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Abstract
We introduce a machine-learning approach to predict the complex non-Markovian dynamics of
supercooled liquids from static averaged quantities. Compared to techniques based on particle
propensity, our method is built upon a theoretical framework that uses as input and output
system-averaged quantities, thus being easier to apply in an experimental context where particle
resolved information is not available. In this work, we train a deep neural network to predict the
self intermediate scattering function of binary mixtures using their static structure factor as input.
While its performance is excellent for the temperature range of the training data, the model also
retains some transferability in making decent predictions at temperatures lower than the ones it
was trained for, or when we use it for similar systems. We also develop an evolutionary strategy that
is able to construct a realistic memory function underlying the observed non-Markovian
dynamics. This method lets us conclude that the memory function of supercooled liquids can be
effectively parameterized as the sum of two stretched exponentials, which physically corresponds to
two dominant relaxation modes.

1. Introduction

Understanding the dynamics of supercooled liquids approaching the glass transition represents one of the
major challenges in condensed matter science [1–4]. The most striking signature of this phenomenon is the
dramatic increase in viscosity or relaxation time upon a relatively mild change in the thermodynamic control
parameters. Despite the magnitude of this effect, there are no substantial changes in the microscopic
structure of the material, which severely hinders our understanding of the mechanisms underlying the glass
transition.

In recent years, machine learning algorithms have been successfully employed to capture subtle changes
in the local structure of glassforming materials to create accurate predictors of the dynamics. The first such
example is a machine-learned parameter called softness [5–9], which, based on support vector machines and
physical intuition, identifies key structural features that strongly correlate with local particle dynamics.
Neural networks can also identify local structures [10, 11] and correlate them to local dynamics [12, 13].
Furthermore graph neural networks [14] have shown that the graph structure of each particle’s local
environment contains significant information to predict its long-time dynamics. It was later demonstrated
that more refined observables could be calculated [15] and combined with simpler models to capture the
connection between statics and dynamics in glassy systems [16, 17]. Similar results can be achieved even with
information theory [18, 19] and dimensionality reduction [19, 20]. Recently, neural networks have also been
used to find complex order parameters for glassy dynamics [21]. However all these approaches are based on a
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Figure 1. Sketch of our machine learning approach based on averaged static descriptors. The static structure factor is the main
input of the model and even though it only shows minute changes with the temperature T, the model was trained to predict the
abrupt slowdown from these minimal changes. The DNN explained in section 2.1 predicts Fαα

s (kp, t) from Sαβ(k). Instead with
our evolutionary strategy (section 2.2) we are able to construct the memory functionMαβ(kp, t) that produces the observed
dynamics.

particle resolved description of the system, which requires knowledge of the location of every single particle
and its precise local environment. Unfortunately these particle resolved quantities are not always easy to
measure, and furthermore, single-particle properties do not easily lend themselves to statistical–physical
theory development. Hence, a more collective description is often preferred.

Here we propose an alternative approach that is not based on local single-particle features, but instead on
system averaged quantities. This approach takes inspiration from collective theories of the glass
transition [22–33] that aim to predict the glassiness of the system using collective static observables that do
not need to be resolved per particle. The cornerstone of our method consists of rewriting the dynamics of
supercooled liquids following the Mori–Zwanzig procedure [22, 34] to obtain a form of a generalized
Langevin equation (GLE) called the memory equation [35]. From a mathematical point of view, this
equation takes as input the statistically-averaged static structure of the system, mainly through the static
structure factor S(k) which is a function of the wave vector k. Using S(k) as the initial boundary condition,
the memory equation can then be used to predict the time-dependent dynamics of the system, quantified by
the intermediate scattering function F(k, t) at a given time t. The key bottleneck, however, is finding the exact
memory function that governs the dynamics of F(k, t); this memory function should account for the
dynamical slowdown of supercooled liquids, but its functional form is a priori unknown. After decades of
intense research, scientists have been able to solve only approximations of this equation, like mode-coupling
theory (MCT) [22, 31, 34, 36–43].

In this paper, we use machine-learning to approximate the memory function. In particular we discuss
two different approaches to the problem: (i) first we train a deep neural-network (DNN) in order to learn the
memory equation using data measured from computer simulations of binary mixtures interacting via
Lennard–Jones (LJ) or Weeks–Chandler–Andersen (WCA) potentials. In this approach the DNN plays the
role of both the memory equation and the memory function itself. (ii) Then we develop an evolutionary
strategy (ES) tailored to identify and construct the memory function that produces the dynamics observed in
the simulations.

In figure 1 we sketch the concept of our approach. First we collect extensive simulation data for LJ and
WCA binary mixtures. For different values of temperature T and density ρ we measure the static structure
factor Sαβ and the self intermediate scattering function Fααs , where α and β are the indexes to represent the
species of the mixture. These averaged descriptors are then given to a DNN that we train to predict the
intermediate scattering function for a given Sαβ , under the assumption introduced in section section 2.1. We
show that our DNN achieves excellent performance, thus concluding that the network can learn the memory
equation. Next, in order to obtain some physical intuition about the memory function we introduce an ES
that, given the intermediate scattering function and the structure of the memory equation, is able to describe
the memory function in a parametrized functional form.
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Overall, the results of our model are twofold: we introduce an effective approach that is able to rapidly
predict the collective dynamics of the system from static measurements, once the model has been trained.
Secondly, we propose a representation of the memory function that may be more convenient, and perhaps
more realistic, than some state-of-the-art theories. The function parametrized by our machine-learning
algorithm can be informative for future efforts aimed at developing a more quantitative theory of the glass
transition. In the next sections we will discuss the mechanism of our machine-learning approach, how to
generalize it to other systems, and some implications of our findings.

2. Results

2.1. Dynamics of supercooled liquids from neural networks
We train a multi-layer perceptron (MLP) to predict the dynamics of supercooled liquids from static averaged
quantities. The MLP is a fully connected DNN with a simple feed-forward architecture. The dynamics is
characterized by measuring the intermediate scattering function Fαβ(k, t) from the simulations (details in
section 4.1). Rather than a full k-dependent description of the dynamics, we follow the standard
procedure [42, 44, 45] for binary mixtures, which consists in the following steps: (i) we focus only on
k= kp ≡ |kAApeak| which is the location of the main peak of SAA and it is arguably the most descriptive
wavenumber for such supercooled mixtures [35], (ii) we consider only the self part of the intermediate
scattering function assuming that it also represents the collective dynamics, and (iii) we ignore the mixed
term FAB(k, t) since Fαβs = 0. Hence we end up describing the dynamics using Fααs (kp, t), where α= A,B
represents the two species.

Furthermore, we define Fααs (kp, t) in the following way:

Fααs (kp, t) =
1

N

〈
N∑
i

e−ikpr
α
i (0)eikpr

α
i (t)

〉
· 1
N

〈
N∑
i

e−ikpr
α
i (0)

N∑
j

eikpr
α
j (0)

〉
︸ ︷︷ ︸

≡Sαα(kp)

, (1)

where N is the total number of particles and rαi (t) is the position of particle i of species α at time t. Our
choice of normalization imposes Fααs (kp, t= 0) = Sαα(kp). In our work, this has two advantages: we can
now directly compare our prediction of Fαβs (kp, t) with collective theories like MCT under assumptions
(i)–(iii), and secondly, our machine learning approach gives more importance to the most glassy (slowest)
dynamics, because they are rescaled by a larger factor corresponding to their larger values of Sαβ(kp).

The MLP that we use to predict the dynamics takes as input the static structure factor Sαβ(k) on a
uniform grid of Nk = 100 wave numbers in the range 0⩽ k⩽ 40σAA, including the α ̸= β terms, for a total
of 300 values of Sαβ(ki) (considering the αβ = βα symmetry). In addition the MLP receives the temperature
T, the density ρ, a label for the interaction type (i.e. either LJ or WCA), and the logarithm of the time at
which it has to predict Fαβs (kp, t). With this input–output architecture after training we can easily tune the
value of t in the input to reconstruct the full time dependence.

In figure 2 we show that the MLP (detailed in section 4.2) produces good predictions in the full
temperature range, from high-temperature liquid to glass on which it was trained. In this figure we also
report the results of MCT (dotted lines), which is a theory based on the same static information used as
input for the MLP. The results indicate that the MLP significantly outperforms MCT in predicting the
realistic dynamics.

To quantify the performance of the MLP we measure its predictivity on data outside of it training set. The
model has been trained using 90% of the data available while we use the remaining data to evaluate the R2

score:

R2 = 1− SSres
SStot

, (2)

where SSres is the sum of squared residuals

SSres =
∑

observationi

(predictioni − truthi)
2 (3)

and SStot is the total sum of squares

SStot =
∑

observationi

(
predictioni − prediction

)2
, (4)

3



Mach. Learn.: Sci. Technol. 4 (2023) 025010 S Ciarella et al

Figure 2. Predictions of the multi-layer perceptron (MLP) for the self intermediate scattering function of binary mixtures, for the
AA and BB components, normalized as defined in equation (1). We report four state points from the test set (not used for
training): the red is a warm liquid, the orange is a supercooled liquid, the yellow is a strongly supercooled liquid and blue is a
glass. We compare the MLP (dot-dashed lines) with simulations (solid lines) and mode-coupling theory (dotted line) predictions.

Figure 3. Performance of the multi-layer perceptron (MLP) in predicting the self-intermediate scattering function of binary
mixtures. We report the R2 score as a function of temperature, normalized by Tmct which is the temperature at which
mode-coupling theory predicts the glass transition. Its value is averaged over states with similar values of T/Tmct and the colored
region represents the standard deviation of each bin. A value of 1 represents perfect predictions. In the inset we compare the MLP
prediction with the target simulation, for a set with R2 = 0.76. We conclude that on average the model predictions are good
across the entire temperature range.

where ¯. . . represents the mean. Notice that one observation in equations (3) and (4) corresponds to one time
t= ti of Fs(kp, t) for any given T and ρ, so the sum runs over all the temperatures T, densities ρ and times ti.
Moreover, the train/test split is performed separating 10% of the {LJ/WCA;T;ρ} states rather than 10% of all
the data points, in order to avoid training the MLP using data strongly correlated with the test set.

A value of R2 = 1 corresponds to a perfect fit, so R2 is an effective measure to evaluate the quality of the
model. In figure 3 we report the R2 score as a function of T/Tmct, where Tmct is the temperature at which
fit-parameter-free MCT predicts the glass transition, reported in table 1. With this normalization we can
average simulations at different densities and different pairwise interactions to produce a single curve. In this
work we are not interested in the precise estimation of the critical point of MCT for our mixtures, but a more
detailed discussion is available in [3, 44, 46]. In the supplementary information we show the root mean
squared error (RMSE) for the same data. The trend of the curve shows that the performance of the MLP
starts to drop at T< Tmct, when the two-step relaxation becomes more prominent and thus the intermediate
scattering function is a more ‘complex’ function with more features to predict. At T< 0.6Tmct the MLP

4
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Table 1. Temperatures that we use to normalize the data. The values of kBTmct/ϵAA correspond to the critical temperature of
mode-coupling theory for the WCA and LJ mixtures [3, 44, 46], below which fit-parameter-free MCT predicts that the system is a glass.

kBTmct
ϵAA

ρσ3
AA = 1.2 ρσ3

AA = 1.4 ρσ3
AA = 1.6 ρσ3

AA = 1.8

WCA 0.74 1.77 3.49 5.10
LJ 0.90 1.87 3.53 5.10

Figure 4. Temperature transferability of the MLP: we report the R2 score as a function of the temperature. For each curve the
model is trained using only temperatures larger than the one corresponding to the rhombus. The solid lines represent the regions
in which the model has been trained, while it has never seen data from the dashed line region.

predictions exhibit pronounced fluctuations, but the predictions are still good on average, as we highlight in
the inset of figure 3. Surprisingly at even lower temperatures, when the dynamics is even slower, the
performances increase, approaching again the perfect R2 = 1 score. This is a consequence of the fact that in
the glass the second relaxation happens at t> tmax, which is outside the time window that the model
observes, so F is characterized by a single relaxation, thus being easier to learn for the model.

2.1.1. Transferability
2.1.1.1. Temperature transferability
One of the main strengths of machine learning is the possibility to train a model in a more favorable
situation (e.g. when there is more data available) and deploy it in a less favorable one. For computer
simulations the hardest region to sample is the low temperature regime, because the dynamics is much
slower and more time is required to sample all relevant structural rearrangements. This means that it is much
easier to collect data at high T than at low T.

Here we show the temperature transferability of our model, i.e. its performance at temperatures different
from the training. We report in figure 4 the R2 score when the MLP is trained only using data for T> T0. The
RMSE is reported in the supplementary information. As expected the model performs excellently in its
training region (solid lines), but outside (dashed lines) its score starts dropping. The results of figure 4
suggest the existence of two regimes: (i) for T> 0.8Tmct we have full transferability. It is in fact possible to
train the model at high temperature and retain good predictions, as evidenced by the red curve in figure 4.
(ii) When T< 0.8Tmct the transferability is restricted. In figure 4 we show that the best we can do is to
transfer the training at T> 1.2Tmct down to T> 0.5Tmct.

Overall we can conclude that our approach is transferable in the (i) MCT regime corresponding to
T> 0.8Tmct, while the transferability is very limited in the (ii) T< 0.8Tmct activated regime. This low
temperature region is in fact characterized by the appearance of heterogeneous activated dynamics and
facilitation, that become dominant at low temperature [47, 48]. We hypothesize that this different relaxation
mechanism is the reason behind the lack of transferability. In summary, except for the very low temperature
region, our approach presents some degree of temperature transferability that we can use to reduce the need
for data that are harder to collect.

5
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Figure 5.Model transferability of the MLP. We report the R2 score of the model when tested for a different interaction potential
not included in the training. The inset qualitatively shows that R2 > 0.8 corresponds to acceptable predictions.

2.1.1.2. Model transferability
We show in this section the performance of the MLP in predicting the dynamics of computer simulations
produced with a different interaction than the one the MLP has been trained on. Our library consists of
simulation data for binary LJ and binary WCA, so their dynamics is similar at high temperature and/or high
density, but it becomes significantly different approaching Tmct. In figure 5 we show the prediction of the
MLP when it is trained over LJ and tested over WCA and vice versa, reporting the R2 score as a function of
normalized temperature. We see that at T> 0.6Tmct the MLP produces excellent predictions even when it is
trained for a different interaction potential. However the quality drops for very low temperature, when
minute differences between the LJ and WCA structures are amplified to enormous differences in
dynamics [31, 43, 44, 49–51] and configurational entropy [52–54]. In particular the model performs poorly
when it is trained using the WCA potential and tested over the LJ data. This is a consequence of the fact that
the LJ model becomes a glass at a higher temperature compared to the WCA model [31, 44, 49], so there is a
region where the LJ model is infinitely slower than the WCA.

Overall we see that it is possible to use data measured from another system to obtain reliable predictions
for a different (but relatively similar) system. However those predictions become unreliable at very low T,
when approaching the glass transition.

2.2. ES for the memory function
In the previous section we have seen how to numerically correlate static structural information with the
dynamics of the system. Such a deep learning approach however does not tell us much about the physics of
the system. Here we employ a physics-informed strategy that is created in order to avoid the application of a
black box [55, 56], but instead we bound the machine learning model to play the role of a single physical
unknown function: the memory function.

In order to develop this physics-informed strategy we start from the exact memory equation that
describes the overdamped dynamics of liquids [35]:

dFαβs (kp, t)

dt
+Ω2

αβ(kp)F
αβ
s (kp, t)+

ˆ t

0
dτMαγ(kp, t− τ)

∂Fγβs (kp, τ)

∂τ
= 0, (5)

where Ω2
αβ(kp) is a constant representing the vibrational term [22, 34]. While the equation above is formally

exact, unfortunately the memory functionMαβ(kp, t− τ) that appears in the integral is unknown, and thus
the equation cannot be solved. MCT is based on an uncontrolled approximation of this memory function
that lead to excellent semi-quantitative results [34, 41, 57], but its predictions are not able to exactly capture
the full phenomenology of the glass transition [44]. While there are some ways to invert equation (5) [51,
58], and various approaches to numerically estimate the memory function [59–62], there is no consensus on
the general form ofM. More importantly, most of these procedures to calculateM are very sensitive to noise,
thus requiring refined data, and overall they are often computationally expensive.
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Figure 6. Predictions of the evolutionary strategy (ES) for the memory function of binary mixtures, with focus on the dominant
AA component at k= kp. We report four state points at different temperature: the red is a warm liquid, the orange is a
supercooled liquid, the yellow is a strongly supercooled liquid and blue is a glass. In (a) we see that the ES (solid) perfectly
reproduces the simulations (dot-dashed). In panel (b) we report the memory that the ES uses to reproduce the simulated FAAs
(solid) and we compare it to MCT (dotted) which produces instead very bad predictions.

Here we show that it is possible to effectively parameterizeM as a sum of stretched exponentials, whose
coefficients can be determined by an evolutionary algorithm. In choosing this exponential representation, we
have drawn inspiration from theories such as MCT [22, 63] for which the known (albeit approximate)
memory function typically has a similar structure as the intermediate scattering function, combined with the
fact that Fs(k, t) is known experimentally to behave as a stretched exponential for long times [64]. Thus, we
represent the memory function in the following way:

Mαβ(k, t) = cαβ(k)+

Nexp∑
i=0

wαβ
i (k) ×


[
1− aαβi (k)

]
e
−
(

t

τ
αβ
i

(k)

)b
αβ
i

(k)

+ aαβi (k)

 (6)

which is a sum of Nexp stretched exponentials, for a total of 3(1+ 4Nexp) parameters for every state. Notice
that our parametrization also allows for standard or compressed exponentials, according to the value of
bαβi (k). As previously discussed (section 2.1), we focus only on k= kAApeak, which is usually the most
important wavevector in simple glassformers such as the systems studied here.

The details of our ES are discussed in section 4.4. Briefly, the ES is an optimization technique inspired by
evolution and natural selection. It works by creating new generations of memory functions (parameterized
as equation (6)) by cross-breeding the previous generation and adding random mutations. For each of them
we then solve the memory equation (equation (5)) obtaining {FααES (ti)} and then we do one step of evolution
favoring the individuals that minimize the following loss function:

LES =
∑
ti,α

[Fααs (kP, ti)− FααES (ti)]
2
+ regularization (7)

which is the squared difference between predicted and observed dynamics. In the supplementary information
we verify that the ES solutions are physically reasonable by replacing the intermediate scattering function
with the MCT approximation Fααs (kP, ti)−→ FααMCT(kp, ti) and confirming that the ES converges towards

Mαβ
MCT(kp, t). Notice however that equation (6) allows unrealistic short time non-monotonic behavior, that

we observe sometimes. Overall, we believe that our ES solutions still retain a fair degree of realism.
The results of the ES are reported in figure 6. In panel (a) we show that the ES is able to recover the

simulated self intermediate scattering function Fααs (kP, ti) that we are targeting. The figure presents four
curves that range from the liquid to the glass phase. We have also verified that the ES solution converges to
the simulated Fααs (kp, t) for any temperature and density that we have available. Even though we have only
focused on k= kp, we speculate that our approach should work for any value of k since the structure of
equations (5) and (6) does not depend on k. Note however that, unlike MCT, this parametrized memory

7
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Figure 7. Performance of the evolutionary strategy in finding the memory function that correctly predicts the dynamics. We
parameterize the memory following equation (6), while the different curves correspond to different values of Nexp. We show that
Nexp = 2 is the minimum number of exponentials to achieve good performances, which corresponds to a total of 27 parameters.

function does not contain explicit couplings among different wave numbers, nor any self-consistent feedback
mechanism to drive dynamical slowdown.

In figure 6(b) we report the results for the memory function. Following the parametrization introduced
in equation (6) the ES is able to converge to memory functions that produce the realistic FααS (kp, t) of
figure 6(a). In particular the memory functions presented in figure 6(b) are obtained setting Nexp = 2. We
highlight the differences between theM at which the ES converged, with the MCT approximation (dashed
lines), that unsurprisingly overestimates the glassiness of these systems [35, 42, 44]. We conclude that the ES
method we introduced is an effective way to obtain a realistic memory function.

Lastly we discuss the physical insights that we can harness from our evolutionary approach. We have seen
that the ES converges to the simulated intermediate scattering function if we model the memory function
following equation (6). Since equation (5) is exact, we know that the real memory function has to produce
the same output as our ES when propagated through equation (5). This means that we can look at the
structure of our ES solutions to have some intuition about the real memory. In particular, in figure 7 we
report the R2 for different parametrizations containing a different number of stretched exponentials and we
verify that a good solution needs at least Nexp = 2. In the supplementary information we also show that the
second stretched exponential becomes relevant only approaching the glass transition, in the same range
where localized unstable modes become relevant [65], and when energy-driven and entropy-driven
activation start to compete [66]. We also know that activation and facilitation become relevant only at very
low temperature [47, 48]. This suggests that there are at least two separate relaxation channels that real
materials follow while relaxing, with the second channel becoming dominant below Tmct, i.e. the
temperature that is often identified with a crossover [67]. It is important to recall however that the Tmct used
in our work is obtained from fit-parameter-free MCT, while other works have considered different
definitions of Tmct, and hence these comparisons should be treated with caution.

Moreover, the results derived from the ES may also provide cues for analytical modeling. Models like
MCT invoke uncontrolled approximations to solve equation (5). One possibility is the exponential closure

that assumes thatMαβ(k, t)∼ exp
[
−Ω2

αβ(k)t
]
. This schematic model is simple enough to be solved

analytically, but its results are not satisfying [30, 63, 68–70]. Inspired by our ES we may propose a double
stretched-exponential memory defined as

Mαβ(k, t) = exp
[
−Ω2

αβ(k)t
ν
]
+Kαβ(k)exp

[
−Ω̃2

αβ(k)t
µ
]
. (8)

This schematic model retains a structure of equation (5) similar to the exponential closure, but according to
our ES results it should be more appropriate to describe the glassy dynamics, provided that it is properly
parametrized. Note however that the correct parametrization would still require numerical fitting (e.g. via an
ES). Nonetheless, we argue that our ES strategy can be used to explore different functional forms that may
improve upon the conventional MCT closure approximation.

8
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In summary we have defined here a simple approach to determine the memory functionM given the
self-intermediate scattering function Fs. The ES is fast and reliable across all the temperatures and densities
studied. The results suggest that at least two relaxation channels need to be considered, giving rise to the
machine-learning-inspired schematic model of equation (8).

3. Discussion

The goal of this study was to show how a neural network can understand and predict the dynamics of
supercooled liquids from static information. Our approach is based on averaged quantities such as static
structure factors that are easier to measure experimentally, compared to particle resolved ones. We are also
able to interpret the mechanism of the machine learning model to gain some physical intuition about the
glass transition.

In figures 2 and 3 we show that we can train a MLP to efficiently predict the dynamics (represented by the
self intermediate scattering function Fαβs ), using only statistically-averaged static information. This implies
that dynamical information is encoded in the static structure of the system, similarly to how higher-order
correlations are partially encoded into two body structure [50]. Furthermore since the main input of our
neural network is the static structure factor Sαβ , our results corroborate the idea that two body static
correlations when elaborated using an expressive approach like our MLP, are enough to describe the
dynamics.

One of the main problems in studying systems close to the glass transition is data collection, because
experiments and simulations at deeply supercooled temperatures are slow. We show that our MLP performs
relatively well when only high temperature data are provided for training (figure 4) or when the MLP is used
to make predictions for different variations of the model that is used for training (figure 5). Unfortunately
this transferability drops when the system is approaching the glass transition, because we know that minute
changes in the structure correspond to enormous changes in the dynamics. Overall this means that, if the
interest is in the liquid regime it is possible to fully exploit the MLP transferability by training the model
where data is easily available, but to accurately describe the glassy regime, glassy data is actually required.

We then develop a physics-inspired method to obtain an expression for the memory function that
realistically describe our data. Instead of using deep learning as a black box to connect statics to dynamics, we
rewrite the dynamics as a memory function and we replace this memory with our machine learning model.
Our approach circumvents inverse Laplace transforms, which can be computationally expensive, by using an
ES that parametrizes a pre-defined functional form for the memory function. We show in figure 6 that the ES
easily converges to memory functions that reproduce the real dynamics observed in simulations.

Our physics-inspired evolutionary approach is also able to give some intuition about the physics. The
results in figure 7 let us conclude that the memory function can be effectively parameterized as a sum of two
stretched exponentials. We can interpret those two stretched exponentials as two relaxation processes that
describe the complex multiscale relaxation of the glassy liquid, and we can also see that only one is needed to
describe the liquid phase (SI figure S7). One possible interpretation for the existence of two dominant
relaxation channels might be dynamic heterogeneity, i.e. the coexistence of transiently fast and slow groups of
particles, which is known to emerge at temperatures below Tmct [6, 12, 47]. However, more work is needed to
identify the microscopic physical origins of the two stretched exponentials and to pinpoint the temperature
regime where this effect is relevant. This intuition motivates us to explore a schematic model where the
memory function is exactly represented as two stretched exponentials, but we leave that for future work.

In conclusion, we have introduced two data-driven tools to evaluate and describe the dynamics of
supercooled liquids. The neural network that we propose can be efficiently trained and deployed to predict
the self-intermediate scattering function from averaged quantities which are simple to measure
experimentally. Lastly we have discussed a way to obtain an effective memory function using an ES,
concluding that the memory can be reasonably represented as a sum of two stretched exponentials. We
believe that our machine-learning method, once trained, can be efficiently applied to predict the dynamics of
many other glass forming mixtures and that data-driven approaches to find suitable functional forms of the
memory function may help guide the development of more effective theories to describe the glass transition.

4. Methods

4.1. Computer simulations
The models reported in this paper have been trained and tested using simulation data of two binary
mixtures: the Kob–Andersen binary LJ mixture [71] and its WCA truncation [72]. They are
three-dimensional 80 : 20 mixtures of particles A : B interacting with each other via

9
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Vαβ(r) =

{
4ϵαβ

[(σαβ

r

)12 − (σαβ

r

)6
+Cαβ

]
, r⩽ rcαβ

, r> rcαβ
(9)

where the cutoff radius rcαβ is 2.5σαβ for LJ, and rcαβ is 21/6σαβ for WCA [72]. The choice of Cαβ secures
that Vαβ(rcαβ) = 0. As usual [71], we set ϵAB/ϵAA = 1.5, ϵBB/ϵAA = 0.5,σAB/σAA = 0.8,σBB/σAA = 0.88.

For these mixtures we perform molecular dynamics simulations in the NVE ensemble using
HOOMD-blue [73]. First we equilibrate the system at different densities ρσ3

AA ∈ [1.2,1.8] and temperatures
kBT/ϵAA ∈ [0.2,15].We impose periodic boundary conditions and set the box at L= 10σAA while tuning the
density by changing the number of particles N ∈ [1200,2000]. All the particles have the same massm. We run

the simulations for 108 timesteps of size dt= 10−3τMD with τMD =
(
mσ2

AA/48ϵAA
)1/2

, which allows us to
sample up to tmax = 3× 106τMD. Notice that the trajectories that are deeply in the glass regime (i.e. where
Fααs (k, t−→∞)> 0) cannot be fully equilibrated due to the ergodicity breaking that defines the glass
transition. Additionally, even though the mixture is designed to avoid crystallization, it is still possible for
some specific trajectories to crystallize; in that case we remove such occurrences from our data. Finally, we
use the simulated trajectories to calculate the partial static structure factors Sαβ(k) and the self intermediate
scattering functions Fαβs (k, t).

4.2. MLP
We train a MLP to predict the dynamics of supercooled mixtures from static information. The results
reported in section 2.1 are produced by a MLP. The network consists of five hidden layers of size
{500,400,400,300,200}, interposed by ReLU activation functions, that transform the 304 input features{
SAA(k1), . . . ,SBB(k100),T,ρ, interaction, t

}
into the output

{
FAAs (kp, t),FBBs (kp, t)

}
. The MLP is trained for

1000 iterations, taking approximately one hour on a standard Intel i7 CPU. We also use L1 loss and Lasso
regularization [74] with the adam optimization algorithm [75].

4.3. Memory equation andMCT
In this paper we numerically solve equation (5), which is called the memory equation [35]. This is an
equation of the same class as the GLE and we believe that out method can be tailored to solve a wide category
of GLE equations with a structure similar to equation (5), using physical intuition.

In general, it is possible to exactly describe the dynamics of liquids by deriving an expression for

Fαβ(k, t) =
1

N

〈
N∑
i

e−ikrαi (0)
N∑
j

eikr
β
j (t)

〉
, (10)

from the solution of the overdamped equation

dFαβ(k, t)

dt
+Ω2

αβ(k)F
αβ(k, t)+

ˆ t

0
dτMαβ(k, t− τ)

∂Fαβs (k, τ)

∂τ
= 0, (11)

but unfortunately the memory functionMαβ(k, t) is unknown. Notice that in this paper we are mainly
interested in solving equation (5) which corresponds to equation (11) if Fαβ(k, t) is replaced with Fααs (kp, t).
We will also assume that the memory function is the same in equations (5) and (11).

The memory equation can only be solved using some approximations like MCT [22, 31, 34, 37, 38, 43],
for this reason we also refer to the MCT equation. The MCT approximation applied to equation (5) consists
of the following definition of the memory function:

Mαβ
mct(k, t) =

1

2k2
ρ

xαxβ

∑
α ′β ′

α ′ ′β ′ ′

ˆ
d3q

(2π)2
·

·Vαα ′α ′ ′ (q,k,k− q)Fα
′β ′

s (k, t)·

· Fα
′ ′β ′ ′

s (k, t)Vββ ′β ′ ′ (q,k,k− q) , (12)

where xα = Nα/N is the density of species α and the vertex function corresponds to

Vαβγ (k,q,p) =
(
k̂ · q

)
cαβ(q)δαβ +

(
k̂ · p

)
cαγ(p)δαγ , (13)

with S−1
αβ(k) = δαβ/xα − ρcαβ(k).

10



Mach. Learn.: Sci. Technol. 4 (2023) 025010 S Ciarella et al

So overall, the inputs for the MCT equation are the bulk density ρ, the temperature T, and the structure
factor Sαβ(k). In our numerical solution of the MCT equation we follow all the steps discussed in [31, 41, 43,
45] over a grid of Nk = 100 points. As an alternative to the MCT approximation, we also solve equation (5)
using equation (6) instead ofMαβ

mct, from the same inputs. In summary, at any given (T,ρ) we only require
Sαβ(k) as input to predict the microscopic relaxation dynamics of the system, either with MCT or with our
parametrization of the memory identified by the ES.

4.4. ES
ES is a class of machine learning optimization algorithms that are inspired by natural evolution in the
following way: at every iteration (or generation), a population of parameters (the genotypes) are perturbed
by cross-breeding and mutations and their objective function (fitness) is evaluated. Then the highest scoring
parameters are recombined to populate the next generation, iteratively until the objective function is
optimized. The huge advantage of this class of algorithms is that they do not require back-propagation,
which is particularly useful when the objective function is a complex integro-differential equation like our
GLE (equation (5)).

We use covariance matrix adaptation evolution strategy [76] (CMA-ES), a widely known method of the
ES class which describes the population by a multivariate Gaussian. The algorithm is available as a python
package [77]. Another advantage is that it does not require any hyper-parameter except for the initial
condition and the population size represented by the initial variance of the gaussian σ. We then use CMA-ES
to find the best functionMαβ

ES parametrized as equation (6) that reproduces the real dynamics. In practice at

each step we propagateMαβ
ES through equation (5) and we compare its output FααES (t) to the real dynamics

FααS
(
kp, t

)
, evaluating the fitness function F =−L (equation (7)) for the evolution. We use as initial

conditionM=Mmct and for the initial population we set σ = 5× 10−4. We use Lasso regularization to
evaluate equation (7). Usually the procedure converges below an error ϵ < 10−6 within a couple of hours of
evolution. Results in figure 7 show that the F predicted by ES is very close to the real dynamics, so we
conclude thatM is well represented by two stretched exponentials.
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