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Abstract 

Estimating gene gain and losses is paramount to understand the molecular 

mechanisms underlying adaptive evolution. Despite the advent of high-throughput 

sequencing, such analyses have been so far hampered by the poor contiguity of 

genome assemblies. The increasing affordability of long-read sequencing 

technologies will however revolutionize our capacity to identify gene gains and losses 

at an unprecedented resolution, even in non-model organisms. To thoroughly exploit 

all such multigene family variation, the software BadiRate implements a collection of 

birth-and-death stochastic models, aiming at estimating by maximum likelihood the 

gene turnover rates along the internal and external branches of a given phylogenetic 

species tree. Its statistical framework also provides versatility for inferring the gene 

family content at the internal phylogenetic nodes (and to estimate the minimum 

number of gene gains and losses in each branch), for statistically contrasting 

competing hypotheses (e.g. accelerations of the gene turnover rates at pre-defined 

clades), and for pinpointing gene family expansions or contractions likely driven by 

natural selection. In this chapter we review the theoretical models implemented in 

BadiRate, and illustrate their applicability by analysing a hypothetical data set of 14 

microbial species.  
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1. Introduction 

Advances in high-throughput sequencing (HTS) are generating massive genome 

sequence data, fostering comparative, population and metapopulation genomic studies 

even in non-model and uncultured organisms [1–3]. These studies can provide 

valuable insights into the evolutionary forces ultimately shaping biodiversity, in both 

prokaryote and eukaryote organisms, which bears multifarious applications in 

ecology, animal and plant breeding, conservation genetics, biomedicine, forensics, 

and sustainable pest control, among others [4–6]. 

Such biodiversity-based studies, and their potential applications, have been however 

limited by a number of factors, including: i) DNA sequencing errors, intrinsic to HTS 

technologies and their underlying chemistry, ii) the quality of genome assemblies, 

highly dependent on the read length, a critical issue in metagenomics; iii) and the 

accuracy of genome annotations, both at the structural and functional level. All these 

limitations deeply compromise the inference of gene gain and loss events, thereby 

precluding comprehensive analyses of gene family evolution, in both eukaryote and 

prokaryote organisms. For instance, current data complicate the study of medium-

sized gene families (e.g., from 10 to ∼100 copies), where highly divergent and newly 

originated copies coexist, forming tandem gene arrays resulting from unequal 

crossing-over, during meiosis in eukaryotes or via homologous recombination in 

merodiploid prokaryotes [7–11]. Detailed characterization of large-sized gene 

families encompassing hundreds of thousands of members, which are quite common 

in many eukaryotic genomes, is even more problematic, and most likely unfeasible 

using current technologies.  
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Such incapacity to faithfully characterize repetitive gene copies has likely undermined 

the actual contribution of key evolutionary mechanisms to multigene family 

evolution, most notably including the exchange of DNA tracts between tandemly 

arranged and repetitive family members [12–15]. With costs rapidly dropping and 

performance gradually increasing, long-read sequencing technologies bear promising 

potential to overcome all these drawbacks. If more prevalent than anticipated from 

poor genome assemblies, gene conversion would entail deep implications; i.e., greater 

similarity between gene copies would not necessarily reflect closer phylogenetic 

origins, but subsequent DNA exchange only. Methods based on gene-tree vs. species-

tree reconciliation, therefore, could simply be inappropriate to study gene families 

recently expanded, and that still undergo active gene conversion [16]. 

Under this scenario, methods that dispense with explicit gene trees might represent 

alternatives more robust to gene conversion. One possibility pertains to count-based 

methods, exploiting multigene family sizes at extant taxa as the major source of input 

information [17–19]. Such variation in gene count data across species can be inferred 

through orthoMCL [20], orthoFinder [21], OMA [22] or any equivalent 

approximation, and contains sufficient evolutionary information to characterize gene 

turnover processes in a tractable, explicit likelihood framework. Among other 

capabilities, count-based methods enable estimating the number of gains and losses in 

particular lineages, and the underlying gene gain and loss rates. In this chapter, we 

review the stochastic models implemented in BadiRate [18], and showcase their 

versatility through a hypothetical example closely mirroring the evolution of 14 

microbial genomes. 
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2. Methods 

2.1  Stochastic turnover models 

 BadiRate models two types of gene turnover processes, through density-

dependent and density-independent rates (Fig. 1). The former accounts for molecular 

phenomena such as tandem gene duplication by unequal crossing-over, and assumes 

that the probability of experiencing a duplication increases proportionally with the 

number of existing genes (ꞵ, birth rate). Similarly, the probability of suffering a gene 

loss (via deletion or pseudogenization) depends on the total family size (δ, death 

rate). Gene loss, for example, represents a major mechanism underlying the shrinkage 

of gene families [23], and is especially prevalent within obligate intracellular bacteria 

[24]. Beyond gene family expansions and contractions, comparable density-dependent 

rates (ꞵ = δ) might well reflect gene content stability, which enables to model the 

underlying process of gene gain and loss through a single turnover rate (l, lambda 

rate).  

 There are however evolutionary processes deemed as density-independent, 

by their own idiosyncrasy. The most notable instance involves horizontal gene 

transfer which does not result from DNA duplication, but represents an external 

acquisition independent of the actual number of copies [25]. Likewise, a de novo gene 

origin can represent the onset of a new multigene family without requiring a pre-

existing family member. Such density-independent processes can be specifically 

modelled through the gene innovation rate (ι), more generally accounting for all types 

of orphan genes with no traceable or unknown ancestry. This also includes remote 

homology relationships that remain undetected by most methods, owing to excessive 

sequence divergence. Distinguishing gene duplications (density-dependent) and 
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innovations (density-independent) might be however challenging from gene count 

data solely. To avoid potential caveats, the gain parameter (g) enables to group both 

processes, regardless of their nature, under a single turnover rate. To this end, 

however, the duplication rate needs to be expressed in the same units as gene 

innovations, collectively treating all gains as density-independent (i.e. gene gains per 

mya).  

 Combined, these four rates constitute the core of the five gene turnover 

models implemented in BadiRate, namely L (Lambda), LI (Lambda-and-Innovation), 

BD (Birth-and-Death), GD (Gain-and-Death) and BDI (Birth-Death-and-Innovation). 

Accommodating the whole complex range of molecular processes underlying gene 

gains and losses in prokaryotes, the last two turnover models are particularly 

appropriate for studying multigene families in microbes, as further detailed and 

exemplified below (Fig. 1). 

 The most general model, known as BDI, jointly considers two types of gene 

gains, those identified as gene duplications (via unequal crossing-over; ꞵ), and those 

arising by density-independent mechanisms such as the horizontal gene transfer (ι). 

The BDI model additionally implements a gene death rate (δ) that accounts for gene 

deletion or pseudogenization events. The other four gene turnover models simply 

represent particular instances of this one. Assuming that all family members arose by 

gene duplication (ι = 0), the BDI simplifies to a BD turnover model. Likewise, equal 

birth-and-death rates (ꞵ = δ) leads the BDI and BD to the LI or L models, 

respectively. Finally, the jointly accounting for all gene increments regardless of their 

molecular mechanism of acquisition (i.e., gene duplications or not) leads to the GD 

model. Further details are provided within the supplementary information of the 

original BadiRate publication [18]. 
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2.2  Branch models 

It is widely accepted that DNA (gene) gains and losses represent a major 

evolutionary mechanism in generating genome diversity and functional innovation 

[26–28]. This implies that gene family turnover rates might drastically vary across 

lineages, with lifestyle shifts shaping gene contents, mainly through contractions and 

expansions of multigene families, but also by de novo acquiring new genes. 

Comprehensively comparing such turnover heterogeneity, therefore, can reveal the 

molecular hallmark of adaptive variation. 

Conditioning on a given phylogenetic species tree, BadiRate can fit different 

branch models to gene count data. The simplest one assumes that all phylogenetic 

lineages evolved under the same turnover rates (Global Rates model, or GR). To 

avoid misinterpretations, it is worth remarking that the GR model does not imply 

equal numbers of gene gains and losses per branch, but an overall model (with a 

single rate parameter for gain and loss) whose specific realization (number of gains 

and losses) can vary due to the stochastic process inherent to evolution. At the other 

end of the spectrum, the most complex model allows turnover rates to differ at each 

phylogenetic branch (Free Rates model, FR). Intermediate to those, a full range of 

flexibility, enabling any potential combination of branch classes (Branch Specific 

Rates models). Typically, this involves contrasting whether pre-defined groups of 

species (foreground branches), characterized by a distinctive lifestyle such as parasitic 

bacteria, evolved under differential turnover rates, in comparison to the remaining 

phylogenetic lineages (background branches). 

 

2.3 Root family size model 
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 Like many other methods in phylogenetics, BadiRate uses the Felsenstein 

tree-pruning algorithm to calculate the likelihood of the model given the gene count 

data. The Felsenstein algorithm traverses the species tree from the phylogenetic tips to 

the root, following a stepwise procedure. This indeed begins with an observed family 

size at the phylogenetic tips (external nodes), to then estimate the probability of each 

potential family size at their immediately ancestral phylogenetic nodes. These 

probabilities are conditioned by the turnover rates proposed by the current ML 

optimization step. This process is repeatedly iterated until reaching the phylogenetic 

root. To complete likelihood calculations, nevertheless, the Felsenstein algorithm also 

requires a statistical distribution to model the family size at the phylogenetic root. 

BadiRate contemplates two options for this, including either Poisson (defined by one 

parameter) or Negative Binomial (two parameters) distributions; in both cases, the 

underlying parameters are automatically estimated by BadiRate. In practice, both root 

family size models can accommodate the gene count data comparably well, providing 

similar results overall, albeit a choice needs to be supplied by the user. This choice 

can be possibly guided by explicit statistical contrasts of competing root models, as 

described below. 

 

2.4 Contrasting hypotheses under different models 

 We refer to any specific combination of gene turnover, branch and root 

models as BadiRate supermodels. Contrasting the fit of such supermodels to gene 

count data is paramount to assess the statistical significance of different evolutionary 

scenarios and/or molecular processes, such as branch-specific accelerations of the 

BDI rates, whether birth and death rates are statistically different, the most 

appropriate root model, or the relevance of gene innovation itself.  
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 Several options to identify the best-fit supermodel exist, including 

Likelihood Ratio Tests (LRT) and the Akaike Information Criterion (AIC). These two 

methods control for the number of parameters, as more complex models will always 

fit the data better, yet the aim is to explain evolutionary processes with the simplest 

possible model. The LRT approach can only be implemented to contrast two models 

that are nested, in which the simplest one represents a particular instance of that most 

complex. This can refer to competing branch models such as GR (simplest) vs FR 

(most complex), and to competing turnover models such as BD (simplest) vs. BDI 

(most complex). More versatile, the AIC method can simultaneously contrast multiple 

BadiRate supermodels at once, whether nested or not. The number of parameters can 

be obtained from the supermodel specified. As an example, a supermodel assuming 

the same GD turnover model across all branches (GR branch model) and a Poisson 

distribution for the root (one additional parameter) will be characterized by three 

parameters (γ, δ and the additional parameter to model the root family size through a 

Poisson distribution). Replacing the GR by a FR branch model, in a rooted tree 

summarizing the phylogenetic relationship of 6 species (therefore 2 x 6 - 2 = 10 

branches; 6 external and 4 internal), would increase the number of parameters to 21, 

while additionally considering a Negative Binomial instead of a Poisson distribution 

for the root would involve 22 parameters. Together with the likelihood calculated by 

BadiRate, this provides flexibility to formally test as many biological hypotheses as 

conceived by the user. 

 

3. Running the program 

In this chapter we will leverage a hypothetical toy example designed to provide useful 

guidelines and tips on how-to use BadiRate, particularly noting potential (common) 
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misinterpretations. This comparative panel comprises a total of 14 species at different 

evolutionary distances, and closely mirrors the gene content of prokaryotic species 

(Fig. 2A), which can be appropriately analyzed using the GD model. 

 

3.1 Prepare the software and the data  

 BadiRate v1.35 is open-source and standalone software, available at 

http://www.ub.edu/softevol/badirate/. It does not require installation, and runs in any 

command-line interface under the Perl interpreter. BadiRate requires two sources of 

input data, namely the species tree, and the gene counts for each family and species. 

The branch lengths of the species tree should not be expressed in units of substitution 

rate, since these are shaped by lineage-specific evolutionary forces, such as 

demographic histories, and are thus relative. The species tree needs to be instead 

ultrametric, warranting that contemporaneous species evolved during the same 

amount of time, in absolute scale (e.g., mya), since their most recent common 

ancestor. This can be attained by using first RAxML v8 (Stamatakis 2014), followed 

by r8s (Sanderson 2003) (Fig. 2A; Note 1). The latter implements a semi-parametric 

approach to search for the absolute time scale that best fits the relative substitution 

rates, and given calibration points. As such calibration, we placed the divergence time 

of the root at 358 mya. The ultrametric tree (newick format) that we finally used was 

DataSet_ultrametric.tree (supplementary data file): 

((Sp_Out_L:338.947317,(Sp_Out_K:321.606396,(Sp_Out_J:289.

680865,(Sp_Out_I:270.157513,(Sp_Out_H:254.615370,(Sp_In_A

:56.744225,(Sp_In_B:32.900113,((Sp_In_C:9.143547,Sp_In_D:

9.143547):4.542730,(Sp_In_E:9.521834,(Sp_In_F:7.991694,Sp

_In_G:7.991694):1.530140):4.164443):19.213836):23.844112)

http://www.ub.edu/softevol/badirate/
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:197.871145):15.542143):19.523352):31.925531):17.340920):

19.052683,(Sp_Out_M:335.000000,Sp_Out_N:335.000000):23.00

0000); 

 

The second input required for BadiRate is the family size file, which is tabulated to 

summarize the gene count per gene family and species. This can be obtained using 

OMA [22] or similar  algorithms (see note 2), and in our example consists of  3,402 

finely-grained groups of homologous genes, also known as gene families, phyletic 

profiles or orthogroups (supplementary data file 2; Notes 2 and 3). This file was 

additionally supplemented with the counts of orphan genes for each species, in order 

to account for all protein-coding genes. In total, this resulted in a file with 14,071 

rows excluding the header (inputHOG.tsv; supplementary data file), where the 

first four orthogroups are: 

 

Group Sp_In_F Sp_In_D Sp_Out_I Sp_In_B 

 Sp_In_A Sp_Out_H Sp_In_E Sp_Out_M

 Sp_Out_K Sp_In_G Sp_Out_N Sp_Out_L

 Sp_In_C Sp_Out_J 

HOG00004        1       1       0       1       2       0       

1       0       0       1       0       0       1       0 

HOG00007        1       1       1       1       1       0       

1       1       0       1       1       1       1       1 

HOG00009        1       1       1       1       0       1       

1       1       1       1       0       0       1       1 
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HOG00015        2       2       3       2       1       1       

1       2       0       2       0       0       2       1 

 

 

 It is important to note that the species names must be exactly the same in 

both the newick and the family size files. To further describe an example, the second 

gene family, with id HOG00007, contains a single gene copy in all species, except in 

Sp_Out_H and Sp_Out_K where the gene family HOG00007 is absent. 

 

3.2  Running BadiRate 

3.2.1 Inference under the GR model 

Once prepared, the family size file (inputHOG.tsv) and the ultrametric species 

tree (DataSet_ultrametric.tree) are ready for use as input to BadiRate. As 

first supermodel, we considered: 

● a gain-and-death turnover model (-rmodel GD),  

● a Global Rates branch model (GR, by default), and  

● a Poisson distribution for the root model (-root_dist 1)  

 

In total, the four parameters of this supermodel were optimized by maximum 

likelihood (ML). Abbreviated as GD-GR-ML, the corresponding running command 

is: 

 

perl BadiRate.pl -sizefile inputHOG.tsv -treefile 

DataSet_ultrametric.tree -rmodel GD -root_dist 1 -out 

GR.out -unobs 1 -anc -outlier 
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 Using this command (the order of the command line options is irrelevant), 

the output will be saved into the file supplied after the -out flag (GR.out), but 

would be printed into the standard output channel otherwise. This command also has 

three other flags, -unobs 1, -outlier and -anc. The option -unobs 1 corrects 

for the (small) possibility that a gene family existed in the past, but its genes became 

lost via pseudogenization or deletion in all 14 species. Overlooking these unobserved 

families, therefore, would lead to an incomplete and partial view of the process, 

hence, to biased parameter estimations. We thus always recommend activating -

unobs 1, especially in genome-wide analyses, unless users aim at estimating the 

turnover rates specifically in a well-defined subset of gene families, and nowhere else. 

 

 The last two flags served to conduct further downstream analyses, both 

conditioned on the three parameter values estimated assuming the GD-GR-ML 

supermodel. More specifically, the -anc option performs a joint reconstruction of the 

number of genes in the ancestral nodes of the species tree, given the estimated GD 

rates, and separately for each gene family. Once the ancestral gene count is 

reconstructed, at the gene family level, it is then straightforward to compute the 

number of gene gains and losses that occurred at each gene family and phylogenetic 

branch, as the mere subtraction between the corresponding number of genes in the 

parental and descendant nodes. The total number of gene gain and losses per branch, 

then, is just the accumulated sum over all gene families. Such a minimum number of 

gene gains and losses is automatically calculated by BadiRate, provided that the -

anc option is activated. 
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 The last option, -outlier, pinpoints gene families that unlikely evolved 

under the estimated turnover rates; this is, that the probability of generating the 

minimum number of gene gains and losses in a particular phylogenetic branch and 

gene family, and under the inferred GD rates, is very low. This option is then 

extremely useful to identify specific gene families that underwent significant 

contraction or expansion bursts, potentially uncovering the impact of relaxed selection 

or adaptive evolution. If the outlier families were however systematically associated 

with the same phylogenetic branch, this option could solely reflect that the GR branch 

model is too simple, and that fitting the data requires accounting for turnover rate 

heterogeneity across branches. 

 

3.2.2 Specifying branch-specifics models 

 The extant number of genes across the 14 species reveals that Sp_In_A, 

Sp_In_C and Sp_In_F have unusually high numbers of protein-coding genes, 

suggesting that these species evolved through massive gene gain processes. To 

accommodate these potential lineage-specific expansions, we applied two additional 

branch models, allowing distinctive GD rates for these three species. The first one 

assumes that there are two different types of GD rates (two branch classes), one for 

Sp_In_A, Sp_In_C and Sp_In_F, and the other for the rest (supermodel GD-BS1-ML, 

5 parameters), as specified by the following command: 

 

perl BadiRate.pl -sizefile inputHOG.tsv -treefile 

DataSet_ultrametric.tree -rmodel GD -root_dist 1 -bmodel 

"18->6:10->8:14->12" -out BS1.out -unobs 1 -anc -outlier 
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Note the addition of an extra flag, -bmodel "18->6:10->8:14->12". That 

flag value indicates to BadiRate that the phylogenetic branches 18->6, 10->8 and 14-

>12 evolved under their own turnover rates, potentially different from the rest of 

lineages, and that these three branches have identical GD rates (as indicated by colon 

separators). These three branch identifiers correspond to the terminal branches leading 

to Sp_In_A (18->6), Sp_In_C (10->8) and Sp_In_F (14->12). BadiRate offers a 

simple way to know the identifier of each phylogenetic branch by performing a dry 

run, a test execution, with the -print_ids option: 

 

perl BadiRate.pl -sizefile inputHOG.tsv -treefile 

DataSet_ultrametric.tree -rmodel GD -root_dist 1 -

print_ids 

 

The outcome of that execution is: 

((Sp_Out_L_1:338.947317,(Sp_Out_K_2:321.606396,(Sp_Out_J_

3:289.680865,(Sp_Out_I_4:270.157513,(Sp_Out_H_5:254.61537

0,(Sp_In_A_6:56.744225,(Sp_In_B_7:32.900113,((Sp_In_C_8:9

.143547,Sp_In_D_9:9.143547)10:4.542730,(Sp_In_E_11:9.5218

34,(Sp_In_F_12:7.991694,Sp_In_G_13:7.991694)14:1.530140)1

5:4.164443)16:19.213836)17:23.844112)18:197.871145)19:15.

542143)20:19.523352)21:31.925531)22:17.340920)23:19.05268

3,(Sp_Out_M_24:335.000000,Sp_Out_N_25:335.000000)26:23.00

0000)27; 
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where the external node identifier is given after the species name, both separated by 

the underbar symbol. The identifiers of internal phylogenetic nodes, in turn, are 

embedded within the field usually reserved to bootstrap support values, as defined by 

the newick nomenclature. To obtain the identifier of each branch, then, the user 

simply needs to concatenate the id of the parental node, followed by a directed arrow 

and the id of the descendant node (Fig. 2A). 

  

Since Sp_In_A, Sp_In_C and Sp_In_F do not form a monophyletic clade, it is likely 

that their multigene family expansions resulted from lineage-specific evolutionary 

pressures. The following model allows these three lineages to have evolved under 

independent turnover rates (GD-BS2-ML): 

 

perl BadiRate.pl -sizefile inputHOG.tsv -treefile 

DataSet_ultrametric.tree -rmodel GD -root_dist 1 -bmodel 

"18->6_10->8_14->12" -out BS2.out -unobs 1 -anc -outlier  

 

Branch ids are now separated by underbars, "18->6_10->8_14->12", instead of 

colon symbols. This informs BadiRate that these three lineages represent free, 

independent branch classes, whereas all the remaining branches belong to another 

independent, background, class (9 parameters).  

 

BadiRate can accommodate as many branch classes as needed, and each class can 

include multiple branches. As an example, the following command:  
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perl BadiRate.pl -sizefile inputHOG.tsv -treefile 

DataSet_ultrametric.tree -rmodel GD -root_dist 1 -bmodel 

"18->6:10->8_14->12" -out BS3.out -unobs 1 -anc -outlier  

	

would indicate that the lineages leading to Sp_In_A (18->6) and Sp_In_C (10->8) 

evolved under the same turnover rates, while Sp_In_F (14->12) represented another 

foreground lineage, both differentiated from the background (the rest) branch class.  

 

3.2.3 Inference under the most complex model, the FR model 

Finally, we also evaluated the most complex branch model, which assumes that each 

phylogenetic branch evolved under its own turnover rates. With 14 species in the 

analysis, thus 2 x 14 - 2 = 26 phylogenetic branch classes, the total number of 

parameters of this model amounted to 53. Since separating each branch identifier by 

an underbar might be tedious, and prone to errors, BadiRate implements a shortcut for 

specifying the Free Rates (FR) branch model, whereby the specific running command 

simplifies to: 

 

perl BadiRate.pl -sizefile inputHOG.tsv -treefile 

DataSet_ultrametric.tree -rmodel GD -root_dist 1 -bmodel 

FR -out FR.out -unobs 1 -anc -outlier  

 

ML optimization is still perfectly feasible despite the much higher dimensionality in 

the parametric space. Yet, this analysis comes with additional computational costs. In 

certain situations, users might however aim to perform a more rapid, preliminary, 

exploration of the turnover process. To this end, BadiRate also implements two faster 
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estimation procedures, based on parsimony. To switch to these estimation procedures, 

the flag -ep should be supplied, followed either by CSP (Sankoff parsimony; GD-

FR-CSP) or CWP (Wagner parsimony; GD-FR-CWP). 

 

perl BadiRate.pl -sizefile inputHOG.tsv -treefile 

DataSet_ultrametric.tree -rmodel GD -root_dist 1 -bmodel 

FR -out FR.CSP.out -unobs 1 -anc -outlier -ep CSP 

 

Parsimony-based inference can certainly help explore the turnover rates in only a few 

minutes at most, even under the most complex scenarios, such as the FR model. This 

can provide, in a first glimpse, the guidelines to group branches into a number of 

classes, each with its own distinctive turnover rate. This immediately disregards a 

large fraction of branch models deemed as incompatible. For example, it might be 

unnecessary to test for different turnover rates in branches A and B, if both branches 

show very similar turnover rates under FR parsimonious inference. Contrasting the 

remaining subset of branch models might be instead prioritized, through the more 

rigorous and formal framework for hypothesis testing provided by ML. Analysing by 

ML the four supermodels described in this chapter yielded the following fit to the 

data: 

Model 
Ln(lkl) #parameters AIC 

GD-GR-ML -89,559.4853 3 179,124.9706 

GD-BS1-ML -80,687.1326 5 161,384.2652 

GD-BS2-ML -78,423.4202 9 156,860.8404 
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GD-FR-ML -72,239.7226 53 144,585.4452 

As indicated in the table, the GD-FR-ML supermodel substantially improved the 

likelihood (lkl) (i.e., greater Ln(lkl)), in comparison to simpler branch models. 

Importantly, this better fit not only owes to its greater number of parameters, as the 

Akaike Information Criterion (AIC), which would penalize for a potential excess of 

parameters (AIC = 2 x #parameters - 2 x ln(lkl)), is considerably lower for the FR 

model than for the other three models. At this point, it is important to remember that 

the four branch models reported here serve to exemplify the BadiRate usage, and to 

provide intuitive and detailed insights into its versatility, but do not intend to represent 

an exhaustive analysis of the multigene family evolution across the 14 hypothetical 

species.  

 

3.3  Output 

This section will describe the output file corresponding to the FR model, the model 

that best fits the data. As all BadiRate output files, the FR.out file is organized in 

two different sections. The first is delimited by the INPUT and END INPUT tokens, 

and simply summarizes the input parameters, once parsed by BadiRate, helping users 

to validate that all options are correctly specified, and interpreted by the software. It 

also includes a subsection associating each phylogenetic branch with its 

corresponding class, according to the stipulated branch model.  

 

The second section begins with the token OUTPUT, and is further subdivided into 

subsections. Starting by the token ##Family Turnover Rates, the first such 

subsection reports the turnover rate estimates per branch class (Fig. 2B), as well as the 
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likelihood of the GD-FR-ML supermodel. The remaining subsections disclose the 

results from the optional run modes, if any. For example, by activating the -anc 

option, BadiRate appends a long subsection to the output file, with the reconstruction 

of the estimated number of copies in the ancestral nodes. This subsection begins with 

the token ##Ancestral Family Size, and includes as many rows as multigene 

families are present in the input family size file. Each row represents a tree in newick 

format, where the number of genes in the ancestral nodes is given, again, in the field 

reserved for the bootstrap values. Still within this subsection, the final newick tree 

outlines the total number of gene copies per node, as summing up the ancestral 

reconstructions over all families. This is followed by a shorter tabulated subsection, 

delimited by the ##Minimum number of gains and losses per 

branch token, which summarizes the minimum number of gene gains and losses per 

phylogenetic branch. The -outlier option, in turn, activates another subsection 

that starts with ##Outlier Families per Branch, which lists all gene 

families that unlikely evolved under the corresponding turnover rates, identified as 

previously described (False Discovery Rate with a significance cut-off value of 5%).  

 

3.3.1 Interpretation 

In line with the FR representing the best-fit branch model, the estimated GD rates 

were found to vary highly across phylogenetic branches (Notes 4-6). More 

specifically, gain rates ranged from γ = 0.0000 to a maximum of 0.0086 gene gains 

per mya. Likewise, death rates went from δ = 0.0000 to 0.0157 gene losses (gene 

deletions or pseudogenizations) per ancestral gene and mya. Note that only the death 

rate is density-dependent, and thus normalized by the number of ancestral (pre-

existing) genes, in contrast to the gain rate. 
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Considering the evolutionary time spanned by the species’ phylogeny (the 

phylogenetic root is 358 mya), the underlying GD turnover rates predict thus a highly 

dynamic scenario, involving numerous gene gain and loss events. This high turnover 

is well illustrated by the joint ancestral reconstruction (Fig. 2C), which portrays an 

overall increase in the number of genes toward more recent times (Note 7). This is 

particularly marked along the branches leading to the Sp_In_A, Sp_In_C and 

Sp_In_F, which nearly doubled their gene repertoire in relation to their immediately 

ancestral nodes. Investigating whether the corresponding outlier families are enriched 

for specific functional categories (e.g., through Gene Ontology analyses) would 

additionally provide biological insights into their adaptive potential, in relation to 

each species’ biology. Multiple procedures to assess for functional enrichment exist, 

and are already well-described elsewhere, beyond the scope of this chapter.
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4. Notes 

1) The accuracy of the phylogenetic species tree will depend on both the underlying 

multiple sequence alignment (MSA) and the phylogenetic reconstruction. As an 

example, users can leverage M-COFFEE v10.00.r1607 [29] to build the MSA, and 

then filter for poorly (uncertain) aligned regions, with trimAL [30]. The final MSA 

was then used to infer the phylogenetic relationships with RAxML v8 [31], and to 

generate a dated ultrametric tree with the r8s software [32], leveraging the divergence 

at the root as calibration point. Equivalent approaches for generating ultrametric trees 

are also feasible. 

 

2) Our hypothetical example was created using OMA [22] to define orthogroups. 

Other software/algorithms are also commonly used to this end, such as OrthoMCL 

[20] or OrthoFinder [21]. Based on slightly different approaches, with different levels 

of sensibility and specificity, these methods can however lead to different orthogroup 

definitions [33], that could eventually yield somewhat incongruent downstream 

results, including in BadiRate.  

 

3) The resulting family size file might include count data from protein-coding genes 

and transposable elements. By their own idiosyncrasy, both have different turnover 

dynamics. Consequently, BadiRate might fail in finding turnover rates that fit both 

types of elements at once, reporting the following error message: “WARN: Try 

using a more complex model, or changing the starting 

values. See the -rmodel, -bmodel and -start_val options”. 

This indicates that the count data is excessively heterogeneous to be fit within the 
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stipulated supermodel, and that more complex alternatives need to be considered. This 

is however not always enough to fix the problem, and filtering out transposable 

elements and/or outstandly outlier families is then advisable. 

 

4) The methods implemented in BadiRate are tailored to investigate genome-wide 

data. Some researchers, however, aim to estimate gene turnover rates for a single or 

small subset of families only. We caution that reduced gene family data might provide 

limited information on the gene turnover process, and that BadiRate does not yet 

provide the variance around the point ML estimates. If dealing with a moderate 

number of orthogroups, turnover uncertainty could be potentially assessed by 

bootstrapping or jackknifing them, as commonly done in non-parametric statistics. 

Alternatively, it could be convenient to perform some complementary analyses based 

on the parsimony-based methods (e.g., the -ep CSP or -ep CWP options) [34]. 

 

5) Although this will be mitigated in the forthcoming years, the continuity of current 

genome sequences largely varies across species. In species with highly fragmented 

assemblies, determining the exact number of gene copies might be challenging, and 

most likely underestimated as repetitive gene copies remain undetected. These 

missing gene copies do not represent deletion or pseudogenization events, but mere 

methodological artefacts that can inflate the death turnover rates, creating spurious 

heterogeneities in the turnover rates across branches. In such exceptional cases, it 

might be worth considering alternative and publicly-available approaches that 

explicitly model uncertainty in the gene count data [19], even though it might be 

considerably safer to disregard species with extremely poor genome assemblies from 

these types of analyses. Evaluating gene completeness, or the assembled genome size 
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relative to the expected one, might constitute recommendable practices prior to further 

analyses and interpretations. 

  

6) Ancestral polymorphisms represent a well-known problem in phylogenetics [35], 

also for BadiRate. Briefly, genomic variation in an ancestral species might be 

unevenly inherited by two or more descending lineages, during their speciation. As 

differentiating the newly formed species, ancestral polymorphisms - already present 

in their common ancestor - might be then misinterpreted as evolutionary divergence 

after speciation, hence overestimating the true evolutionary rate. Expectedly, the 

impact of ancestral polymorphisms is more perceptible immediately after speciation, 

when new divergence is still relatively small compared to ancestral variation. With 

increasing evolutionary divergence, however, the relative contribution of ancestral 

polymorphisms to variation tends to be neglectable. The same occurs at the multigene 

family level. Individuals from a hypothetical ancestral species might have carried 

Copy Number Variation (CNV), and have then evolved as separate species with 

different numbers of genes. The FR branch model can accommodate (but not 

explicitly model) such branch variation, but simpler branch models as GR might fail. 

A prudent sanity-check, prior to any branch model comparison, is thus to quantify the 

correlation between the inferred turnover rates and the corresponding branch lengths. 

This can be rapidly done assuming an FR model and under a parsimonious estimation 

procedure (-ep CWP or -ep CSP). Theoretically, there should be no such 

correlation, as turnover rates are already normalized by absolute units of evolutionary 

time (e.g., γ stands for the number of gene gains per mya). Nevertheless, greater 

turnover rates in shorter branches could reveal issues with ancestral polymorphisms, 

either at the sequence level while inferring the ultrametric species tree, or at the CNV 
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level hinting for large ancestral CNV variation erroneously misattributed as gene 

turnover after speciation. Specifying separate evolutionary classes for short branches 

with inflated turnover rates can mitigate the problem, but excluding closely-related 

species represents a more conservative alternative. 

 

7) The joint ancestral reconstruction performed here revealed an increasing number of 

genes toward the tips of the species tree, particularly marked in the lineages leading to 

Sp_In_A, Sp_In_C, and Sp_In_F. Similar trends have been consistently reported by 

other scholars, regardless of the species studied. The universality of this trend is 

legitimately suspicious, and might suggest a potential bias in ancestral gene 

reconstructions. This however should not be attributed to BadiRate, which clearly 

outperforms competing methods in simulation-based benchmarks. Such bias, in fact, 

is introduced at earlier stages, during multigene family definition. Understandably, the 

task of defining gene families suffers from decreasing power with more remote 

homologies, as protein sequences become highly divergent, unrecognizable. This 

implies that ancestral but remote genes remain undetected as shared across species, 

and thus that the number of genes at ancestral nodes appears to be smaller than really 

is, creating this spurious trend of universally expanding gene families. The extent of 

this bias remains understudied, but expected to be pronounced if dealing with deeply 

divergent species, while largely ameliorated by gathering a set of species that provide 

more even and denser phylogenetic coverage over the time-course of evolution. 

 

Acknowledgments 



 

26 
 

We thank Vadim A. Pisarenco for help with drawing some figures. This work was 

supported by the Ministerio de Economía y Competitividad of Spain (PID2019-

103947GB). 

 

 

 



 

27 
 

References  

1.  Ellegren H (2014) Genome sequencing and population genomics in non-model 
organisms. Trends in Ecology & Evolution 29:51–63. 
https://doi.org/10.1016/j.tree.2013.09.008 

2.  Bleidorn C (2016) Third generation sequencing: technology and its potential 
impact on evolutionary biodiversity research. Systematics and Biodiversity 
14:1–8. https://doi.org/10.1080/14772000.2015.1099575 

3.  Douglas GM, Langille MGI (2019) Current and Promising Approaches to 
Identify Horizontal Gene Transfer Events in Metagenomes. Genome Biology 
and Evolution 11:2750–2766. https://doi.org/10.1093/gbe/evz184 

4.  Pollard MO, Gurdasani D, Mentzer AJ, Porter T, Sandhu MS (2018) Long reads: 
their purpose and place. Hum Mol Genet 27:R234–R241. 
https://doi.org/10.1093/hmg/ddy177 

5.  Pérez-Losada M, Arenas M, Galán JC, Bracho MA, Hillung J, García-González 
N, González-Candelas F (2020) High-throughput sequencing (HTS) for the 
analysis of viral populations. Infection, Genetics and Evolution 80:104208. 
https://doi.org/10.1016/j.meegid.2020.104208 

6.  Álvarez-Lugo A, Becerra A (2021) The Role of Gene Duplication in the 
Divergence of Enzyme Function: A Comparative Approach. Frontiers in 
Genetics 12:1253. https://doi.org/10.3389/fgene.2021.641817 

7.  Vieira FG, Sánchez-Gracia A, Rozas J (2007) Comparative genomic analysis of 
the odorant-binding protein family in 12 Drosophila genomes: purifying 
selection and birth-and-death evolution. Genome Biology 8:R235. 
https://doi.org/10.1186/gb-2007-8-11-r235 

8.  Librado P, Rozas J (2013) Uncovering the functional constraints underlying the 
genomic organization of the odorant-binding protein genes. Genome Biol Evol 
5:2096–2108. https://doi.org/10.1093/gbe/evt158 

9.  Han K, Li Z, Peng R, Zhu L, Zhou T, Wang L, Li S, Zhang X, Hu W, Wu Z, Qin 
N, Li Y (2013) Extraordinary expansion of a Sorangium cellulosum genome 
from an alkaline milieu. Sci Rep 3:2101. https://doi.org/10.1038/srep02101 

10.  Johnston C, Caymaris S, Zomer A, Bootsma HJ, Prudhomme M, Granadel C, 
Hermans PWM, Polard P, Martin B, Claverys J-P (2013) Natural Genetic 
Transformation Generates a Population of Merodiploids in Streptococcus 
pneumoniae. PLOS Genetics 9:e1003819. 
https://doi.org/10.1371/journal.pgen.1003819 

11.  Clifton BD, Jimenez J, Kimura A, Chahine Z, Librado P, Sánchez-Gracia A, 
Abbassi M, Carranza F, Chan C, Marchetti M, Zhang W, Shi M, Vu C, Yeh S, 
Fanti L, Xia X-Q, Rozas J, Ranz JM (2020) Understanding the Early 
Evolutionary Stages of a Tandem Drosophilamelanogaster-Specific Gene 



 

28 
 

Family: A Structural and Functional Population Study. Molecular Biology and 
Evolution 37:2584–2600. https://doi.org/10.1093/molbev/msaa109 

12.  Nei M, Rooney AP (2005) Concerted and birth-and-death evolution of multigene 
families. Annu Rev Genet 39:121–152. 
https://doi.org/10.1146/annurev.genet.39.073003.112240 

13.  Eirín-López JM, Rebordinos L, Rooney AP, Rozas J (2012) The birth-and-death 
evolution of multigene families revisited. Genome Dyn 7:170–196. 
https://doi.org/10.1159/000337119 

14.  Reams AB, Roth JR (2015) Mechanisms of Gene Duplication and 
Amplification. Cold Spring Harb Perspect Biol 7:a016592. 
https://doi.org/10.1101/cshperspect.a016592 

15.  Wang S, Chen Y (2018) Phylogenomic analysis demonstrates a pattern of rare 
and long-lasting concerted evolution in prokaryotes. Commun Biol 1:1–11. 
https://doi.org/10.1038/s42003-018-0014-x 

16.  Hahn MW (2007) Bias in phylogenetic tree reconciliation methods: implications 
for vertebrate genome evolution. Genome Biology 8:R141. 
https://doi.org/10.1186/gb-2007-8-7-r141 

17.  Csűös M (2010) Count: evolutionary analysis of phylogenetic profiles with 
parsimony and likelihood. Bioinformatics 26:1910–1912. 
https://doi.org/10.1093/bioinformatics/btq315 

18.  Librado P, Vieira FG, Rozas J (2012) BadiRate: estimating family turnover rates 
by likelihood-based methods. Bioinformatics 28:279–281. 
https://doi.org/10.1093/bioinformatics/btr623 

19.  Han MV, Thomas GWC, Lugo-Martinez J, Hahn MW (2013) Estimating gene 
gain and loss rates in the presence of error in genome assembly and annotation 
using CAFE 3. Mol Biol Evol 30:1987–1997. 
https://doi.org/10.1093/molbev/mst100 

20.  Li L, Stoeckert CJ, Roos DS (2003) OrthoMCL: identification of ortholog 
groups for eukaryotic genomes. Genome Res 13:2178–2189. 
https://doi.org/10.1101/gr.1224503 

21.  Emms DM, Kelly S (2019) OrthoFinder: phylogenetic orthology inference for 
comparative genomics. Genome Biology 20:238. 
https://doi.org/10.1186/s13059-019-1832-y 

22.  Altenhoff AM, Levy J, Zarowiecki M, Tomiczek B, Vesztrocy AW, Dalquen 
DA, Müller S, Telford MJ, Glover NM, Dylus D, Dessimoz C (2019) OMA 
standalone: orthology inference among public and custom genomes and 
transcriptomes. Genome Res 29:1152–1163. 
https://doi.org/10.1101/gr.243212.118 



 

29 
 

23.  Bolotin E, Hershberg R (2016) Bacterial intra-species gene loss occurs in a 
largely clocklike manner mostly within a pool of less conserved and constrained 
genes. Sci Rep 6:35168. https://doi.org/10.1038/srep35168 

24.  Merhej V, Royer-Carenzi M, Pontarotti P, Raoult D (2009) Massive comparative 
genomic analysis reveals convergent evolution of specialized bacteria. Biology 
Direct 4:13. https://doi.org/10.1186/1745-6150-4-13 

25.  Tria FDK, Martin WF (2021) Gene duplications are at least 50 times less 
frequent than gene transfers in prokaryotic genomes. Genome Biology and 
Evolution. https://doi.org/10.1093/gbe/evab224 

26.  Dittmar K, Liberles D (2011) Evolution after Gene Duplication 

27.  Ohno S (2013) Evolution by Gene Duplication. Springer Science & Business 
Media 

28.  Ehrenreich IM (2020) Evolution after genome duplication. Science 368:1424–
1425. https://doi.org/10.1126/science.abc1796 

29.  Wallace IM, O’Sullivan O, Higgins DG, Notredame C (2006) M-Coffee: 
combining multiple sequence alignment methods with T-Coffee. Nucleic Acids 
Res 34:1692–1699. https://doi.org/10.1093/nar/gkl091 

30.  Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T (2009) trimAl: a tool for 
automated alignment trimming in large-scale phylogenetic analyses. 
Bioinformatics 25:1972–1973. https://doi.org/10.1093/bioinformatics/btp348 

31.  Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and 
post-analysis of large phylogenies. Bioinformatics 30:1312–1313. 
https://doi.org/10.1093/bioinformatics/btu033 

32.  Sanderson MJ (2003) r8s: inferring absolute rates of molecular evolution and 
divergence times in the absence of a molecular clock. Bioinformatics 19:301–
302. https://doi.org/10.1093/bioinformatics/19.2.301 

33.  Altenhoff AM, Boeckmann B, Capella-Gutierrez S, Dalquen DA, DeLuca T, 
Forslund K, Huerta-Cepas J, Linard B, Pereira C, Pryszcz LP, Schreiber F, da 
Silva AS, Szklarczyk D, Train C-M, Bork P, Lecompte O, von Mering C, 
Xenarios I, Sjölander K, Jensen LJ, Martin MJ, Muffato M, Gabaldón T, Lewis 
SE, Thomas PD, Sonnhammer E, Dessimoz C (2016) Standardized 
benchmarking in the quest for orthologs. Nat Methods 13:425–430. 
https://doi.org/10.1038/nmeth.3830 

34.  Almeida FC, Sánchez-Gracia A, Campos JL, Rozas J (2014) Family size 
evolution in Drosophila chemosensory gene families: a comparative analysis 
with a critical appraisal of methods. Genome Biol Evol 6:1669–1682. 
https://doi.org/10.1093/gbe/evu130 

35.  Charlesworth D (2010) Don’t forget the ancestral polymorphisms. Heredity 
105:509–510. https://doi.org/10.1038/hdy.2010.14 



 

30 
 

 

  



 

31 
 

Figure Legends 

Fig. 1 Schematic representation of three of the birth-and-death models 

implemented in BadiRate. 

Panel A. BDI (birth-death-and innovation) model, including the density-independent 

innovation (i) rate. In contrast to the ꞵ (birth) and δ (death) rates, ι is not normalized 

by the number of pre-existing genes, but solely expressed as the number of gene gains 

per unit of time (commonly expressed per million of years). This model is appropriate 

to deal with biological data that eventually incorporates new copies by HGT, by de 

novo origin or to model genes with untraceable gene homologies. This model, 

therefore, permits the transition from 0 to 1 gene.  

Panel B. The standard BD (birth-and-death) model. This model is described by two 

density-dependent parameters, ꞵ (birth) and δ (death), representing the number of 

gene gains (for birth) or gene losses (for death) per ancestral number of copies 

(number of genes in the ancestral node of the phylogenetic tree) and unit of time. 

Under this model the state transition from 0 to 1 is impossible, as new copies can only 

be acquired through duplications of pre-existing genes  

Panel C. GD (gain-and-death) model. This model has a density-independent gain 

parameter (γ) and the density-dependent death parameter. This model is thus 

particularly appropriate to deal with biological data that includes substantial HGT or 

de novo origin events, such as transcription factor binding sites (TFBSs), small non-

coding RNAs (miRNAs, piRNAs, etc) and prokaryotic organisms, as exemplified in 

this chapter. 

 

Fig. 2: A) Ultrametric species tree used for this analysis. The total number of protein-

coding genes of the corresponding genome are indicated in parenthesis. The numbers 
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in the internal and external nodes indicate their IDs. B) Cladogram of the 

phylogenetic tree showing the gain rates (green) and death rates (red). Rate values are 

multiplied by 1,000 to improve readability. Estimates in panels B and C were 

obtained from the best-fit GD-FR-ML model. C) Cladogram of the phylogenetic tree 

showing the number of gene gains (values in green) and gene losses (red) per 

phylogenetic branch. The number of genes in ancestral nodes are indicated in yellow 

boxes.  

 

 

 


