N
N

N

HAL

open science

COVID-19 epidemic: from data to mathematical
models. Comment on ”Data-driven mathematical
modeling approaching for COVID-19: A survey” by
Jacques Demongeot and Pierre Magal

Francois Hamel

» To cite this version:

Frangois Hamel. COVID-19 epidemic: from data to mathematical models. Comment on "Data-driven
mathematical modeling approaching for COVID-19: A survey” by Jacques Demongeot and Pierre

Magal. Physics of Life Reviews, In press. hal-04784967

HAL Id: hal-04784967
https://hal.science/hal-04784967v1

Submitted on 15 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-04784967v1
https://hal.archives-ouvertes.fr

Comment

COVID-19 epidemic: from data to mathematical
models
Comment on “Data-driven mathematical modeling
approaching for COVID-19: A survey”

by Jacques Demongeot and Pierre Magal
Francois Hamel #

& Ajx Marseille Univ, CNRS, I2M, Marseille, France

In their extensive survey [5], based on the analysis of an impressive list of
more than 250 references, the authors J. Demongeot and P. Magal review
the most used mathematical models to describe the various phases of the
COVID-19 waves in many places of the world. The COVID-19 outbreak is
reminiscent of some old epidemics of infectious diseases, such as the plague
epidemic in Europe in the 14th century, the London cholera epidemic in
the 17th century, and the smallpox epidemic in the 18th century, which
led Bernoulli and d’Alembert to create the first models for the prediction
of further epidemic waves [1]. Epidemics are essentially made up of two
distinct phases: an epidemic phase in which infections and cases first grow
exponentially fast, and an endemic phase in which new cases are maintained
at a low level.

Beyond the medical and social issues, modeling the COVID-19 epidemic faces
many problems and questions: first of all, how to detect all cases, that is, from
data of reported cases, how to estimate the total number of cases, including
the unreported ones? The strong variations in the number of tests showed
that the number of cases was strongly underestimated in the spring of 2020.
The cumulative number of cases has been estimated following a flowchart of
the model used in [8], based on the estimation of the proportions of asymp-
tomatic infectious, undetected infectious, detectable infectious, reported, or
removed, inside the exposed population.



Two main classes of mathematical models have been used and are reported in
this survey. The first class is that of phenomenological models, which try to
reproduce the data and their tendency with a limited number of parameters
and without any differential equation. Such models were used for the first
time by Lambert [9, 15], who took the exponential approximation of the ini-
tial growth of an epidemic in London in the middle of the 18th century. The
other models are the mechanistic epidemic models, initiated by Bernoulli and
d’Alembert [1]. They consist of differential equations modeling the evolution,
as time ¢ runs, of the number of susceptible S(t) and infectious I(¢) inside
the population. The most basic ST model is written as

S'(t) = —7(t)S(t) I(D),
)y = ) S@)I(t) —vI(t),

for t > to, with initial conditions S(tg) = Sy and I(tg) = I at time . Here,
7(t) is the rate of transmission and v is the inverse of the average duration
of the asymptomatic infectious period. The cumulative number of reported
cases, called C'R(t), then satisfies CR'(t) = fv I(t), where f € [0, 1] is the
fraction of reported individuals (mainly those with severe symptoms). For
instance, 1/v is equal to a few days and f = 0.9, from clinical information.

At the beginning of the epidemic, the number of susceptibles and the trans-
mission rate can be assumed to be nearly constant, equal to Sy and 79, so the
number of infectious follows an exponential growth I(t) = Iy eX2(=%)  where
X2 = ToSo — v, while CR(t) = 1 (eX2t%) — 1) + y5. The parameters x;
and y3 are evaluated from the data, and then give Iy and ty. This strategy
has been applied to COVID-19 in mainland China [4]. However, after an
early phase, the data and the exponential growth diverge and the transmis-
sion rate 7(t) can no longer assumed to be constant. This rate essentially
depends on three factors: the coefficient of virulence of the infectious agent,
the coefficient of susceptibility of the host, and the number of contacts per
time unit between individuals [10, 12]. All these factors depend on time due
to possible mutation of the infectious agent, the innate or acquired vary-
ing immunity of the host, and the mitigation measures and social behavior.
They may also depend on the location, because of differences in environ-
nemental and meteorological conditions and because of the heterogeneity of
the population density. From the integration of the S and [ equations, a
theoretical formula for the transmission rate 7(¢) can be derived, in terms of
the cumulative number of reported cases CR(t) and its first and second order
derivatives, together with the parameters v and f. A central question then
arises: how to estimate the average duration of the asymptomatic infectious
period 1/v? Several estimates have been given [2]. It turns out that only



an upper bound (3.3 days in mainland China) can be shown by using S/
models, since different values fit exactly to the data. Another strategy con-
sists in assuming that the cumulative number of reported cases C'R(t) solves
a Bernoulli-Verhulst [1, 14] model or a more general logistic equation [13],

such as: CR(t)\5
CR(t) =2 CR) (1- (T57) ).
0 = Cr0) (1- (Gp-
Such equations give explicit formulas for CR(t) and then for 7(¢). The data
can then be used to estimate the parameters xo, 6, CR(ty) and CR. (for
instance, x2 = 0.66 and 6 = 0.22 in COVID-19 in China).

The modeling of multiple epidemic waves is also discussed and especially that
of the regularization of the junction between epidemic and endemic phases.
The best fit of the phenomenological model of [6] to the data of the cumu-
lative reported cases of the COVID-19 epidemics in France are presented
in [5]. The determination of the transmission rate 7(¢) is used to calcu-
late two other important quantities, namely the instantaneous reproduction
number R.(t) = 7(t)S(t)/v and the quasi-instantaneous reproduction num-
ber R2(t) = 7(t)Sp/v. Comparing these numbers with 1 indicates whether
the epidemic tends to persist or die out in the long term. The time evolu-
tion of these parameters in various countries on three continents is presented
in [5], after [3, 7, 11], showing also the necessity and the difficulty of regu-
larizing the data. Other mechanistic models with more compartments are
described in [5], including one with unreported infectious cases and a class
of models with age groups with different transmission rates. The proof of
the existence and uniqueness of optimal transmission rates minimizing the
L? errors between the data and the model is given in [5].

The COVID-19 pandemic has led to an enormous amount of publications, of
the order to 700.000 between early 2020 and August 2023! The authors list
in [5] some topics and references for further reading, such as the dynamics
of clusters, the analysis of other data (contact tracing, testing, wasted wa-
ter), ST R models with additional asymptomatic, non-reported, vaccinated, or
deceased patients, multigroups and multiscale models, re-infections, natural
and hybrid immunity, vaccination and mitigation measures for the prediction
of further evolution.

Everyone who wants an up-to-date and comparative analysis of the mathe-
matical models of COVID-19 and the derivation of the parameters from the
data, or who is interested in finding out more from a historical point of view,
will certainly find matter for further thought in the excellent and thorough
review [5].
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