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Abstract 

The wave equation revealing the wave propagation in chiral phononic crystals, established through 

force equilibrium law, conceals the underlying physical information, such as the essence of the motion 

coupling and the inertial amplification effect. This has led to a controversy over the bandgap mechanism. In 

this article, we theoretically unveil the reason for this controversy, and put forward an alternative approach 

from wave behavior to formulate the wave equation, offering an alternative pathway to articulate the bandgap 

physics directly. Based on the physics revealed by our theory method, we identify the obstacles in coupled 

acoustic and optic branches to widen and lower the bandgap. Then we introduce an approach based on 

spherical hinges to decrease the barriers, for customizing the bandgap frequency and width. Finally, we 

validate our proposal through numerical simulation and experimental demonstration. 

Keywords: bandgap origin, bandgap customization, elastic waves, chiral phononic crystal 
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Introduction 

The bandgap property in phononic crystals (PnCs) is associated with extreme spatial dispersion 1, wave guidance 

2, 3, and thermal physics 4. Therein, since the inertial amplification effect induced by chirality, which is beneficial for 

lowering the bandgap beyond the barriers constrained by mass and stiffness 5, 6, 7, enables the chiral PnCs the superior 

performance at low-frequency regime, thus expanding its applicable scope in the elastic-wave fields 8, 9. The inertial 

amplification concept in the mechanical perspective presented in the seminal study of Yilmaz refers to a dynamic 

virtual inertia attached to a static mass, thus reducing the eigenfrequency of the system 10. However, the bandgap 

mechanism of chiral PnCs has always been controversial 11, 12, 13. The seminal theories have indicated the inertial 

amplification as the mechanism behind such a bandgap 14, 15, while different chirality assemblies have different 

dispersion spectrum 14, 16. Therefore, the mechanism has been attributed to inertial amplification and the relative 

orientation of adjacent chiral centers in the syndiotactic system 14.  

More recently, two explanations have been reported for a physical explanation. The first is the dimer chain 13, 

where coupling longitudinal and torsional waves is similar to the coupled transverse and rotational waves in the 

periodic mass-spring system 17. The study 13 concluded that a monatomic chain effect, i.e., the so-called inertial 

amplification method, cannot support the bandgap phenomenon. The second explanation is related to analogous 

Thomson scattering 12 to consolidate the inertial amplification claim 15. In addition, the analogous Thomson 

scattering12 physically detailed that inertial amplification of this chiral sub unit cell is induced by coupling two or 

more polarizations in the same lumped mass and chirality is to achieve the secondary scattering for destructive 

interferences. These two theoretical interpretations are plausible because of the validation, yet they are contradictory 

since the debate about the existence or absence of inertial amplification.  

Here, we develop a theoretical analysis based on the wave behavior in chiral PnCs, to clarify the cause of the 

contradictory and unify and refine the bandgap mechanisms. We demonstrate that the wave equation directly derived 

from force equilibrium law will conceal the underlying physics, e.g., inertial amplification. Our method allows to 

articulate bandgap physics, and calculate the transmission simultaneously. In contrast to the conventional theoretical 

method 6, 10, 18, it allows observing the fundamental physical parameters of acoustic and optic modes under the 

assumption of elastic ligaments, i.e., inertial amplification coefficient, bending stiffness, stretch stiffness, and their 

origins and interactions. Our analysis pointed out that the rise of the inertial amplification coefficient is closely related 

to the bending and stretch stiffness. Consequently, the bandgap width and the reduction of the starting frequency are 
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mutually constrained, which poses a significant challenge to the realization of wide subwavelength bandgaps (the 

effects of the geometrical dimensions, characterized in equivalent stiffness 19 and equivalent mass 20, 21, are considered 

in normalization). To transcend this barrier, the spherical hinges and the spiral springs are employed to partial-

decouple these coupled physical parameters. The numerical and experimental results validate the correctness and the 

feasibility of our proposals in the theory and geometrical mode. 

Results 

a) Theoretical Observation of Bandgap Origin 

In the chiral subunit cell (Figure 1(a)), if there is a longitudinal input 𝑷𝑰 on disk1 (𝑷𝑰 = 𝑨𝟏𝒆#𝒊(𝒘𝒕(𝝓𝟏), where 𝝓𝟏 =

𝟎), the motion provided by 𝑷𝑰 will propagate in the bending deformation (Figure 1(c)) and stretch deformation 

(Figure 1(d)) of the ligaments simultaneously. Neglecting the local deformation of the ligaments and disks, we can 

observe two polarizations at disk Ⅱ, i.e., longitudinal polarization	𝑷𝒍 (𝑷𝒍𝒃 + 𝑷𝒍𝒔) and rotational polarization 𝑷𝒓 

(𝑷𝒓𝒃 + 𝑷𝒓𝒔) (where 𝑷𝒊𝒋 denotes that the 𝒋𝒕𝒉 deformation mode of the ligaments induces the 𝒊𝒕𝒉 polarization of the 

disk. In detail, subscript 𝒊 can be longitudinal polarization 𝒍 or rotational polarization 𝒓. Subscript 𝒋 denotes the 𝒋𝒕𝒉 

deformation mode of the ligaments, which can be bending mode 𝒃 or stretch mode 𝒔).  

In the scenario of Figure 1(c), based on the right-hand spiral rule, the disk Ⅱ will have a longitudinal polarization 

along +𝑧-axis (𝑃12) and a rotation polarization around +𝑧-axis (𝑃32) due to the bending mode. While in the scenario 

denoted by Figure 1(d), the disk 2 will have −𝑧 -axis rotational polarization (𝑃34 ) in addition to the +𝑧 -axis 

longitudinal polarization (𝑃14) due to the stretch mode. In short, there must be 4 polarizations in disk Ⅱ, i.e., 𝑃12, 𝑃32, 

𝑃14, and 𝑃34. Therein, the longitudinal polarization 𝑃12 and 𝑃14 vibrate in the same frequency and initial directions, 

while the rotational polarization 𝑃32 and 𝑃34 have the same frequency but opposite initial directions. 

Because 𝑃12 and 𝑃32 are resulted from the bending deformation of the ligaments, they will have the same frequency 

and the same phase at any time. Therefore, for the 𝑖56  lumped mass, assuming an extremely small harmonic 

displacement (Otherwise, there will be nonlinearity in this chiral unit cell 5), 𝑃12 and 𝑃32 are linearly correlated by 

the inertial amplification coefficient 𝑝, as illustrated by Eq. (1). 

𝑈71 = 𝑢71 +𝜓71 = 𝐴71𝑒#7895(:"
#; + 𝑝9𝐴7#<1 𝑒#7895(:"$%

# ; − 𝐴71𝑒#7895(:"
#;: , (1) 

where 𝑝 denotes the conversion coefficient from longitudinal polarization 𝑃12 to rotational polarization 𝑃32 and 

it is characterized as the inertial amplification coefficient in the inertia matrix 12, 15. 𝑢71  refers to longitudinal 

polarization induced longitudinal displacement and 𝜓71  refers to longitudinal polarization induced rotational 
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displacement. 𝐴71  implies the translational amplitude of the 𝑖th lumped mass. The superscript 𝑙 indicates that the 

longitudinal polarization 𝑢 and rotational polarization 𝜓 originate from the longitudinal mode. 𝜑 refers to the initial 

phase.  

Like 𝑃12 and 𝑃32, for the 𝑖56 lumped mass, 𝑃34 and  𝑃14 satisfy  

𝑈74 = 𝑢74 +𝜓74 = 𝜃7 4𝑒#7895(:"
&; + 𝑞C𝜃7#<4 𝑒#7895(:"$%& ; − 𝜃7 4𝑒#7895(:"

&;D, (2) 

where 𝑞 indicates the conversion coefficient from longitudinal polarization 𝑃14  to rotational polarization 𝑃34 . 

Because the sense of 𝑞 is exactly opposite to that of 𝑝,  𝑞 = <
=
 (see Supplementary Note4 for more details). The 

superscript 𝑠 indicates that the longitudinal polarization 𝑢 and rotational polarization 𝜓 originate from the stretch 

mode.  

Because the stretch stiffness 𝑘4 is different from the bending stiffness 𝑘2, 𝑃32 and 𝑃34 must have different phases, 

i.e., 𝜑1≠𝜑4, as do 𝑃12 and 𝑃14. This means 𝑃12 + 𝑃32 and 𝑃14 + 𝑃34 must be two independent wave modes, although 

we can only see the macroscopic results of longitudinal movement 𝑃1  (𝑃12 + 𝑃14 ) and 𝑃3  (𝑃32 + 𝑃34 )) rotational 

movement rather than the results of 𝑃12 + 𝑃32 and 𝑃14 + 𝑃34. 

Therefore, generally, in the global coordinate system, for the 𝑖56 lumped mass, the longitudinal displacement 𝑢 

is determined as  

𝑢7 = 𝑢71 + 𝑢74 = 𝐴71𝑒#7895(:"
#; + (−1)7𝐴74𝑒#7895(:"

&;	, (3) 

and the rotational displacement 𝜗 is determined as 

𝜗7 = 𝜓71 −𝜓74 = 𝜃71𝑒#7895(:"
#; − (−1)7𝜃74𝑒#7895(:"

&;. (4) 

Based on the Lagrangian method (See Supplementary Equations (1) – (28) in Supplementary Note1 for the 

derivation process), we can obtain the longitudinal displacement 𝑢7 and rotational displacement 𝜗. In this way, one 

can see that the inertial matrix (Supplementary Equation (17)) and stiffness matrix (Supplementary Equations 

(18) – (25)) are similar but not identical to current reported results13. According to the above analysis, the theoretical 

transmission (as denoted by the red solid line in Figure 2(b)) and dispersion spectrum (Figure 2 (c)) can be obtained 

directly. However, the inertial amplification cannot be observed in the inertial matrix (Supplementary Equation 

(17)). The wave equation only reveals one fact, i.e., the longitudinal polarization is coupled with torsional polarization. 

However, it has been demonstrated that only specific couplings (such as the syndiotactic PnCs 8, 14) rather than all 

couplings can give rise to such a bandgap 14, 16. Therefore, the explanation of the coupling13 needs to be clarified 

further.   
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It is worth noting that,  𝑃12 + 𝑃32 and 𝑃14 + 𝑃34 are two independent wave modes. Therefore, it allows us to 

regard 𝑢72 , 𝑢74 , 𝜓72 , and 𝜓74  as the independent variables, similarly, based on the Lagrangian method (See 

Supplementary Equations (29) – (39) in Supplementary Note1 for the derivation process), as a result, the inertial 

matrix and stiffness matrix will be significantly different, as illustrated by Supplementary Equations (31) – (34). 

Based on Supplementary Equations (31) – (39) and physical parameters listed in Supplementary Note5, we can 

also obtain the theoretical transmission (as denoted by the blue dashed line in Figure 2(b)), which is consistent with 

the numerical results. Figure 2(b) illustrates that both paths of establishing wave equations can yield identical 

transmissions to the numerical results. 

However, in contrast to the former classical theory (Supplementary Equations (17) – (27)), several essential 

information can be captured in the latter derivation method. First, as denoted by Supplementary Equations (35) – 

(37), the stiffness matrix does not indicate the coupling effect between longitudinal polarization and rotational 

polarization, but the inertial matrix does. Second, the inertial matrix (Supplementary Equations (31) – (34)) will 

reveal the existence of inertial amplification, which is derived from the coupling effect. Third, both bending and 

stretch modes can realize the motion coupling and thus obtain the inertial amplification effect, as denoted by 𝑝 in 

Supplementary Equation (32) and 𝑞 in Supplementary Equation (34). Fourth, the motion coupling guided by the 

bending mode is characterized by longitudinal polarization (because the primary diagonal element of M<< includes 

𝑚7 and the non-diagonal element is 𝐼7), while the motion coupling guided by the stretch mode is characterized by the 

rotational mode (because the primary diagonal element of M>> includes 𝐼7 and the secondary diagonal element is 𝑚7). 

At this point, we can learn about that the bandgap in the chiral PnCs must be accompanied by two wave modes 

that will truncate the bandgap range. These two wave modes are similar to the acoustic mode and optic mode of the 

classical diatomic chain, as shown in Figure 1(f), which together determine the bandgap range (Figure 1(i)). Therein, 

the two atoms of the diatomic unit cell vibrate in the same phase as an acoustic mode (as illustrated by Figure 1(g)), 

while the two atoms vibrate with opposite phases as an optic mode (as illustrated by Figure 1(h)). The same 

phenomena can be observed in the chiral PnC, as illustrated in Figures 1(c) and 1(d). According to the left-handed 

feature of the subunit cell, under the longitudinal input 𝑃7, the first expected case is the longitudinal motion of the 

disk Ⅱ accompanied by a rotation around the −𝑧-axis (Based on the right-hand spiral rule), as shown in Figure 1(c), 

which corresponds to the acoustic mode in the classical diatomic chain. Similarly, for the optic mode, as shown in 

Figure 1(d), the longitudinal motion of the	𝑚> is accompanied by a rotation around +𝑧-axis, which corresponds to 
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the optic mode in the classical diatomic chain. Therefore, the lower boundary of the bandgap in chiral PnCs can be 

named the acoustic branch (the two red pass bands in Figure 2(c)) since the vibration in the phase of adjacent atoms, 

and the upper boundary can be named the optic branch (the two blue pass bands in Figure 2(c)) because it is similar 

to that in the long-wavelength limit of an optic mode 22. The bandgap will convert into Bragg scattering type after 

the optic branch 23.  

Besides, the numerical deformation contours also demonstrate the similarity between the theoretical wave modes 

and the classical diatomic chain, as shown in Figure 2(f). The rotational directions of 𝑝?< & 𝑝?> are opposite to that 

of 𝑝1< & 𝑝1> when the translation is along +𝑧-axis, which exactly corresponds to the schematics in Figure 1(c) and 

Figure 1(d), respectively. For instance, comparing Figure 1(c) to the mode 𝑃1<, one can see that Figure 1(c) shows a 

rotation around −𝑧-axis and a translation along −𝑧-axis since the bending along −𝑧-axis, and 𝑃1< in Figure 2(f) 

shows a rotation around +𝑧-axis and a translation along +𝑧-axis due to bending along  −𝑧-axis. The schematics of 

the rotation and translation phases are completely identical to those of the simulation ones. Similarly, Figure 1(d) 

shows a rotation around +𝑧-axis and a translation along −𝑧-axis since the compression, and 𝑃?< in Figure 2(f) shows 

a rotation around −𝑧-axis and a translation along +𝑧-axis due to stretch. These two have excellent consistency. 

It is crucial to emphasize that these acoustic and optic branches essentially differ from conventional diatomic 

chains. In detail, the upper and lower branches in this context stem from two coupled orthogonal motions that 

originate from the same atom instead of from two atoms. Coincidentally, this coupled orthogonal polarization 

introduces a novel control variable for bandgap modulation — inertial amplification 12, as compared by Figure 1(b) 

and Figure 1(e). Nevertheless, the inertial amplification effect will be hidden in the wave equation if we utilize the 

traditional theoretical derivation directly based on force equilibrium. 

It should be noted that there is a discrepancy between the expected bandgap width of the dispersion spectrum 

and the attenuation range of the transmission. The expected bandgap covers 500 Hz – 1700 Hz, while the attenuation 

range shown in the transmission (Figure 2(b)) only appears in 500 Hz – 1400 Hz. This is due to the different boundary 

conditions in calculating the dispersion spectrum and the transmission. For the calculation of the dispersion spectrum, 

all the unit cell is free. For the calculation of the transmission, the rotation freedom of the first lumped mass is 

constrained. If we release this degree of freedom, the attenuation range will be 500 Hz – 1700 Hz, corresponding to 

the expected bandgap width (Please see Supplementary Note6 for more details.). Overall, the consistency in 

transmissions (Figure 2(b)), dispersion spectra Figure 2(c), as well as the deformation schematics (Figure 1(c), Figure 
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1(c), &Figure 2(f)), can verify the correctness of our analysis. 

Another essential advantage of our method is that, as illustrated by Supplementary Equations (38), we can 

directly obtain the longitudinal amplitude 𝑢72 determined by the bending deformation and the rotational amplitude 

𝜓74 determined by the stretch deformation. Furthermore, by substituting the results of Supplementary Equation (38) 

into Supplementary Equation (14), we can obtain the rotational amplitude  𝜓72  determined by the bending 

deformation and the longitudinal amplitude 𝑢74 determined by the stretch deformation. In other words, we can observe 

the respective contributions and influences of the acoustic mode and the optic branch on the bandgap. As shown in 

Figures 2(d) and 2(e), the acoustic mode is dominant before the anti-resonance notch in the bandgap. After that, the 

optic mode will dominate the transmission coefficient. Although Figure 2(e) shows that 𝑅2  has almost the same 

relative amplitude as 𝑅4  after the anti-resonance notch, it can be regarded as passive for 𝑅2  to present the large 

amplitude according to the causal inference in Supplementary Note1. More simply, if we can shift the optic mode 

towards a higher frequency, this passive effect originates from 𝑅4 to 𝑅2 will be much weaker, and the frequency range 

dominated by 𝑢2 will be broader, which can be demonstrated in the section about Figure 4. 

In short, for chiral PnCs 24, 25, it is convenient and concise to characterize the dispersion spectrum and 

transmission properties through the wave equation established from force equilibrium, but its final formulas merely 

present the coupled longitudinal and rotational polarizations, thus obscuring the comprehensive physical insights. 

Consequently, despite the observations of the similar coupling orthogonal polarizations in two-dimensional and three-

dimensional chiral structures 26, 27, 28 which are characterized by auxeticity in quasi-static compression 29, and even 

the systematical establishment of the governing equations 30, 31, 32, there have been limited discoveries of inertial 

amplification. In the end, many studies stagnated at the bandgap opening due to the limitations of the structural shape 

evolution  8, 11, 33, 34. 

b) Coupling roots of acoustic and optic branches 

As observed in the wave equation we proposed, the inertial amplification is a unique and essential advantage 

for the chiral PnCs. However, broadening the bandgap is extremely challenging since there must be the optic branch. 

To clarify the challenge, we neglect the contribution of stretch mode (𝑃14 and 𝑃34) and consider the bending mode 

only based on the method shown in Supplementary Equations (29) – (39). The theoretical transmission (the blue 

line in Figure 2(a)) is still consistent with the numerical results in low frequencies, and the dynamic equation can also 

reveal the inertial amplification effect, as demonstrated by other report15. This indicates that bending mode (𝑃12 and 
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𝑃32) directly determines the existence of the bandgap, and the stretch mode (𝑃14 and 𝑃34) determines the upper limit 

of the bandgap. 

The comparison of Figures 2(a) and 2(b) might lead us to believe that the main contribution of stretch mode is 

only to truncate the inertial amplification-based bandgap, but that is is not completely true. This bandgap formation 

relies on the coupled longitudinal-rotational motions of each lumped mass. In the conventional unit cell, although the 

longitudinal motion and rotational motion originate from the bending deformation of the ligaments, Supplementary 

Note3 illustrated that, for the solid structure, the bending mode will be absent if the stretch mode does not exist 

because both modes are determined by the identical basic physical and geometric parameters. Therefore, it seems 

impossible to make the optic modes disappear completely to obtain an infinite bandgap. Therefore, it is vital to figure 

out the coupling between optic and acoustic modes as well as find ways to manipulate them independently. 

Figure 2(a) illustrates that the bending mode serves to provide the stiffness 𝑘2  and inertial amplification 

coefficient 𝑝. 𝑘2 and 𝑝 are critical for directly determining the acoustic branch. The comparison of Figure 2(a) and 

Figure 2(b) illustrates that the stretch mode determines the optic branch by the stiffness 𝑘4 and 𝑞. Therefore, for a 

normalized low-frequency and broad bandgap, 𝑝 and 𝑘4 should be larger while 𝑞 should be larger, and 𝑘2 should be 

constant to provide sufficient support capacity.  

However, contrary to expectations, the actual situation is unfavorable. In details, on the one hand, Figure 1(c) 

and Figure 1(d) illustrated that, 𝑃32 and 𝑃34 have the opposite directions, which implies a hybridization between the 

rotational polarizations determined by bending and stretch modes. If there is no hybridization between 𝑝 and 𝑞, (see 

Supplementary Note3 and Supplementary Note4 for more details) 

𝑝 = tan 𝛾 . (5) 

The ideal inertial amplification coefficient will vary like the blue line shown in Figure 3(a). One can see that the 

amplified dynamic inertia 𝑝 would easily exceed 100 times. 

If considering the hybridization, 𝑝 is written as (see Supplementary Note3 and Supplementary Note4 for more 

details) 

𝑝 =
∆𝑅2 − ∆𝑅4
∆𝑢2 + ∆𝑢4

(6) 

where ∆𝑢2 refers to the longitudinal displacement difference (between 𝑚7 and 𝑚7#<) caused by the bending mode 

under the longitudinal harmonic loads; ∆𝑢4 refers to the longitudinal displacement difference caused by the stretch 

mode under the longitudinal harmonic loads; ∆𝑅2  refers to the rotational displacement difference caused by the 
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bending mode under the longitudinal harmonic loads; ∆𝑅4 refers to the rotational displacement difference caused by 

the stretch mode under the longitudinal harmonic loads.		

From Eq. (6), if ∆𝑅4  is larger with the increase of ∆𝑢4 , 𝑝  will be smaller, which will reduce the inertial 

amplification effect. This is a hybridization between 𝑞 and 𝑝 ((see Supplementary Equations (40), (41), (42), and 

(45) for more details)). Considering the hybridization, the amplified dynamic inertia 𝑝 can only be at most 2.6 times. 

On the other hand, as illustrated by Figure 3(b), 𝑘2  will increase rapidly with the increase of 𝜃. Then, the 

difference between 𝑘2 and 𝑘4 will be smaller and smaller, which is not conducive to achieving a broad bandgap 13. 

Ultimately, the upper boundary will approach the lower boundary of the bandgap, leading to the closure of the 

bandgap, as depicted in Figure 3(c).  For instance, if we need the maximum inertial amplification (when 𝜃 is about 

80°) to reduce the bandgap, then the stiffness difference between 𝑘4 and 𝑘2 is only 1.76 times. These two aspects 

denote a significant contradiction between the broad bandgap and the low-frequency bandgap. 

c) Customization of acoustic and optic branches 

To resolve the contradiction, we propose the strategy, as shown in Figure 4(a), to achieve partial decoupling. As 

illustrated in Figure 4(b), the subunit cell can be divided into three components, i.e., the lumped disks, the spiral 

springs, and spherical hinges. Figure 4(c) shows a detailed schematic of the spherical hinges, and its governing 

equation can be found in Supplementary Note7. In this unit cell, the spiral springs provide	𝑘2 and the spherical 

hinges are responsible for providing the rotational polarization while the spiral springs are compressed, thus achieving 

𝑝. Therefore, 𝑘4 is determined by the spherical hinges. Regarding the unit cell, its first bandgap extending from 39 

Hz – 1650 Hz can be obtained in the dispersion spectrum (in Figure 4(d)) (see Supplementary Method1 for more 

details of the simulation). The ratio of the lower boundary of the optic branch to the upper boundary of the acoustic 

branch is up to 42 times. 

To validate our proposed design under controlled conditions and minimize the influence of extraneous factors, thus 

ensuring experimental validity, one unit cell was fabricated and subjected to rigorous testing as illustrated in Figure 

4(a). To avoid the local resonance modes of the lumped masses, the end of the period direction is replaced by a carbon 

fiber plate, which can provide a high elastic modulus with a low density (See Method for more details of the 

experiment). The experimental and numerical results are shown in Figure 4(d). One can see that there is an obvious 

attenuation after 35 Hz, and the experimental and numerical results are in satisfying agreement in 100 Hz, especially 

at resonance peaks (P< and P>) and anti-resonance notches (N< and N>). There are significant deviations between 
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numerical and experimental results after 100 Hz, which might be resulted by the nonlinear collisions from the 

clearance in the spherical hinge 35.  

Regarding the PnC shown in Figure 4(a), the material of the spherical hinge is steel, while that of the springs is 

Nylon, and the springs are spiral to further decrease the equivalent stiffness 𝑘4, affording 𝑘4 and 𝑘2 great discrepancy. 

On the one hand, the discrepancy is beneficial in raising the optic branch and thus broadening the bandgap. On the 

other hand, because of the great discrepancy between 𝑘4 and 𝑘2,  the deformation (∆𝑅4 and ∆𝑢4) of the stretch mode 

will be much weaker, so the hybridization to 𝑝 will be weakened. Therefore, the numerical inertial amplification 

coefficient 𝑝 can be up to 13 times with the increase of the tilt angle 𝜃, as shown in Figure 5(a) (the original 

coefficient is a maximum of 2.6). In this case, the lower boundary will shift to a lower frequency while the upper 

boundary can be almost constant, as Figure 5(b) shows.  

In addition, because the functions of the spiral springs and spherical hinges are independent, the disparity between 

𝑘4 and 𝑘2 can be magnified by variations in the material and dimensions of the spherical hinges. Consequently, with 

the increase in the stiffness ratio (𝑘4/𝑘2 where 𝑘2 is constant), the bandgap width can be expanded (Figure 5(c)), 

where the upper boundary will shift to a higher frequency while the lower boundary is constant. 

In brief, compared to conventional unit cells, this unit cell with the spherical hinges enables the attainment of low-

frequency and wide bandgaps by tuning the inclination angle 𝜃 and the material and geometric properties of the 

spherical hinges, while significantly mitigating the constraints imposed by the equivalent supporting stiffness 𝑘2, 

equivalent density, and lattice constant. While this work showcases realization in broad and low-frequency bandgaps, 

it should be acknowledged that enhancing the attenuation intensity of the inertial amplification-based bandgap will 

be the next significant challenge 15. 

Conclusions 

In summary, in this research, we have theoretically revealed that the inertial amplification effect evolves from 

inertia matrix to stiffness matrix, thus unifying two ostensibly conflicting explanations of the bandgap mechanism. 

Based on our theory, which allows to observe the comprehensive physics of acoustic and optic branches in chiral 

PnCs, we have clarified that the close relations between the rise of the inertial amplification coefficient and the 

bending and stretch stiffness, as well as the restrictions from this close relations on the creation of broad 

subwavelength bandgaps under boundaries constrained by the constant equivalent density, equivalent stiffness, and 

lattice constant. Therefore, we have used spherical hinges to achieve the partial decouple, thus releasing the mutual 
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negative effect between the acoustic and optic boundaries. The numerical and experimental results have confirmed 

the effectiveness of our proposed scheme and demonstrated that the underlying physics obtained from the wave 

behavior is instructive for structural design. This work may be able to shield light on the discovery of the inertial 

amplification effects in other high-dimensional artificial structures, to realize ultra-low-frequency and ultra-broad 

bandgaps without the requirement of the bulky static mass and fragile static stiffness, as well as to customize the 

bandgap in chiral PnCs.  

Method 

Experiment Configuration and Boundary Conditions 

The input disk is bolted to a plexiglass with a thickness of 15 mm, and the plexiglass must have approximately 

ten times the weight of the bottom disk to limit the freedom of rotation of the disk around the z-axis as much as 

possible. The shaker is excited directly on the plexiglass through the excitation bar to stimulate the harmonic 

excitation. Two acceleration sensors (PCB 353B15) are attached to the top and the bottom of the sample to pick up 

the output acceleration 𝑎@ and the input acceleration 𝑎7, respectively. The experimental transmission is calculated by 

𝑎@/𝑎7. The frequency range of the sine sweep is divided into three bands, i.e., 10 Hz – 200 Hz, 200 Hz - 1000 Hz, 

and 1000 Hz – 3000 Hz, to avoid exceeding the allowable amplitude of the shaker under different voltages and to 

guarantee the output acceleration 𝑎@ is higher than the background noise. The frequency resolution is 2 Hz, and the 

sweeping speed is 200 Hz/min, to guarantee the precision of experimental data. 
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Figure 1. Acoustic and optic modes in the chiral PnC and its comparison with classical diatomic chains. (a) Schematics of the 

conventional chiral subunit cell and its macroscopic polarizations under the longitudinal input 𝑷𝑰 . The green arrow denotes the 

longitudinal input mode; the blue arrows denote the polarizations determined by the bending deformation of the ligaments; the red arrows 

denote the polarizations determined by the stretch deformation of the ligaments. (b) The difference between the static mass and the 

dynamical inertia in the chiral subunit cell. The gray shadow refers to the extra inertia induced by the polarization coupling, such as 𝑷𝒍𝒃 

+ 𝑷𝒓𝒃  as well as 𝑷𝒍𝒔  + 𝑷𝒓𝒔 . (c) Polarizations of the acoustic mode determined by the bending deformation of the ligaments. (d) 

Polarizations of the optic mode determined by the stretch deformation. (e) The relation between the static mass and the dynamical inertia 

in the classical diatomic chain.  𝑷𝒍 means there is only longitudinal polarization in the classical diatomic chain. (f) Schematic of the 

classical diatomic chain. (g) – (h) Acoustic and optic modes in the classical diatomic unit cell. (i) Dispersion-spectrum schematic of the 

classical diatomic unit cell. Therein, the shading area indicates the bandgap. 
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Figure 2. Dynamics of the conventional chiral PnC. (a) – (b) Theoretical and numerical transmissions of the conventional chiral 

PnCs. The gray line is the numerical results, and the others are the theoretical results. Therein, “no 𝒌𝒔” denotes the results of neglecting 

the stretch mode; the red and blue lines in (b) are the results of considering the stretch mode, where the word “stiffness” in braces denotes 

that the result is obtained based on Supplementary Equations (17) – (28), and the word “inertial” denotes that the theoretical result is 

obtained based on Supplementary Equations (29) – (39). (c) Theoretical and numerical dispersion spectra (see Supplementary Note2 

for the governing equation of dispersion spectrum). Therein, the gray star-shaped dotted lines are the numerical dispersion curves and 

the others refers to the theoretical dispersion curves. The gray shading refers to the bandgap range. (d) The relative amplitudes of the 

longitudinal displacement. Therein, 𝒖𝒃 and 𝒖𝒔 refer to the relative longitudinal displacement induced by the bending and stretch modes, 

respectively. The relative amplitude is calculated by dividing the absolute amplitude by the input amplitude. The subscript “b” refers to 

the bending mode and “s” refers to be the stretch mode. (e) The relative amplitudes of the rotational displacement. Therein, 𝑹𝒃 and 𝑹𝒔 

refer to the relative rotational displacement induced by the bending and stretch modes, respectively. The relative amplitude is calculated 

by dividing the absolute amplitude by the input amplitude. (f) Displacement contours for the upper and lower boundaries of the bandgap.  
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Figure 3. Dependence of fundamental physical parameters of acoustic and optic branches on the angle 𝜽. (a) – (c) Parameter 

discussion about the influence of 𝜽  on the inertial amplification coefficient 𝒑 , bending stiffness 𝒌𝒃 , and stretch stiffness 𝒌𝒔  of 

conventional chiral PnCs. The abbreviation “Nor.” means the word “normalization”, i.e., 𝒌/𝒌𝒓  where 𝒌𝒓 = 𝟏𝒆𝟓  𝐍	𝐦&𝟏  (See 

Supplementary Note3 for more details of 𝜽 and for the governing equation about 𝒌𝒃 and 𝒌𝒔). (c) Bandgap variation with the different 

𝜽.	Therein, the gray shading is the bandgap ranges. 

 

  

Figure 4. Optimized chiral PnCs and its dynamic properties. (a) Photograph of the experimental sample (See Method for 

experimental details). (b) Schematics of the subunit cell (See Supplementary Figure1 for details about geometry). (c) Schematic of the 

geometric relationship of the spherical hinges. See Supplementary S7 for the governing equations between the driven component and 
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active component of the spherical hinges. (d) Normalized dispersion spectra of the chiral PnCs. The red line is the starting frequency of 

the unit cell without spherical hinges, and it is 0.347 (88 Hz). The shading area indicates the bandgap range. Normalization method is 

𝒇𝒏 = 𝒇/12𝒌𝒃/𝒎𝒆4 , where 𝒎𝒆 = 𝟎. 𝟔𝟎𝟏𝟖  kg and 𝒌𝒃 = 𝟑. 𝟔𝒆𝟒  𝐍	𝐦&𝟏  (See Supplementary Method2 for the reasons of the 

normalization method). (e) Numerical and experimental transmission of one unit cell. 𝐏𝟏 and 𝐏𝟐 denote the resonance peaks while 𝐍𝟏 

and 𝐍𝟐 denote the anti-resonance notches.  

 

 
Figure 5. Bandgap tuning of the improved unit cell. (a) Variation of 𝑝 with different 𝜃. (b) – (c) Normalized bandgap width in 

different inertial amplification coefficients 𝑝 and different stiffness ratios (𝑘+/𝑘,). (See Supplementary Method1 for details about the 

simulation).  

 
 

 

Figure 6. Schematics of the experimental configuration for transmission test. The bottom disk of the unit cell is bolted to a 

plexiglass. The two yellow domains indicate the acceleration sensors. The shaker is Modelshop-K2007E01, which is bolted to the optical 

platform and connected to the plexiglass thought an excitation bar. The foam support is used to isolate the vibration propagating from 

the optic platform to the plexiglass.  

 


