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Introduction

@ Wind turbulence = main disturbance for many
mechanical systems operating outdoors
wind turbines, wind response of solar panels, kites for
traction or electric power generation, sailing, ...

@ A need to study wind effects in order to design a suitable control law capable of rejecting them
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Introduction

@ Wind turbulence = main disturbance for many
mechanical systems operating outdoors
wind turbines, wind response of solar panels, kites for
traction or electric power generation, sailing, ...

@ A need to study wind effects in order to design a suitable control law capable of rejecting them

@ Wind turbulence = non-stationary and stochastic process
= Models based on spectral characteristics
@ Design of models capable of time simulating wind turbulence effects on systems

Objectives

Design an accurate model to well simulate realistic wind speed and provide a wind turbulence generator.J
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Experimental protocol

@ 28 datasets recorded near Montpelier, France

@ Ultrasonic anemometer integrated into a Vaisala WXT520 weather transmitter
range: [0, 60]m/s; accurace: +3% in [0, 36]m/s and +5% in [36, 60]m/s

 Wind speed studied over a period of 3h @ Study focus'ed on spectral cha.racterlstlcs (PSD)
at frequencies below 0.1 Hz with a

= modeling only short-term fluctuations .
quasi-constant average speed
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State of the art
[ ]

© State of the art
@ Wind speed components
@ von Karman model
@ Model identification
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f the art

Wind speed components

Synoptic peak

@ Spectral analysis of wind power over a long period
of time = Several scales of fluctuations [van der

Turbulence component |

o Energy gap (156min < T < 2h)
@ Turbulence: short periods (T < 10min)

1
Hoven (1957)] Ssl Turbulence peak |

= |

@ Spectrum divided into 3 parts 52 ot !
2 i

@ Seasonal: long periods (T > 3h) g !

;

1

. Seasonal component T T__ _ __ _ _______
@ Turbulence peak has a period of 76s 0 N ; o
SRS A S & P FF
. RS I & o FF 1
@ Frequency range [ 5o, =] = [1.6 10 *Hz,0.2Hz] A N RO

1T
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State of the art
L]

Wind speed components

@ Spectral analysis of wind power over a long period ol SYplc pesk
of time = Several scales of fluctuations [vander | /[ \ .
Hoven (1957)] Ssl
@ Spectrum divided into 3 parts gz Bitinal eak |
@ Seasonal: long periods (T > 3h) g
o Energy gap (156min < T < 2h) .
@ Turbulence: short periods (T < 10min)
. Seasonal component T T__ _ __ _ _______
@ Turbulence peak has a period of 76s 0 N i
S S B ¢ S EF S
@ Frequency range [ 5o, =] = [1.6 10 *Hz,0.2Hz] SR
1T
Wind speed components
Wind speed can be expressed as
V() =V (t) + Viurs(t) (1)
where V() is the long-term component and Vi, (%) the turbulence component.

/

I. van der Hoven (1957), “Power Spectrum of Horizontal Wind Speed in the Frequency Range from 0.0007 to 900 Cycles Per Hour.”
Journal of Atmospheric Sciences 14(2) 160-164 v9(4) 341-351.
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State of the art
[ o]

Wind turbulence PSD approximation

@ The von Karmdn model approximates the wind speed turbulence PSD [Kdrman (1948)]:

oL
Svr(f)= Yy /6 (2)
(1+70.8(%f) )

where ¢ is the turbulence standard deviation, L is the length scale and V is the mean speed
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f the art

Wind turbulence PSD approximation

@ The von Karmdn model approximates the wind speed turbulence PSD [Kdrman (1948)]:

402 L

Svr(f)= (1+70.8(5f)2)5/6 (2)

where ¢ is the turbulence standard deviation, L is the length scale and V is the mean speed

@ The model is tuned by 2 parameters:

o length scale L = average size of the fluctuations in terms of distance
from Engineering Sciences Data Unit (ESDU) report:

o= .0.35_-0.063
Lespu =252z, (3)

where z is the altitude and zg is a surface roughness parameter.

/ T. von Karman (1948), “Progress in the Statistical Theory of Turbulence.” Proceedings of the National Academy of Sciences vol. 34, no.
11, pp.530 LP - 539. 8/26



e art

Wind turbulence PSD approximation

@ The von Karmdn model approximates the wind speed turbulence PSD [Kdrman (1948)]:

402 L

Svr(f)= (1+70.8(‘L/f)2)5/6 (2)

where ¢ is the turbulence standard deviation, L is the length scale and V is the mean speed

@ The model is tuned by 2 parameters:

o length scale L = average size of the fluctuations in terms of distance
from Engineering Sciences Data Unit (ESDU) report:

55 ,0.35_—0.063
Lgspu =252"""z, (3)
where z is the altitude and zg is a surface roughness parameter.

o turbulence intensity / = &
from International Electrotechnical Commission (IEC) report is:

5.6
Itpc = Iy (0.75 + ?) (4)

/ T. von Karman (1948), “Progress in the Statistical Theory of Turbulence.” Proceedings of the National Academy of Sciences vol. 34, no.
11, pp.530 LP - 539. 8/26



State of the art
oe

Shaping filter

Wind PSD approximation # Time simulation ®

Random white noise Wind speed

= Need to use shaping filters Swn(P) = 1) HyxGf) )
VK

Hv k(jf) = the filter transfer function stemming from the von Karmdn model

K

SVK(f) = 3576 (5)
(1+ ()"
where K = 402% and 7 = \/70.8%
Svi(f) = Swn(HHvk () =|Hvk (£)I* = Hv (if ) Hy 5 (if) (6)
The resulting transfer function:
HywGf) - —YE ™)
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State of the art
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Identification results

@ Minimization of the cost function:
1 X = 2
J=NZ|SdB(fz')*SdB(quﬁ)| (8)
i=1

by using the nonlinear simplex algorithm

@ The von Kiarman model provides a good fit in low
frequency

@ Need to improve the fit in middle and high frequency
High frequency slope fixed to 5/6
= Constraint that can be released according to real
data

PSD (dB/Hz)

Measured

—©&— Von Karman
:

10

10°
Frequency (Hz)

102
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Improved fractional models
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Q Improved fractional models
@ Davidson-Cole model
@ Cole-Cole model
@ Improved Cole-Cole model
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Davidson-Cole model

A direct extension is to use a Davidson-Cole form with
a variable non-integer order v:

VE Identification results :
HDC(S) = p U (9)
(1 + —s) sk
2
L 14r - / h\\
The resulting PSD expression: Last a
\
. . * 1.3 /\/
Spc(f)=Hpc(f)Hpc(if) E O
with VR
. K
Hpce(if) =

(L+imf)"

/ Davidson, D. W. and Cole, R. H. (1951), “Dielectric relaxation in
glycerol, propylene glycol, and n-propanol.” The Journal of Chemical

Physics, 19(12):1484-1490, (1951).
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Improved fractional models

Davidson-Cole model

A direct extension is to use a Davidson-Cole form with
a variable non-integer order v:

Hpc(s) =

The resulting PSD expression:

Spc(f)=Hpc(if)Hpc(jf)"
with
VK

Hpe(jf) = i)y’

7/ Davidson, D. W. and Cole, R. H. (1951), “Dielectric relaxation in
glycerol, propylene glycol, and n-propanol.” The Journal of Chemical

Physics, 19(12):1484-1490, (1951).

Identification results :

Measured
-5 | —e— Von Karman
--$--DC
4o b . .
10 10 102 107

Frequency (Hz)

@ The DC model fits well the measurements in high
frequency (f > 0.01Hz) thanks to the estimated
v e [1.30,1.48] # 5/6 (~ 0.833)
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Improved fractional models

Cole-Cole model

An improved model transfer function based on the
Cole-Cole form (CC model):

(10)

The resulting PSD expression:

Scc(f)=Hee(if)Hee(if)*
K

T 142008 (W) (Ff)Y + (7))

K.S. Cole and R.H. Cole (1941), “Dispersion and absorption in
dielectrics |. alternating current characteristics” The Journal of

chemical physics v9(4), 341-351.
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Improved fractional models

Cole-Cole model

Identification results :

An improved model transfer function based on the
Cole-Cole form (CC model):

Hee(s) = ————- (10)
)

The resulting PSD expression: or Measred
—5— Von Karman
Sr|-—<%-bC
Scc(f)=Hec(if)Hee(if)* oL |
K 10 103 102 107"

Frequency (Hz)

1+2cos (vE) (Tf)¥ + (1f)?
@ The CC model fits well the measurements in high
"/ K. Cole and R.H. Cole (1941), “Dispersion and absorption in frequency (f > 0.01Hz) thanks to the estimated
dielectrics |. alternating current characteristics” The Journal of IS [116, 125] * 5/6 (% 0833)

chemical physics v9(4), 341-351. 13/26



Impro actional models

Improved Cole-Cole model: CCx2 model

Addition of a second fractional order cell to the
Cole-Cole model (CCx2 model):

VK
Heooxa(s) = = — (11)
(T (F)) 1+ (329)7)
= A second slope for a better fit in middle Identification results :
frequency
The resulting PSD expression:
K
Scox2(f) = =—F="= 12
D= DD (12
with

Di(f)=1+2cos (Z/g) (mf)” + (Tlf)QV
Dy(f)=1+ 2cos(y7r)(7—2f)2v . (T2f)41/
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Improved fractional models
o0

Improved Cole-Cole model: CCx2 model

Addition of a second fractional order cell to the
Cole-Cole model (CCx2 model):

Identification results :

r———t " T
\/? P10} S S—— :@: :‘1 S e
H s) = 11 SRR |
corl) o @om W By
= A second slope for a better fit in middle g 10f “ lUm‘
frequency 5 sl ‘
The resulting PSD expression: £ —
K or —&— Von Karman
—<--DC
S x = < 12 Srl-o-
co(1) = 5 R D) (12) —a—Goe
with e 10* 10° 10°? 10!

Frequency (Hz)

Di(f)=1+2cos (Vg) (rif)” + (Tlf)QV @ Good fit in high frequency

o i @ Static gain equal to the von Karman one
Ds(f) = 1+2cos(vm)(r2f)™ + (72f) L
@ Improved fit in middle frequency
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fractional models

Identification results

—&— Von Karman
Table: Comparison between the mean nAlC of the 22 e ég )
different models 2 —8—coe
~y o7
Model Number of Mean nAIC il
parameters
von Kiarman 2 2.027
Davidson-Cole 3 1.200
Cole-Cole 3 1.283
Cole-Colex2 4 1.162

Number of data set

= The CCx2 model reproduces accurately the wind turbulence spectral characteristics

nAIC = Nlog(det(%EtE)) . 2% (13)
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Wind turbulence model design
[ ]

0 Wind turbulence model design
@ Model parameter tuning
@ Time simulation
@ Wind speed generator
@ Application on a 3-axis antenna
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turbulence model design

Wind grey box model

Black Box — Grey Box
wind model wind model

@ same transfer function form as the black box model

Wind grey box model:

@ parameters obtained from the wind known physical characteristics

= Generating random realistic wind speed turbulence without reference data

Grey Box
wind model

{V,L, I}
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System ldentification for 28 datasets

Selected model: Wind CCx2 model:

urbulence model design
ol
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System ldentification for 28 datasets

Selected model: Wind CCx2 model

VR
Heeal) " gt 2

S)Zu)

@ Same static gain expression as the Von
Kédrman model:

K -1t

@ The mean value of v = 0.516
(v €[0.49,0.53])

@ The ratio between 71 and 72 is in
[2.6, 4.6]: average value 3.6

300

250 /_/\/\/W\ |

turbulence model design
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d turbulenc

Model parameter tuning

(Von Kérman model: K = 402% and 7 = 8.41% = Lk = KV

402"
150 T T T T T
140
g 130
@ Validation by comparing the length 2120
NGy . &
scales L and Lis = % obtained £ 110
. =]
from 71 and 7 for 28 different datasets 8 00
90
80 ‘ ‘ ‘ ‘ ‘
5 10 15 20 25
Datasets
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bulence model design

Model parameter tuning

(Von Kérman model: K = 402% and 7 = 8.41% = Lk = g'

150

140
B 130
@ Validation by comparing the length 2120
scales Ly, and L1z = Viﬂm obtained £ 110
from 71 and 7 for 28 different datasets 8 00
90

80 ‘ : : ‘ ‘

5 10 15 20 25

Datasets
Grey-box wind turbulence model
Wind CCx2 model defined by:
L L
K:402$, n=89= 72:3;16, v=0516 (14)
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nd turbulence model design

Rational filter design: Oustaloup’s approximation

Recursive distribution of zeros and poles

The frequency band [wa,ws] = [107",10']. Therefore, o
the rational approximation will be carried out on g” \\as;ms‘wm"w
-2 2 . . ) c 0 o o o o
[107%,10%]. s” is approximated by: 3, by ke, B
N v 1+ wib v N 1+ i 74?0'3 102 107 10° 10' 10° 10°
8" = 8{opwp1 = Co| 75| »Co] —= (15) o (rade)
’ 1+ = k=1 1+ = 0
Wh Wi — /
where: g 50 P e
w’l = 771/2(*)177 w1 = EXUJ&, T
’ A | T I S |
Wh1 = ONWgs Whal = ONWE, 710?0'3 102 107 10° 10 102 10%
_y w (radls
log o wp \ N wp, w o
Vzlo (a )70‘= wp = wp 0.5
slon b b Figure: Fractional integrator s7"-> and its
and gL N approximation 5[_(?'1510] based on Oustaloup's
o w rw . -1, L
Co=|—2) = (—h) ( ’;) ) recursive poles and zeros approximation
1 +iog wp 1+wy

/ A. Oustaloup, F. Levron, B. Mathieu, and F. M. Nanot (2000), “Frequency-band complex noninteger differentiator: characterization and

synthesis” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Appli- cations, 47(1):25-39, DOI:10.1109/81.817385. y
20/26



Time simulation

B
20 oy
@ Measured wind characteristics: sl I
V =6.6m/s, 0 =1.92, L =120m = ‘lw ”“
L 10t
@ Identified CCx2 model: g N
[a] = !
17.35 2’ l
Hpp(s) = 1.554 1 1 or
48.7251:554 + 8,5951:036 + 5 6750-518 1 ] pyR——
-5 | | —8— CCx2 identified
[~ Tuned grey bOX model: o ———<CCx2with|unedpa‘vameters ‘
104 10 102 107!
K =269.94, 11 =161.74s, 12 =44.93s Frequency (Hz)
12 1
16.43 —10 1 Lol ¢ L
— K4 | In I b
Hor(s) = (0 75Tmm 5 7625102 1 53450916 5 1 £ “Jl il ‘“"‘J'}‘” “ fl ” fli "d‘u‘ A "'1'1 l
P el i i | I il \M 'iEI‘I
= Both models provide wind speed with a 8 ii‘;“ 0 e l il WJ‘W AT I il
PSD similar to the measured wind PSD s I Ak Al pl 19 111
2 m ” —&— Generated signal from identified COx2 r
— — — -Generated signal from tuned CCx2
0 -

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Time(s) 21/26



Wind turbulence model design
oe

Comparison with rational models

@ Rational approximation from Oustaloup’s
approximation:
Oust N 1+ 5 s
ustappror _ k z
HNcells Ho H 13 = (16) g
k=1 on 2
. . . 0r
@ Rational approximation: Memsured
sl
1+ = Lt appron
Hfatapprox _ HO wo , (17) 10 L h . . ;
S s 10 10 10 10
(1 + 71) (1 + 73) Frequency (Hz)
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Comparison with rational models

Wind turbulence model design
oe

@ Rational approximation from Oustaloup’s
approximation:

Oust N1+ Wi’ 2
ust approx k I
HNcells " = Ho H 1+ -5 (16) §
k=1 on 2
@ Rational approximation: — Mewured
st
Rat approx L+ wiz T .
H, =Hor—~7—~ (17 R = 0
(1 + 71) (1 + 73) Frequency (Hz)
Model Number of parameters  Fit (%) nAIC
Cole-Colex2 4 96.473 1.193
Oust. Approx HS"sterpro 14 91.514  2.083
Oust Approx Hvsteprror 26 96.502 1.214
Rat. Approx H[t*terrror 4 73.166  3.222
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Wind turbulence model
[ ]

Wind speed generator

Iref

1,2,(0.75 +=

<

4 v t
White noise Onoise = 1 ( wind (t)
generator CC x 2 Model +
Vturb(t)
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model des

Wind speed generato

Tuning model parameters
I.ref.x(0.75+5.6/Vm);
o sigma = I+Vm;

10 K = 4.x(sigma)“2.+L./Vm;
Vuina(® | 11 Taul = 8.L./Vm;

12 Tau2 = Taul./3;

13 nu = 0.51;

CC x 2 Model

Veurn (£)

White no Tnoise =1
generator

transfer

16 num=sqrt (K);
17 denl=frac.poly.exp ([ (Taul/2/pi) “nu 11, [nu 01);
18 den2=frac_poly.exp ([ (Tau2/2/pi) " (2*nu) 1], [2%nu 0]);

20 sys = frac.tf(num,denl)*frac.tf(1l,den2);

Approx ed r
23 set(sys,'N',10); 1
24 set(sys,'band', [le-4,
25 set(sys,' 1

loup');

27 H.CCx2 = frac2int(sys);

Generated signal PSD C/’Q}//e:
Tuned CCx2 model

a0 S " ’ http://cronetoolbox.ims-bordeaux.fr
10 10 10 10

Frequency (Hz) 23/26

PSD (dB/Hz)




d turbuler
L ]

Application on a 3-axis antenna

00 Azimut Elévation
= 600 80
E o0 o Consigne
= 500 60 CRONE multiSISO
5 ~
% 70 “5400 40
S e 300 20
50 200 0
0 50 100 150 200 250 300 350 400 450 0 100 200 0 100 200 300 400
t(s) t(s) s)
0.4
@ Wind turbulence average: 02 005
V =80km/h g, E N ) o
. [} i}
@ Wind turbulence speed: 02 - o
[50, 100]km/h 04
0 100 200 300 400 0 100 200 300 400
t(s)
@ MIMO CRONE control for ©

turbulence rejection
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Conclusion

@ Wind models based on the spectral characteristics and not on time series data, then
shaping filters are synthesized for time simulation

@ Study and identification of the Von Karmdn approximation and its limits
@ Improved fractional models with: Davidson-Cole, Cole-Cole and Cole-Colex2 models

@ Tuning methodology to transform the CCx2 black box model into a grey box model =
not limited by access to reference data

@ A long period wind mean speed generator can be developed for more realistic
scenarios

FARY) Hajjem, S. Victor, P. Melchior, P. Lanusse, and L. Thomas (2023), “Wind turbulence modeling for
real-time simulation.” Fractional Calculus & Applied Analysis vol. 26, pp.1632-1662 doi:
10.1007 /s13540-023-00165-0.
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