N
N

N

HAL

open science

Origin and Tuning of Bandgap in Chiral Phononic
Crystals

Wei Ding, Rui Zhang, Tianning Chen, Shuai Qu, Dewen Yu, Liwei Dong, Jian

Zhu, Yaowen Yang, Badreddine Assouar

» To cite this version:

Wei Ding, Rui Zhang, Tianning Chen, Shuai Qu, Dewen Yu, et al.. Origin and Tuning of Bandgap in
Chiral Phononic Crystals. Communications Physics, 2024, 7 (1), pp.272. 10.1038/s42005-024-01761-

z . hal-04784639

HAL Id: hal-04784639
https://hal.science/hal-04784639v1

Submitted on 15 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-04784639v1
https://hal.archives-ouvertes.fr

Origin and Tuning of Bandgap in Chiral Phononic Crystals

Wei Ding" 2", Rui Zhang" ", Tianning Chen’, Shuai Qu>?, Dewen Yu" 2, Liwei Dong>*, Jian Zhu" *, Yaowen

Yang® * Badreddine Assouar® *

!School of Mechanical Engineering and State Key Laboratory of Strength & Vibration of Mechanical Structures,

Xi’an Jiaotong University, Xi’an, Shaanxi 710049, P.R. China

2School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue,

639798 Singapore, Singapore

3Train and Track Research Institute, State Key Laboratory of Rail Transit Vehicle System, Southwest Jiaotong

University, Chengdu, 610031, China
“Institute of Rail Transit, Tongji University, Shanghai, 201804, China
SUniversité de Lorraine, CNRS, Institut Jean Lamour, F-54000 Nancy, France

*Corresponding authors:  jianzhuxj@xjtu.edu.cn (J. Zhu), cywyang@ntu.edu.sg (Y. Yang),
badreddine.assouar@univ-lorraine.fr (B. Assouar).

T These authors contributed equally

Abstract

The wave equation revealing the wave propagation in chiral phononic crystals, established through
force equilibrium law, conceals the underlying physical information, such as the essence of the motion
coupling and the inertial amplification effect. This has led to a controversy over the bandgap mechanism. In
this article, we theoretically unveil the reason for this controversy, and put forward an alternative approach
from wave behavior to formulate the wave equation, offering an alternative pathway to articulate the bandgap
physics directly. Based on the physics revealed by our theory method, we identify the obstacles in coupled
acoustic and optic branches to widen and lower the bandgap. Then we introduce an approach based on
spherical hinges to decrease the barriers, for customizing the bandgap frequency and width. Finally, we

validate our proposal through numerical simulation and experimental demonstration.
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Introduction

The bandgap property in phononic crystals (PnCs) is associated with extreme spatial dispersion !, wave guidance
2.3 and thermal physics *. Therein, since the inertial amplification effect induced by chirality, which is beneficial for
lowering the bandgap beyond the barriers constrained by mass and stiffness > 7, enables the chiral PnCs the superior
performance at low-frequency regime, thus expanding its applicable scope in the elastic-wave fields * °. The inertial
amplification concept in the mechanical perspective presented in the seminal study of Yilmaz refers to a dynamic
virtual inertia attached to a static mass, thus reducing the eigenfrequency of the system !°. However, the bandgap
mechanism of chiral PnCs has always been controversial " > 13, The seminal theories have indicated the inertial

amplification as the mechanism behind such a bandgap '* '°

, while different chirality assemblies have different
dispersion spectrum !4 16, Therefore, the mechanism has been attributed to inertial amplification and the relative
orientation of adjacent chiral centers in the syndiotactic system ',

More recently, two explanations have been reported for a physical explanation. The first is the dimer chain 3,
where coupling longitudinal and torsional waves is similar to the coupled transverse and rotational waves in the
periodic mass-spring system !7. The study '* concluded that a monatomic chain effect, i.e., the so-called inertial
amplification method, cannot support the bandgap phenomenon. The second explanation is related to analogous
Thomson scattering '? to consolidate the inertial amplification claim '°. In addition, the analogous Thomson
scattering'? physically detailed that inertial amplification of this chiral sub unit cell is induced by coupling two or
more polarizations in the same lumped mass and chirality is to achieve the secondary scattering for destructive
interferences. These two theoretical interpretations are plausible because of the validation, yet they are contradictory
since the debate about the existence or absence of inertial amplification.

Here, we develop a theoretical analysis based on the wave behavior in chiral PnCs, to clarify the cause of the
contradictory and unify and refine the bandgap mechanisms. We demonstrate that the wave equation directly derived
from force equilibrium law will conceal the underlying physics, e.g., inertial amplification. Our method allows to
articulate bandgap physics, and calculate the transmission simultaneously. In contrast to the conventional theoretical
method ® ' 18 it allows observing the fundamental physical parameters of acoustic and optic modes under the
assumption of elastic ligaments, i.e., inertial amplification coefficient, bending stiffness, stretch stiffness, and their
origins and interactions. Our analysis pointed out that the rise of the inertial amplification coefficient is closely related

to the bending and stretch stiffness. Consequently, the bandgap width and the reduction of the starting frequency are



mutually constrained, which poses a significant challenge to the realization of wide subwavelength bandgaps (the

20.21 " are considered

effects of the geometrical dimensions, characterized in equivalent stiffness '’ and equivalent mass
in normalization). To transcend this barrier, the spherical hinges and the spiral springs are employed to partial-
decouple these coupled physical parameters. The numerical and experimental results validate the correctness and the
feasibility of our proposals in the theory and geometrical mode.

Results

a) Theoretical Observation of Bandgap Origin

In the chiral subunit cell (Figure 1(a)), if there is a longitudinal input P; on disk1 (P; = A;e~ {91 where ¢p; =
0), the motion provided by P; will propagate in the bending deformation (Figure 1(c)) and stretch deformation
(Figure 1(d)) of the ligaments simultaneously. Neglecting the local deformation of the ligaments and disks, we can
observe two polarizations at disk II, i.e., longitudinal polarization P; (P, + P;s) and rotational polarization P,
(Prp + Prg) (Where Py; denotes that the jt" deformation mode of the ligaments induces the i*" polarization of the
disk. In detail, subscript i can be longitudinal polarization I or rotational polarization r. Subscript j denotes the jt*
deformation mode of the ligaments, which can be bending mode b or stretch mode s).

In the scenario of Figure 1(c), based on the right-hand spiral rule, the disk II will have a longitudinal polarization
along +z-axis (Py,) and a rotation polarization around +z-axis (P,;,) due to the bending mode. While in the scenario
denoted by Figure 1(d), the disk 2 will have —z-axis rotational polarization (P.g) in addition to the +z-axis
longitudinal polarization (P;) due to the stretch mode. In short, there must be 4 polarizations in disk 11, i.e., Py, Ppp,
Py, and P,. Therein, the longitudinal polarization Py, and Py vibrate in the same frequency and initial directions,
while the rotational polarization P,;, and P,; have the same frequency but opposite initial directions.

Because Py, and P, are resulted from the bending deformation of the ligaments, they will have the same frequency
and the same phase at any time. Therefore, for the i*" lumped mass, assuming an extremely small harmonic
displacement (Otherwise, there will be nonlinearity in this chiral unit cell ), Py, and P, are linearly correlated by

the inertial amplification coefficient p, as illustrated by Eq. (1).
Uil = u% + 7,0% = Al.le_i(WH'QO%) +p (A%_le_i(W“'QDéq) — Aile—i(Wt+goé))’ (D

where p denotes the conversion coefficient from longitudinal polarization Py, to rotational polarization P,.;, and

12, 15

it is characterized as the inertial amplification coefficient in the inertia matrix . u! refers to longitudinal

polarization induced longitudinal displacement and ! refers to longitudinal polarization induced rotational



displacement. A! implies the translational amplitude of the ith lumped mass. The superscript [ indicates that the
longitudinal polarization u and rotational polarization 1 originate from the longitudinal mode. ¢ refers to the initial
phase.
Like Py, and P,,,, for the i*" lumped mass, P.; and P, satisfy
UF =uf +f = 6,°e7 *1) + q(67 e (i) — g e ivirel)), )
where q indicates the conversion coefficient from longitudinal polarization Pj to rotational polarization P,.

Because the sense of q is exactly opposite to that of p, q = 1 (see Supplementary Note4 for more details). The
v y

superscript s indicates that the longitudinal polarization u and rotational polarization ¥ originate from the stretch
mode.

Because the stretch stiffness kg is different from the bending stiffness k;,, P, and P,; must have different phases,
i.e., ¢'#¢@%, as do Py, and P. This means Py, + P,;, and Pj; + P, must be two independent wave modes, although
we can only see the macroscopic results of longitudinal movement P, (P;, + P;5) and B, (P, + P)) rotational
movement rather than the results of Py, + P, and P + P,.

Therefore, generally, in the global coordinate system, for the i*" lumped mass, the longitudinal displacement u
is determined as

w = ul +uf = A%e‘i(w”‘P%) + (—1Didse~ilwerel) 3)
and the rotational displacement ¥ is determined as
9; = Yl —f = pleitvere) — (—1)igreitvered), 4)

Based on the Lagrangian method (See Supplementary Equations (1) — (28) in Supplementary Notel for the
derivation process), we can obtain the longitudinal displacement u; and rotational displacement 9. In this way, one
can see that the inertial matrix (Supplementary Equation (17)) and stiffness matrix (Supplementary Equations
(18) — (25)) are similar but not identical to current reported results'>. According to the above analysis, the theoretical
transmission (as denoted by the red solid line in Figure 2(b)) and dispersion spectrum (Figure 2 (c)) can be obtained
directly. However, the inertial amplification cannot be observed in the inertial matrix (Supplementary Equation
(17)). The wave equation only reveals one fact, i.e., the longitudinal polarization is coupled with torsional polarization.
However, it has been demonstrated that only specific couplings (such as the syndiotactic PnCs ® '4) rather than all
couplings can give rise to such a bandgap '* . Therefore, the explanation of the coupling'® needs to be clarified

further.



It is worth noting that, Pj, + P, and P; + P, are two independent wave modes. Therefore, it allows us to
regard u?, u$, Y?, and ¥§ as the independent variables, similarly, based on the Lagrangian method (See
Supplementary Equations (29) — (39) in Supplementary Notel for the derivation process), as a result, the inertial
matrix and stiffness matrix will be significantly different, as illustrated by Supplementary Equations (31) — (34).
Based on Supplementary Equations (31) — (39) and physical parameters listed in Supplementary Note5, we can
also obtain the theoretical transmission (as denoted by the blue dashed line in Figure 2(b)), which is consistent with
the numerical results. Figure 2(b) illustrates that both paths of establishing wave equations can yield identical
transmissions to the numerical results.

However, in contrast to the former classical theory (Supplementary Equations (17) — (27)), several essential
information can be captured in the latter derivation method. First, as denoted by Supplementary Equations (35) —
(37), the stiffness matrix does not indicate the coupling effect between longitudinal polarization and rotational
polarization, but the inertial matrix does. Second, the inertial matrix (Supplementary Equations (31) — (34)) will
reveal the existence of inertial amplification, which is derived from the coupling effect. Third, both bending and
stretch modes can realize the motion coupling and thus obtain the inertial amplification effect, as denoted by p in
Supplementary Equation (32) and g in Supplementary Equation (34). Fourth, the motion coupling guided by the
bending mode is characterized by longitudinal polarization (because the primary diagonal element of M;; includes
m,; and the non-diagonal element is /;), while the motion coupling guided by the stretch mode is characterized by the

rotational mode (because the primary diagonal element of M, includes I; and the secondary diagonal element is m;).

At this point, we can learn about that the bandgap in the chiral PnCs must be accompanied by two wave modes
that will truncate the bandgap range. These two wave modes are similar to the acoustic mode and optic mode of the
classical diatomic chain, as shown in Figure 1(f), which together determine the bandgap range (Figure 1(i)). Therein,
the two atoms of the diatomic unit cell vibrate in the same phase as an acoustic mode (as illustrated by Figure 1(g)),
while the two atoms vibrate with opposite phases as an optic mode (as illustrated by Figure 1(h)). The same
phenomena can be observed in the chiral PnC, as illustrated in Figures 1(c) and 1(d). According to the left-handed
feature of the subunit cell, under the longitudinal input P;, the first expected case is the longitudinal motion of the
disk II accompanied by a rotation around the —z-axis (Based on the right-hand spiral rule), as shown in Figure 1(c),
which corresponds to the acoustic mode in the classical diatomic chain. Similarly, for the optic mode, as shown in

Figure 1(d), the longitudinal motion of the m, is accompanied by a rotation around +z-axis, which corresponds to



the optic mode in the classical diatomic chain. Therefore, the lower boundary of the bandgap in chiral PnCs can be
named the acoustic branch (the two red pass bands in Figure 2(c)) since the vibration in the phase of adjacent atoms,
and the upper boundary can be named the optic branch (the two blue pass bands in Figure 2(c)) because it is similar
to that in the long-wavelength limit of an optic mode 2. The bandgap will convert into Bragg scattering type after

the optic branch .

Besides, the numerical deformation contours also demonstrate the similarity between the theoretical wave modes
and the classical diatomic chain, as shown in Figure 2(f). The rotational directions of p,,; & p,, are opposite to that
of p;; & p;; when the translation is along +z-axis, which exactly corresponds to the schematics in Figure 1(c) and
Figure 1(d), respectively. For instance, comparing Figure 1(c) to the mode P;;, one can see that Figure 1(c) shows a
rotation around —z-axis and a translation along —z-axis since the bending along —z-axis, and P;; in Figure 2(f)
shows a rotation around +2z-axis and a translation along +z-axis due to bending along —z-axis. The schematics of
the rotation and translation phases are completely identical to those of the simulation ones. Similarly, Figure 1(d)
shows a rotation around +z-axis and a translation along —z-axis since the compression, and P,;; in Figure 2(f) shows
a rotation around —z-axis and a translation along +2z-axis due to stretch. These two have excellent consistency.

It is crucial to emphasize that these acoustic and optic branches essentially differ from conventional diatomic
chains. In detail, the upper and lower branches in this context stem from two coupled orthogonal motions that
originate from the same atom instead of from two atoms. Coincidentally, this coupled orthogonal polarization
introduces a novel control variable for bandgap modulation — inertial amplification '?, as compared by Figure 1(b)
and Figure 1(e). Nevertheless, the inertial amplification effect will be hidden in the wave equation if we utilize the
traditional theoretical derivation directly based on force equilibrium.

It should be noted that there is a discrepancy between the expected bandgap width of the dispersion spectrum
and the attenuation range of the transmission. The expected bandgap covers 500 Hz — 1700 Hz, while the attenuation
range shown in the transmission (Figure 2(b)) only appears in 500 Hz — 1400 Hz. This is due to the different boundary
conditions in calculating the dispersion spectrum and the transmission. For the calculation of the dispersion spectrum,
all the unit cell is free. For the calculation of the transmission, the rotation freedom of the first lumped mass is
constrained. If we release this degree of freedom, the attenuation range will be 500 Hz — 1700 Hz, corresponding to
the expected bandgap width (Please see Supplementary Note6 for more details.). Overall, the consistency in

transmissions (Figure 2(b)), dispersion spectra Figure 2(c), as well as the deformation schematics (Figure 1(c), Figure



1(c), &Figure 2(f)), can verify the correctness of our analysis.

Another essential advantage of our method is that, as illustrated by Supplementary Equations (38), we can
directly obtain the longitudinal amplitude u? determined by the bending deformation and the rotational amplitude
Y7 determined by the stretch deformation. Furthermore, by substituting the results of Supplementary Equation (38)
into Supplementary Equation (14), we can obtain the rotational amplitude ? determined by the bending
deformation and the longitudinal amplitude u; determined by the stretch deformation. In other words, we can observe
the respective contributions and influences of the acoustic mode and the optic branch on the bandgap. As shown in
Figures 2(d) and 2(e), the acoustic mode is dominant before the anti-resonance notch in the bandgap. After that, the
optic mode will dominate the transmission coefficient. Although Figure 2(e) shows that R, has almost the same
relative amplitude as Ry after the anti-resonance notch, it can be regarded as passive for R;, to present the large
amplitude according to the causal inference in Supplementary Notel. More simply, if we can shift the optic mode
towards a higher frequency, this passive effect originates from R to R, will be much weaker, and the frequency range
dominated by u;, will be broader, which can be demonstrated in the section about Figure 4.

In short, for chiral PnCs 2* %, it is convenient and concise to characterize the dispersion spectrum and
transmission properties through the wave equation established from force equilibrium, but its final formulas merely
present the coupled longitudinal and rotational polarizations, thus obscuring the comprehensive physical insights.
Consequently, despite the observations of the similar coupling orthogonal polarizations in two-dimensional and three-

26.27.28 \which are characterized by auxeticity in quasi-static compression »°, and even

dimensional chiral structures
the systematical establishment of the governing equations 3% 3! 32, there have been limited discoveries of inertial
amplification. In the end, many studies stagnated at the bandgap opening due to the limitations of the structural shape
evolution % 113334,
b) Coupling roots of acoustic and optic branches

As observed in the wave equation we proposed, the inertial amplification is a unique and essential advantage
for the chiral PnCs. However, broadening the bandgap is extremely challenging since there must be the optic branch.
To clarify the challenge, we neglect the contribution of stretch mode (P, and P,.) and consider the bending mode
only based on the method shown in Supplementary Equations (29) — (39). The theoretical transmission (the blue

line in Figure 2(a)) is still consistent with the numerical results in low frequencies, and the dynamic equation can also

reveal the inertial amplification effect, as demonstrated by other report'®. This indicates that bending mode (P, and



P,}) directly determines the existence of the bandgap, and the stretch mode (P, and P,) determines the upper limit
of the bandgap.

The comparison of Figures 2(a) and 2(b) might lead us to believe that the main contribution of stretch mode is
only to truncate the inertial amplification-based bandgap, but that is is not completely true. This bandgap formation
relies on the coupled longitudinal-rotational motions of each lumped mass. In the conventional unit cell, although the
longitudinal motion and rotational motion originate from the bending deformation of the ligaments, Supplementary
Note3 illustrated that, for the solid structure, the bending mode will be absent if the stretch mode does not exist
because both modes are determined by the identical basic physical and geometric parameters. Therefore, it seems
impossible to make the optic modes disappear completely to obtain an infinite bandgap. Therefore, it is vital to figure
out the coupling between optic and acoustic modes as well as find ways to manipulate them independently.

Figure 2(a) illustrates that the bending mode serves to provide the stiffness k; and inertial amplification
coefficient p. k;, and p are critical for directly determining the acoustic branch. The comparison of Figure 2(a) and
Figure 2(b) illustrates that the stretch mode determines the optic branch by the stiffness kg and q. Therefore, for a
normalized low-frequency and broad bandgap, p and k, should be larger while g should be larger, and k;, should be
constant to provide sufficient support capacity.

However, contrary to expectations, the actual situation is unfavorable. In details, on the one hand, Figure 1(c)
and Figure 1(d) illustrated that, P,,, and B.; have the opposite directions, which implies a hybridization between the
rotational polarizations determined by bending and stretch modes. If there is no hybridization between p and q, (see
Supplementary Note3 and Supplementary Note4 for more details)

p =tany. (5)

The ideal inertial amplification coefficient will vary like the blue line shown in Figure 3(a). One can see that the
amplified dynamic inertia p would easily exceed 100 times.

If considering the hybridization, p is written as (see Supplementary Note3 and Supplementary Note4 for more

details)

AR, — AR,

A — 6
Auy, + Aug ©)

p
where Au,, refers to the longitudinal displacement difference (between m; and m;_,) caused by the bending mode
under the longitudinal harmonic loads; Auy refers to the longitudinal displacement difference caused by the stretch

mode under the longitudinal harmonic loads; AR, refers to the rotational displacement difference caused by the



bending mode under the longitudinal harmonic loads; AR; refers to the rotational displacement difference caused by
the stretch mode under the longitudinal harmonic loads.

From Eq. (6), if AR is larger with the increase of Aug, p will be smaller, which will reduce the inertial
amplification effect. This is a hybridization between q and p ((see Supplementary Equations (40), (41), (42), and
(45) for more details)). Considering the hybridization, the amplified dynamic inertia p can only be at most 2.6 times.

On the other hand, as illustrated by Figure 3(b), k; will increase rapidly with the increase of 8. Then, the
difference between kj, and k¢ will be smaller and smaller, which is not conducive to achieving a broad bandgap *°.
Ultimately, the upper boundary will approach the lower boundary of the bandgap, leading to the closure of the
bandgap, as depicted in Figure 3(c). For instance, if we need the maximum inertial amplification (when 8 is about
80°) to reduce the bandgap, then the stiffness difference between kg and kj, is only 1.76 times. These two aspects
denote a significant contradiction between the broad bandgap and the low-frequency bandgap.
¢) Customization of acoustic and optic branches

To resolve the contradiction, we propose the strategy, as shown in Figure 4(a), to achieve partial decoupling. As
illustrated in Figure 4(b), the subunit cell can be divided into three components, i.e., the lumped disks, the spiral
springs, and spherical hinges. Figure 4(c) shows a detailed schematic of the spherical hinges, and its governing
equation can be found in Supplementary Note7. In this unit cell, the spiral springs provide k; and the spherical
hinges are responsible for providing the rotational polarization while the spiral springs are compressed, thus achieving
p. Therefore, kg is determined by the spherical hinges. Regarding the unit cell, its first bandgap extending from 39
Hz — 1650 Hz can be obtained in the dispersion spectrum (in Figure 4(d)) (see Supplementary Method1 for more
details of the simulation). The ratio of the lower boundary of the optic branch to the upper boundary of the acoustic
branch is up to 42 times.

To validate our proposed design under controlled conditions and minimize the influence of extraneous factors, thus
ensuring experimental validity, one unit cell was fabricated and subjected to rigorous testing as illustrated in Figure
4(a). To avoid the local resonance modes of the lumped masses, the end of the period direction is replaced by a carbon
fiber plate, which can provide a high elastic modulus with a low density (See Method for more details of the
experiment). The experimental and numerical results are shown in Figure 4(d). One can see that there is an obvious
attenuation after 35 Hz, and the experimental and numerical results are in satisfying agreement in 100 Hz, especially

at resonance peaks (P; and P,) and anti-resonance notches (N; and N,). There are significant deviations between



numerical and experimental results after 100 Hz, which might be resulted by the nonlinear collisions from the
clearance in the spherical hinge °.

Regarding the PnC shown in Figure 4(a), the material of the spherical hinge is steel, while that of the springs is
Nylon, and the springs are spiral to further decrease the equivalent stiffness kj, affording kg and k;, great discrepancy.
On the one hand, the discrepancy is beneficial in raising the optic branch and thus broadening the bandgap. On the
other hand, because of the great discrepancy between kg and kj,, the deformation (AR, and Auy) of the stretch mode
will be much weaker, so the hybridization to p will be weakened. Therefore, the numerical inertial amplification
coefficient p can be up to 13 times with the increase of the tilt angle 8, as shown in Figure 5(a) (the original
coefficient is a maximum of 2.6). In this case, the lower boundary will shift to a lower frequency while the upper
boundary can be almost constant, as Figure 5(b) shows.

In addition, because the functions of the spiral springs and spherical hinges are independent, the disparity between
ks and kj;, can be magnified by variations in the material and dimensions of the spherical hinges. Consequently, with
the increase in the stiffness ratio (ks/kj, where kj, is constant), the bandgap width can be expanded (Figure 5(c)),
where the upper boundary will shift to a higher frequency while the lower boundary is constant.

In brief, compared to conventional unit cells, this unit cell with the spherical hinges enables the attainment of low-
frequency and wide bandgaps by tuning the inclination angle 8 and the material and geometric properties of the
spherical hinges, while significantly mitigating the constraints imposed by the equivalent supporting stiffness k,
equivalent density, and lattice constant. While this work showcases realization in broad and low-frequency bandgaps,
it should be acknowledged that enhancing the attenuation intensity of the inertial amplification-based bandgap will
be the next significant challenge '°.

Conclusions

In summary, in this research, we have theoretically revealed that the inertial amplification effect evolves from
inertia matrix to stiffness matrix, thus unifying two ostensibly conflicting explanations of the bandgap mechanism.
Based on our theory, which allows to observe the comprehensive physics of acoustic and optic branches in chiral
PnCs, we have clarified that the close relations between the rise of the inertial amplification coefficient and the
bending and stretch stiffness, as well as the restrictions from this close relations on the creation of broad
subwavelength bandgaps under boundaries constrained by the constant equivalent density, equivalent stiffness, and

lattice constant. Therefore, we have used spherical hinges to achieve the partial decouple, thus releasing the mutual
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negative effect between the acoustic and optic boundaries. The numerical and experimental results have confirmed
the effectiveness of our proposed scheme and demonstrated that the underlying physics obtained from the wave
behavior is instructive for structural design. This work may be able to shield light on the discovery of the inertial
amplification effects in other high-dimensional artificial structures, to realize ultra-low-frequency and ultra-broad
bandgaps without the requirement of the bulky static mass and fragile static stiffness, as well as to customize the
bandgap in chiral PnCs.

Method
Experiment Configuration and Boundary Conditions

The input disk is bolted to a plexiglass with a thickness of 15 mm, and the plexiglass must have approximately
ten times the weight of the bottom disk to limit the freedom of rotation of the disk around the z-axis as much as
possible. The shaker is excited directly on the plexiglass through the excitation bar to stimulate the harmonic
excitation. Two acceleration sensors (PCB 353B15) are attached to the top and the bottom of the sample to pick up
the output acceleration a, and the input acceleration a;, respectively. The experimental transmission is calculated by
a,/a;. The frequency range of the sine sweep is divided into three bands, i.e., 10 Hz — 200 Hz, 200 Hz - 1000 Hz,
and 1000 Hz — 3000 Hz, to avoid exceeding the allowable amplitude of the shaker under different voltages and to
guarantee the output acceleration a, is higher than the background noise. The frequency resolution is 2 Hz, and the

sweeping speed is 200 Hz/min, to guarantee the precision of experimental data.
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Figure 1. Acoustic and optic modes in the chiral PnC and its comparison with classical diatomic chains. (a) Schematics of the
conventional chiral subunit cell and its macroscopic polarizations under the longitudinal input P;. The green arrow denotes the
longitudinal input mode; the blue arrows denote the polarizations determined by the bending deformation of the ligaments; the red arrows
denote the polarizations determined by the stretch deformation of the ligaments. (b) The difference between the static mass and the
dynamical inertia in the chiral subunit cell. The gray shadow refers to the extra inertia induced by the polarization coupling, such as Py,
+ P, as well as Pig + P,s. (c) Polarizations of the acoustic mode determined by the bending deformation of the ligaments. (d)
Polarizations of the optic mode determined by the stretch deformation. () The relation between the static mass and the dynamical inertia
in the classical diatomic chain. P; means there is only longitudinal polarization in the classical diatomic chain. (f) Schematic of the

classical diatomic chain. (g) — (h) Acoustic and optic modes in the classical diatomic unit cell. (i) Dispersion-spectrum schematic of the

classical diatomic unit cell. Therein, the shading area indicates the bandgap.
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Figure 2. Dynamics of the conventional chiral PnC. (a) — (b) Theoretical and numerical transmissions of the conventional chiral
PnCs. The gray line is the numerical results, and the others are the theoretical results. Therein, “no kg” denotes the results of neglecting
the stretch mode; the red and blue lines in (b) are the results of considering the stretch mode, where the word “stiffness” in braces denotes
that the result is obtained based on Supplementary Equations (17) — (28), and the word “inertial” denotes that the theoretical result is
obtained based on Supplementary Equations (29) — (39). (c) Theoretical and numerical dispersion spectra (see Supplementary Note2
for the governing equation of dispersion spectrum). Therein, the gray star-shaped dotted lines are the numerical dispersion curves and
the others refers to the theoretical dispersion curves. The gray shading refers to the bandgap range. (d) The relative amplitudes of the
longitudinal displacement. Therein, u; and u refer to the relative longitudinal displacement induced by the bending and stretch modes,
respectively. The relative amplitude is calculated by dividing the absolute amplitude by the input amplitude. The subscript “b” refers to
the bending mode and “s” refers to be the stretch mode. (e) The relative amplitudes of the rotational displacement. Therein, Ry, and Ry

refer to the relative rotational displacement induced by the bending and stretch modes, respectively. The relative amplitude is calculated

by dividing the absolute amplitude by the input amplitude. (f) Displacement contours for the upper and lower boundaries of the bandgap.
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Figure 3. Dependence of fundamental physical parameters of acoustic and optic branches on the angle 6. (a) — (c) Parameter
discussion about the influence of @ on the inertial amplification coefficient p, bending stiffness kj, and stretch stiffness kg of
conventional chiral PnCs. The abbreviation “Nor.” means the word “normalization”, i.e., k/k, where k, = 1e5 Nm™! (See
Supplementary Note3 for more details of @ and for the governing equation about k;, and k). (c) Bandgap variation with the different

0. Therein, the gray shading is the bandgap ranges.
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Figure 4. Optimized chiral PnCs and its dynamic properties. (a) Photograph of the experimental sample (See Method for
experimental details). (b) Schematics of the subunit cell (See Supplementary Figurel for details about geometry). (c) Schematic of the
geometric relationship of the spherical hinges. See Supplementary S7 for the governing equations between the driven component and
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active component of the spherical hinges. (d) Normalized dispersion spectra of the chiral PnCs. The red line is the starting frequency of

the unit cell without spherical hinges, and it is 0.347 (88 Hz). The shading area indicates the bandgap range. Normalization method is

fon= f/(,/kb/me), where m, = 0.6018 kg and k, = 3.6e4 Nm™! (See Supplementary Method2 for the reasons of the

normalization method). (¢) Numerical and experimental transmission of one unit cell. P; and P, denote the resonance peaks while Ny

and N, denote the anti-resonance notches.
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Figure 5. Bandgap tuning of the improved unit cell. (a) Variation of p with different 6. (b) — (¢) Normalized bandgap width in

different inertial amplification coefficients p and different stiffness ratios (kg /kj). (See Supplementary Method1 for details about the

simulation).
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Figure 6. Schematics of the experimental configuration for transmission test. The bottom disk of the unit cell is bolted to a
plexiglass. The two yellow domains indicate the acceleration sensors. The shaker is Modelshop-K2007E01, which is bolted to the optical

platform and connected to the plexiglass thought an excitation bar. The foam support is used to isolate the vibration propagating from

the optic platform to the plexiglass.
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