Ae(ut) : e(ut).

Following the usual strategy developed in (smooth) shape optimization literature (see, e.g., [7, 22])
to compute the shape gradient of J at Ω0 in the direction θ, one gets

J ′(Ω0)(θ) = −1

2

∫
Ω0

div(θ)Ae(u0) : e(u0) +

∫
Ω0

Ae(u0) : ∇u0∇θ − ⟨u′0, u0⟩
H1
D

(Ω0,R2)
.

Moreover, from the variational inequality satisfied by u′0 (see (2.7)), the divergence formula (see
Proposition B.1) and since u′0 ± u0 ∈ K0 −∇θ⊤u0, it follows that

⟨u′0, u0⟩H1
D(Ω0,R2) =

∫
Ω0

(
div (Ae(u0)) θ

⊤ + (Ae(u0))∇θ⊤ +A(∇u0∇θ)− div(θ)Ae(u0)
)
: ∇u0

+

∫
ΓT0

θ · n(f · u0) +
〈
Ae(u0)n,∇θ⊤u0

〉
H−1/2(Γ0,R2)×H1/2(Γ0,R2)

−
∫
Γ
T0

u0,g
N

p(θ) ∥u0τ ∥ .

Then, since u0τ = 0 a.e. on ΓT0
u0,g

S
and using the equality div (Ae(u0)) θ

⊤ : ∇u0 = div (Ae(u0)) ·
∇u0θ which holds true a.e. on Ω0, we conclude the proof.

As we did for the directional material derivative, the presentation of Theorem 2.13 can be
improved under additional assumptions.

Corollary 2.14. Consider the framework of Proposition 2.5 with the additional assumptions
that u0 ∈ H3(Ω0,R2), Γ0 is of class C3 and almost every point of ΓT0

belongs to the relative
interior intΓ0

(ΓT0
). Then the Tresca energy functional J admits a shape gradient at Ω0 in the

direction θ given by

J ′(Ω0)(θ) =

∫
ΓT0

θ · n
(
Ae(u0) : e(u0)

2
− f · u0 − στ (u0) · ∂n(u0) + ∥u0τ∥ (Hg + ∂ng)

)
+

∫
ΓT0

u0nστ (u0) · τ (∇τθτ −∇θτ) · n,

where H is the mean curvature of Γ0.
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Proof. Since u0 ∈ H2(Ω0,R2), it follows from Theorem 2.13 that

J ′(Ω0)(θ) = −1

2

∫
Ω0

θ · ∇(Ae(u0) : e(u0)) +

∫
Γ0

θ · nAe(u0) : e(u0)

2
+

∫
Ω0

Ae (u0) : e (∇u0θ)

−
∫
Γ0

Ae (u0) n · ∇u0θ −
∫
Ω0

Ae (u0) : ∇u0∇θ −
∫
ΓT0

θ · n (f · u0)−
∫
ΓT0

Ae(u0)n · ∇θ⊤u0

+

∫
Γ
T0

u0,g
N

(∇g · θ + g (divτ (θ)−∇θτ · τ)) ∥u0τ ∥ .

Moreover, since

Ae(u0) : e (∇u0θ) = Ae(u0) : ∇u0∇θ +
1

2
θ · ∇(Ae(u0) : e(u0)) a.e. on Ω0,

one deduces that

J ′(Ω0)(θ) =

∫
Γ0

θ·n
(
Ae(u0) : e(u0)

2

)
−
∫
Γ0

Ae(u0)n·∇u0θ−
∫
ΓT0

θ·n(f ·u0)−
∫
Γ0

Ae(u0)n·∇θ⊤u0

+

∫
Γ
T0

u0,g
N

(∇g · θ + g (divτ (θ)−∇θτ · τ)) ∥u0τ ∥ .

Furthermore, since almost every point of ΓT0
belongs to intΓ0

(ΓT0
), it follows that u0 is a strong

solution to the Tresca friction problem (see [11, Definition 2.11 and Proposition 2.13]). Thus, from
the Tresca friction law, one has ∥u0τ ∥ = −στ (u0)·u0τ

g a.e. on ΓT0
and, since u0τ = 0 on ΓT0

u0,g

D
∪

ΓT0
u0,g

S
and θ = 0 on ΓD, one gets that

J ′(Ω0)(θ) =

∫
Γ0

θ · n
(
Ae(u0) : e(u0)

2
− f · u0

)
−
∫
Γ0

Ae(u0)n · ∇u0θ −
∫
Γ0

Ae(u0)n · ∇θ⊤u0

−
∫
Γ0

(
gστ (u0) · u0τ

∇g
g2

· θ + στ (u0) · u0τdivτ (θ)
)
+

∫
Γ0

στ (u0) · u0τ∇θτ · τ. (2.9)

Moreover, since Γ0 is of class C3, n ∈ C2(Γ0,R2) can be extended over R2 such that n ∈ C2(R2,R2)
and ||n|| = 1 over R2 (see, e.g., [22, Chapter 5 Section 5.4]). It follows that τ ∈ C2(Γ0,R2) can
also be extended over R2 such that τ ∈ C2(R2,R2) and ||τ || = 1 over R2. Moreover, since u0 ∈
H3(Ω0,R2), the shear stress στ (u0) = Ae(u0)n − (Ae(u0)n · n)n can be extended into a function
defined over Ω0 such that στ (u0) ∈ H2(Ω0,R2). Thus στ (u0) · τ ∈ H2(Ω0,R2), u0 · τ ∈ H2(Ω0,R2)
and one deduces that

J ′(Ω0)(θ) =

∫
Γ0

θ · n
(
Ae(u0) : e(u0)

2
− f · u0

)
−
∫
Γ0

Ae(u0)n · ∇u0θ −
∫
Γ0

Ae(u0)n · ∇θ⊤u0

−
∫
Γ0

(∇((στ (u0) · τ)u0 · τ) · θ + στ (u0) · u0τdivτ (θ)) +
∫
Γ0

στ (u0) · τ∇(u0 · τ) · θ

+

∫
Γ0

gu0 · τ∇
(
στ (u0) · τ

g

)
· θ +

∫
Γ0

στ (u0) · u0τ∇θτ · τ,

and, since (στ (u0) · τ)u0 · τ ∈ W1,2(Ω0,R), one can apply Proposition B.2 to get that

J ′(Ω0)(θ) =

∫
Γ0

θ · n
(
Ae(u0) : e(u0)

2
− f · u0 −Hστ (u0) · u0τ − ∂n ((στ (u0) · τ)u0 · τ)

)
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−
∫
Γ0

Ae(u0)n · ∇u0θ −
∫
Γ0

Ae(u0)n · ∇θ⊤u0 +
∫
Γ0

στ (u0) · τ∇(u0 · τ) · θ

+

∫
Γ0

gu0 · τ∇
(
στ (u0) · τ

g

)
· θ +

∫
Γ0

στ (u0) · u0τ∇θτ · τ.

Moreover, since σn(u0) = 0 a.e. on ΓT0
, note that

−
∫
Γ0

Ae(u0)n · ∇θ⊤u0 +
∫
Γ0

στ (u0) · u0τ∇θτ · τ = −
∫
ΓT0

(στ (u0) · τ)∇θτ · u0

+

∫
ΓT0

στ (u0) · u0τ∇θτ · τ = −
∫
ΓT0

στ (u0) · u0τ∇θτ · τ −
∫
ΓT0

(στ (u0) · τ)u0n∇θτ · n

+

∫
ΓT0

στ (u0) · u0τ∇θτ · τ = −
∫
ΓT0

(στ (u0) · τ)u0n∇θτ · n,

and also that∫
Γ0

θ · n (−∂n ((στ (u0) · τ)u0 · τ))−
∫
Γ0

Ae(u0)n · ∇u0θ +
∫
Γ0

στ (u0) · τ∇(u0 · τ) · θ

=

∫
ΓT0

θ · n (−∂n (u0 · τ)στ (u0) · τ − ∂n (στ (u0) · τ)u0 · τ)−
∫
ΓT0

(στ (u0) · τ) τ · ∇u0θ

+

∫
ΓT0

θ · n (στ (u0) · τ)∇(u0 · τ) · n +

∫
ΓT0

(στ (u0) · τ)∇(u0 · τ) · θτ

=

∫
ΓT0

θ · n (−∂n (στ (u0) · τ)u0 · τ)−
∫
ΓT0

θ · n (στ (u0) · τ) τ · ∇u0n−
∫
ΓT0

(στ (u0) · τ) θτ · ∇u0τ

+

∫
ΓT0

(στ (u0) · τ)∇u0⊤τ · θτ +
∫
ΓT0

(στ (u0) · τ)∇τ⊤u0 · θτ

= −
∫
ΓT0

θ · n (∂n (στ (u0) · τ)u0 · τ + στ (u0) · ∂n(u0)) +
∫
ΓT0

(στ (u0) · τ)u0n∇τ⊤n · θτ ,

since ||τ ||=1 on R2, thus (∇τ)τ · τ = 0 on ΓT0 . Hence one has

J ′(Ω0)(θ) =

∫
ΓT0

gu0 · τ∇
(
στ (u0) · τ

g

)
· θ +

∫
ΓT0

u0nστ (u0) · τ (∇τθτ −∇θτ) · n

+

∫
ΓT0

θ · n
(
Ae(u0) : e(u0)

2
− f · u0 −Hστ (u0) · u0τ − u0 · τ∂n (στ (u0) · τ)− στ (u0) · ∂n(u0)

)
.

Now let us focus on the first term. Since u0τ = 0 on ΓT0
u0,g

D
∪ ΓT0

u0,g

S
, we have∫

ΓT0

gu0 · τ∇
(
στ (u0) · τ

g

)
· θ =

∫
Γ
T0

u0,g
N

gu0 · τ∇
(
στ (u0) · τ

g

)
· θ.

Let us introduce two disjoint subsets of ΓT0
u0,g

N
given by

ΓT0
u0,g

N+
:= {s ∈ ΓT0

| u0(s) · τ(s) > 0} and ΓT0
u0,g

N−
:= {s ∈ ΓT0

| u0(s) · τ(s) < 0} .

It follows that ΓT0
u0,g

N
= ΓT0

u0,g

N+
∪ΓT0

u0,g

N−
, with στ (u0) · τ = −g a.e. on ΓT0

u0,g

N+
, and στ (u0) · τ = g

a.e. on ΓT0
u0,g

N−
. Moreover, since u0 ∈ H3(Ω,R2), we get from Sobolev embeddings (see, e.g., [1,
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Chapter 4]) that u0 is continuous over ΓT0
, thus ΓT0

u0,g

N+
and ΓT0

u0,g

N−
are open subsets of ΓT0

.

Hence ∇τ (
στ (u0)·τ

g ) = 0 a.e. on ΓT0
u0,g

N+
∪ ΓT0

u0,g

N−
, and one deduces that∫

ΓT0

gu0 · τ∇
(
στ (u0) · τ

g

)
· θ =

∫
ΓT0

θ · n
(
gu0 · τ∇

(
στ (u0) · τ

g

)
· n
)
,

that is∫
ΓT0

gu0 · τ∇
(
στ (u0) · τ

g

)
· θ =

∫
ΓT0

θ · n
(
u0 · τ∂n (στ (u0) · τ)−

στ (u0) · u0τ
g

∂ng

)
.

Then, using the Tresca friction law, one has στ (u0) · u0τ = −g||u0τ || a.e. on ΓT0 , which concludes
the proof.

Remark 2.15. Under the weaker condition u0 ∈ H2(Ω0,R2), one can follow the proof of Corol-
lary 2.14 and obtain that the shape gradient of J is given by Equality (2.9).

3 Numerical illustration
In this section our objective is to numerically solve a toy example of the shape optimization

problem (1.1), by making use of the theoretical results established in this work. The numerical sim-
ulations have been performed using Freefem++ software [20] with P1-finite elements and standard
affine mesh. We could use the expression of the shape gradient of J obtained in Theorem 2.13 but,
in order to simplify the computations, we chose to use the expression provided in Corollary 2.14
under additional assumptions that we assumed to be true at each iteration.

3.1 Numerical methodology
Consider an initial shape Ω0 ∈ Uref . Note that Corollary 2.14 allows to exhibit a descent

direction θ0 of the Tresca energy functional J at Ω0, by finding the unique solution θ0 ∈ H1
D(Ω0,R2)

to the variational equality∫
Ω0

(∇θ0 : ∇θ + θ0 · θ) = −J ′(Ω0)(θ), ∀θ ∈ H1
D(Ω0,R2),

since it satisfies J ′(Ω0)(θ0) = −
∫
Ω0

(
||∇θ0||2 + ||θ0||2

)
≤ 0.

In order to numerically solve the shape optimization problem (1.1) on a given example, we have
to deal with the volume constraint |Ω| = |Ωref | > 0. For this purpose, the Uzawa algorithm (see,
e.g., [7, Chapter 3]) is used, and one refers to [4, Section 4] for methodological details.

Let us mention that the Tresca friction problem is numerically solved using an adaptation of
iterative switching algorithms (see [5]). This algorithm operates by checking at each iteration if
the Tresca boundary conditions are satisfied and, if they are not, by imposing them and restarting
the computation (see [3, Appendix C p.25] for detailed explanations). We also precise that, for
all j ∈ N∗, the difference between the Tresca energy functional J at the iteration 20 × j and
at the iteration 20 × (j − 1) is computed. The smallness of this difference is used as a stopping
criterion for the algorithm. Finally the curvature term H is numerically computed by extending
the normal n into a function ñ which is defined on the whole domain Ω0. Then the curvature is
given by H = div(ñ)−∇(ñ)n · n (see, e.g., [22, Proposition 5.4.8]).
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3.2 A toy example and numerical results
In this section, let f ∈ H1(R2,R2) be defined by

f : R2 −→ R2

(x, y) 7−→ f(x, y) :=
(
−5x exp (x) 0.6 exp (x2)

)
η(x, y),

and g ∈ H2(R2,R) be defined by

g : R2 −→ R
(x, y) 7−→ g(x, y) :=

(
1 + sin(−y π2 ) + 10−3

)
η(x, y),

where η ∈ C∞(R2,R) is a cut-off function chosen appropriately so that f belongs to H1(R2,R2),
g ∈ H2(R2,R) and g > 0 on R2. The reference shape Ωref ⊂ R2 is an ellipse centered at (0, 0) ∈ R2,
with semi-major axis a = 1.1 and semi-minor axis b = 1/a, and the fixed part ΓD is given by

ΓD :=

{
(a cos γ, b sin γ) ∈ Γref | γ ∈

[
2π

3
,
4π

3

]
∪
[
5π

3
,
7π

3

]}
.

We refer to Figure 1. The volume constraint is |Ωref | = π and the initial shape is Ω0 := Ωref .
In the sequel we consider that, for all Ω ∈ Uref , the Cauchy stress tensor σ, defined by σ(v) :=

Ae(v) for all v ∈ H1
D(Ω,R2), satisfies

σ(v) = 2µe(v) + λtr (e(v)) I,

for all v ∈ H1
D(Ω,R2), where tr (e(v)) is the trace of the matrix e(v), and µ ≥ 0, λ ≥ 0 are Lamé

parameters (see, e.g., [31]). From a physical point of view, this assumption corresponds to isotropic
elastic solids. In the sequel we consider the arbitrary data µ = 0.5 and λ = 0.

We present now the numerical results obtained for this toy example using the numerical method-
ology described in Section 3.1.

Ωref ΓD

ΓTref

Figure 1: Ωref and its boundary Γref = ΓD ∪ ΓTref
.

In Figure 2 is represented the initial shape (left) and the shape which numerically solves Prob-
lem (1.1) (right). On top are the vector values of the solution u to the Tresca friction prob-
lem (TPΩ). On the initial shape, note that, on the bottom blue boundary, the norm of the shear
stress is strictly inferior at the friction threshold g, thus uτ = 0, while the top black boundary
shows some points where the norm of the shear stress reaches the friction threshold.

Figure 3 shows the values of J (left) and the volume |Ω| of the shape (right) with respect to
the iterations. We observe that J is lower at the final shape, than at the initial shape, with some
oscillations due to the Lagrange multiplier in order to satisfy the volume constraint.
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Figure 2: Initial shape (left) and the shape minimizing J under the volume constraint |Ω| = π
(right) .

Figure 3: Values of the energy functional (left) and of the volume (right) with respect to the
iterations.

A Reminders on twice epi-differentiability
For notions and results recalled in this appendix, we refer to standard references from nons-

mooth analysis literature such as [12, 26, 28] and [30, Chapter 12]. In what follows, (H, ⟨·, ·⟩H)
stands for a general real Hilbert space. The domain and the epigraph of an extended real-valued
function ψ : H → R ∪ {±∞} are respectively defined by

dom (ψ) := {x ∈ H | ψ(x) < +∞} and epi (ψ) := {(x, β) ∈ H × R | ψ(x) ≤ β} .

Recall that ψ is said to be proper if dom(ψ) ̸= ∅ and ψ(x) > −∞ for all x ∈ H, and that ψ is
convex (resp. lower semi-continuous) if and only if epi(ψ) is a convex (resp. closed) subset of H×R.
When ψ is proper, we denote by ∂ψ : H ⇒ H its convex subdifferential operator, defined by

∂ψ(x) := {y ∈ H | ∀z ∈ H, ⟨y, z − x⟩H ≤ ψ(z)− ψ(x)} ,

when x ∈ dom(ψ), and by ∂ψ(x) := ∅ when x /∈ dom(ψ). The notion of proximal operator has
been introduced by J.J. Moreau in 1965 (see [27]) as follows.

Definition A.1 (Proximal operator). The proximal operator associated with a proper, lower semi-
continuous and convex function ψ : H → R ∪ {+∞} is the map proxψ : H → H defined by

proxψ(x) := argmin
y∈H

[
ψ(y) +

1

2
∥y − x∥2H

]
= (id + ∂ψ)−1(x),

for all x ∈ H, where id : H → H stands for the identity operator.
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Recall that, if ψ : H → R∪{+∞} is a proper, lower semi-continuous and convex function, then
its subdifferential ∂ψ is maximal monotone (see, e.g., [28]), and thus its proximal operator proxψ :
H → H is well-defined, single-valued and nonexpansive, i.e. Lipschitz continuous with modulus 1
(see, e.g., [12, Chapter II]).

The notion of twice epi-differentiability introduced by R.T. Rockafellar in 1985 (see [29]) is
defined as the Mosco epi-convergence of second-order difference quotient functions. In what follows,
we provide reminders and backgrounds on these notions for the reader’s convenience. For more
details, we refer to [30, Chapter 7, Section B] for the finite-dimensional case and to [15] for the
infinite-dimensional case. In the sequel, the strong (resp. weak) convergence of a sequence in H
will be denoted by → (resp. ⇀) and all limits with respect to t will be considered for t→ 0+.

Definition A.2 (Mosco convergence). The outer, weak-outer, inner and weak-inner limits of a
parameterized family (St)t>0 of subsets of H are respectively defined by

lim supSt :=
{
x ∈ H | ∃(tn)n∈N → 0+, ∃ (xn)n∈N → x, ∀n ∈ N, xn ∈ Stn

}
,

w-lim supSt :=
{
x ∈ H | ∃(tn)n∈N → 0+, ∃ (xn)n∈N ⇀ x, ∀n ∈ N, xn ∈ Stn

}
,

lim inf St :=
{
x ∈ H | ∀(tn)n∈N → 0+, ∃ (xn)n∈N → x, ∃N ∈ N, ∀n ≥ N, xn ∈ Stn

}
,

w-lim inf St :=
{
x ∈ H | ∀(tn)n∈N → 0+, ∃ (xn)n∈N ⇀ x, ∃N ∈ N, ∀n ≥ N, xn ∈ Stn

}
.

The family (St)t>0 is said to be Mosco convergent if w-lim supSt ⊂ lim inf St. In that case, all the
previous limits are equal and we write

M-lim St := lim inf St = lim supSt = w-lim inf St = w-lim supSt.

Definition A.3 (Mosco epi-convergence). Let (ψt)t>0 be a parameterized family of functions ψt :
H → R∪{±∞} for all t > 0. We say that (ψt)t>0 is Mosco epi-convergent if (epi(ψt))t>0 is Mosco
convergent in H× R. Then we denote by ME-lim ψt : H → R ∪ {±∞} the function characterized
by its epigraph epi (ME-lim ψt) := M-lim epi (ψt) and we say that (ψt)t>0 Mosco epi-converges
to ME-lim ψt.

The notion of twice epi-differentiability was originally introduced in [29] for nonparameterized
convex functions. However, the framework of the present paper requires an extended version
to parameterized convex functions which has been developed in [2]. To provide reminders on
this extended notion, when considering a function Ψ : R+ × H → R ∪ {+∞} such that, for
all t ≥ 0, Ψ(t, ·) : H → R ∪ {+∞} is a proper function, we will make use of the following two
notations: ∂Ψ(0, ·)(x) stands for the convex subdifferential operator at x ∈ H of the function Ψ(0, ·),
and, for each t ≥ 0, Ψ−1(t,R) := {x ∈ H | Ψ(t, x) ∈ R} and Ψ−1(·,R) := ∩t≥0Ψ

−1(t,R).

Definition A.4 (Twice epi-differentiability depending on a parameter). Let Ψ : R+ × H → R ∪
{+∞} be a function such that, for all t ≥ 0, Ψ(t, ·) : H → R ∪ {+∞} is a proper lower semi-
continuous convex function. Then Ψ is said to be twice epi-differentiable at x ∈ Ψ−1(·,R) for y ∈
∂Ψ(0, ·)(x) if the family of second-order difference quotient functions (∆2

tΨ(x|y))t>0 defined by

∆2
tΨ(x|y) : H −→ R ∪ {+∞}

z 7−→ ∆2
tΨ(x|y)(z) :=

Ψ(t, x+ tz)−Ψ(t, x)− t ⟨y, z⟩H
t2

,

for all t > 0, is Mosco epi-convergent. In that case, we denote by

D2
eΨ(x|y) := ME-lim ∆2

tΨ(x|y),

which is called the second-order epi-derivative of Ψ at x for y.
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The next proposition (which can be found in [2, Theorem 4.15]) is the key point to derive our
main results in the present work.

Proposition A.5. Let Ψ : R+ ×H → R ∪ {+∞} be a function such that, for all t ≥ 0, Ψ(t, ·) :
H → R ∪ {+∞} is a proper, lower semi-continuous and convex function. Let F : R+ → H
and u : R+ → H be defined by

u(t) := proxΨ(t,·)(F (t)),

for all t ≥ 0. If the conditions

(i) F is differentiable at t = 0;

(ii) Ψ is twice epi-differentiable at u(0) for F (0)− u(0) ∈ ∂Ψ(0, ·)(u(0));

(iii) D2
eΨ(u(0)|F (0)− u(0)) is a proper function on H;

are satisfied, then u is differentiable at t = 0 with

u′(0) = proxD2
eΨ(u(0)|F (0)−u(0))(F

′(0)).

B Reminders on differential geometry
In this appendix, let Ω be a nonempty bounded connected open subset of R2 with a Lipschitz

boundary Γ := ∂Ω and n be the outward-pointing unit normal vector to Γ. The next proposi-
tion, known as divergence formula, can be found in [6, Theorem 4.4.7 p.104]. The following two
propositions are also useful in the present paper and their proofs can be found in [22].

Proposition B.1 (Divergence formula). Consider the space

Hdiv(Ω,R2×2) := {w ∈ L2(Ω,R2×2) | div(w) ∈ L2(Ω,R2)},

where div(w) is the vector whose the i-th component is defined by div(w)i := div(wi) ∈ L2(Ω,R),
and where wi ∈ L2(Ω,R2) is the transpose of the i-th line of w, for all i ∈ {1, 2}. If w ∈
Hdiv(Ω,R2×2), then w admits a normal trace, denoted by wn ∈ H−1/2(Γ,R2), satisfying∫

Ω

div(w) · v +
∫
Ω

w : ∇v = ⟨wn, v⟩H−1/2(Γ,R2)×H1/2(Γ,R2) , ∀v ∈ H1(Ω,R2).

Proposition B.2. Assume that Γ is of class C2 and let θ ∈ C1(R2,R2). It holds that∫
Γ

(θ · ∇v + vdivτ (θ)) =

∫
Γ

θ · n(∂nv +Hv), ∀v ∈ W2,1(Ω,R),

where divτ (θ) := div(θ) − (∇θn · n) ∈ L∞(Γ) is the tangential divergence of θ, ∂nv := ∇v · n ∈
L1(Γ,R) stands for the normal derivative of v, and H stands for the mean curvature of Γ.

Proposition B.3. Assume that Γ is of class C2 and let w ∈ H2(Ω,R2×2). It holds that

div(w) = divτ (wτ ) +Hwn + (∂nw) n a.e. on Γ,

where divτ (wτ ) ∈ L2(Γ,R2) is the vector whose the i-th component is defined by divτ (wτ )i :=
divτ ((wi)τ ) ∈ L2(Γ,R), where (wi)τ := wi − (wi · n)n ∈ L2(Γ,R2), and where ∂nw ∈ L2(Γ,R2×2)
is the matrix whose the i-th line is the transpose of the vector ∂nwi := (∇wi)n ∈ L2(Γ,R2), for all
i ∈ {1, 2}. Moreover, it holds that∫

Γ

v · divτ (wτ ) = −
∫
Γ

w : ∇τv, ∀v ∈ H2(Ω,R2),

where ∇τv is the matrix whose the i-th line is the transpose of the tangential gradient ∇τvi :=
∇vi − (∂nvi)n ∈ H1/2(Γ,R2), for all i ∈ {1, 2}.
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