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Abstract. This study deals with the integration of two active rods on a cable-driven parallel robot (CDPR) to
control its vibrations. Three control laws derived from Integral Force Feedback (IFF) are proposed and compared
analytically using a dynamic CDPR model: ¢g-IFF, IFF with filters and IFF with positive proportional feedback
(PIFF). A prototype was set up to test the performance of the active rods. A parametric study was then carried out
on this prototype to choose the best control law and optimise its parameters. The use of only two active rods over
eight driven cables allowed reducing the vibration levels over the six modes of the robot.

Keywords: Cable-driven parallel robot / vibration control / active rods / integral force feedback /

piezoelectric transducers

1 Introduction

A Cable-Driven Parallel Robot (CDPR) is a type of parallel
kinematic manipulator in which cables link a mobile
platform called an effector to a fixed base. The effector
moves due to the controls performed by motors on the
lengths and tensions of the cables. The development of
CDPRs in industry has been studied for a wide range of
applications due to their low cost and adaptability, for
example for object visualisation [1,2], haptic perception [3],
and handling heavy materials [4]. CDPRs have also
recently been considered for printing large 3D objects
[5]. Furthermore, compared to a rigid body transmission,
the use of cables enables reducing the inertia of the mobile
part; CPDRs can also reach high accelerations and be used
for high speed manipulation [6]. However, the lack of
rigidity and the low internal damping of a CDPR raises
issues such as lack of accuracy, the occurrence of vibrations,
and noise propagation.

To overcome these problems, several solutions have
been studied. The stiffness of the fully-constrained CDPR
FALCON was increased by creating internal forces [7]. In
[8,9], input shaping methods were used to eliminate
vibrations on the CDPR. Input shaping methods are based
on the convolution of a sequence of pulses with an arbitrary
command. The pulse frequencies and amplitudes are
obtained from the frequencies and damping rates of the
modal space. In [10], a fuzzy controller was designed to
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reduce the wind-induced vibrations. Another way to
control the vibrations of a CDPR is to add active devices.
An internal wrench can be generated by adding reaction
wheels on the effector [11] and simulations showed in [12]
that an active stabilizer consisting of actuated rotating
arms installed on-board the CDPR effector can reduce
vibrations. Moreover, it is theoretically possible to stabilize
planar cable-driven systems in non-planar directions using
cables alone [13,14]. To reduce vibrations and increase
damping in similar systems, such as cable structures [15],
cable-stayed bridges [16,17] or cable actuated systems [18],
the integration of active mounts composed of piezoelectric
sensors, actuators and control units has been proposed.
Piezoelectric transducers have proven their efficiency for
cable structures. In [19], decentralized integral force
feedback (IFF) was proposed to enhance the dynamic
stability of a thin aperture light collector (TALC). Using
the IFF controller, the actuator is driven with a signal
proportional to the integral of the sensor force. Preumont
et al. [20,21] demonstrated that the open-loop transfer
function has alternating poles and zeros and that the
system is unconditionally stable if the actuator and the
sensor are collocated, and if the hysteresis or the time delay
of the actuator is negligible. IFF is well-known to be a
relatively simple solution because it does not require prior
knowledge of the system controlled. However, one of the
main limitations of the IFF is the degradation of
compliance at low frequencies, compromising the capacity
of disturbance elimination. Moreover, in practice, the
signal measured by the sensor has a non-zero mean, so the
integral increases over time and goes beyond the limits of
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the actuator. Another problem is high frequency electrical
noise, which causes instabilities. It has been shown that a
compromise can be achieved by applying adequately high-
pass and low-pass filtering to the control signal [21,22].
Chesne et al. [23] proposed a modification of the IFF to
overcome these drawbacks through the aB-IFF control.
They demonstrated that the addition of a pair of poles and
a zero can significantly increase the active damping of a
selected mode.

This paper presents a new approach to reduce
vibrations on a CDPR generated by the displacement of
the effector. Two cables are equipped with two active rods,
using piezoelectric transducers which reduce vibrations by
actively increasing the damping. In this kind of CDPR,
because of the stiffness of the structure, the force generated
by a piezoelectric actuator is the product of the stiffness
and the displacement, and it is adequate to counteract the
structure’s vibrations. Another novelty is that the active
tendons are embedded next to the effector and are therefore
in motion, which adds complexity to the active control. To
this end, two controllers will be used for the active rods: a
classical IFF controller with filters and an of-IFF
controller. The authors also propose to add a positive
proportional feedback that slightly improves the damping
of the control law [24]. The paper is structured as follows:
Section 2 introduces the CDPR and a simple dynamic
model. The controllers used for active control are
introduced in Section 3 and an estimation of the
performance of the control device is performed. Section 4
presents the experimental set-up used in the study.
Section 5 investigates the parametric optimisation and
the experimental results. Finally, Section 6 draws the
conclusions and discusses future works.

2 Presentation of the CDPR and its dynamic
modelling

2.1 Presentation

In this paper,a CDPR with 8 cablesis considered, as shown in
Figure 1. The 8 pulley anchor points A; are located in the
corners of a 1 m square aluminium profile cube. Steel cables
with a diameter of 0.54 mm are used. Each cable is tensioned
with a 2 kg mass so that the resulting structure has natural
frequencies suitable for the transducers and remains
controllable by the motor used. The displacement is
generated by a single electric motor located on the 6 cable.
This restricts the study to a movement along one axis,
however this movement is sufficient to excite the system and
characterise the performance of the vibration control. The
cables are linked to an effector designed to have a higher
stiffness [25]. It has a r, =5.5cm radius and is made of
polylactic acid (PLA). A mass is added to this effector to
increase its total weight (m.=782g). The performance in
terms of vibration is measured with a 3-axis accelerator
installed on the effector. The first acceleration corresponds to
a movement in the direction close to that of the motorised
cable, the second to a vertical movement and the third to a
movement transverse to the motorised movement.

Fig. 1. (a) The CDPR, with one motorised cable and two active
rods; (b) diagram of the effector with one cable and the
corresponding notations.

To control the vibrations, two active systems are mounted
on cables 1 and 7. They are each composed of a piezoelectric
force sensor and a piezoelectric actuator in series.

2.2 Dynamic modelling

In the Laplace domain, the displacements X of the effector
are given by the cable tensions T', and a perturbation force
denoted F' [26]:
Ms*X(s) = J,T(s) + F(s). (1)
The Jacobian matrix J, maps of cable tension in forces
and momentums on the platform:

0 0
. Uy e Uy,
il e e )
CBl/\ Uy CBmAU’m 6x8
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where CB? is the vector between the effector centre C and

the anchor point B, u) is the unitary orientation vector of

— 0
o BA,

the " cable, i.e. u® =-—=2t—. The mass matrix is
[B.A|
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An active cable works by introducing a displacement A;
that changes the tension in the i active cable. This
displacement will change the tension in the cable giving the
equation:

Tils) = ~[k] (X () - Ki(9)) (3)
where [k] is a diagonal matrix containing the stiffnesses of
the cables. For a central position, the stiffnesses are k; ~
2.0¥10" N /m. This value has been experimentally identified
in [25]. Without control, the CDPR’s modes can be
obtained with the matrices K=J,[k]J,” and M; in the
case of the home pose of the mobile platform, by solving the

eigenvalue problem, their frequencies are 24.1 Hz, 31.5 Hz,
40.0 Hz, 41.2Hz, 43.5 Hz and 65.1 Hz.

2.3 Modelling of active rods

The active displacement A; depends on the characteristics
of the actuator used, on the active signal F,; and on the
multiplicative constant C, of the amplifier. A maximum
displacement of 60*10~°m over a voltage range of 160V
can be obtained with the two CEDRAT APA40SM
actuators, thus Ai(s) =C, F%(S), with
ko = 5250 ~26%105 V/m and C,=20. F, is given
directﬁly %y the control law H? chosen (i designates the
i cable and j denotes the control law chosen) and the
tension F; measured by the force sensor:

Foi(s) = Hl(s) x Fy(s). (4)

The conditioner of the piezoelectric force sensors acts as
a high-pass filter at w.= 27 rad/s:

s
Fg(s) = ST T;(s). (5)
Equation (6) is derived:
_Capgigy 8
M(s) = L2 HI) 1) ()

The control laws proposed will be presented and
detailed in the next section.

3 Active control and analytic discussion
3.1 Control laws

The simplest form of IFF is to drive the actuator with a
signal f, (t) proportional to the integral of the force
measured by the force sensor f; (). Thus, the control force

t
is given by f,(t) = gs fs(t)dt, where g is the feedback gain.
0

The control is decentralised and different gains g? can be
used on each active cable. In the Laplace domain, the
control laws can be written as: H)(s) =%, with i
designating the i cable.

In this contribution, two different control laws will be
tested and the authors also suggest a modification of the
first one to improve the resulting damping.

The first control law is a classical IFF with two first
order filters. High-pass and low-pass filters are defined by
their cut-off frequencies leading to equation (7):

H(s) = g! @Lp
Z(S) gz (S+CULP)(S _|_pr)

(7)

where w; p and wyp are respectively the cut-off frequencies
of the low-pass and the high-pass filter. Unfortunately,
with filtered IFF, the system’s stability is no longer
unconditional [21,22]. It is therefore possible to test a
controller introduced by S. Chesne in [23] which guarantees
stability, the aB-IFF controller:

s+«
(s+B°

For |s| > a, the controller is essentially an integrator, as
the classical IFF, and for |s| < «, the controller is a double
integrator, which tends to cancel the force applied by the
effector, or to modify the stiffness, as the sensor force is partly
proportional to the acceleration [24]. It has been shown that
at low frequency this kind of controller present a loss of
compliance, to recover it, S. Chesne proposed to also add a
double real pole located at s = —B. This double real pole also
plays the role of a double filter, and with this control law the
low-pass and high-pass filters are no longer required.

In addition, a modification of the IFF controller is
proposed in [24] to increase the damping of the modes by
adding a positive proportional feedback term. The term
“positive”, even if the sign of p; is negative in equation (11),
is due to the fact that this correction is applied in a global
negative feedback loop. The authors decided to apply this
modification only to the filtered IFF to obtain a new control
law named “Proportional and Integral Force Feedback”
(PIFF) and given by:

Hi(s)=g;

(8)

. w
H}(s) =g} i —p; (9)

i (S + a)Lp)(S + a)Hp)

In theory this controller is stable for p <1, but the gain
margin limits the value which can be used [24]. In practice
in this case, instabilities appear from p > 0.4.

3.2 Analysis of the control laws

The analysis of the behaviour of the control laws is obtained
using the dynamic modelling of the CDPR and the active
tendons. For the sake of clarity, each control law is written as

Hl(s) = Z:E:) with N7 being the numerator and D’ the

denominator. Inserting equation (6) into equation (3) gives:

Ti(s) = —[ki % Ai(s)] % JEX (s) (10)
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Fig. 2. Root locus with filtered IFF (blue), with «f-IFF (red)
and with PIFF (green).

ko D] (5) (s+.)
C, kN](s)s—kaD‘;(s)(s-ch) '
diagonal matrix containing the k; x A/(s). Equation (11) is
derived from the dynamic equation (1).

where Al(s) = and {kl *Af(s)] is a

SMX (s) + Julki x Ai()|JEX (s) = F(s)  (11)

Without control, the matrix [A4; (s)] is an (8 x 8)
identity matrix and the classical stiffness matrix K=J,
[k] J, T is obtained.

One can write R(s) = s?M + J,[k; * A;(s)]J., then
equation X (s) = R*(s)F(s) allows plotting the root locus
of the system, by solving 1/R;; 1(s) = 0, for the same gains
g=g, =gl As the problem i MIMO and as there are
several parameters for each control law, this section focuses
only on the variation of gain g. Section 5 will focus on the
experimental optimisation of the parameters and gains. To
plot the different root locus in Figure 2 (filtered IFF in blue,
aB-IFF in red and PIFF in green), the values of parameters
wrp, Wgp, P1, P7, @ and B obtained experimentally are used.
In this model, six poles with strictly positive imaginary
parts are depicted.

First, it can be seen that the system is stable for the
three controllers and for any positive gain. It can also be
seen that damping for the six modes is added by the use of
two cables, but the control and damping rate vary
according to the mode considered. Moreover, the configu-
ration of the active rods will modify the performance
according to the modes. It can be pointed out that the 3rd
mode is the easiest to damp, i.e. that at 40 Hz. The root
locus shows that the damping is higher with filtered IFF
than with a8-IFF on all modes. With the PIFF controller,
the damping is slightly better for all modes. The squares on
curves correspond to a gain g= 500, which is in the order of
magnitude of the gain values in the experimental part. It
shows that the controllability of the modes is slightly

§,{..

Ampllﬁers
4 .

~
,/: ‘.%

Fig. 3. The experimental set-up with the CDPR and a zoom on
the effector.

different. It can be observed that for this gain value the
maximum damping is not reached and a larger gain could
be required. Nevertheless, such a gain value cannot be
reached during the experiment.

4 Experimental set-up

The CDPR described in Section 2 is considered in the
experimental set-up, as shown in Figure 3. In this
contribution, the vibratory excitation is achieved by the
movement of the effector, driven by the motor which moves
backwards and forwards.

4.1 Motor control

For this application, motor control should not be over-
looked. Indeed, poor motor control would generate
unwanted vibrations. Our choice naturally turned to the
Permanent Magnet Synchronous Machine (PMSM) using
Field Oriented Control (FOC) Strategy. PMSMs are more
suitable than DC motors or induction motors, since their
overall weight and volume are significantly reduced for a
given output power and provide better efficiency [27].
While the six step control is very easy to implement for this
motor, FOC has the advantage of controlling the motor
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currents and thus offers better management of the motor
torque produced. This significantly reduces torque ripple
on the motor shaft. Thanks to the use of Park
transformation [28] the torque produced is directly
proportional to the quadrature current i, The Park
transformation and current controller are implemented
using the SSpace 1104 rapid control prototyping system.

4.2 Active rods

To control vibrations generated by the effector movements,
2 active systems are mounted on cables 1 and 7. They are
each composed of a piezoelectric force sensor and a
piezoelectric actuator. These active rods have the particu-
larity of being embedded and moving when the platform
moves, unlike those used in cable-stayed bridges [16,17]
and in the TALC [19]. In addition, one conditioner is used
for the sensors and two load amplifiers are used for the
actuators. Classical DSpace DS1104 controller board is
used for the real-time measurement and control of the
motor and the actuators, making it easy to implement the
control laws introduced earlier.

5 Parametric optimization and experimental
results

5.1 Vibratory excitation

The vibratory excitation is achieved by the movement of
the effector driven by the motor. It moves backwards and
forwards according to stepb functions, described in
equation (12), which avoids shocks and discontinuities.
The Step5 function is a step from 0, =0 (t;) to . ="0 ()
smoothed by a 5" degree polynomial; this means that the
velocities at ¢, and ¢, are both equal to zero.

0(t) = stepsh(t)
0, ift <ty
6, + (6, —6,) A (t)° ,
- *(10—15A (t)+6 A (15)2)”%1 <t<t

6, if t >t

(12)

with A(t) = -

Figure 4 represents an illustration of the resulting
displacement. In this paper, these parameters are set to
t, — t;=0.5s and the steps are between — 0.3 and 0.3rad
every 1 s, which means that there is a 0.5 s pause after each

movement.

5.2 Parametric optimization

A parametric optimization is performed on the filtered IFF
controller and on the aB-IFF. Each control law has two
gains (g] and g7) and two additional parameters (wp ®yp
for the filtered IFF, and « g for ¢ —IFF). It was decided to
start by optimising the additional parameters and then the
gains. Indeed, the values of the additional parameters
modify the signal magnitude before multiplying by the

y(m)

03 02 01 o0 01
x(m)

02 03 04 05

Fig. 4. Illustration of the displacement for the angular rotation
of the motor.

Performance, with wPB=1885 & wPH=125.7

X 400
| Y 800
| Z9.753e-05

1200
1000

1200

600
400

200
9, o 0

Fig. 5. RMS value versus parameters ¢g; and g;.

gains, thus they have an impact on the optimal gains. For
each combination of two parameters, the platform is moved
15 times forwards and backwards in 30s.

For the quantity to be optimised, the authors chose to
use the root of the area under the Power Spectral Density
(PSD) curve of the first acceleration: the vibration levels
are therefore expressed in V?/Hz, a unit homogeneous to a
power describing the energy injected by the vibrations at a
given frequency. The root of the area under the PSD curve
therefore corresponds to the root mean square (RMS)
value. PSD is obtained using Welch’s method [29].

The first optimisation is dedicated to the low-pass and
high-pass filter frequencies, and the lowest RMS value is
reached for wyp=27*300rad/s and wgp=27*20rad/s. In
the second step the gains of the two controllers are
optimized and their values are derived:gi =400 and
g+ = 800. An example of the evolution of the RMS value
versus the gains is given in Figure 5. It can be seen that the
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Fig. 6. Average of the acceleration signals without control (blue), with a-IFF (red) and with filtered IFF (yellow).

functional is not smooth, which exhibits that the dynamics
of the system is complex and clearly non-linear. The same
experiment is repeated with the af —IFF controller, and
the optimization provides the following values: & =10 and
B=80, g7 =200 and gg = 600. For the PIFF control, the
optimal parameters of the filtered IFF are kept and the
same parametric optimisation is used to tune the gains of
the proportional feedback. It gives p; = 0.2 and p; = 0.075.
These values will be used in the next section to illustrate
the performance of the control device.

5.3 Experimental results

The control laws introduced in Section 3 were then
compared experimentally. The previous experiment was
replicated for 300s with the parameters obtained by
optimisation for each control law: without control, with
IFF with low-pass and high-pass filters, with «8-IFF and
with PIFF controllers. The acceleration signals were
averaged over 2s, which corresponds to one step forwards
and one step backwards. Figure 6 shows the signals
obtained. The purple curve represents an image of the
angular acceleration of the motor consisting of steps
functions. The shape of the measured acceleration
naturally depends on the excitation of the motor. Thanks
to active control, there was a decrease in vibration in the
time domain acceleration signal, especially visible on the
first part of the first and second acceleration signals, and on
the second part for the third acceleration. These results are
related to the configuration of the active rods and good
performance on acceleration 3 is explained by the fact that

the orientations of cables 1 and 7 mainly follow a direction
similar to the third measured acceleration.

To better distinguish the benefits on the different
modes, the PSD of the acceleration signals are plotted in
Figure 7. The PSD shows very good performance in the
3 main modes observed for the 3 directions. Also, the result
is better with the filtered IFF controller, which is consistent
with the root locus obtained in Figure 2.

Table 1 summarises the frequencies of the main modes
and the improvements for each mode compared to no
control. The frequencies obtained are close to those
obtained with the model in Section 2 (24.1Hz, 31.5Hz,
40.0Hz, 41.2Hz, 43.5Hz, 65.1 Hz). The difference can be
explained by the use of a simple model: the cables are only
elastic, the inertia matrix of the effector is only estimated,
the inertia of the sensors and actuators are not considered
in the model, nor is the preload of the cables. The results are
better for accelerations 1 and 3, which correspond to non-
vertical movements, and for the 36 Hz mode. An analogy
with the root locus which predicted better damping for this
mode can be noted.

Figure 8 gives an example of PSD obtained without
control, and with the filtered IFF and PIFF controllers.
The improvement achieved is low with PIFF. The benefit
obtained is more visible in Table 2 which shows that the
PIFF controller reduces the level of vibration in all
directions. Although the parametric optimisation was
performed on acceleration 1, the performance are also good
for accelerations in other directions and show that the
proposed control laws and the parametric optimisation are
quite robust.
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Fig. 7. PSD of acceleration signals without control (blue), with ¢-IFF (red) and with the filtered IFF (yellow).
Table 1. Vibration reductions obtained for the 3 main modes and for each control law.
A, Frequencies (Hz) 25 36 44
af — IFF (dB) 2.5 6.2 1.9
Filtered IFF (dB) 3.1 5.8 4.1
A, Frequencies (Hz) 25 40 53
af — IFF (dB) 0.9 2.1 2.1
Filtered IFF (dB) 1.8 4.5 6.3
A, Frequencies (Hz) 36 44 54
af — IFF (dB) 6.1 1.7 0.8
Filtered IFF (dB) 7 2 1.5

5.4 Limitations of the actuators

Figure 9 presents actuator signal V,; for the three
controllers. The operating range of the actuators is
limited by the values —16 and 136 V. Only the filtered
IFF controller reaches these limits. As stated in Section 3,
not all modes are at their maximum damping with
g=>500. However, the actuator of the active cable nol is
already saturated with gi = 400. With a higher gain, it is
theoretically possible to achieve better results with the
filtered IFF controller. Therefore, one possibility to
increase performance is to use more powerful actuators.

The of-IFF signal requires a peak-to-peak amplitude
of less than 40 V for good performance with, for example,
a 6dB decrease on the 36 Hz mode on accelerations
1 and 3.

Figure 10 shows the PSD of actuator signal V,; for the
three controllers. It can be seen that the power required for
af-IFF is lower, with an RMS value of 0.0108. This
controller can be a good solution if the available power is
low. For the filtered IFF controller, the RMS value
is 0.0184 and with the PIFF controller, slightly less power is
required, with an RMS value of 0.0155, which can limit
saturation in some cases.
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Fig. 8. PSD of acceleration signal A..; without control (blue),
with filtered IFF (red) and with PIFF (yellow).

Table 2. RMS values for all control laws and accelerations
signals.

RMS A, A, A, [[ Al

Control off 1.07e-4 2.11e-4 1.49e-4 1.64e-4
af — IFF 9.78e-5 2.0le-4 1.42e-4 1.53e-4
Filtered IFF 9.42e-5 1.98e-4 1.37e-4 1.48e-4
PIFF 9.36e-5 1.76e-4 1.35e-4 1.37e-4

Fig. 9. Actuator signal V,; with af-IFF (blue), with filtered IFF
(red) and with PIFF (yellow).

6 Conclusion

In this study, two active rods were integrated in a CDPR to
reduce the vibrations caused by the effector displacement.
Three control laws were presented: af3-IFF, filtered IFF
and PIFF. The dynamic model of the CDPR was used to
plot the root locus for the three laws, show their stability

PSD Va,

a-IFF

- — — filtered IFF
PIFF

PSD (dB)
4
3

-90

-100

-110
10’ 102
f(Hz)

Fig. 10. PSD of actuator signal V,; with a8-IFF (blue), with
filtered IFF (red) and with PIFF (yellow).

and compare their control. In terms of damping, the best
controller was the PIFF, obtained and set using the CDPR
model.

An experimental set-up was built to validate these
results. The prototype consisted of a CDPR with eight
cables, two of which were equipped with active rods. An
electric motor was used to move the effector and perturb
the system. A parametric optimisation was carried out and
showed that the PIFF provided the best levels of vibration
reduction. Depending on the application, the 8 — IFF may
be a good compromise as it requires a smaller actuation
range. The performances were measured with a sensor
external to the control loop of the active system, which
shows the effectiveness of the vibration control. It was
shown that two active rods were sufficient to reduce the
vibration amplitudes of the six main robot modes.
However, in this setup, the performance was limited by
actuator saturation and the fact that only one direction of
movement was possible. The generalisation of the results
has only been proven by simulation in [24]. But it still
allows, without optimization, a proof of concept for the
proposed innovation.

In future studies, the active rods will be integrated in a
robot driven by 8 motors with more complex trajectories.
An avenue for improvement is to test more powerful
actuators to achieve higher damping.
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