
HAL Id: hal-04784268
https://hal.science/hal-04784268v1

Submitted on 14 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Solving the Restricted Assignment Problem
to Schedule Multi-get Requests in Key-Value Stores

Louis-Claude Canon, Anthony Dugois, Loris Marchal

To cite this version:
Louis-Claude Canon, Anthony Dugois, Loris Marchal. Solving the Restricted Assignment Problem
to Schedule Multi-get Requests in Key-Value Stores. 30th European Conference on Parallel and
Distributed Processing, Aug 2024, Madrid, Spain. pp.195-209, �10.1007/978-3-031-69577-3_14�. �hal-
04784268�

https://hal.science/hal-04784268v1
https://hal.archives-ouvertes.fr

Solving the Restricted Assignment Problem to
Schedule Multi-Get Requests in Key-Value Stores

Louis-Claude Canon1, Anthony Dugois1, and Loris Marchal2

1 FEMTO-ST Institute, Univ. Bourgogne Franche-Comté, CNRS
Besançon, France

{louis-claude.canon,anthony.dugois}@femto-st.fr
2 LIP, ENS Lyon, CNRS

Lyon, France
loris.marchal@ens-lyon.fr

Abstract. Modern distributed key-value stores, such as Apache Cas-
sandra, enhance performance through multi-get requests, minimizing net-
work round-trips between the client and the database. However, parti-
tioning these requests for appropriate storage server distribution is non-
trivial and may result in imbalances. This study addresses this optimiza-
tion challenge as the Restricted Assignment problem on Intervals (RAI).
We propose an efficient (2 − 1/m)-approximation algorithm, where m
is the number of machines. Then, we generalize the problem to the Re-
stricted Assignment problem on Circular Intervals (RACI), matching
key-value store implementations, and we present an optimal O(n logn)
algorithm for RACI with fixed machines and unitary jobs. Additionally,
we obtain a (4−2/m)-approximation for arbitrary jobs and introduce new
heuristics, whose solutions are very close to the optimal in practice. Fi-
nally, we show that optimizing multi-get requests individually also leads
to global improvements, increasing achieved throughput by 27%–34% in
realistic cases compared to state-of-the-art strategy.

Keywords: Key-Value Stores · Multi-Get · Scheduling · Restricted As-
signment · Intervals · Approximation

1 Introduction

Many theoretical scheduling problems capture the essence of practical challenges
in modern distributed systems. Among those, NoSQL databases such as dis-
tributed key-value stores (e.g., Dynamo [5] and Apache Cassandra [9]), which
spread data over several servers and map items to unique keys, became central
components in the architecture of online cloud applications, thanks to their ex-
cellent performance and capability to scale linearly with the dataset. They are
often subject to high throughput, and must therefore be able to serve requests
with low latency to meet user expectations. Hence, the proper scheduling of
these requests is of paramount importance, and has a direct effect on the overall
observed performance of the system [13]. Their wide adoption in the industry

{louis-claude.canon,anthony.dugois}@femto-st.fr
loris.marchal@ens-lyon.fr

has led to the development of numerous optimization techniques, in particular
to mitigate the well-known tail latency problem [4].

The API of modern distributed key-value stores offer various operations to
interact with the dataset, among which single reads and writes are the most
common. As the dataset is usually replicated on several servers (in order to
ensure accessibility of data in case of node failure), each key is accessible at dif-
ferent replica servers, which unlocks the possibility to execute the corresponding
read operation on any of these replicas. Most web-services often need to retrieve
several data items to perform their own calculations. Thus, some APIs, such as
Rein [12], provide a special type of operations called multi-get requests, which
permit to retrieve several items from a given key set in a single round-trip. When
executing such a multi-get request, the key-value store needs to partition the re-
quested key set into several sub-operations at the destination of storage servers,
and it should carefully balance the keys between these sub-operations in order to
respond as quickly as possible. For example, TailX achieves better performance
on heterogeneous workloads than a basic priority-based mechanism by taking
into account an estimation of the actual service time of read operations [8].

In this paper, we show how the partitioning and scheduling of a multi-get
request may be seen as the so-called Restricted Assignment problem, whose ob-
jective is to schedule jobs to machines in such a way that the makespan (i.e.,
maximum completion time) is minimized, with the additional constraint that a
given job can be processed only by a particular subset of machines. Unfortu-
nately, this problem is strongly NP-hard. Even though there is no polynomial
algorithm with an approximation ratio better than 3/2 unless P = NP [10], al-
gorithms with an approximation ratio of 2 or better have been proposed [10,6,7].
Moreover, the actual variant of the Restricted Assignment problem that applies
to multi-get request partitioning is easier than the general problem. This enables
us to develop low-cost, guaranteed algorithms, giving good results in practice.

Contributions. We express in Section 2 the partitioning of multi-get requests as
the Restricted Assignment problem on Intervals (RAI) and extend in Section 3 an
efficient algorithm proposed by Lin et al. [11] to the case with arbitrary jobs. We
show that it is a (2−1/m)-approximation, running in time O(m2+n log n+mn),
where m is the number of machines and n is the number of jobs (Theorem 1).
Then, in Section 4, we further generalize the RAI problem to the Restricted
Assignment problem on Circular Intervals (RACI) by allowing intervals that may
begin at the end of the list of machines and go back to the start, which match the
usual replication strategy of distributed key-value stores [5,9]. We iterate over
ELFJ to develop a new (4−2/m)-approximation algorithm called Double ELFJ
(DELFJ) with the same time complexity (Theorem 4) in Section 5. Finally, we
derive two heuristics from DELFJ and evaluate their performance in simulations
in Section 6. We find that, for individual multi-get requests, the solutions given
by our heuristics largely improve from simple system-like greedy solutions and
remain very close to the optimal (with a median ratio to the optimal of 1.031),
and that the throughput of a series of multi-get requests is also increased by our
heuristics.

2 Applicative Context & Formal Model

In this section, we introduce the partitioning of multi-get requests and give the
formal definition of the corresponding scheduling problem.

Partitioning Multi-Get Requests in Key-Value Stores. Key-value stores
are low-latency databases where each data item is associated with a unique
key [9,5]. In these systems, a get (or read) operation consists in retrieving the
value that corresponds to a given key, whereas a put (or write) operation consists
in adding a new association between a value and a key. As it is too large to fit
on a single server, the overall dataset is split into several data partitions, and
each partition is stored on a different server. Moreover, in order to guarantee
accessibility of data in case of node failure, each partition is replicated on differ-
ent physical servers. Although the replication strategy differs from one system
to another, a common and practical way consists in arranging the servers on a
virtual ring, and replicating the partition of each server i on its k− 1 successors
i+ 1, i+ 2, · · · , i+ k − 1 (modulo the number of servers m), where k is a small
integer (k = 3 is a common value). In other words, servers are virtually ordered,
and each key/value couple is stored on an interval of k different consecutive
servers. The duration of a get operation depends on the size of the value being
retrieved: even if most values are small, few values with a large size represent a
substantial share of the total service time [4]. To some extent, value sizes can be
estimated and used for scheduling optimization [8].

In contrast with single get operations, multi-get requests involve several keys.
Such aggregated operations are useful, for instance, to reduce the number of
network round-trips between a web-service and the database, as a single end-
to-end request often requires to retrieve several data items before responding to
the client [12,8]. In a multi-get request, the requested keys (which constitute the
key set of the request) may be located in different data partitions, which are
physically stored on different servers. Thus, the contacted server must split the
multi-get request into several sub-requests: each sub-request contains a subset
of the initial keys and is redirected towards a storage server holding these keys.

Partitioning a request into sub-requests can be seen as a scheduling problem,
where servers correspond to machines, and each single get operation corresponds
to a job, whose processing time is the time required to retrieve the data item
from the store. Each job may be processed only by a subset of machines, which
corresponds to the physical servers on which the requested key is located. The
objective is to minimize the response time, that is, the largest completion time
of all sub-requests, which corresponds to the maximum completion time of jobs,
as illustrated in Figure 1.

In key-values stores, any node may be used to query the database, hence
many node may independently send jobs on worker node in a distributed work.
However, tools have been proposed to ensure that all nodes have an up-to-date
view of the system to make informed scheduling decisions [1].

The Restricted Assignment Problem. In the problem of scheduling jobs on
unrelated machines (also known as the R ||Cmax problem in Graham’s classifi-

a b

c

d
time

t t+ 9

{c, d}

{b, c}

{a, b}

(a) Non-optimal partitioning.

a

b

c d
time

t t+ 7

{c, d}

{b, c}

{a, b}

(b) Optimal partitioning.

Fig. 1: Two possible partitions of the same multi-get request released at time
t containing keys {a, b, c, d}. Gray areas represent earlier work on each server.
Subset of values stored on each server are written on the left.

cation), we are given a set of n jobs J = {1, · · · , n} and a set of m machines
M = {1, · · · ,m}, where each job j ∈ J has a processing time pij > 0 on machine
i ∈ M . The objective is to schedule (non-preemptively) the jobs on machines
so as to minimize the makespan, that is to say, the maximum completion time
of the jobs. We focus on a special case of this problem, called the Restricted
Assignment (RA) problem and noted P |Mj |Cmax, where each job j ∈ J can
be processed only on a subset of machines Mj ⊆ M , which we call the processing
set of j.

As the RA problem is known to be NP-hard in the strong sense, variants
have been studied where some structure is brought in the processing sets of
jobs. In this paper, we focus on interval processing sets. Let us note ⟨a, b⟩ the
interval3 ranging from machine a (inclusive) to machine b (inclusive, a ≤ b). The
Restricted Assignment problem on Intervals (RAI) defines for each job j ∈ J its
processing set as Mj = ⟨aj , bj⟩. As a generalization of the classical makespan
problem P ||Cmax, the RAI problem, noted P |Mj(interval) |Cmax in Graham’s
classification, remains NP-hard in the strong sense.

3 An Algorithm for the Restricted Assignment Problem
on Regular Intervals

We focus here on the standard RAI problem P |Mj(interval) |Cmax, for which
Lin et al. [11] have proposed a polynomial algorithm when jobs are unitary. In
this section, we generalize their approach to derive a tight (2−1/m)-approximation
algorithm for the RAI problem with arbitrary jobs, running in time O(m2 +
n log n+mn) (Theorem 1).

We introduce Algorithm 1, called Estimated Least Flexible Job (ELFJ),
which generalizes Lin et al.’s algorithm. ELFJ takes a time λ as parameter and
builds a schedule that is guaranteed to finish before this time. In other words, λ
denotes an upper bound on the optimal makespan, i.e., the better the quality of
the bound, the closer ELFJ gets to an optimal schedule. The algorithm performs
two steps. First, it sorts the jobs in non-decreasing order of interval upper bound

3 We will extend the interval definition later, thus we do not use the common notations
of integer intervals.

Algorithm 1 Estimated Least Flexible Job (ELFJ)
Input: jobs J , machines M and makespan λ
Output: an assignment µ
1: sort jobs in non-decreasing order of bj
2: for all machines i ∈M do
3: δi ← 0
4: for all unassigned jobs j ∈ J such that i ∈ ⟨aj , bj⟩ do
5: if δi + pj ≤ λ then
6: µj ← i
7: δi ← δi + pj

8: return µ

bj (in time O(n log n)). Second, it greedily assigns jobs on machines (in time
O(mn)), and returns an assignment vector µ, where µj denotes the machine on
which job j is assigned. In the following, we explain how to choose λ to get
various guarantees on the quality of the schedule.

Let us start with some notations and definitions. For any interval of machines
⟨α, β⟩, where 1 ≤ α ≤ β ≤ m, we define K⟨α,β⟩ as the set of jobs whose processing
set is included in ⟨α, β⟩, i.e., K⟨α,β⟩ = {j ∈ J s.t. Mj ⊆ ⟨α, β⟩}. We denote the
total processing time of jobs in K⟨α,β⟩ by w⟨α,β⟩, i.e., w⟨α,β⟩ =

∑
j∈K⟨α,β⟩

pj . Let
w̃⟨α,β⟩ represent the minimum average work that any schedule must perform on
machines α, · · · , β, i.e.,

w̃⟨α,β⟩ =
w⟨α,β⟩

β − α+ 1
,

and let w̃max be the maximum value of w̃⟨α,β⟩ over all intervals (that is, w̃max =

max1≤α≤β≤m

{
w̃⟨α,β⟩

}
). From these definitions, one may easily see that w̃max is

a lower bound on the optimal makespan COPT
max for a given instance I of the RAI

problem. Let ⟨a, b⟩ be an interval of machines such that w̃max = w̃⟨a,b⟩. Then,
in the best case, all jobs K⟨a,b⟩ are perfectly balanced on the interval ⟨a, b⟩ and
finish no earlier than time w̃⟨a,b⟩. Note that if jobs are unitary, the lower bound
can be refined to ⌈w̃max⌉.

In the original paper, Lin et al. show that setting λ to ⌈w̃max⌉ in ELFJ pro-
duces an optimal schedule when jobs are unitary. They also provide a procedure
to compute w̃max in this specific case. With a similar approach, we show in this
section how to choose λ to get a guaranteed approximation ratio when process-
ing times are arbitrary, and we develop a new procedure to find w̃max efficiently
in the general case.

Computing w̃max for Arbitrary Jobs. We provide a new procedure to com-
pute w̃max in time O(m2+n) for any instance of the RAI problem with arbitrary
processing times. We notice that the set of intervals in a list of m machines can
be represented by a graph, where nodes correspond to intervals. For all inter-
vals ⟨α, β⟩ such that α < β, the node ⟨α, β⟩ is the parent of two children nodes
⟨α, β − 1⟩ and ⟨α + 1, β⟩. Let J⟨α,β⟩ be the set of jobs whose processing set is
exactly ⟨α, β⟩, i.e., J⟨α,β⟩ = {j ∈ J s.t. Mj = ⟨α, β⟩}, and let v⟨α,β⟩ be their to-

tal processing time. We have a recursive relation between the values w⟨α,β⟩: for
a given interval ⟨α, β⟩ that has two children intervals, the work K⟨α,β⟩ includes
the work J⟨α,β⟩, the work K⟨α,β−1⟩, and the work K⟨α+1,β⟩, minus the work
K⟨α+1,β−1⟩, as it is included both in K⟨α,β−1⟩ and K⟨α+1,β⟩. Then, for any α, β,
we have

w⟨α,β⟩ = v⟨α,β⟩ + w⟨α,β−1⟩ + w⟨α+1,β⟩ − w⟨α+1,β−1⟩,

with the convention w⟨α,β⟩ = 0 if α > β. Values v⟨α,β⟩ can be pre-computed in
time O(n) by scanning jobs, and the computation of values w⟨α,β⟩ is done in
time O(m2). Thus, w̃max can be found in time O(m2 + n) and space O(m2), as
shown in Algorithm 2.
An Approximation for Arbitrary Jobs. When jobs have arbitrary process-
ing times, ELFJ does not produce an optimal schedule anymore. However, we
show here that, subject to a small adaptation on the value of λ, it still gives a
guaranteed solution in this more general case. In the following, pmax denotes the
maximum processing time among all jobs of the instance.

Theorem 1. Let λ = w̃max +
(
1− 1

m

)
pmax. Then, ELFJ (Algorithm 1) is a

tight (2− 1/m)-approximation algorithm for RAI, and the full procedure runs in
time O(m2 + n log n+mn).

We give here a sketch of the proof, and refer the reader to the linked research
report for a detailed version [2]. Suppose that ELFJ does not produce a feasible
schedule in time λ, i.e., there exists at least one job that is unassigned at the end
of execution. Let j0 be the first one. As a consequence, all machines aj0 , · · · , bj0
must finish after time λ−pj0 , and we know that bj ≤ bj0 for all jobs j assigned on
these machines (otherwise, j0 would have been assigned by ELFJ). Let γ ≤ aj0
be the first machine such that all machines γ, · · · , bj0 finish after time λ− pmax.
As a consequence, we know that aj ≥ γ for all jobs j assigned on these machines
(otherwise, they would have been assigned before γ). The critical step of the
proof is now to show that there exists a machine α between γ and aj0 such that

Algorithm 2 Computing w̃max

1: v⟨α,β⟩ ← 0 for all 0 ≤ α ≤ β ≤ m
2: for all jobs j ∈ J do
3: v⟨aj ,bj⟩ ← v⟨aj ,bj⟩ + pj

4: w̃max ← 0
5: for all l from 0 to m− 1 do
6: for all a from 1 to m− l do
7: b← a+ l
8: w⟨a,b⟩ ← v⟨a,b⟩ + w⟨a,b−1⟩ + w⟨a+1,b⟩ − w⟨a+1,b−1⟩
9: w̃⟨a,b⟩ ← w⟨a,b⟩/(b− a+ 1)

10: if w̃⟨a,b⟩ > w̃max then
11: w̃max ← w̃⟨a,b⟩

all jobs assigned on machines α, · · · , bj0 by ELFJ come from the set K⟨α,bj0 ⟩. If
this is the case, then we necessarily have w⟨α,bj0 ⟩ > (bj0 − α + 1)(λ − pmax) +
(bj0 −aj0 +1)(pmax−pj0)+pj0 , which leads to the contradiction w̃max < w̃⟨α,bj0 ⟩.
To find such a machine α, we begin with the interval ⟨aj0 , bj0⟩: if aj ≥ aj0 for all
jobs j assigned on these machines, then α = aj0 and we stop here; otherwise, we
consider next the interval ⟨aj1 , bj0⟩, where j1 is a job assigned on ⟨aj0 , bj0⟩ such
that aj1 is minimal. We repeat the process until we find α.

4 A General Framework for Circular Intervals

In this section, we present a generalization of the RAI problem to so-called
circular intervals, which match the usual replication strategy of key-value stores.
Introducing Circular Intervals. Machines are linearly arranged in the stan-
dard RAI problem. In contrast, distributed key-value stores organize machines
in a virtual ring, where the machines able to answer a query for a particu-
lar key are consecutively arranged in this ring. Thus, in addition to regular
intervals ⟨a, b⟩ (with a ≤ b), we introduce here circular intervals such that
a > b. In this case, the corresponding set ⟨a, b⟩ includes machines a, a+1, · · · ,m
and machines 1, 2, · · · , b, i.e., ⟨a, b⟩ = {a, a+ 1, · · · , b} if a ≤ b, and ⟨a, b⟩ =
{1, 2, · · · , b}∪{a, a+ 1, · · · ,m} otherwise. By extension, we call this generalized
problem the Restricted Assignment problem on Circular Intervals (RACI).

For two given intervals ⟨ag, bg⟩ and ⟨ah, bh⟩, we say that ⟨ag, bg⟩ precedes
⟨ah, bh⟩ if and only if ag ≤ ah and bg ≤ bh, and we note ⟨ag, bg⟩ ⪯ ⟨ah, bh⟩. For
a given instance, let Z∗ be the set of circular intervals that are associated to
at least one job (Z∗ = {⟨aj , bj⟩ s.t. j ∈ J and aj > bj}). We restrict ourselves
to instances where the relation ⪯ is a total order on Z∗. In other words, for
any ⟨ag, bg⟩, ⟨ah, bh⟩ ∈ Z∗, we cannot have ⟨ag, bg⟩ ⊂ ⟨ah, bh⟩. Although it is a
particular case of RACI, it remains more general than RAI. Moreover, we assume
that there are K types of jobs, and each job of type k has processing time p(k).
An Optimal Procedure for K Job Types. We now introduce a general
procedure that solves the RACI problem for the described restricted instances,
assuming that one already knows an optimal algorithm A for the standard RAI
problem with K job types.

Theorem 2. Let A be an optimal algorithm for the RAI problem with K job
types running in time O(f(n)). Then there exists a procedure solving the corre-
sponding RACI problem on totally ordered circular intervals in time O(nKf(n)).

We begin with a few definitions, before giving the procedure and a quick
sketch of the proof. Let J∗ be the subset of jobs whose processing set is a
circular interval (J∗ = {j ∈ J s.t. aj > bj}). We call J∗ the circular jobs, and
by extension, the jobs J \J∗ are called regular jobs. We also partition J∗ into K
subsets J∗

1 , · · · , J∗
K , such that all jobs in J∗

k are of type k, and we note n∗
k = |J∗

k |.
Moreover, in a given schedule, we say that a circular job j assigned between

aj (inclusive) and the last machine m (inclusive) is a left job. Equivalently, a
circular job j assigned between the first machine 1 (inclusive) and bj (inclusive)
is a right job. Thus, a schedule π implicitly defines a partition of each set J∗

k

into two subsets Gk and Dk, where Gk (resp. Dk) contains only left (resp. right)
jobs. Figure 2 shows an example of such schedule.

.

m − 2m − 1 m 1 2 3

1 2
3

4

5
6

7

8

9

Fig. 2: Example of circular jobs in a schedule. Colors denote common processing
intervals. Jobs 1, 2, 4, 5, 9 are left jobs. Jobs 3, 6, 7, 8 are right jobs. Jobs 1,
2, 4, 5, 7, 8, 9 are of type 1 (with p(1) = 1). Jobs 3 and 6 are of type 2 (with
p(2) = 2). We have G1 = {1, 2, 4, 5, 9}, D1 = {7, 8}, G2 = ∅, and D2 = {3, 6}.

For now, consider only one type of jobs (K = 1). The intuition to compute an
optimal schedule is to find which jobs in J∗ should be assigned to the left or to the
right. Assume that we know that r jobs of J∗ must be assigned to the right in an
optimal schedule. Intuitively, the r circular jobs with rightmost intervals should
be put on the right, while the others should be put on the left. For example,
consider only the small jobs in Figure 2. If we suppose that r = 5 (arbitrarily),
then we guess that the 2 red jobs and the 3 green jobs should be put between
machines 1 and 3, and the 2 blue jobs should be put between machines m−2 and
m, as the red and green intervals are “more on the right” than the blue interval.
To capture this intuition, we say that a schedule is right-sorted if and only if
for all types k, the property ⟨aj , bj⟩ ⪯ ⟨aj′ , bj′⟩ holds for any jobs j ∈ Gk and
j′ ∈ Dk. In the linked report [2], we prove that, by successively swapping jobs of
the same type, a non-right-sorted optimal schedule can always be transformed
into another optimal solution that is right-sorted, i.e., there always exists at least
one optimal right-sorted schedule.

For any vector r = (r1, · · · , rK) such that 0 ≤ rk ≤ n∗
k for all k, we intro-

duce the polynomial function ϕr that transforms any instance I of the (totally
ordered) RACI problem into another instance I ′ = ϕr(I) that does not include
any circular interval:

1. Sort jobs J∗ by non-increasing order of bj , and sort jobs with identical bj by
non-increasing order of aj . Note that this corresponds to sorting jobs by non-
increasing order of ⪯. As ⪯ is a total order on Z∗, all jobs are comparable.

2. For each type k, set aj = 1 for the rk first jobs of J∗
k , and bj = m for the

n∗
k − rk other jobs, effectively removing circular intervals.

For a given instance I of RACI, let Π(I) denote the set of all possible sched-
ules, and for a given r, let Πr(I) be the subset that put exactly rk jobs of type
k on the right, and n∗

k − rk jobs of type k on the left. Recall that COPT
max denotes

the optimal makespan among all schedules Π(I). We define analogously CBEST
r

as the best possible makespan among schedules Πr(I). As the subsets Πr(I)
define a partition of Π(I), we have COPT

max = minr
{
CBEST

r

}
. In the report [2],

we prove the following two statements: applying an optimal algorithm to ϕr(I)
produces a valid solution for I, and the makespan of this solution is at most
CBEST

r . This implies that we can find an optimal solution for I by performing
an exhaustive search of the best vector r, proving Theorem 2. The first statement
comes from the fact that any schedule for ϕr(I) is right-sorted with rk circular
jobs on the right for all k, which means that it necessarily belongs to Πr(I).
The second statement comes from the fact that there always exists at least one
optimal right-sorted schedule, thus, applying an optimal algorithm on ϕr(I) will
necessarily produce a schedule having the best possible makespan among Πr(I).
Revisiting the Unitary Job Case. We study the application of this proce-
dure on the ELFJ algorithm presented in Section 3. We show how to largely
reduce the complexity compared to Theorem 2. ELFJ is an optimal algorithm
for the standard RAI problem on unitary jobs, which consists in 3 distinct steps:
computing the optimal makespan, in time O(m2 + n); sorting the jobs, in time
O(n log n); performing the actual job assignment, in time O(mn). By applying
our framework around ELFJ, and because we have only one type of jobs in
this specific case, we know from Theorem 2 that we can solve the generalized
problem on totally ordered circular intervals in time O(m2n+ n2 log n+mn2).
The following theorem states that we can improve this solution even further by
reducing its worst-case time complexity.

Theorem 3. The totally ordered RACI problem with unitary jobs can be solved
in time O(m2 + n log n+mn).

The proof of Theorem 3 explains how to eliminate any redundant work when
applying the procedure from Section 4. In particular, finding the correct number
of circular jobs that should be put on the right is needed only for the computation
of the optimal makespan. The rest of the algorithm can then be processed only
once. Furthermore, we can reduce the complexity when computing w̃max by
relying on a memoization matrix. The interested reader can find the complete
proof in the linked research report [2].

5 An Approximation for the Restricted Assignment
Problem on Circular Intervals

In this section, we introduce an approximation algorithm to assign jobs on cir-
cular intervals, based on the following intuition: under certain conditions, it is
possible to split the problem into two sub-problems, such that each of them
consider only regular intervals. On each of these sub-problems, we can use the

(2 − 1/m)-approximation algorithm presented in Section 3 to get a guaranteed
solution.

We consider jobs whose processing set is a circular interval, that is, J∗ =
{j ∈ J s.t. aj > bj}, and we define the smallest “left” index of these intervals,
namely zleft = minj∈J∗ {aj}, as well as their largest “right” index zright =
maxj∈J∗ {bj}. We assume in this section that the “leftmost” circular interval
does not intersect the “rightmost” circular interval, that is, zleft > zright . This
assumption holds in particular for intervals of size k if and only if m ≥ 2(k− 1),
as zleft ≥ m− (k − 1) + 1 and zright ≤ k − 1, i.e., zleft − zright ≥ m− 2k + 3.

Algorithm 3 Double ELFJ (DELFJ)
Input: jobs J and machines M
Output: an assignment µ
1: J∗ ← {j ∈ J s.t. aj > bj}
2: µ← apply ELFJ on jobs J \ J∗

3: zleft ← minj∈J∗ {aj}
4: for all jobs j ∈ J∗ do
5: aj ← aj − zleft + 1 ▷ shift left
6: bj ← bj +m− zleft + 1 ▷ shift left
7: µ∗ ← apply ELFJ on jobs J∗

8: for all jobs j ∈ J∗ do
9: µj ← ((µ∗

j + zleft − 2) mod m) + 1 ▷ shift right
10: return µ

The proposed algorithm, named Double ELFJ (DELFJ) and presented
in Algorithm 3, works as follows: regular jobs are first allocated on machines
using the (2 − 1/m)-approximation algorithm ELFJ presented in Section 3. To
allocate the remaining jobs (from J∗), we use the same algorithm. However,
ELFJ only handles regular intervals. Hence, we first shift all intervals so that
the leftmost circular intervals start on machine 1 before applying ELFJ (see

1

2

3

m− 3

m− 2

m− 1

m 4

5

6

m

1

2

3

Shift

Fig. 3: Shifting the circular intervals “to the left” to transform them into regular
intervals. In this example, there are two circular intervals (red and blue). More-
over, zleft = m − 2 and zright = 2. The shifted machine corresponding to the
machine with index i has index i−zleft +1 if i ≥ zleft , i−zleft +1+m otherwise.

Figure 3), and we shift back the allocation in the end. Thanks to our assumption
on zleft and zright , we know that shifting the initially circular intervals will result
in all these intervals becoming regular. As the two categories of jobs are allocated
separately using a (2−1/m)-approximation, we obtain a (4−2/m)-approximation
algorithm, as stated in the following theorem (see full proof in the research
report [2]).

Theorem 4. Double ELFJ (Algorithm 3) is a tight (4− 2/m)-approximation
algorithm provided that zleft > zright .

6 Experimental Evaluation

We now derive a new heuristic from our guaranteed algorithm DELFJ to parti-
tion multi-get requests, and we perform a series of experiments to evaluate its
practical performance.

Introducing the DSLFJ Heuristic. The drawback of DELFJ is that it uses
ELFJ as a sub-algorithm: in each round, it keeps putting jobs on the same
machine until it reaches λ, which differs from the optimal by a factor 2−1/m. Our
heuristic, called Double Searched LFJ (DSLFJ), also assigns regular jobs in
the first round and circular jobs in the second, but uses a different sub-algorithm
to do so. This variant no longer computes an approximated objective value, but
instead progressively searches for a feasible makespan by successively applying
ELFJ, starting from ⌈w̃max⌉. The searching procedure directly depends on how
the makespan λ grows through iterations: a slow progression will yield a better
final objective, but the worst-case time complexity will necessarily be higher.
In the following, we consider two variants of DSLFJ, according to the growing
function of λ: Arithmetically-Searched LFJ (ASLFJ), which increments λ
by 1 in each iteration, and Geometrically-Searched LFJ (GSLFJ), which
doubles λ in each iteration. Their time complexities are respectively O(m2 +
n log n+mn · pmax) and O(m2 + n log n+mn · log pmax).

Experimental Settings. We test the quality of ASLFJ and GSLFJ in simu-
lations. The key-value store is characterized by a number of machines m and
a replication factor k, which defines the size of each interval of machines. We
generate a dataset of 100 000 keys, and we uniformly assign each key to a ran-
dom machine. Each key κ is associated a corresponding service time tκ, which
is drawn from an exponential distribution with mean 12. The processing time
of each job is set to the service time of the corresponding requested key. Each
multi-get request is parameterized by the number of keys n that are requested,
and the chosen keys that are drawn according to a given popularity distribution.
In the following, we consider the uniform distribution (each key has the same
probability of being chosen) and the Zipf distribution (with bias 1.0), which is
the default in most benchmarks [3]. We compare our heuristics with the fol-
lowing algorithms: Random, which randomly assigns each job to a compatible
machine; EFT-Min, which assigns each job to the first compatible machine that

n = 32 n = 256

po
p
∼

U
nif

po
p
∼

Zipf

Ran
do

m

EFT-M
in

EFT-R
an

d

ASL
FJ

GSL
FJ

Ran
do

m

EFT-M
in

EFT-R
an

d

ASL
FJ

GSL
FJ

1.0

1.2

1.4

1.6

1.0

1.2

1.4

1.6

O
bj

ec
ti

ve
ra

ti
o
C

m
a
x
/
C

O
P
T

m
a
x

(a) Ratio between Cmax and COPT
max .

n ∼ Unif n ∼ Exp

po
p
∼

U
nif

po
p
∼

Zipf

Ran
do

m

EFT-R
an

d

ASL
FJ

GSL
FJ

Ran
do

m

EFT-R
an

d

ASL
FJ

GSL
FJ

-20%
-10%

0%
+10%
+20%
+30%
+40%

-20%
-10%

0%
+10%
+20%
+30%
+40%

R
el

.t
hr

ou
gh

pu
t

w
.r

.t
.E

F
T

-M
in

(b) Relative throughput w.r.t. EFT-Min.

Fig. 4: On the left, we plot the ratio between the makespan Cmax given by each
heuristic and the optimal makespan COPT

max in different settings (the lower the
better). On the right, we plot the ratio between the saturating throughput given
by each heuristic on 1000 multi-get requests and the saturating throughput given
by EFT-Min in different settings (the higher the better).

completes the job the earliest; EFT-Rand, which is EFT-Min with a random-
ized tie-breaking rule. EFT-Min is a strategy that actual key-value stores tend
to use, even if it is never perfectly implemented in practice due to the usual con-
straints of distributed systems [13]. When the instance size is not prohibitive, we
also compare our heuristics with the optimal solution of a Mixed Integer Linear
Program (MILP) solver.

Results. We evaluate the response time of individual requests, and the maxi-
mum attainable throughput of the system on a saturating stream of requests. In
both experiments, we set the number of machines to m = 48 and the replication
factor to k = 3 (common value in practical systems [9]). The popularity distri-
butions of keys are uniform (pop ∼ Unif, top row) and Zipf’s law with bias 1.0
(pop ∼ Zipf, bottom row).

Response time of individual requests. In Figure 4a, we schedule one
multi-get request made of several jobs, and we measure the ratio between the
makespan Cmax computed by each heuristic and the optimal makespan COPT

max

computed by the MILP solver. We consider multi-get requests of size n = 32
(medium size, left column) and n = 256 (large size, right column). Each setting
is simulated 100 times. We observe that ASLFJ and GSLFJ give close-to-optimal
solutions in the considered settings: the median ratio of ASLFJ (resp. GSLFJ)
is at most 1.025 (resp. 1.031), whereas EFT-Min systematically has a median
ratio between 1.139 and 1.362. Moreover, by counting the number of times each
heuristic gives the best solution for each instance, we find that ASLFJ gives

the best solution in 99% of the 400 tested cases. Comparatively, without taking
ASLFJ into account, GSLFJ gives the best solution in 94% of the cases, whereas
EFT-Min is the best only in 5.25% of the cases, and even gives the worst
solution in 16.25% of the cases. This confirms that GSLFJ provides a good
trade-off between quality and time complexity. Overall, the proposed heuristics
give close-to-optimal response time, where EFT-Min is between 15% and 35%
slower on average.

Saturating throughput of a stream of requests. In Figure 4b, we test
whether optimizing each individual request has an impact on the throughput.
We schedule a workload of 1000 multi-get requests and measure the finishing
time of the last request to complete. The saturating throughput is defined as
the number of requests in the workload divided by this last finish time. In this
figure, we plot the ratio between the saturating throughput of each heuristic and
the one of the baseline EFT-Min. We make the size of multi-get requests vary
according to a uniform distribution between 1 and 256 (n ∼ Unif, left column)
and an exponential distribution with mean 32 (n ∼ Exp, right column). We
use this last setting as a realistic workload where small multi-get requests are
a lot more probable than large ones. Each experiment is repeated 20 times. We
observe that ASLFJ and GSLFJ improve the maximum attainable throughput
in all tested settings. However, the improvement is more significant when the size
of multi-get requests follows an exponential distribution. When keys have the
same probability of being requested (top row), the median saturating throughput
of ASLFJ (resp. GSLFJ) is greater than the one of EFT-Min by 4.3% (resp.
4.3%) if n ∼ Unif, whereas it is greater by 27.5% (resp. 27%) if n ∼ Exp. For a
Zipf popularity distribution (bottom row), the median saturating throughput of
ASLFJ (resp. GSLFJ) is greater than the one of EFT-Min by 8.8% (resp. 7%)
if n ∼ Unif, whereas it is greater by 33.9% (resp. 30.8%) if n ∼ Exp. We noticed
that ASLFJ and GSLFJ were particularly efficient for small multi-get requests
(i.e., they find an optimal solution quasi-systematically when n ≤ 102), which
are in majority if n ∼ Exp. Over the 80 tested workloads, ASLFJ gives the best
results in 86.25% of the cases. When ASLFJ is not taken into account, GSLFJ
gives the best results in 97.5% of the cases.

Overall, we notice that our heuristics not only improve the response time of
individual requests, but also improve the maximum load that the system is able
to cope with. This is a non-trivial and interesting conclusion since throughput
optimization is similar to load-balancing, which is usually an orthogonal ob-
jective to optimizing the individual performance of requests. Depending on the
distribution of request sizes and key popularities, the improvement in throughput
goes from 27% to 34% in realistic cases.

7 Conclusion

In this paper, we tackle the multi-get request partitioning problem that arises
is modern key-value stores by modeling this as a scheduling problem, namely

the Restricted Assignment problem on Intervals (RAI), and proposing approx-
imation algorithms and heuristics to solve it. We first exhibit a (2 − 1/m)-
approximation algorithm, and we further extend the RAI problem to circular
intervals, which fit the configuration of actual replicated key-value stores. In
this setting, we propose a general framework that, given an optimal algorithm
for the RAI problem with at most K job types and running in time O(f(n)),
computes an optimal solution for the RACI problem in time O(nKf(n)). This
enables us to revisit an optimal algorithm for the RAI problem when jobs are
unitary to solve the corresponding RACI problem in time O(m2+n log n+mn).
Moreover, we derive a new (4 − 2/m)-approximation algorithm in the general
case, which we use as a basis to design new practical heuristics to partition
multi-get requests. We evaluate these heuristics through extensive simulations,
and we show that they not only improve the response time of individual multi-
get requests compared to simple greedy strategies, leading to close-to-optimal
allocations, but are also able to increase the maximum attainable throughput of
the system by 27%–34% in realistic cases.

As a future work, the next step would be to implement and evaluate our
heuristics in a real key-value store, e.g., Apache Cassandra. On the theoretical
side, it remains unknown if there exists an efficient approximation algorithm for
the particular instances of RACI where circulars intervals are not necessarily to-
tally ordered, i.e., a given circular interval may be strictly included into another.
Moreover, we conjecture that there exists an efficient approximation algorithm
for RACI that improves on the 4− 2/m guaranteed factor.

References

1. Ben Mokhtar, S., Canon, L., Dugois, A., Marchal, L., Rivière, E.: A scheduling
framework for distributed key-value stores and its application to tail latency min-
imization. J. Sched. 27(2), 183–202 (2024)

2. Canon, L.C., Dugois, A., Marchal, L.: Solving the restricted assignment problem to
schedule multi-get requests in key-value stores (extended version). Research report
(2024), https://hal.science/hal-04516752

3. Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking
cloud serving systems with ycsb. In: ACM symposium on Cloud computing. pp.
143–154 (2010)

4. Dean, J., Barroso, L.A.: The tail at scale. Communications of the ACM 56(2),
74–80 (2013)

5. DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin,
A., Sivasubramanian, S., Vosshall, P., Vogels, W.: Dynamo: amazon’s highly avail-
able key-value store. In: SOSP 2007. pp. 205–220 (2007)

6. Ebenlendr, T., Krcál, M., Sgall, J.: Graph balancing: a special case of scheduling
unrelated parallel machines. In: SODA. vol. 8, pp. 483–490 (2008)

7. Glass, C.A., Kellerer, H.: Parallel machine scheduling with job assignment restric-
tions. Naval Research Logistics 54(3), 250–257 (2007)

8. Jaiman, V., Mokhtar, S.B., Rivière, E.: Tailx: Scheduling heterogeneous multiget
queries to improve tail latencies in key-value stores. In: IFIP DAIS. pp. 73–92
(2020)

https://hal.science/hal-04516752

9. Lakshman, A., Malik, P.: Cassandra: a decentralized structured storage system.
ACM SIGOPS Operating Systems Review 44(2), 35–40 (2010)

10. Lenstra, J.K., Shmoys, D.B., Tardos, É.: Approximation algorithms for scheduling
unrelated parallel machines. Mathematical programming 46(1), 259–271 (1990)

11. Lin, Y., Li, W.: Parallel machine scheduling of machine-dependent jobs with unit-
length. European Journal of Operational Research 156(1), 261–266 (2004)

12. Reda, W., Canini, M., Suresh, L., Kostić, D., Braithwaite, S.: Rein: Taming tail
latency in key-value stores via multiget scheduling. In: EuroSys. pp. 95–110 (2017)

13. Suresh, L., Canini, M., Schmid, S., Feldmann, A.: C3: Cutting tail latency in cloud
data stores via adaptive replica selection. In: USENIX NSDI. pp. 513–527 (2015)

	Solving the Restricted Assignment Problem to Schedule Multi-Get Requests in Key-Value Stores

