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A Comparative Study of NMPC Strategies for
Prioritized Multi-UAV Trajectory Tracking with

Collision Avoidance in Agricultural Field Mapping
Missions

Dora Novak1 and Sihem Tebbani1

Abstract—In agricultural field mapping missions, a collision risk
occurs when the UAVs deviate from their planned trajectories due
to the wind or uncertainties in the model, but also in case of
intersecting paths of the UAVs, e.g. when the battery level is not
sufficient and a UAV needs to change its initially planned path and
return to the base unexpectedly.

In this paper, three nonlinear model predictive control (NMPC)
trajectory tracking strategies for collision avoidance are compared
for multi-UAV mapping of an agricultural field: incorporating
collision avoidance as a nonlinear constraint, applying it as a
penalty cost, and employing a safe flight corridor approach. All
the presented strategies consider passing priority allocation of the
UAVs involved in the mission, where only a UAV with a lower-level
priority handles collision avoidance.

Control strategies are compared regarding robustness to exter-
nal disturbances, such as wind, and model uncertainties through
Monte Carlo simulations. The performance is evaluated with
respect to the resulting tracking errors, the ability to avoid
collision, and the computational time needed to solve the optimal
control problem. The objective is to determine, among these
three approaches, the one that exhibits the best trade-off between
performance and computational burden.

Index Terms—trajectory tracking, multi-UAV system, collision
avoidance, predictive control, prioritized planning

I. INTRODUCTION

UAVs have seen a growing potential in application in various
smart agriculture tasks [1]. One of those tasks includes mapping
of an agricultural field [2]. UAVs are replacing conservative
methods to improve efficiency and accuracy. As such, multi-
UAV systems are often employed to map the field to reduce the
mapping duration and thus ensure increased mission efficiency,
especially for large fields. In this case, coordination between
the UAVs engaged in the same mission must be considered to
ensure safety, namely to avoid collision.

A suitable control strategy needs to be developed to find a safe
optimal trajectory with minimal tracking error while avoiding
collision between the UAVs. Nonlinear model predictive control
(NMPC) has proven a higher level of robustness than linearized
MPC, while implemented in real-time systems [3]. A distributed
approach to MPC has been extensively researched and used in
applications such as field mapping. In distributed MPC [4], each
UAV computes its own optimal control inputs with respect to the
predicted behavior of the system based on the model, as well as
the predicted behavior of neighboring UAVs, while respecting
constraints. Thus, it provides better scalability and tractability
compared to centralized coordination [5].

Different approaches to collision avoidance in multi-UAV
systems have been proposed in the literature. In [6]–[8], collision
avoidance is imposed as a nonlinear constraint while computing
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the optimal trajectory for each UAV. In [9], collision avoidance
is handled in the cost function, and its significance can be
adjusted depending on the need for collision avoidance. Inspired
by the multi-objective MPC [10], a state-dependent cost function
criterion to avoid collision when necessary is presented in
our previous work [11]. Staying within a defined safe flight
corridor is another approach to avoid collision and smoothen the
trajectory. In [12], feasible flight corridor is constructed based on
a graph of interconnections in the multi-obstacle environment.
Flight corridors in [13] are defined by a radius around the sphere
waypoint, which allows the UAV to perform more natural turns
while remaining inside the imposed corridor.

In order to enhance the multi-UAV mission performance and
safety, attributing different levels of passing priority to the
UAVs involved in the same mission can aid in resolving a
collision conflict. Prioritized planning has been explored for
resolving motion planning coordination in multi-robot systems.
The collision resolver introduced by [14] is triggered when the
path of one robot is blocking another robot’s path. Based on
their predetermined priority level, lower-priority robot needs
to wait or diverge from the initial route in order to let the
higher-priority vehicle pass by respecting the spatio-temporal
constraints. This is done by introducing a collision resolver
which is triggered when a higher-priority robot blocks a lower-
priority one’s path. The collision resolver tries to find a path
that avoids the other robot’s route, taking spatial and temporal
constraints into account. Multi-UAV path planning and trajec-
tory tracking with passing priority is discussed in [15]–[17].
In our previous work [18], we emphasize the importance of
prioritized trajectory tracking to eliminate unnecessary maneu-
vers, resulting in increased mission safety, as well as lowering
total energy consumption. Prioritized collision avoidance cost
function to avoid other UAVs, as well as other obstacles, is also
presented in [19].

In this paper, we present a comparative analysis of three
nonlinear MPC strategies to avoid collision with predefined
passing priority applied to the trajectory tracking for agricultural
field mapping, in order to choose the most adequate one to
implement on the considered real-life application. All the pro-
posed strategies are consensus-based extensions of distributed
MPC, with information exchange between the UAVs. Standard
collision avoidance strategies, as a nonlinear constraint and cost
function criterion, are compared to the proposed safe flight
corridor approach. Control strategies are assessed in terms of
robustness to model uncertainties and external disturbances, as
well as the computational complexity being an important param-
eter when considering a real-time application. Robust strategy
must perform with the low tracking error and successfully avoid
the collision if a risk appears. In a field mapping mission,



collision risk can arise when the UAV deviates from its initially
planned path due to the wind or uncertainties in the system
model, as well as in case of insufficient energy to finish the
mission when the replanned paths of the UAVs intersect.

The rest of the paper is organized as follows. Section II
introduces the nonlinear model of the UAV used in simulations.
Section III describes the multi-UAV mission considered as a
case study. Different collision avoidance distributed NMPC
strategies are presented in Section IV, while simulation results
are summarized and discussed in Section V. Finally, concluding
remarks are provided in Section VI.

II. UAV DYNAMIC MODEL

The nonlinear representation of a quadrotor with 6 DOF is
modeled by the following set of nonlinear equations [7]:

ṗ(t) = v(t), (1)

v̇(t) = R

 0
0
αT

+

 0
0
−g

−

Ax 0 0
0 Ay 0
0 0 Az

 v(t) +

wx

wy

wz

 , (2)

ϕ̇(t) = (Kϕϕref (t)− ϕ(t))/τϕ, (3)

θ̇(t) = (Kθθref (t)− θ(t))/τθ, (4)

The vector p = [px, py, pz]
⊤ defines the position, while the

vector v = [vx, vy, vz]
⊤ denotes the velocity. These vectors

result from the transformation to the yaw-compensated global
reference performed with the rotation matrix R ∈ SO(3),
which represents the orientation of the body-fixed reference
frame with respect to the global reference frame. The attitude
of the UAV is also given in the global coordinate system and
characterized by roll, ϕ, and pitch angle, θ. In the equations,
the yaw angle, ψ, is set to zero and regulated by an inner P-
controller as in [7]. In (2), the external disturbances, such as
wind acting on a UAV as torque, are represented by the addition
of the vector w = [wx, wy, wz]

⊤. The parameter α signifies the
thruster efficiency, which is equal to 1 in the nominal case.
Other parameters represent gravity, g, linear dumping terms,
Ax, Ay, Az , time constants, τϕ, τθ, and gains of the inner-loop
actions for the attitude control, Kϕ,Kθ. Their values are fixed
as in [7]. Control inputs include total thrust, reference pitch and
roll angles, denoted as u = [T, ϕref , θref ]

⊤. System dynamics
is therefore described by 8 state variables x = [p, v, ϕ, θ]⊤, 6
outputs y = [p, v]⊤ and 3 control inputs u = [T, ϕref , θref ]

⊤.
The discretized model is issued from the continuous model

(1)-(4), discretized at the sampling time Te, using the Runge-
Kutta scheme, with f as a nonlinear function:

xk+1 = f(xk, uk, wk), k ≥ 0, (5)

where k represents the time step. The control inputs and
disturbances are constant between the two time instants in
further study.

III. MULTI-UAV MAPPING MISSION

The mapping mission of an agricultural field with the UAVs
includes two phases: path planning and trajectory tracking. Path
planning results in determining the waypoints where a UAV
needs to take a snapshot to cover the entire field. In this phase,
parameters such as camera characteristics, battery, etc., need to
be considered when planning the optimal path.

Time-efficient mapping of an agricultural field often involves
multiple cooperative UAVs. To ensure safety when employing
a multi-UAV system in this type of mission, avoiding collision
along the trajectory is necessary.

Based on the path plan for mapping the vineyard and olive
orchard in [20], a simplified layout of the reference paths of
two UAVs in the studied mission is given in Figure 1 and the
coordinates of the waypoints in Table I.

Fig. 1. Reference path for the mapping mission with two UAVs.

TABLE I
REFERENCE WAYPOINTS

Waypoint UAV1 UAV2
start (0, 0, 0)m (0.5, 0.5, 0)m

1 (1, 0, 3)m (1, 3, 3)m

2 (2, 0, 3)m (2, 3, 3)m

3 (3, 0, 3)m (3, 3, 3)m

4 (3, 1, 3)m (3, 2, 3)m

5 (2, 1, 3)m (2, 2, 3)m

6 (1, 1, 3)m (1, 2, 3)m

finish (0, 0, 0)m (0, 0.5, 0)m

As this is a homogeneous multi-UAV mission, both UAVs
have the same camera parameters and therefore, fly at identical
and constant reference altitude. Even though the planned paths
do not intersect and the distance between agents’ waypoints is
at least 1 m at all times, a risk of possible collision needs to be
considered as it is present at take-off and landing from and to
the points in close proximity, or in case of deviation from the
planned path. Deviation can be caused by numerous reasons,
such as external disturbances, model uncertainties, emergency
landing due to fault in the system, etc.

To avoid unnecessary maneuvers and path alternations, only
one of the two UAVs will handle collision avoidance. Hierar-
chical passing priority is allocated to a pair of the UAVs, such
that the UAV with higher passing priority focuses only on the
trajectory tracking in its control strategy, whereas the UAV with
lower passing priority needs to avoid collision in addition to the
trajectory tracking. Resulting in smoothened trajectories of both
UAVs, fewer alternations account for augmented safety and less
energy consumed during the flight. At the planning level, higher
priority should be given to the UAV with a lower battery level,
smaller overall path distance, or based on another determined
criterion. In this study (Figure 1), priority is given to UAV2,
while UAV1 is responsible for collision avoidance when the
risk appears along the trajectory.

Control is handled in a distributed manner, with output
information exchanged between the UAVs as described on
the schematic diagram in Figure 2. As shown in the figure,
UAV1 takes both its own predicted output and the predicted
output of the UAV2 as input for the chosen optimal control
problem defined later in this paper. Model uncertainties and



external disturbances are also considered when describing the
real system.

Fig. 2. Distributed MPC schematic diagram.

The distributed approach implies that each UAV computes
its own control inputs based on the predicted outputs ŷ over a
certain prediction horizon of length Np · Te. Predicted outputs
are acquired based on the model (5).

The objective of the control law is to track the reference
output yref with precision. Robustness against bounded distur-
bances and model uncertainties is ensured by considering the
error between the model output ymodel and the real system
output y. To account for the error, the predicted output, at time
(k + n)Te and along the prediction horizon Np starting from
time kTe, is chosen as:

ŷk+n = ymodel
k+n + n(yk − ymodel

k ), n ∈ [1, Np] (6)

The model output ymodel is provided by a nominal model,
without uncertainties, α = 1, nor external disturbances, w = 0.

It is assumed that the real system’s output is error- and noise-
free, and all the state variables are measured. It is assumed
that the distrubances w acting on the system are unknown and
unmeasured.

IV. DISTRIBUTED NMPC FOR COLLISION AVOIDANCE

Model predictive control (MPC) is a control strategy that
repeatedly solves a finite-horizon optimization problem while
respecting a set of constraints on states and inputs. Optimization
results in control inputs that are chosen to minimize a predicted
cost. Future behavior is predicted based on the system model.
Nonlinear model predictive control (NMPC) is used when the
model is nonlinear, as it is the case with the UAV model (5).

Distributed model predictive control (DMPC) aims to lower
the computational complexity of the centralized optimal control
problem by dividing it into subproblems for each subsystem,
here UAV. Subsystems are coupled through dynamics [21],
constraints [22], or cost functions [23].

In DMPC, each UAV in the system is an agent in set Ni,
and implements its own control strategy to track the reference
output. Additionally, collision avoidance needs to be considered
in case of risk of multiple agents being in close proximity. The
risk of collision especially arises when the UAVs start and end
the mission from the same or similar waypoint. Therefore, to
ensure safe take-off and landing, as well as flight of all the
UAVs, additional measures need to be included while defining
a control strategy suitable for the mission.

Collision avoidance can be addressed in several ways. This
study aims to compare collision avoidance handling as a non-
linear constraint, an additional criterion in the cost function and
a safe flight corridor.

All the listed strategies for collision avoidance will be applied
only to the UAV with the lower-passing priority, whereas clas-
sical NMPC will be applied to the higher-passing priority UAV.
Cost function of the classical NMPC minimizes the tracking
error and change in control inputs:

Ji(u
i
k,...,k+Np−1) =

Np∑
n=1

[
∥ŷi

k+n − yi,ref
k+n ∥2Qi

+ ∥∆ui
k+n−1∥2Ri

]
,

(7)
where Qi and Ri are weight matrices, and yi,ref the reference

for UAV i. The first term considers trajectory tracking, while
the second term aims to smooth the variation in control inputs.

A. Collision avoidance as a nonlinear constraint

A nonlinear constraint that prevents collision between the
UAVs is imposed as a minimum distance that needs to be
satisfied between the positions of the UAVs along their trajec-
tories. Besides the classic NMPC (7), a nonlinear constraint for
collision avoidance needs to be satisfied, where the distance
between the UAVs i and j, dij , is kept greater than the defined
safety distance ds over the prediction horizon. Thus, at each
sampling time (k + n)Te, following constraint is considered,
similarly to [6]:

∥dij,k+n∥2 ≥ ds, i, j ∈ Ni, j ̸= i (8)

B. Collision avoidance in the cost function

Relaxing the collision avoidance constraint can be trans-
formed into a penalty cost. Thus, the newly formulated cost
function includes a new criterion whose weight depends on the
proximity from the UAV that needs to be avoided. It is expressed
as in [18]:

(9)

Ji(u
i
k,...,k+Np−1) =

Np∑
n=1

∥ŷi
k+n − yi,ref

k+n ∥2Qi
+ ∥∆ui

k+n−1∥2Ri

−
∑

j∈Ni,j ̸=i

Aij(dij,k+n)∥dij,k+n∥2Gij


In (9), in addition to minimizing the tracking error and

successive change in control inputs as in (7), the last term in the
cost function aims to maximize the distance between the UAVs
with the weight factor Gij . Depending on the distance dij and
tuning factor γ, weight Aij can take values in the interval [0, 1]:

Aij =
1

1 + eγ·D
, (10)

where
D = dij − ds ∗ (1 + S) (11)

Here, S is a safety factor introduced to ensure respecting the
defined safety distance ds (to account for prediction errors). The
evolution of Aij versus D is illustrated in Figure 3. Factor γ
is a tuning parameter that determines the transition between the
values 1 and 0.

Fig. 3. Weight function Aij for different values of the factor γ.

As the highest risk of collision may appear during the take-
off and landing, the collision avoidance term outweighs the



trajectory tracking term in the cost function. On the other hand,
minimizing the tracking error is a priority during the rest of the
mission. Therefore, Aij is a sigmoid function that helps avoid
numerical issues due to the choice of a binary term (switch
between 0 and 1 depending on the distance).

C. Collision avoidance through a flight corridor

As a safety mechanism to reject disturbances and model
uncertainties, the flight corridor is introduced as a nonlinear
constraint in the optimal control problem to ensure trajectory
tracking within allowed limits. A flight corridor is represented
as a tube with a set radius from the desired trajectory. Alone,
it can ensure collision avoidance as each UAV stays inside its
own corridor, which is constructed such that the corridor of the
UAV does not intersect with the planned trajectory of the other
UAVs in the system.

In this case, the control input is chosen to minimize the
classical NMPC as in (7) while respecting additional constraints
to remain in the defined boxed corridor, similarly as in [13]:

| p• − pref• |≤ β, (12)

where p• are the actual positions px, py or pz , and pref•
position references along 3 axes. In order to ensure collision
avoidance, the choice of the corridor width in 3 axes, β, depends
on the size of UAV, as well as the a priori planned paths of all
the UAVs.

V. SIMULATION RESULTS AND DISCUSSION

A. Mapping mission trajectory tracking

In order to assess the robustness of the previously presented
control strategies for trajectory tracking with collision avoidance
in a mapping mission (Figure 1), the analysis of the Monte Carlo
simulations will be presented here. Random values of constant
external disturbances [wx, wy, wz], and uncertainty of the model
parameter of the thruster efficiency α are considered for all the
test cases. Simulation parameters are given in Table II.

TABLE II
PARAMETER VALUES

g 9.81m/s2 Te 0.1s

Ax, Ay , Az (0.1, 0.1, 0.2)s−1 Np 10

Kϕ,Kθ 1 Tf 10s

τϕ, τθ (0.7, 0.5)s ds 0.55m

Q1 = Q2 diag(102, 10, 102, 10, 103, 10) S 10%

R1 = R2 diag(1, 1, 1) β 0.3m

G12 100

Parameters ds and β are chosen according to the size of the
UAV and the mission path plan. Here, simulations are performed
for DJI Mavic 3, with the dimensions 347,5 x 283 x 107,7 mm
(with propellers).

Monte Carlo simulations were conducted for 50 test cases
with randomly added bounded external disturbances and uncer-
tainties on thruster efficiency, denoted w1, α1 and w2, α2 for
UAV1 and UAV2, respectively. All the optimization problems
were solved by the same algorithm (fmincon of Matlab).

It is important to verify whether the minimum safety distance
ds is respected along the trajectories in all the test cases. In order
to challenge collision avoidance, the imposed safety distance
ds = 0.55m is superior to the distance between the reference
paths of the two UAVs. Figure 4 shows the minimum reached
distance between the UAVs along the mission. Nonlinear con-
straint and penalty cost strategies successfully avoid entering the
imposed collision risk zone, whereas the flight corridor strategy

violates the safety distance in certain test cases because the
planned reference paths are a priori configured in overly close
proximity to each other.

Fig. 4. Minimum distance between the UAVs along the trajectory.
ds = 0.55m (in green).

Table III shows the root mean square error (RMSE) of the
tracking error along the trajectory for the UAV that handles
collision avoidance. The best results in terms of the tracking
error, both the error value and the uniformity of the results, are
exhibited for the flight corridor. As the flight corridor restricts
the deviations from the reference path, it ensures that the UAV
remains within the imposed limits, even in the presence of
high model uncertainty and external disturbances. Collision
avoidance in the cost function criterion shows the highest
average tracking error, as it outweighs the trajectory tracking
term at take-off and landing, when the UAVs are in high-risk
collision zone.

TABLE III
RMSE FOR EACH STRATEGY BASED ON MONTE CARLO SIMULATION

RESULTS

RMSE [m] min max mean
Nonlinear constraint 0.08 0.85 0.15

Penalty cost 0.30 0.97 0.51
Flight corridor 0.08 0.23 0.13

When selecting the adequate control strategy, computational
complexity needs to be considered. CPU time needed to solve
the optimal control problem is an indicator of the complexity.
Based on the results shown in Table IV, collision avoidance
as the nonlinear constraint indicates the highest computational
complexity among all strategies. It should be noted that resulting
CPU time is given only as an indication for comparison, and as
such is not compatible with real-time application.

TABLE IV
AVERAGE CPU TIME FOR EACH STRATEGY BASED ON MONTE CARLO

SIMULATION RESULTS

Average CPU time [s] min max mean
Nonlinear constraint 0.67 1.58 0.89

Penalty cost 0.54 1.06 0.78
Flight corridor 0.29 0.65 0.46

When comparing the two indicators, root mean square track-
ing error and computational complexity, flight corridor seems
to be the highest-performing collision avoidance strategy for
the presented path configuration.

In order to examine the simulation results in more detail,
the worst case (here case test 4, see Figure 4) in terms of



RMSE is given in Figure 5. Indeed, from the resulting trajectory
for UAV1, the lower-passing priority UAV handling collision
avoidance, it is visible that only the flight corridor succeeds
in tracking the reference path without major deviations. When
looking into the disturbances and uncertainties values for test
case 4, it can be assumed that the cause for high RMSE
lies mainly in the overestimated thruster efficiency, which is
much lower than predicted. As this parameter uncertainty highly
affects the UAV position in the z-axis, the largest tracking error
is in that direction. Only the flight corridor is robust to higher
uncertainties for thruster efficiency α by maintaining the tighter
constraints on the resulting trajectory. Flight corridor, therefore,
appears to be robust to both external disturbances and model
uncertainties.

When considering a test case in Figure 6, that results in lower
values of RMSE for the UAV1, it is visible in Figure 6 that
both nonlinear collision avoidance constraint and flight corridor
succeed in tracking the planned path with only a small error. On
the other hand, collision avoidance in the cost function deviates
from the planned path when landing, as the risk of collision
arises due to the close proximity of the UAVs. Nonetheless,
most of the mission is tracked successfully for that strategy as
well. From this test case, it is clear that underestimating the
real capacity of the thruster (here: α1 = 1.16) does not impose
difficulties for robust trajectory tracking.

Fig. 5. Resulting trajectories for a test case (worst case scenario) with the
external disturbances and model uncertainties.
w1 = [0.27,−0.63, 0.09] m/s2, w2 = [0.30,−0.61, 0.07] m/s2.
α1 = 0.71, α2 = 1.14.

B. Intersecting paths

The above-presented results illustrate a mapping mission
where the planned paths of two UAVs do not intersect. However,
due to unpredicted events, such as insufficient battery left
to finish the mission, the trajectories need to be replanned.
As the modified trajectories risk intersecting in case of an
emergency return to base, collision avoidance becomes crucial
for mission safety. An example of the intersecting reference
paths is illustrated in Figure 7. The resulting trajectories and
success in avoiding the collision depend on the implemented
NMPC strategy. Figure 8 shows the resulting distance between
the UAVs along their intersecting paths in the nominal case,
without model uncertainties and external disturbances. It is clear
that imposing the flight corridor is not sufficient to avoid the
collision, as it only ensures that the UAV remains within the
imposed limits, and does not address the collision risk itself.
Implementing a nonlinear constraint ensures that defined safety

Fig. 6. Resulting trajectories for a test case (good performance scenario) with
the external disturbances and model uncertainties.
w1 = [−0.18, 0.12, 0.02] m/s2, w2 = [−0.27, 0.04, 0.06] m/s2.
α1 = 1.16, α2 = 1.12.

distance is respected along the trajectory. In Figures 8 and 9, the
trajectory with imposed nonlinear strategy overlaps with the one
with the flight corridor, until it enters the zone of risk. When
the reference paths present a risk of collision, NMPC with a
nonlinear constraint keeps the safety distance, after which it
continues to track the reference position with high precision.
Implementation of collision avoidance as a penalty cost results
in a higher level of deviation from the reference path for a
longer time. Minimizing the tracking error is a priority at the
beginning, where the distance between the UAVs is sufficient.
However, as soon as the risk of collision arises, the UAV starts
to avoid the collision by flying further apart from both the other
UAV and its own reference path.

Fig. 7. Intersecting replanned reference paths.

In the presented case, the best compromise between minimal
tracking error and collision avoidance guarantee is shown by
implementing the NMPC with a nonlinear constraint to avoid
collision. The resulting trajectories of both UAVs for the studied
case are illustrated in Figure 10. The trajectory of the lower-
priority UAV deviates in order to avoid the collision as soon
as it enters the collision risk zone. The other UAV prioritizes
minimal tracking error along the whole trajectory, and, therefore,
has no trajectory alternations.

VI. CONCLUSION

In this paper, we compared three NMPC strategies for colli-
sion avoidance in multi-UAV missions with prioritized planning:



Fig. 8. Collision avoidance strategy comparison for intersecting reference paths,
ds = 0.55m (in green).

Fig. 9. Collision avoidance strategy comparison for intersecting reference paths
(zoomed), ds = 0.55m (in green).

Fig. 10. Resulting trajectories for intersecting paths. UAV1 handles collision
avoidance by implementing the NMPC with nonlinear constraint.

collision avoidance as a nonlinear constraint, collision avoidance
as a penalty cost and safety flight corridor.

When comparing the Monte Carlo simulation results for the
considered mapping mission case with the planned paths for
the UAVs that do not intersect, the flight corridor appears to be
the best-performing strategy in terms of robustness to external
disturbances and model uncertainties. Compared to the other
two strategies, the flight corridor ensures low tracking error in
all the tested scenarios. As it prevents the UAV from leaving
the safety distance margin, it also ensures that no collision will
appear if the parameters are chosen correctly, and there are no
collisions in the planned path for the UAVs included in the
mission. Computational time for solving the control problem is
also inferior in comparison to the other two methods.

However, in case of online replanning the mission that
results in the UAV crossing paths, imposing the flight corri-
dor constraint is not sufficient. In that case, additional safety
mechanisms, such as imposing a nonlinear constraint, need to
be implemented to guarantee collision avoidance.

Future work will include more UAVs in the mapping mission,
where the passing priority allocation and path replanning will
be performed online. Also, NMPC with flight corridor applied
to a mapping mission is planned to be experimentally validated.
Therefore, an adequate solver needs to ensure real-time appli-
cation of the NMPC [3].
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