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Teleoperation of a Suspended Aerial Manipulator Using a Handheld
Camera with an IMU

Miguel Arpa Perozo, Ethan Niddam, Loı̈c Cuvillon, Sylvain Durand and Jacques Gangloff

Abstract— This paper presents a simple, low-cost teleopera-
tion system. The leader device is a handheld camera integrated
with an Inertial Measurement Unit (IMU), making it feasible
to use a modern smartphone for this purpose. Existing leader
devices require expensive and/or complex hardware, and sen-
sors to measure both the user interactions and to control the
follower device. By contrast, the proposed method uses the
handheld camera both as a leader device and as a sensor
to control the position of the follower device through visual
servoing. To the best of the author’s knowledge, this visual
servoing scenario where the camera is held by a user has not
been thoroughly studied. The measurements from the handheld
device and the follower are fused together in an Extended
Kalman Filter (EKF) to improve further the pose estimation. A
Virtual Camera and IMU (VCI) concept is introduced to filter
hand tremors for teleoperation efficiency without hindering the
bandwidth of the relative pose control loop. The EKF and the
VCI performance are assessed experimentally by teleoperating
a Suspended Aerial Manipulator (AMES) prototype.

I. INTRODUCTION

Teleoperation makes it possible to combine human cogni-
tive capabilities with the precision, repeatability and strength
of robots. The large workspace of aerial vehicles makes
them ideal for teleoperation tasks in hard-to-access loca-
tions, or tasks inherently requiring large workspaces like
the inspection of industrial or commercial buildings [1].
Omnidirectional aerial vehicles, capable of exerting thrust
in any direction, offer superior maneuverability compared
to conventional underactuated systems, making them highly
suitable for tasks requiring physical interaction [2], [3].
Suspended aerial manipulators compensate for the aerial ve-
hicle’s weight, thus increasing their autonomy, and payload,
though at the cost of reducing the system workspace [4],
[5]. Currently, suspended aerial manipulators prototypes use
omnidirectional aerial vehicles to achieve dexterous tasks.
The aerial vehicle can be suspended to a crane with a cable
robot like the SAM robot [4], or to a cable-driven parallel
robot with an elastic link, like the Aerial Manipulator with
Elastic Suspension (AMES) [5], [6].

Teleoperation systems are usually composed of a leader
and a follower devices [7]. The operator interacts with the
leader device. This interaction is measured and used to
generate a reference which is sent to the internal controller
of the follower device. Several leader devices can be found
in the literature for the teleoperation of omnidirectional
aerial vehicles. A 7 Degrees of Freedom (DoF) Franka
Emika Panda arm robot is used as a haptic device for
remote bilateral teleoperation of a tiltrotor omnidirectional
aerial vehicle in [8], where a push-and-slide experiment
is carried. Pose of the vehicle is provided by a motion

capture system. A 2-DoF force feedback joystick is used
as a leader device for remote bilateral teleoperations of
the SAM robot in [9] and [10]. The operator in front of
a 2D screen display manually switches between different
tasks to compensate for the reduced number of DoFs of the
leader device [10]. Finally, a novel human-robot interface
using mixed reality head-mounted display for teleoperating
omnidirectional aerial vehicles is developed in [11]. Mixed
reality presents the advantage of not being limited by the
hardware constraints of traditional teleoperation interfaces
like joysticks, gives a better spatial awareness to the user
compared to a 2D camera feed, and enables the operator to
independently control all the DoFs of the follower manipula-
tor. This approach is limited to line-of-sight operations where
the user can distinguish relevant details in the environment,
and has only been evaluated on simulation.

In this paper, a handheld device consisting of a camera and
a nine1 DoF Inertial Measurement Unit (IMU), is proposed
as a leader device to teleoperate a 6-DoF system, with an
application to an AMES here in particular. The working
principle is illustrated in Fig. 1. The pose of the AMES is
controlled using Position Based Visual Servoing (PBVS) [12]
to maintain a constant pose between the robot and the
handheld device. Hence, an operator is able to control the
pose of the robot by moving the camera safely at a distance.

The main advantage of the proposed teleoperation frame-
work is its low-cost and simplicity. Since only a camera
equipped with an IMU is needed, a modern smartphone could
be used as a leader device. Compared to the aforementioned
teleoperation setups, the same device is used simultaneously
as a leader interface and as a pose sensor of the follower
device. The proposed teleoperation interface is ergonomic
and intuitive to use. There is no need to generate a reference
for the follower device, since this reference is constant
and corresponds to the initial relative pose measured by
the camera. The operator is not restrained by mechanical
linkages, and the natural movements of the hand are repli-
cated by the robot. However, our solution presents some
limitations similar to [11]: (i) lack of force feedback from the
handheld camera, (ii) teleoperation limited to line-of-sight
tasks. Targeted applications are primarily visual inspection
(as in [11]), tracking shots for the cinema, and spray-painting
of structures [13]. Handling applications in the construction
industry are also possible, allowing an operator to precisely
and effortlessly move heavy loads with an aerial platform

1With a three axis gyroscope, three axis magnetometer, and three axis
accelerometer



Fig. 1: Illustration of the visual servoing of an AMES using a handheld camera with an IMU.

suspended from a construction crane. All do not require a
force feedback.

Many works have proposed to use a camera as a primary
interface [14], [15], [16]. However to the extent of the
author’s knowledge, the visual servoing scenario where the
camera is held by the user to directly control the robot in
its field of view has not been studied. The handheld camera
acts simultaneously as a user interface and as the sensor of
the robot pose controller.

The presented method does not make any assumption on
the type of robot, it can be used to control any 6-DoF robot
effector. Nevertheless, this is particularly useful for robots
without accurate proprioceptive position sensors, like aerial
vehicles. This approach has the benefit to add at a low cost an
external exteroceptive localization device which can also be
used as a teleoperation user interface. Moreover, it can easily
be extended to teleoperate underactuated systems such as
quadrotors or mobile robots by controlling only their limited
DoF with the camera.

Our paper is organized as follows. In Section II, the
relative dynamic model of the system is derived. The model
is used in Section III where an EKF is developed for state
estimation and sensor fusion, and the PBVS controller is
presented. The concept of Virtual Camera and IMU (VCI) is
introduced in Section IV to filter out hand tremors without
hindering the bandwidth of the relative pose control loop.
Experimental results are presented in Section V. Conclusion
and future work are discussed in Section VI.

II. MODEL

A. Notations and Preliminaries

1) Notations: Vectors and matrices are represented by
bold lowercase and bold uppercase letters respectively. An
upper script is used to indicate the coordinate frame the
vector is projected in, i.e., avvv corresponds to the projection
of the vector vvv in the coordinate frame Fa. An arrow is used
to describe a vector built from geometrical points: the vector
from point A to point B is noted

−→
AB. The cross product matrix

is noted [·]× such that ccc = aaa ∧ bbb = [aaa]× ·bbb.
Let us consider two coordinate frames Fa and Fb. The

rotation matrix from Fa to Fb is noted aRRRb such that avvv =
aRRRb · bvvv. Homogeneous coordinate vectors are noted with
a tilde: ap̃ =

[
apT 1

]T . The homogeneous transformation
matrix from Fa to Fb is noted aTTT b such that aṽvv = aTTT b · bṽvv.

The angular velocity vector of Fb w.r.t. Fa is noted ωωωb/a.
Let vvv be a vector, its time derivative w.r.t. a frame Fa is
noted

ad vvv
dt .

2) Preliminaries: Let Fa and Fb be two coordinate
frames, vvv ∈ R3 a vector, and ωωωb/a the rotational speed of
Fb w.r.t. Fa. The time derivative of vvv in Fa is related to
the time derivative of vvv in Fb by the following equation [17,
Section 7.1.1]:

ad vvv
dt

=
bd vvv
dt

+ωωωb/a ∧ vvv (1)

The orientation of Fb w.r.t. a frame Fa is parameterized
by three Cardanian angles “roll, pitch and yaw” using the
ZYX convention [18]: ηηηb/a = [θr, θp, θy]. The relationship
between ωωωb/a and the time derivative of aRRRb is the follow-
ing [18]: [aωωωb/a

]
× = aṘRRb · aRRRT

b (2)

From (2) we derive the expression for the analytical Jacobian
aSSS(ηηηb/a) which relates the time derivative of ηηηb/a to the
angular velocity ωωωb/a (see [19, Section 3.6]):

aωωωb/a =
aSSS(ηηηb/a) · η̇ηηb/a (3)

B. System Parametrization

Model parameters of the AMES using a handheld cam-
era with an IMU can be found in Fig. 1. In total, three
coordinate frames are considered: first, the fixed inertial
frame F f

{
xxx f ,yyy f ,zzz f

}
centered at O, second, the body frame

attached to the CoM G of the aerial vehicle Fb {xxxb,yyyb,zzzb},
and third, the camera frame Fc {xxxc,yyyc,zzzc} centered at C.
The camera optical axis is aligned with xxxc. Due to the small
size of the handheld device, and without loss of generality,
it is assumed here that camera and IMU coordinate frames
coincide.

In addition to the IMU attached to the camera, another one
is embedded in the aerial vehicle. The IMU attached to the
camera is assumed to be a 9-DoF IMU providing an accurate
estimate of its orientation w.r.t. the inertial frame F f [20],
[21]. Let us define:

pppb/ f =
−→
OG, pppc/ f =

−→
OC, pppb/c =

−→
CG (4)

Throughout this document, a parameter is referred to as ab-
solute when defined w.r.t. F f and relative when it is defined
w.r.t. Fc. Hence, pppb/ f is called the absolute position of the
robot, whereas pppb/c designates its relative position. The goal



of this section is to determine the relative acceleration of
the AMES w.r.t. an accelerated (thus non-inertial) camera
frame Fc. These quantities are used for the state estimator
presented in Section III. Since we are interested in relative
velocities and accelerations w.r.t. Fc, the conventional dot
notation used to designate the time derivative of a vector
will be avoided, whenever possible, as it does not indicate
w.r.t. which frame the vector is being differentiated. To avoid
potential confusions, a naming convention is used to describe
absolute and relative velocities and accelerations. For the
linear velocities, the velocity of the body i at its CoM w.r.t.
the frame F j is noted:

vvvi/ j =
jd pppi/ j

dt
(5)

Similarly, the translational and rotational accelerations of the
body i at its CoM w.r.t. to the coordinate frame F j are
defined as:

aaai/ j =
jd vvvi/ j

dt
, δδδ i/ j =

jd ωωω i/ j

dt
(6)

C. Relative Dynamics

From the rotational speed composition rule, we have the
following equality:

ωωωb/c = ωωωb/ f −ωωωc/ f (7)

By using (1), (5), and (6), the relationship between ab-
solute and relative acceleration can be established. Due to
space limitations only the results are given below, for more
information we refer the reader to [17, Section 4.3.2].

aaab/c = aaab/ f −aaac/ f −2
(
ωωωc/ f ∧ vvvb/c

)
−

δδδ c/ f ∧ pppb/c −ωωωc/ f ∧
(

ωωωc/ f ∧ pppb/c

) (8)

III. STATE ESTIMATION AND CONTROL

A. Sensor Models

From the observability studies in [22], [23], it is known
that for an IMU attached to a camera, all the IMU biases
are observable as long as there is a non-biased position
or velocity measurement available from the camera image
processing. However, our case is different because there are
two IMUs and one camera. The camera IMU is assumed
to be of high quality and finely calibrated such that the
biases can be neglected. IMUs embedded in aerial vehicles
are usually more low-cost; thus they are more prone to biases.
Therefore, the body IMU measurements are assumed to be
biased and disturbed by additive white Gaussian noises. Let
us define:

ωωωb/ f = ωωωm,b/ f −bbbω −nnnω aaab/ f = aaam,b/ f −bbba −nnna (9)

where ωωωm,b/ f and aaam,b/ f denote the biased vehicle gyro-
scope and accelerometer measurements, bbbω and bbba are the
gyroscope and accelerometer biases respectively, nnnω and nnna
represent white Gaussian noises. The biases bbbω and bbba are
considered constant along time (ḃbbω = ḃbba = 000)

B. State Representation

Following the reasoning presented in [22], the system
model for the Kalman filter considers the aerial vehicle
and the camera as free-floating 6-DoF bodies. In this ap-
proach, the vehicle dynamic model and the propeller speed
measurement are not exploited to augment further the EKF
state-space model. The filtering and estimation rely solely
on the pose time derivatives provided by the sensors (IMUs
and camera). As pointed in [22, Chapter 3], this modeling
approach has the following advantages: (i) the system state
vector is smaller, (ii) thereby the EKF implementation is less
computationally expensive when compared to an implemen-
tation that includes the full model, (iii) there is no need to
identify the body model parameters: mass, inertia, and the
speed-to-thrust coefficient. The system state, of dimension
30 , is:

xxx =
[

pppT
b/c ηηηT

b/c vvvT
b/c ωωωT

b/ f ωωωT
c/ f aaaT

b/ f aaaT
c/ f δδδ T

c/ f bbbT
ω bbbT

a

]T

(10)

C. State Dynamics and Measurements

As it is common in pose estimation and filtering [24],
the inertial measurements ωωωb/ f , aaab/ f , and aaac/ f , are assumed
to be constant between two sampling points, thus their
time derivatives are considered null, except for the camera
gyroscope measurement ωωωc/ f . Indeed, the camera angular
acceleration δδδ c/ f is required in (8) to estimate the relative
acceleration aaab/c through the fusion of the camera and IMU
measurements. Thus, the angular acceleration is included in
the state vector and estimated by the EKF based on velocity
measurements.

ẋxx =
[

vvvT
b/c η̇ηηT

b/c aaaT
b/c 000T δδδ T

c/ f 000T 000T 000T 000T 000T
]T

(11)

where aaab/c is given by (8), η̇ηηb/c from (3) and (7), and δδδ c/ f
is part of the state vector xxx.

From the handheld IMU absolute orientation ηηηc/ f and the
body relative orientation from the camera ηηηb/c, the body
absolute orientation ηηηb/ f is obtained:

f RRRb(ηηηb/ f ) =
f RRRc(ηηηc/ f ) · bRRRc(ηηηb/c)

−1 (12)

Knowing ηηηc/ f and ηηηb/ f , the gravity component is subtracted
from the accelerometer measurements such that the EKF
measurement vector is:

yyy =
[

pppT
b/c ηηηT

b/c ωωωT
m,b/ f ωωωT

c/ f aaaT
m,b/ f aaaT

c/ f

]T
(13)

The relative position pppb/c and orientation ηηηb/c are es-
timated from the camera by detecting the image of Light
Emitting Diodes (LEDs) attached to the AMES and apply-
ing the Perspective-n-Point (PnP) algorithm from [25]. The
current EKF implementation does not handle occlusion of the
visual markers by relying only on inertial data. A prolonged
occlusion will destabilize the system with a drift of the
AMES position. However, this limitation is not inherent to
our setup. The same problem occurs if the measurements
from a motion capture system or a GPS are lost.



D. Control

Fig. 2: Pose error illustration.

A controller is designed to control the body frame Fb such
that its pose w.r.t. a moving camera frame Fc is constant.
Because Fb is regulated w.r.t. to Fc, all the control errors
must be defined w.r.t. Fc.

The relative nominal reference pose cTTT bre f between the
camera and the robot is assumed to be constant and equal to
the first cTTT b measurement at the beginning of the teleopera-
tion. The relative pose cTTT b is measured by detecting visual
markers placed in the AMES and using the Perspective-
n-Point (PnP) algorithm from [25]. Given the available
measurements, the pose error bTTT bre f , illustrated in Fig. 2,
is defined by:

bTTT bre f =
cTTT−1

b · cTTT bre f (14)

From bTTT bre f a position and orientation error can be ex-
tracted:

eeep =
−−−→
GGre f , eeeη = ηηηbre f /b (15)

where ηηηbre f /b are the Cardanian angles “roll, pitch yaw”
between Fb and Fbre f . The total pose error is noted eee and
equal to: eee =

[
eeeT

p eeeT
η
]T .

From (3), we deduce:

ėeeη = bSSS(eeeη)
−1 · bωωωbre f /b (16)

From the composition rule of rotational velocities, we have:

ωωωbre f /b = ωωωbre f /c +ωωωc/ f +ωωω f/b (17)

The reference relative pose between the camera and the aerial
vehicle is supposed to be constant, thus (16) becomes:

ėeeη = bS(eeer)
−1 ·

(
bωωωc/ f − bωωωb/ f

)
(18)

Similarly, the position error derivative is equal to:

ėeep =
cd eeep

dt
=

cd
(−−−→

CGre f −
−→
CG

)
dt

=− vvvb/c (19)

A PID controller is considered to validate the EKF estima-
tion and the virtual camera and IMU presented in Section IV.
The considered PID control law is:

τττ = KKK p · eee + KKKi ·
∫

eeedt + KKKd · ėee (20)

where KKK p, KKKi, KKKd ∈ R6×6 are symmetric positive definite
gain matrices. The wrench τττ is then allocated among the

propeller thrust of the AMES using the thrust allocation
techniques presented in [26], [6].

IV. VIRTUAL CAMERA AND IMU

A. Motivations

The distance between the camera and the aerial vehicle
creates a lever-arm effect where a small camera rotation
induces an important robot translation as illustrated in Fig. 3.
This problem occurs for rotations of the camera around the
two axes perpendicular to its optical axis. This teleoperation
behavior is not desirable. A small, possibly unwanted, rota-
tion of the operator hand holding the camera will result in a
high-speed translation of the AMES. The user hand tremors
are also amplified by the distance between the camera and
the robot. These vibrations must be filtered out without
compromising the controller performance w.r.t. disturbance
rejection, like wind bursts. The system must have a fast
relative pose controller, to efficiently reject disturbances,
while filtering out the camera absolute rotations so that hand
tremors are not directly fed in the relative pose controller.

The proposed solution consists in expressing all the mea-
surements w.r.t. a Virtual Camera and IMU (VCI) coordinate
frame Fv which has the same origin as Fc but whose attitude
is low-pass filtered. The robot relative pose is then regulated
w.r.t. Fv instead of Fc as illustrated in Fig. 3. Because Fv
is obtained by low-pass filtering the absolute attitude of Fc,
hand tremors from the user are filtered out, and the lever-
arm effect is attenuated. Lastly, because only the absolute
attitude of Fc is filtered acting as a reference pre-filter, the
bandwidth of the relative pose control loop is unmodified.
Any disturbance on the robot is directly measured by the
relative pose measurements from the camera and robot IMU
with no low-pass filtering involved.

B. Implementation

Let Fv be a coordinate frame which has the same origin
as Fc (see Fig. 3) but whose attitude is obtained by low-pass
filtering the attitude of Fc such that:

ηηηv/ f = LP(ηηηc/ f ) (21)

where the LP(·) operator returns the low-pass filtered roll,
pitch and yaw angles describing the absolute orientation of
Fc. Below, all the measurements from the primary device
(camera and its IMU) are expressed w.r.t. Fv. We recall that
the primary device measurements are: c pppb/c, ηηηb/c, cωωωc/ f ,
caaac/ f .

By combining the camera measurements ηηηb/c, the hand-
held IMU attitude ηηηc/ f , and ηηηv/ f given by (21), it is possible
to obtain the attitude between the body and the virtual camera
frame ηηηb/v:

vRRRb(ηηηb/v) =
vRRR f (ηηηv/ f ) · f RRRc(ηηηc/ f ) · cRRRb(ηηηb/c) (22)

The rotational speed of Fv is obtained by tacking the time
derivative of ηηηv/ f and using (3). In practice, taking the time
derivative of ηηηv/ f is not a problem because ηηηv/ f is a smooth
low-pass filtered signal. Since Fv and Fc have the same



Fig. 3: Teleoperation using a virtual camera and IMU. A small rotation of the handheld camera (blue frame Fc) induces a large translation
of the robot body frame (in red Fb) to control a constant pose between both frames. To slow down the induced translation and filter the
hand tremors, the robot is controlled w.r.t. the virtual camera frame Fv depicted in green.

origin, aaav/ f and aaac/ f are equal. All in all, the measurements
from the VCI are:

v pppb/v =
vRRRc · c pppb/c,

vaaav/ f =
vRRRc · caaac/ f (23)

vωωωv/ f =
vRRR f · f SSS(ηηηv/ f ) · η̇ηηv/ f (24)

The goal is for the robot to keep a constant pose w.r.t.
Fv as illustrated in Fig. 3. As a consequence, the control
error and state estimation presented in previous sections
are now defined w.r.t. Fv instead of Fc. Because only the
camera’s absolute orientation ηηηc/ f is low-pass filtered, the
VCI does not add any delay or phase lag into the relative
pose control loop. The control block diagram with all the
elements: controller, state estimation, and VCI is given in
Fig. 4.

Fig. 4: Teleoperation control block diagram.

V. EXPERIMENTAL APPLICATION

A. Experimental Setup

The main components of the experimental setup can be
seen in Fig. 5: an AMES developed in [6], a handheld device
combining a camera and an IMU, and a UR5e robot arm used
to simulate a human operator in a repeatable way. For most
of the experiments, the distance between the robot and the
camera is approximately 2.5 m. The sampling frequency of
the controller, and EKF is 200 Hz.

A total of five LEDs, used as visual markers, are attached
to the arms of the AMES. The LEDs are positioned to
maximize their visibility from different viewpoints, and to
ensure that at least four LEDs are visible. With four detected
points, the PnP problem has a unique solution [25].

Spring

LED

Camera + IMU

Fig. 5: Overview of the experimental setup.

The handheld device is connected through USB to a
ground station: a standard Dell laptop running Ubuntu 20
(Intel i5-2.5 GHz with 16 GiB of RAM). On this ground
station, a program performs the image processing that detects
the LEDs, runs the PnP algorithm, reads the IMU data, and
packages all the information that is sent over WiFi to the
AMES embedded computer. The image processing is done
using the C++ implementation of OpenCV version 45. The
AMES on-board computer (NVIDIA Jetson Xavier NX) han-
dles the control algorithms, sensor fusion, and communicates
with the ground station through Wi-fi TCP/IP sockets thanks
to the open-source Simulink toolbox RPIt developed in our
laboratory [27].

The handheld device is made of a CMOS, USB, high-
speed 500 fps camera Ximea-MQ003MG-CM. A Tamron C-
Mount lens 12VM1040ASIR with adjustable focal length
from 10 to 40 mm is mounted on the camera. The handheld
device is also equipped with a 9-DoF IMU, a Xsens MTI-630
running at 400 Hz.

B. Extended Kalman Filter Influence

The system performance is assessed first by comparing
its precision, then by comparing the execution time of a
telemanipulation task performed by an operator, with and
without the EKF. The EKF nonlinear state model presented
in (10), and (11) is discretized using a classical Runge-Kutta
method, and implemented using the Matlab Control System
Toolbox. In these first experiments, the filtering of the camera
attitude is disabled.



1) Performance Assessment: The camera is moved in a
repeatable way by a robot arm. The robot arm executes a pure
translation of the camera along the three axes of Fc with an
amplitude of 3 cm in 0.3 s. The absolute displacement of the
camera w.r.t. its initial position is noted:

∆∆∆pppc/ f = pppc/ f − pppc/ f ,init (25)

where pppc/ f ,init is the initial absolute position of the camera
at the beginning of the experiment.

The controller gains are available in Table II. They were
tuned experimentally to minimize the settling time of the
system, and its sensitivity to measurement noise. Since the
measurement without EKF is much noiser, the derivative and
proportional gains could not be increased too much without
yielding unacceptable vibrations of the system. This yields
a less damped response which is the best tradeoff that we
could find with minimal degradation of telemanipulation user
experience.

The RMS of the controller errors for the translational DoFs
are available in Table I. It can be seen that the EKF increases
the system precision, especially for camera movements along
its optical axis xxxc. Indeed, the PnP reconstruction is known
to be more sensitive to image noise in this direction, and the
fusion with accelerometer data in the EKF helps decreasing
this sensitivity. The error signal on the AMES position and
the controller output can be found in Fig. 6 where the camera
moves along its optical axis xxxc. The EKF fuses and filters the
camera and inertial measurements, increasing the signal-to-
noise ratio on the relative pose estimation, and particularly
the relative position along the camera optical axis as shown
in Fig. 6, as a consequence, it is possible to have higher gains
for the controller (see Table II), thus increasing the system
precision.
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Fig. 6: Relative pose error along xxxb axis (a), for a camera
movement along its optical axis xxxc represented by the black solid
line. The black dashed lines represent the 10 % settling time limit.
Corresponding controller output for the AMES thrust along xxxb axis
are shown in (b).

Without EKF With EKF

x y z x y z

RMS Error [mm] 7.11 5.76 4.54 3.65 4.31 4.09

TABLE I: Controller RMS error comparison with and without
EKF.

x y z roll pitch yaw

Kp 100 100 200 5 5 5
Ki 150 150 300 20 20 20
Kd 30 30 30 1 1 2

(a) With EKF.

x y z roll pitch yaw

Kp 30 50 100 5 5 2
Ki 90 150 200 15 15 5
Kd 10 15 15 0.5 0.5 1

(b) Without EKF.

TABLE II: Diagonal elements of the controller gains with and
without EKF.

2) Telemanipulation Task: In this experiment, the system
is tested with and without the EKF for a telemanipulation
task. The task involves positioning and aligning a laser w.r.t.
a tubular target so that the laser beam enters from one end
and exits from the other tube end. The task is considered
finished when the operator is able to maintain the laser beam
through the target for 3 s. The operator must finish the task
under 60 s, otherwise, the task is considered unsuccessful.
The target and the task can be seen in the video2 attached to
this paper. The inner diameter of the tubular target is 30 mm
and its axis has a 15 deg angle w.r.t. the vertical, to force
the operator to alter the robot orientation to successfully
complete the task.

The task is realized by two different operators. Each
operator starts the test with a different flavor of the controller
in order to detect and eliminate potential biases related to an
effect of training with a first controller, yielding better results
with the second controller. The tests are repeated five times
with each controller flavor. The mean time to realize the task
for both operators are available in Table III. Results indicate
that the EKF reduces task time for both operators, regardless
of the experiment order. The EKF improves the relative pose
estimation which increases the accuracy of the controller as
shown in the beginning of this section. As a consequence, it
is easier for the operators to control the pose of the AMES
and achieve the task.

C. Virtual Camera and IMU Experiments

For these experiments the robot arm is used to rotate
the camera along an axis perpendicular to its optical axis,
thus creating a “problematic” lever-arm situation. The ex-
periments are conducted with and without considering the
VCI, to quantify its influence on the system precision. The

2https://youtu.be/0LnaS2n7N4I?feature=shared

https://youtu.be/0LnaS2n7N4I?feature=shared


Operator Without EKF [s] With EKF [s]

1 34.93 21.89
2 18.51 13.89

TABLE III: Mean time to realize the task with and without EKF
for operators 1 and 2.

disturbance rejection performance of the system when using
the VCI is also tested.

A second order low-pass filter with time constants τ1 =
3.18 and τ2 = 0.16 is used to generate the VCI smooth
motion. This corresponds to a −3 dB cutoff frequency of
0.05 Hz which is intentionally very low to help visualize the
effects of the VCI during the experiments. Increasing the cut-
off frequency will increase the reactivity of the system along
its DoF susceptible to the lever-arm effect, but decreasing the
frequency will slow down the robot, at the risk of losing the
visual markers from the camera field of view. We have found
experimentally that a cutoff frequency of 0.28 Hz allows
for a comfortable teleoperation experience. It corresponds
to the cutoff frequency used in the fifth experiment of the
attached video where the operator performs a free flight.
Because only small camera rotations are considered, ωωωv/ f is
obtained directly by low-pass filtering the camera gyroscope
measurements. The experiments are carried out without the
EKF. The gains of the controller are unmodified and available
in Table IIb.
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Fig. 7: Relative pose error (a) and controller output (b) with and
without the VCI along yyyb axis.

1) VCI Performance Evaluation: The robot arm is pro-
grammed to rotate the camera around its axis zzzc by 3 deg
in 0.3 s. This creates an important error on the y and yaw
DoFs. The controller error and controller output signals are
compared in Fig. 7. The RMS of the signal errors can be
found in Table IV. From Fig. 7-b, it can be seen that the
controller output does not tend towards zero. This is because
the controller needs to compensate for wrench due to the
spring restoring force.
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Fig. 8: Allocation output with (a) and without the VCI (b). The
actuators saturation is depicted by a red dashed line.

Without the VCI, the pose error is defined w.r.t. to the
reference frame Fbre f which is rigidly linked to the camera
frame Fc (see Fig. 2). The steep rotation of the camera
induces a steep change of Fbre f location. The corresponding
transient tracking error is high and oscillating due partly to
the saturation of the actuators (see Fig. 8). With the VCI
implementation, the reference frame Fbre f is rigidly linked
to the virtual camera frame Fv. Since the virtual camera
attitude is the low-pass filtered attitude of the real camera, the
error evolves slowly and the error can be efficiently regulated
to zero without actuator saturation by the visual servoing
controller. The position RMS error is only 4.34 mm with the
VCI, compared to 32.9 mm without (see Table IV)

Without VCI With VCI

y yaw y yaw

RMS Error [mm] and [deg] 32.92 0.84 4.34 0.21

TABLE IV: Controller error comparison with and without VCI.

2) Disturbance Rejection: This experiment shows that the
low-pass filtering of the VCI does not affect the bandwidth
of the relative pose control. Thereby, the same experiment is
conducted as before, but a constant force disturbance offset
of −4 N is applied at 5.6 s to the aerial vehicle using the
thrusters. The disturbance is applied after the robot arm
movement, but before the aerial vehicle reaches its final
position. The relative position measured by the camera along
yyyc is available in Fig. 9; from this figure, two dynamics can
be distinguished. A slower dynamic corresponding to the
tracking of the slowly varying VCI, and a faster dynamic,
between 5.5 s and 9 s, corresponding to the disturbance
rejection dynamics of the relative pose controller.

VI. CONCLUSION

The teleoperation of an AMES using a handheld camera
equipped with an IMU is considered in this paper. The
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Fig. 9: Relative position of the aerial vehicle along yyyc (a), and
controller output (b) along yyyb. At t = 1s, the camera is rotated
around zzzc. At t = 5.6s, a constant disturbance of −4 N is exerted
along yyyb.

teleoperation framework allows for controlling intuitively,
and at a safe distance, any 6-DoF of the robot effector.
The performance of the teleoperation framework is improved
by fusing the visual and inertial measurements through an
EKF, and by introducing a virtual camera + IMU concept
(VCI). The proposed VCI implementation filters hand motion
and tremor to improve the teleoperation efficiency without
hindering performance of the pose regulation and disturbance
rejection. The performance improvement is quantified exper-
imentally by teleoperating an AMES prototype with different
scenarios.

Future work will focus on teleoperation tasks requiring
physical contact. These will certainly require modifications
by adding some compliance on the hardware and/or the
control law to ensure stability. A formal stability analysis
of the teleoperation framework will also be conducted. The
VCI concept will be improved by selectively filtering the
camera attitude only along the axes that cause a lever-arm
effect. Finally, a smartphone will be used as a leader device.
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