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Summary statement: 25 

Using machine learning, we estimated energy expenditure and foraging activity of 26 

free-ranging Adélie penguins using depth data recorded with bio-logging devices. 27 

 28 

Abstract: 29 

Energy governs species’ life histories and pace of living, requiring individuals to make 30 

trade-offs. However, measuring energetic parameters in the wild is challenging, often 31 

resulting in data collected from heterogeneous sources. This complicates 32 

comprehensive analysis and hampers transferability within and across case studies. 33 

We present a novel framework, combining information obtained from eco-physiology 34 

and bio-logging techniques, to estimate both energy expended and acquired on 48 35 

Adélie penguins (Pygoscelis adeliae) during the chick-rearing stage.  36 

We employ the machine learning algorithm random forest (RF) to predict 37 

accelerometry-estimated foraging behaviour using depth data (our proxy for energy 38 

acquisition). We also build a time-activity model calibrated with doubly labelled water 39 

data to estimate energy expenditure.  40 

Using depth-derived time spent diving and amount of vertical movement in the sub-41 

surface phase, we accurately predict energy expenditure (R² = 0.70).  Movement 42 

metrics derived from depth data modelled with the RF algorithm were able to 43 

accurately (accuracy = 0.82) detect the same foraging behaviour predicted from 44 

accelerometry. The RF more accurately predicted accelerometry-estimated time 45 

spent foraging (R² = 0.81) compared to historical proxies like number of undulations 46 

(R² = 0.51) or dive bottom duration (R² = 0.31).  47 



The proposed framework is accurate, reliable and simple to implement, enabling to 48 

couple energy intake and expenditure, which is crucial to further assess individual 49 

trade-offs. We provide universal guidelines for predicting these parameters based on 50 

widely used bio-logging technology in marine species. Our work allows us to revisit 51 

historical data, to study how long-term environmental changes affect animals’ 52 

energetics.   53 



1. INTRODUCTION 54 

Energy is the fundamental currency shaping animals’ life-history strategies (Burger et 55 

al., 2019; Kressler et al., 2023; Pontzer and McGrosky, 2022). Individuals within 56 

populations acquire and spend energy to fuel activities such as movement, body 57 

maintenance, thermoregulation and reproduction (Gower et al., 2008; Noakes et al., 58 

2013; Steinhart et al., 2005). As energy acquisition from the environment is limited, 59 

individuals’ performances and trade-offs in energy allocation directly impacts life-60 

histories traits like survival and reproduction, and therefore fitness and population 61 

processes (Brown et al., 2004; Mogensen and Post, 2012; Morano et al., 2013). In 62 

addition to fuelling all physiological processes, energy acquisition (i.e. foraging) itself 63 

requires physical activity and therefore energy expenditure (Pontzer and McGrosky, 64 

2022). Environmental variations in biotic (e.g., in prey availability) and abiotic factors, 65 

and animal internal states can affect how energy is spent and acquired, and lead to 66 

adjustments in foraging strategies (Byrne et al., 2022; Chevallay et al., 2022; Egert-67 

Berg et al., 2021). 68 

In order to understand individual trade-offs, it is important to consider both energy 69 

acquisition and expenditure within the same framework. Yet, simultaneously 70 

measuring energy intake and expenditure in wild animals is challenging. Numerous 71 

species forage in areas almost impossible to sample (i.e. deep oceans, remote land, 72 

sky), making observations difficult. Aapproaches in eco-physiology, like doubly-73 

labelled water (DLW), respirometry, heart-rate monitors, or oesophagus temperature 74 

sensors have proven useful in providing data to validate energy expenditure and 75 

intake (Froget et al., 2004; Hicks et al., 2020; Nagy et al., 1999; Ropert-Coudert et 76 

al., 2001). However, these approaches are costly, logistically difficult, invasive and, 77 

therefore, challenging to consistently use in long-term species monitoring programs. 78 



Given the difficulties in simultaneously measuring both energy expenditure and 79 

energy acquisition in wild animals, information comes from different data types 80 

(English et al., 2024) making long-term analysis or study comparisons difficult.  81 

Recent advances in bio-logging technologies allowed researchers to validate the use 82 

of accelerometers to accurately estimate animals’ energetics across a wide range of 83 

taxa and habitats (English et al., 2024; Wilson et al., 2020). Top predators integrate 84 

information from the bottom to the top of the food webs. As such,  they are 85 

recognized as sentinels of global change, and allow understanding the impact of 86 

environmental changes on ecosystems (Hazen et al., 2019; Sergio et al., 2008). 87 

Marine top predators are of special interest because they live in environments where 88 

global changes have rapid and important consequences on ecosystems (Sydeman et 89 

al., 2015). They are often both wide-ranging and conspicuous (compared to lower-90 

marine trophic levels) (Hazen et al., 2019). By recording tri-axial body acceleration at 91 

high resolution (25-100 Hz) on top predator species such as white sharks (Watanabe 92 

et al., 2019), southern elephant seals (Gallon et al., 2013) or penguins (Kokubun et 93 

al., 2011), it is possible to detect prey capture attempts and to classify behaviours. 94 

Such methodology also allows us to estimate energy expenditure across foraging 95 

trips when validated with the DLW technique for example (Chimienti et al., 2016; Del 96 

Caño et al., 2021; Hicks et al., 2020). Yet, because of their novelty, historical time 97 

series of accelerometer data are often not available.  98 

On the contrary, time-depth recorders (TDRs) have been extensively used on diving 99 

predators since the 90’s (Ropert-Coudert et al., 2009) to reconstruct dive profiles, 100 

investigate foraging behaviour, and estimate energy expenditure of diving marine 101 

predators (Chappell et al., 1993a, 1993b; Viviant et al., 2014). Despite lower 102 

accuracy, data collection via TDRs presents several advantages compared to data 103 



collected with accelerometer tags. For instance, TDRs are more suitable for extended 104 

recording periods (months or years of continuous recording). TDRs record data at 105 

lower resolution (usually 1Hz or coarser) requiring reduced memory space and 106 

battery consumption, and do not need to be placed at or near the centre of the mass 107 

of the animal like accelerometers. TDRs can be used to study the foraging behaviour 108 

of diving marine predators over several consecutive annual cycles, such as in Adélie 109 

penguins (Lescroël et al., 2023). Moreover, the coarser data resolution, compared to 110 

accelerometer data, generates smaller datasets which require less analytical and 111 

computational power. These advantages are very important when working on long-112 

term species monitoring programmes and when aiming to link individual behaviour to 113 

fitness (reproduction and survival), and ultimately, population dynamics.  114 

Several TDR-derived time-activity budget models or calibrations of metabolic rate 115 

with DLW measurement have been built across marine species to estimate energy 116 

expenditure (Chappell et al., 1993b; Chivers et al., 2012). Dive metrics such as 117 

bottom phase duration and number of undulations within dives were used as proxies 118 

of foraging activity (Bost et al., 2007; Lescroël et al., 2021; Viviant et al., 2014). Yet, 119 

validation of such metrics is rare, and recent papers tend to show that these metrics 120 

alone do not effectively reflect the foraging activity of marine predators (Allegue et al., 121 

2023; Brisson-Curadeau et al., 2021).  122 

We examined this question in Adélie penguins, one of the most abundant Antarctic 123 

seabird species and ecosystem sentinel of the Southern Ocean (Barbraud et al., 124 

2020; Forcada and Trathan, 2009). This species mostly forages on two species of 125 

krill (Euphausia superba and E. crystallorophias) (Ratcliffe and Trathan, 2012), and 126 

are therefore highly dependent on sea-ice conditions (Kokubun et al., 2021; Michelot 127 

et al., 2020). Bottom phase duration and undulations have been extensively used to 128 



describe its foraging activity. Yet, the thresholds used to define these two parameters 129 

are often different across studies. Bottom phase is sometimes considered spanning 130 

from the first to last time vertical velocity was < 0.25 m.s-1 (Ropert-Coudert et al., 131 

2007), sometimes it is considered to be below the 40% deepest part of a dive 132 

(Lescroël et al., 2021), and it sometimes spans from the first to last undulation (Bost 133 

et al., 2007). Similarly, calculations of the number of undulations within a dive are 134 

derived either from changes in vertical velocity alone or with the latter in addition to 135 

different intensity thresholds (Bost et al., 2007; Lescroël et al., 2021; Ropert-Coudert 136 

et al., 2001). Creating a simple, validated and objective framework to study its 137 

foraging behaviour based on depth data could therefore ease study comparisons. 138 

The colony located on île des Pétrels, Antarctica, has been extensively monitored 139 

since the 1960’s. Since the mid 1990’s, TDRs were also regularly deployed, followed 140 

by accelerometers since 2016. Hence, only eight years of accelerometry data are 141 

currently available, compared to twenty-five for TDR. During the 2018-19 breeding 142 

season, breeding Adélie penguins were fitted with loggers recording both 143 

accelerometry and TDR data (Hicks et al., 2020). Importantly, DLW measurements 144 

were collected from these individuals, allowing the calculation of accurate data on 145 

energy expenditures. We take advantage of this diverse ecological data collection to 146 

develop a framework allowing estimation of energy balance of Adélie penguins from 147 

depth data. We use DLW measurements and TDR data to predict energy expenditure 148 

from depth data only. We combine behavioural classification based on accelerometry 149 

(Chimienti et al., 2022) and the power of  machine learning (Pichler and Hartig, 2023) 150 

to estimate foraging activity on solely depth data. We compare our results with other 151 

methods classic TDR metrics and accelerometers to answer the following research 152 

questions: 1. Can depth data be used to predict energy expenditure of marine 153 



predators? and 2. Can machine learning help estimate foraging activity of marine 154 

predators from depth data without relying on arbitrary thresholds? 3. Furthermore, 155 

since foraging is a costly behaviour, we test whether our framework can reproduce 156 

the pattern of DEE increase with time spent foraging.  157 



2. MATERIAL AND METHODS 158 

2.1. Data collection  159 

The study colony is located on Ile des Pétrels, next to the Dumont D’Urville research 160 

station, in Adélie Land (66°40’ S; 140°01’ E). From the 21st December 2018 to the 11 161 

January 2019, 58 breeding Adélie penguins (24 females and 34 males) were tracked 162 

and monitored. All individuals were in their chick guarding stage, where parents 163 

alternate mostly 1-day trips at sea to forage and feed their chicks (Ainley, 2002). 164 

Individuals were captured at their nest when both parents were present. To limit 165 

disturbance, we only captured one of the partners for each nest. We performed 166 

molecular sexing at CEBC as previously described (Marciau et al., 2023) to confirm 167 

the sex of each individual a posteriori. 168 

This study was approved and authorized by the ethics committee number 084 of the 169 

Terres Australes et Antarctiques Françaises (TAAF), Comité d’Environnement 170 

Polaire and Conseil National de la Protection de la Nature. All experiments were 171 

performed in accordance with the guidelines of these committees. 172 

 173 

2.2. Logger deployment & Data preparation 174 

Data loggers (Axy-Trek, Technosmart, Italy, 40 x 20 x 8 mm, 14g, less than 0.5 % of 175 

individuals mass) recording tri-axial acceleration at 100 Hz and pressure at 1 Hz 176 

were deployed on the central back region of breeding Adélie penguins and secured 177 

using waterproof adhesive Tesa tape and two Colson plastic cable ties. Deployment 178 

duration ranged from 46.53 hours to 78.43 hours with an average of 54.82±1.43 179 

hours. Trip duration (from first to last dive) ranged from 12.24 hours to 31.94 hours 180 

with an average of 22.60±0.98 hours. 181 



Upon recovery, data were downloaded and processed using the R programming 182 

language. After calculating depth (± 0.1 m) from pressure (Leroy and Parthiot, 1998), 183 

a custom function (see available code) was used to perform the zero-offset 184 

correction. Static acceleration was calculated by smoothing each axis over a 1-s 185 

period. Then, Dynamic Body Acceleration (DBA) was calculated by subtracting static 186 

acceleration from raw acceleration value. Vectorial DBA (VeDBA) was calculated as 187 

the square root of the sum of the squares DBA of the three axes.  188 

Daily energy expenditure (DEE, kJ/day) was measured using the doubly labelled 189 

water technique, as described in Hicks et al. (Hicks et al., 2020). DEE was corrected 190 

by the mass of the individual upon equipment to get a mass specific DEE (kJ/g/day). 191 

 192 

2.3. Behavioural assignment on depth data for energy 193 

expenditure estimation 194 

For each individual, we calculated the time spent in a given behaviour across logger 195 

deployment. Each behaviour was defined based on depth data. An individual was 196 

considered diving when it was below 2m, swimming/resting on the water when it was 197 

above 1m, and in subsurface or proposing when it was between 1 and 2m (fig. 1). 198 

Penguins were considered on land between logger deployment and first dive, last 199 

dive and logger recovery, and when they were on the surface for more than 6 hours. 200 

In addition to duration, we quantified the overall sum of vertical movement for each 201 

phase (except land). 202 

 203 



2.4. Machine learning approach for foraging detection 204 

In addition to raw depth value, we derived a set of parameters from depth data to 205 

feed our machine learning algorithm and describe foraging behaviour. For each dive, 206 

we calculated the maximum depth and the dive duration (continuous period below 207 

2m). To estimate fine-scale movement, we calculated the vertical velocity as a 208 

derivative of depth between time T and T-1 (eqn. 1) and the vertical acceleration as 209 

the derivative of velocity between time T and T-1 (eqn. 2, fig. 1) for each data point 210 

(1Hz resolution). To estimate broader-scale movement, we calculated the rolling 211 

mean and standard deviation of vertical velocity and vertical acceleration over a 5-212 

seconds period. 213 

𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑇 = 𝐷𝑒𝑝𝑡ℎ𝑇 −𝐷𝑒𝑝𝑡ℎ𝑇−1(1) 214 

𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑇 = 𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑇 − 𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑇−1(2) 215 

Using a random forest algorithm (RF), we tried to identify periods of foraging in the 216 

diving behaviour of Adélie penguins. As a reference, we used the accelerometry-217 

based behavioural classification from Chimienti et al. (Chimienti et al., 2022). As this 218 

classification was done at 25 Hz, we summarised it at 1 Hz. To be conservative, we 219 

considered 1 Hz data point as foraging when at least half of the corresponding 25 Hz 220 

were labelled as foraging (Machado-Gaye et al., 2024), regardless of the proportion. 221 

Before running the RF, we performed variable selection to reduce the size of our 222 

model. We filtered variables based on correlation factor and variables importance 223 

measure (VIM, from “Boruta” R package (Kursa and Rudnicki, 2010)). Whenever two 224 

variables were highly correlated (>0.8), the one with the lowest VIM was removed 225 

from the RF. 226 



Remaining variables were used in a RF built using “tidymodels” (Kuhn and Wickham, 227 

2020) and “ranger” (Wright and Ziegler, 2017) R packages. We randomly selected 228 

and assigned half of the deployments to train the RF, while the other half was kept to 229 

test model performance. Train and test dataset had the same sex-ratio. We trained 230 

the RF over 6 variables and parametrised it on different numbers of trees (i.e. 50, 231 

100, 500, 1000). We also tuned the mtry parameter, indicating the number of 232 

variables randomly sampled as candidates at each split, between 1 and 6 for each 233 

number of trees. Finally, the training dataset was further split into training (75%) and 234 

testing (25%) and a five-fold cross validation procedure performed on the final 235 

training data. The best model was selected based on two widely used metrics, 236 

namely accuracy and Area Under the Receiver Operating Characteristic (ROC) 237 

Curve (AUC). 238 

 239 

2.5. Statistical analysis of energetics 240 

All statistical analyses and data manipulations were performed in R version 4.3.1 (R 241 

Core Team, 2023). Unless stated otherwise, means ± SE are provided. All model 242 

assumptions were checked using the plot_model() function for the “sjplot” (Lüdecke, 243 

2023) R package. 244 

To estimate energy expenditure from depth data, we modelled the DLW-derived DEE 245 

using linear models with sex, time spent in each behaviour, and sum of vertical 246 

movement over each behaviour at the daily level. We compared all combinations 247 

using Akaike’s information criterion corrected for small sample size (AICc) and 248 

Bayesian information criterion (BIC). To estimate the prediction power of our model, 249 

we implemented a bootstrap procedure to limit the effect of our reduced sample size. 250 



Over 1000 iterations, the dataset was randomly separated in a train (50%) and test 251 

(50%) dataset. After fitting the best model to the train dataset, we compared its 252 

depth-derived DEE to the DLW-derived on the test dataset. For each coefficient, we 253 

calculated a 95% confidence interval to estimate model stability. 254 

To estimate foraging activity from depth data, we modelled at the daily level the 255 

accelerometry-derived time spent foraging at-sea Tforaging with the RF-derived Tforaging 256 

, the RF-derived number of prey catching attempts (PCA, i.e. continuous foraging 257 

period), and two widely-used proxies to quantify foraging intensity, namely bottom 258 

duration (i.e. time spent in the 20% deepest part of a dive (Bestley et al., 2015; Carter 259 

et al., 2017) and number of undulations (i.e. change from a negative to positive or 260 

positive to negative vertical velocity in the bottom phase (Lescroël et al., 2021). 261 

Again, all model combinations were compared using AICc and BIC.  262 



3. RESULTS 263 

3.1. Energy expenditure estimation 264 

The most parsimonious model was able to reliably predict DLW-estimated DEE 265 

(adjusted R² = 0.70, fig. S1). This model retained only 3 parameters: time spent 266 

diving, amount of vertical movement in the sub-surface phase, and sex (eqn. 3, table 267 

1). All models within a ΔAICc of 2 contained both time and movement-based 268 

parameters (table 1). In all models, even when it was retained, sex was never 269 

significant. In comparison, the most parsimonious model performed significantly 270 

better than the best time-activity model (ΔAICc = 3.28, table S1) and the null VEBDA 271 

model (ΔAICc = 8.15).  272 

𝐷𝐸𝐸 = (0.33 ± 0.04) + (4.21 × 10−2 ± 6.77 × 10−3)𝑇𝑖𝑚𝑒𝐷𝑖𝑣𝑒 + 273 

(2.35 × 10−3 ± 4.59 × 10−4)𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝑆𝑢𝑏𝑠𝑢𝑟𝑓𝑎𝑐𝑒 + 274 

(−3.81 × 10−2 ± 2.27 × 10−2)𝑆𝑒𝑥(3) 275 

The bootstrap procedure confirmed the robustness of our model to predict DEE from 276 

depth data (fig. 2, ρ = 0.81 [0.64; 0.91], R² = 0.69 [0.45; 0.85]) and was coherent with 277 

model coefficient calculated on the full dataset. 278 

 279 

3.2. Random forest 280 

During model tuning, accuracy and AUC plateaued when mtry reached 3 and ntrees 281 

1000. With these parameters, the Out-Of-Bar (OOB) error estimated the RF algorithm 282 

was 0.03, indicating the good predictive power of our model. In decreasing order of 283 

importance, retained variables were the rolling SD of vertical acceleration, the rolling 284 

mean of vertical velocity, the depth, the dive duration, the rolling mean of vertical 285 



acceleration, and vertical acceleration (fig. S2). Overall accuracy of the model was 286 

high, with a balanced accuracy of 0.83, specificity of 0.95 and sensitivity of 0.72. 287 

When evaluating the fine scale detection of foraging events, we observed that the 288 

model tends to group short consecutive PCA. Nonetheless, the overall foraging 289 

duration was very similar to the accelerometry-based reference label and our RF 290 

forest algorithm detected foraging periods during the ascend phase of the dives (fig. 291 

3). 292 

 293 

3.3. Foraging activity estimation and comparison with other 294 

proxies 295 

We investigated if our RF algorithm could predict time spent foraging at-sea and 296 

compared it with historical proxies. Our RF efficiently predicted accelerometry-based 297 

time spent foraging over a foraging trip from TDR-data (R² = 0.81, AICc = 18.22). 298 

This model was significantly better at predicting the reference accelerometry-based 299 

time spent foraging than bottom phase duration (R² = 0.51, AICc = 40.76) and 300 

number of undulations (R² = 0.32, AICc = 48.78 table 2). Using multiple foraging 301 

proxies did not significantly increase the predictive power of our model (fig. 4, table 302 

S2). All proxies were predicting time spent foraging better than the null model with 303 

trip duration only (R² = 0.04, AICc = 57.15) 304 

 305 

3.4. At-sea energetics of Adélie penguins  306 

On average, penguins spent 1.84 ± 0.11 hours foraging per trip (0.81 ± 0.05 hours 307 

per day). Over that same period, individuals expend on average 0.63 ± 0.02 kJ.g-1 308 

per day, which corresponds to a mean DEE of 2983.01 ± 72.99 kJ. Penguins 309 



spending more time foraging per day displayed comparatively higher DEE (fig. 5, 310 

table S3, estimate = 0.11 ± 0.04, p < 0.01). For a given foraging duration, females 311 

had higher DEE than males (estimate = - 0.09 ± 0.03). 312 

 313 

4. DISCUSSION 314 

We present a novel method to quantify energetics (i.e energy acquisition and 315 

expenditure) based on depth data recorded from diving marine predators. We 316 

demonstrate the reliability of this method by using foraging trips from 48 Adélie 317 

penguins during the chick-rearing stage in the 2018-19 breeding-season.  318 

Recordings from depth data provide information on animal movement in just one 319 

spatial dimension (y-axis), unlike accelerometry, which covers three spatial 320 

dimensions (x, y and z-axis). Furthermore, the temporal resolution of depth data is 321 

lower (1 Hz for TDR) compared to that of accelerometers (25 Hz or more). Yet, 322 

despite the lower spatial and temporal resolution, our results show that solely based 323 

on depth data, the machine learning algorithm RF can be used to identify fine-scale 324 

(1 Hz) foraging behaviour (e.g foraging events, prey encounters) with a good 325 

accuracy when trained from accelerometer data (accuracy = 0.83).  326 

Our RF model was able to predict the foraging pattern detected with the 327 

accelerometry. However, the model grouped short prey catching attempts in single 328 

foraging bouts, which was expected given the lower resolution of depth data. 329 

Therefore, further investigation (e.g. using video cameras for example) is needed to 330 

assess what is being caught during these prey catching attempts (Del Caño et al., 331 

2021; Sutton et al., 2020). Historical proxies like bottom duration or number of 332 

undulations were solely used to estimate proxies of foraging intensity without 333 



knowledge of when foraging was performed (Bost et al., 2007; Lescroël et al., 2021). 334 

Moreover, these historical proxies rely on the hypothesis that foraging is occurring 335 

mainly, if not totally, during the bottom phase of the dive (Deagle et al., 2008; Falk et 336 

al., 2000). Yet, accelerometry (Chimienti et al., 2022), oesophagus sensors (Ropert-337 

Coudert et al., 2000) and video data (Del Caño et al., 2021; Sutton et al., 2020) have 338 

shown that penguins also feed during the ascent phase of their dive. By training our 339 

RF on foraging detected from accelerometry, our method was able to more precisely 340 

identify when feeding is happening using depth data, even during the ascent phase 341 

of dives, which was not possible with historical proxies. Moreover, the method 342 

presented in this paper presents the advantage of not needing arbitrary thresholds to 343 

define states such as bottom-phase or undulations, which could allow its application 344 

on other diving marine predators.  345 

Overall, our method could likely be applied to other marine predators with TDR and 346 

accelerometer data availability to train species-specific RF algorithms. Indeed, the 347 

metrics used in this paper to estimate foraging are a simple and objective way of 348 

describing movement of diving predators. In addition to outperforming historical 349 

proxies like undulations and dive bottom phase duration, using this method would 350 

have the advantage to provide a simplified and unbiased comparison between 351 

studies. Yet, further investigations are needed to evaluate how our algorithm 352 

efficiently detects foraging for different types of prey, as foraging tactics and 353 

movement can change depending on the prey (Bowen et al., 2002). Krill is the main 354 

prey item of Adélie penguins, but they are also known to forage on fishes or squids 355 

(Ratcliffe and Trathan, 2012). Therefore, our dataset is likely to contain foraging of 356 

other prey than krill. Hence, our algorithm might also be set to investigate foraging of 357 

other penguin species if the metrics derived from TDR data are similar. 358 



 359 

 360 

Moreover, we found that DEE increased with the proportion of time spent foraging 361 

per day. Because foraging is costly for diving marine predators (Jeanniard-du-Dot et 362 

al., 2017; Yeates et al., 2007), this correlation supports the idea that our methodology 363 

is reliable to estimate the energetics of Adélie penguins, and the benefits of studying 364 

energetics as both intake and expenditure rather than focusing on expenditure. 365 

Therefore, even if estimated time spent foraging needs further validation, our 366 

innovative methodology should improve our ability to study individual energetic trade-367 

offs at large spatial and temporal scales. Here we identified a positive linear 368 

relationship between time spent foraging and DEE. Further studies could relate 369 

foraging duration to energy intake using mass gain measures and diet energy 370 

content estimation to better describe the extent of that relationship. Alternatively, 371 

validation of foraging detected through accelerometer using camera logger (Sutton et 372 

al., 2020; Watanabe et al., 2019) could link our estimated time spent foraging to 373 

energy intake. 374 

With a R² of 0.70, our low-resolution TDR-based model provides comparable results 375 

to other DLW calibrations based on high-resolution accelerometers on marine and 376 

terrestrial species like Adélie penguin (R² = 0.75) (Hicks et al., 2020) or little penguins 377 

(R² = 0.78) (Sutton et al., 2021) or polar bear (R² = 0.70) (Pagano and Williams, 378 

2019). This equation could be applied to the numerous Adélie penguin long-term 379 

TDR data collected across Antarctica (Cimino et al., 2023; Lescroël et al., 2023; Riaz 380 

et al., 2020), therefore offering  a great opportunity to reliably investigate regional 381 

variations in energy budgets. In line with what was previously known (Hicks et al., 382 

2020), we showed that assigning different calibration coefficients to different 383 

https://www.zotero.org/google-docs/?ysa2CP
https://www.zotero.org/google-docs/?ysa2CP
https://www.zotero.org/google-docs/?ysa2CP
https://www.zotero.org/google-docs/?ysa2CP
https://www.zotero.org/google-docs/?ysa2CP
https://www.zotero.org/google-docs/?ysa2CP
https://www.zotero.org/google-docs/?ysa2CP
https://www.zotero.org/google-docs/?sReKKC
https://www.zotero.org/google-docs/?sReKKC


behaviour enhanced predictive power of our model. Our model shows penguins 384 

mostly expend their energy while diving and transiting (i.e. TimeDive and Vertical 385 

movementSub-surface eqn.3). Also, despite being retained in the best model, sex was 386 

not a significant term and was not present in the second best performing model (delta 387 

AICc = 0.42), making our framework applicable in scenarios where individual sex is 388 

not known. 389 

It is important to note that during the studied season, there was open water 390 

accessible next to the colony, and therefore, penguins did not have to walk long 391 

distances to access open water, reducing their energy expenditure (Watanabe et al., 392 

2020). Therefore, our calibration might not reflect energy expenditure in areas and 393 

years when long walking periods are needed to access open water. Yet, the 394 

proposed model could still be relevant when focusing on the at-sea part of the 395 

foraging trips. Further investigations would be needed to assess if our model can also 396 

be used to estimate at-sea energy expenditure during the other phase of the 397 

breeding period, incubation, during which foraging trips are typically longer (10-15 398 

days) and diving behaviour is different with shallower and less frequent dives 399 

(Chappell et al., 1993a; Lescroël et al., 2023). Yet, in their work Chappell et al. 400 

(Chappell et al., 1993b) found that the field metabolic rate of Adélie penguins was not 401 

significantly different in incubation and chick-rearing.  402 

Historically, TDR had been the first type of logger deployed on wild animals 403 

(Kooyman, 1965). The described method can easily be applicable to other marine 404 

predators, with often longer time-series available for TDR data compared to 405 

accelerometers, allowing the study of long-term trends. With environmental changes 406 

affecting energy availability (Duncan et al., 2015), these long-term estimations of 407 



energetics are crucial to decipher how changing environmental conditions will affect 408 

individual life history strategies. 409 

In conclusion, we show that lower-resolution TDR data can be used to estimate 410 

energetics similarly to accelerometers. Our results demonstrate how the application 411 

of machine learning approaches allows researchers to re-analyse datasets and more 412 

accurately predict energetics of diving marine predators compared to historical 413 

methods. Foraging activity is expected to be related to mass gain (Lescroël et al., 414 

2021). Therefore, with prior knowledge of a species diet, calibrating predicted time 415 

spent foraging with mass gain could allow us to refine this simple framework by 416 

estimating energy intake directly. Because it’s based on the widely used TDR data, 417 

this framework could be applied to several long-term marine species monitoring 418 

programs. This would allow researchers to study how extrinsic (e.g. environmental 419 

variations) and intrinsic (e.g. body condition) variables impact individuals' energetic 420 

trade-offs. 421 
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FIGURES 701 

Figure 1. Conceptual visualization of the depth-derived parameters used to estimate 702 

energy balance of Adélie penguins.  703 

 704 

  705 



Figure 2. Relation between TDR and DLW-estimated DEE. Dashed lines and error 706 

bars represent 95% confidence intervals. The black line represents the y = x slope. 707 

  708 



Figure 3. Dive profile of Adélie penguin. A. With the RF algorithm based on depth 709 

data. B. With the reference accelerometry-based classification. Purple dots represent 710 

foraging. 711 
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Figure 4. Output from the most parsimonious model to predict time spent foraging 713 

per day at sea. Reference time spent foraging was calculated from high-resolution tri-714 

axial accelerometry data. Dashed lines represent the 95% confidence interval around 715 

the regression. 716 
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Figure 5. DEE increases with time spent foraging per day over the deployment. 718 

Dashed lines represent the 95% confidence interval around the regression. 719 

 720 
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Table 1. Model selection for DLW-derived DEE model. Only models within ΔAICc of 722 

2 are displayed, as well as the best time-activity model (*), and a null model (**). 723 

 724 

Formula Rank AICc BIC ΔAICc Weight Adj. R² 

DEE ~ TDive + Vertical 

MovementSub-surface + Sex 

4.00 -

100.0

0 

-

92.6

8 

0.00 0.41 0.70 

DEE ~ TDive + Vertical 

MovementSub-surface 

3.00 -

99.58 

-

93.4

7 

0.42 0.33 0.68 

DEE ~ TDive + TSub-surface + 

Vertical MovementSub-

surface + Sex 

5.00 -

98.36 

-

89.9

3 

1.64 0.18 0.70 

* DEE ~ TDive + TSub-surface 3.00 -

96.72 

-

90.6

1 

3.28 0.08 0.66 

** DEE ~ MeanVeDBA 2.00 -

91.85 

-

87.1

0 

8.15 0.01 0.61 
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Table 2. Model selection for predicting Accelerometry based time spent foraging. 726 

Only models within ΔAICc of 2 are displayed, as well as three null models, with only 727 

bottom phase duration (*), number of undulations (**), and trip duration (***). 728 

 729 

Formula Ran

k 

AIC

c 

BIC ΔAICc weig

ht 

adj.r.sqrd 

RefTime spent foraging ~ 

PredTime spent foraging 

2.00 18.2

2 

20.5

6 

0.00 0.34 0.81 

RefTime spent foraging ~ 

PredTime spent foraging + 

TimeBottom phase 

3.00 18.3

1 

20.9

1 

0.09 0.33 0.82 

* RefTime spent foraging ~ 

TimeBottom phase 

2.00 40.7

6 

43.1

0 

22.54 0.00 0.51 

** RefTime spent foraging ~ 

NUndulations 

2.00 48.7

8 

51.1

2 

30.56 0.00 0.32 

*** RefTime spent foraging ~ 

Trip duration 

2.00 57.1

5 

59.4

8 

38.93 0.00 0.04 
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