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Topologically Invisible Defects in Chiral Mirror Lattices

Antonin Coutant,* Li-Yang Zheng, Vassos Achilleos, Olivier Richoux, Georgios Theocharis,
and Vincent Pagneux

Abstract: One of the hallmark of topological insulators is having conductivity
properties that are unaffected by the possible presence of defects. In this
work, by going beyond backscattering immunity and topological invisibility
across defects or disorder is obtained. Using a combination of chiral and
mirror symmetry, the transmission coefficient is guaranteed to be unity.
Importantly, but no phase shift is induced making the defect completely
invisible. Many lattices possess the chiral-mirror symmetry, and the principle
is chosen to be demonstrated on an hexagonal lattice model with Kekulé
distortion displaying topological edge waves, and analytically and numerically
is shown that the transmission across symmetry preserving defects is unity.
Then this lattice in an acoustic system is realized, and the invisibility is
confirmed with numerical experiments. It is foreseen that the versatility of the
model will trigger new experiments to observe topological invisibility in
various wave systems, such as photonics, cold atoms or elastic waves.

1. Introduction

One of the most appealing property of topological insulators, is
that they host edge states that are immune to backscattering. For
this reason, topological concepts have attracted a lot of attention
in the realm of classical waves[1–4] such as photonics, mechanics
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or acoustics, as a way to efficiently trans-
port and guide wave energy. In particular,
time-reversal topological insulators offer
the possibility of immunity to backscat-
tering with purely passive materials.

To achieve this with classical waves,
two main routes have been followed.
The first one consists in emulating the
quantum spin Hall effect.[5–14] While in
condensed matter the backscattering im-
munity is guaranteed by Kramers de-
generacy of half spin particles, in the
classical context this property is not
available. In fact, the effective spin (or
pseudo-spin) usually relies on crystal
symmetries, which are broken as soon
as defects are introduced. The second
route is to start with a material with a
pair of inequivalent Dirac points, where

the valley polarization plays a role similar to the electronic spin
(valley Hall effect).[15–21] However, valley conservation is only ap-
proximate when periodicity is broken. Due to the above limita-
tions, recent works have shown that backscattering is unavoid-
able in these systems.[22–25]

In this work, we show that it is possible to obtain not only
immunity to backscattering but also perfect invisibility in two
dimensional (2D) passive lattices using both chiral and mirror
symmetries. This combination of symmetries allows for topolog-
ical phases characterized by nontrivial mirror winding numbers.
Here, we focus on the case of hexagonal lattices with Kekulé
distortion.[8,12,26–32] We show that if the system has commuting
chiral and mirror symmetries, and there is a single pair of
propagating waves near zero energy, then the transmission
coefficient is either zero or unity across symmetry preserving
defects or disorder. This surprising and important property has
never been reported in topological materials. Additionally, if
appropriately defined topological indices of the defect are trivial,
then transmission is guaranteed to be one. This is illustrated in
Figure 1.

Remarkably, the transmission coefficient across topologically
trivial defects not only has a unit modulus but also a vanishing
phase, which means that the defect is completely invisible. This
result can be applied to a plethora of classical waves systems
in various ways, such as a tight binding approximation of a set
of coupled resonators[30,31] or mass and springs systems.[32] We
show that this model can be realized with a network of acoustic
waveguides, and the relevant symmetries obtained to a very high
degree of accuracy. Topological invisibility of symmetry preserv-
ing defects for acoustic edge waves is confirmed by numerical
simulations of the Helmholtz equation.
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Figure 1. Principle of topological invisibility with chiral and mirror symmetries. a) Illustration of the scattering problem in a ribbon with a defect. b)
Examples of unit cells of models displaying commuting chiral and mirror symmetries. Sites of sublattice  (resp. ) are hollow circles (resp. plain
circles), and the axis of mirror symmetry is shown as a grey dashed line. c) Illustration of perfect transmission in a chiral and mirror symmetric ribbon.
d) Illustrations of ribbons with unit transmission.

2. Chiral Mirror Models

We consider a lattice model described by a hermitian Hamilto-
nian of the form H =

∑
i,j ti,jâ

†
i âj, where âj is the annihilation op-

erator on site j and ti, j = tj, i are real hopping coefficients, and
we look for wave functions Φ solution of HΦ = 𝜖Φ where 𝜖 is
the energy. The key assumption in this work is that the model
has two commuting symmetries: chiral and mirror symmetry. In
Figure 1b, we show several examples of such models.

Chiral symmetry, or sublattice symmetry means that the lat-
tice can be decomposed into two sublattices  and  such that
hoppings only connect sites of different sublattices. Algebraically,
this can be translated by introducing the chiral operator

Γ = diag(−1


, 1


) (1)

i.e., it flips the sign of the amplitudes on sublattice  while leav-
ing the amplitudes of sublattice  unchanged. Chiral symmetry
is equivalent to the anti-commutation relation

ΓH + HΓ = 0 (2)

The model is also considered mirror symmetric, which means
there is a mirror operator M that commutes with the Hamilto-
nian:

MH − HM = 0 (3)

Moreover, we assume that both operators Γ and M commute:

MΓ − ΓM = 0 (4)

In other words, mirror symmetry respect the sublattice structure:
the mirror of a site in  (resp. ) is also in  (resp. ), as shown
in Figure 1b.

3. Edge Waves in the Kekule Model

Among the many models possessing properties (Equations (2)–
(4)), we also need a single pair of propagating waves near zero
energy. Hence, we now focus on the Kekulé model, which has
been shown to possess a pair of topologically protected edge
modes.[8,12,26–28] The model is made of a honeycomb lattice with
nearest neighbor hoppings. A Kekulé distortion is added by
defining hexagonal molecules of six sites with different intracell
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Figure 2. Main properties of Kekulé ribbons with mixed edges. a) Bulk structure of the Kekule model. Sites of sublattice  (resp. ) are hollow circles
(resp. plain circles), and intracell indices 1..6 are indicated. b) Ribbon with mixed edges: molecular zigzag down and partially bearded up. Numbers with
the + sign label the extra sites compared to a canonical molecular zigzag ribbon. Colored circles show the zero energy edge mode profile inside a ribbon
supercell (q → 0+ and 𝜖 → 0+). Circle radii give the field absolute value, and colors show the phase: due to the symmetries of the problem, the phase is
either 0 (yellow), 𝜋/2 (green), 𝜋 (purple), or −𝜋/2 (cyan). We took Ny = 4, s = 0.25, t = 0.5. c) Dispersion relation of modes in a mixed edge ribbon for
Ny = 4, s = 0.25, t = 0.5. Edge modes are emphasized in red and bulk bands are shaded.

hoppings ti, j = s and extracell ones ti, j = t. This is illustrated in
Figure 2a. The distortion opens a gap around zero for energies |𝜖|
< |t − s|. The model is chiral and possesses mirror symmetries
whose reflection planes passe through sites of a molecule (i.e.,
along aj = 1..3 in Figure 2a) commute with Γ.

The combination of chiral and mirror symmetry allows for
the construction of topological invariants: the mirror winding
numbers. These topological invariants for the Kekulé model
with different boundary types have been studied in details
in ref. [27]. In particular, molecular zigzag and partially bearded
edges are relevant for us because they preserve an appropriate
mirror symmetry and hence, can host topological edge modes.
The authors of ref. [27] showed that the former is topological
when s < t and trivial when s > t, while the latter is trivial for
s < t and topological for s > t. For half-space configurations
(only one edge) in a topological phase, these edge modes are
gapless: there is a Dirac point at 𝜖 = 0. However, in ribbon
configurations, the finite width may open a minigap around
𝜖 = 0 due to the interaction between the lower and upper
edge.[8,33]

Since we need a single pair of propagating waves at 𝜖 = 0, we
now show how to construct ribbons displaying edge waves with
a vanishing minigap. The width Ny is defined as the number of
molecules vertically aligned, for example Ny = 4 in Figure 2b.
Modes of the ribbon are obtained by solving the eigenvalue prob-
lem

𝜀𝜙 = Hrib(q)𝜙 (5)

with Hrib the Bloch Hamiltonian of a ribbon supercell and q the
dimensionless Bloch momentum in the longitudinal direction
(−𝜋 < q < 𝜋). To avoid the opening of a minigap, we choose dif-
ferent types of edges on the lower and upper side: a molecular
zigzag edge and a partially bearded edge, as in Figure 2b. A rib-
bon constructed this way has always a single pair of edge waves:
if s < t it is localized along the molecular zigzag edge, and if s >

t it is localized along the partially bearded one. Without loss of
generality, we focus on the former case (s < t). The dispersion re-
lation of the modes is shown in Figure 2c, and the profile of the
edge mode at zero energy in Figure 2b.

As we now show, in this type of ribbons the existence of an
exact Dirac point at zero energy is guaranteed by symmetry. To
demonstrate this, we apply a method developed in ref. [34] to the
ribbon of Figure 2b, with which it is possible to guarantee the
existence of zero energy modes using a combination of spatial
symmetry and chiral symmetry. The main result needed, some-
times referred to as Lieb theorem,[35–37] is that if a finite chiral
lattice has a number N1 of sites on one sublattice larger than the
number of sites N2 on the other sublattice, then, there is at least
N1 −N2 zero energy solutions with support on the first sublattice.
The idea is to apply this to a ribbon supercell, or more precisely,
to Hrib(q). Such a supercell contains an equal number of sites on
 and , so zero modes are not guaranteed by chiral symmetry
alone. However, at q = 0, Hrib is also mirror symmetric (both
Equations (2) and (3) hold). Hence, we first block diagonalize Hrib
into mirror symmetric and mirror anti-symmetric subspaces.
Each subspace has now an uneven number of basis vectors on
the two sublattices, which allows us to use the previous result.
Explicitly, the symmetric ribbon Hamiltonian has one extra basis
vector on , while the anti-symmetric ribbon Hamiltonian has
one extra basis vector on  (a detailed counting is provided in
Supporting Information). This guarantees the existence of two
solutions at q = 0 and 𝜖 = 0 with support on each sublattice, and
corresponding to the Dirac point of edge waves. This is empha-
sized by the inset of Figure 2c, which is a zoom near the Dirac
point. Moreover, the above counting also gives us on which sub-
lattice each mode lives: the symmetric mode𝜑S has support on,
while the anti-symmetric one 𝜑A has support on . This can be
written

Γ𝜑S = 𝜑S, and Γ𝜑A = −𝜑A (6)

Adv. Physics Res. 2024, 2300102 2300102 (3 of 9) © 2024 The Authors. Advanced Physics Research published by Wiley-VCH GmbH
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Figure 3. Illustration of symmetry properties of scattering solutions and topological indices of defects. a) Illustration of chiral symmetry (Equations (9)
and (10) implying (Γ𝜑±(𝜖))* = 𝜑±(− 𝜖)) applied on a scattering solution. b) Illustration of mirror symmetry (Equation (13)) applied on a scattering
solution. c) Illustration of how to obtain a defect’s topological indices, as defined in Equation (17). In the symmetric part of the defect, some hopping

take the value
√

2s (orange) due to the normalization of the new basis vectors (see Supporting Information). This does not affect the topological indices.

4. Invisibility of Symmetry Preserving Defects

We now analyze the propagation properties of these edge waves
across defects. Let us directly state our main result:

Theorem: If a ribbon (with edges as in Figure 2b) has a chiral
mirror symmetric defect made of missing or added molecules and/or
modified hopping values, then that defect is invisible for edge waves at
zero energy:

T(0) = 1 (7)

To show this, we first assume that 𝜖 is around 0, such that there
are only two propagating edge waves (see Figure 2c), which we
call 𝜑+(𝜖) and 𝜑−(𝜖). The scattering problem is to find a solution
of 𝜖Φ = HΦ with H the infinite ribbon Hamiltonian containing
the defect, such that asymptotically:

Φ(𝜀) ∼
−∞

𝜑+(𝜀) + R(𝜀)𝜑−(𝜀) (8a)

∼
+∞

T(𝜀)𝜑+(𝜀) (8b)

Notice that this definition of the scattering coefficients ensures
that T(𝜖) = 1 in the absence of defect. We now analyze the conse-
quence of the symmetries of the problem on the scattering coeffi-
cients. First, from the relation (2), the chiral operator Γ applied on
an eigenmode at energy 𝜖 gives an eigenmode at energy −𝜖 and
the same momentum q. Moreover, it changes its propagation di-

rection, since the group velocity of a mode is given by vg =
d𝜀
dq

(see

Figure 2c). This implies

Γ𝜑+(𝜀) = 𝜑−(−𝜀) (9)

In addition, our system is time reversal invariant (Hamiltonian is
real), which means that Hrib(q)* = Hrib(− q). This gives the iden-
tity

𝜑+(𝜀)∗ = 𝜑−(𝜀) (10)

For Equations (9) and (10) to hold, we of course need to fix the
phase of each modes. Using Equation (1), this is done by choos-
ing a phase zero on a site of the sublattice . We can now use
Equations (9) and (10) on Equation (8) to obtain the scattering
solution at −𝜖. Its asymptotic behavior is:

(ΓΦ(𝜀))∗ ∼
−∞

𝜑+(−𝜀) + R(𝜀)∗𝜑−(−𝜀) (11a)

∼
+∞

T(𝜀)∗𝜑+(−𝜀) (11b)

This is illustrated in Figure 3a, and we obtain

T(𝜀)∗ = T(−𝜀) (12a)

R(𝜀)∗ = R(−𝜀) (12b)

Adv. Physics Res. 2024, 2300102 2300102 (4 of 9) © 2024 The Authors. Advanced Physics Research published by Wiley-VCH GmbH
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Let us next use the mirror symmetry of the scattering system.
Since mirror symmetry applied on the Bloch Hamiltonian flips
the sign of q, i.e., MHrib(q)M = Hrib(− q), we obtain

M𝜑+(𝜀) = 𝜑−(𝜀) (13)

For this identity to hold we need to fix the phase of the modes to
be zero on a site of the symmetry axis, in addition to the previous
constraint that this site lies in . More details about phase fixing
is provided in Supporting Information.

Now, because we consider a mirror symmetric defect, the scat-
tering problem also has that symmetry. Hence, as is custom-
ary, we decompose it into a symmetric subproblem and an anti-
symmetric one,[38] with each subproblem equivalent to a simple
one-port reflection problem. All this defines a symmetric reflec-
tion coefficient RS and an anti-symmetric one RA with the corre-
sponding scattering solutions ΦS and ΦA:

ΦS∕A(𝜀) ∼
−∞

𝜑+(𝜀) + RS∕A(𝜀)𝜑−(𝜀) (14)

as illustrated in Figure 3b. The scattering coefficients of the full
problem are given by:[38]

T(𝜀) =
RS(𝜀) − RA(𝜀)

2
(15a)

R(𝜀) =
RS(𝜀) + RA(𝜀)

2
(15b)

Since chiral symmetry commutes with mirror symmetry
(Equation (4) with the mirror symmetry of the ribbon), each sub-
problem has the chiral symmetry. This means that RS and RA
satisfy Equation (12b), and thus are real-valued at 𝜖 = 0. Fur-
thermore, by energy conservation, RS and RA have unit modulus,
implying that they can only be ±1 at zero energy. Consequently,
from Equation (15) the transmission coefficient T(0) can only be
0 or ±1.

Now, to identify which defects have T(0) = 1, we need to study
in details the sublattice structure of the scattering solutions. We
first directly apply the chiral operator to the scattering solutions
of Equation (14), as illustrated in Figure 3b. Then, by linearity, we
deduce RS(− 𝜖) = 1/RS(𝜖) and, more importantly:

ΓΦS(𝜀) = RS(𝜀)ΦS(−𝜀) (16a)

ΓΦA(𝜀) = RA(𝜀)ΦA(−𝜀) (16b)

Crucially, at 𝜖 = 0, ΦS and ΦA are eigenvectors of the chiral
operator Γ, with eigenvalues RS and RA. Thus, RS(0) = 1 (resp.
RA(0) = 1) is equivalent to ΦS (resp. ΦA) has support on sublattice
, while if RS(0) = −1 (resp. RA(0) = −1) it has support on .

To complete the proof, it is convenient to introduce the topo-
logical indices of a chiral mirror defect[34,39] in the following man-
ner. The set of removed (or added) sites makes a finite (chiral
mirror) lattice. We split this lattice in a symmetric and an anti-
symmetric one. We then count the number of sites on each sub-

lattice, N


on  and N


on , and define the pair of topological
indices as:[40]

(ΔS,ΔA) = (NS

− NS


, NA


− NA


) (17)

This definition is illustrated in Figure 3c. We now make the con-
jecture that for a topologically trivial defect, i.e., (ΔS, ΔA) = (0,
0), the scattering solutions ΦS(0) and ΦA(0) have support on the
same sublattice as without defect (this conjecture is further sup-
ported in Supporting Information). As we saw in Equation (6),
this means that ΦS(0) has support on  and ΦA(0) on . Us-
ing Equation (16) this implies that RS(0) = 1 and RA(0) = −1.
Then, we conclude by noticing that a defect made of added or
removed molecules is always topologically trivial. Hence, using
Equations (16) and (15), we conclude that on such defects T(0)
= 1.

Importantly, according to the above analysis, any disordered
slab made of random hoppings preserving chiral and mirror sym-
metries, will be a topologically trivial defect. As a consequence, it
will be invisible to zero energy edge waves. Notice that this is
reminiscent to zero index materials,[41] with the difference that it
does not rely on effective parameters of the materials but rather
on topological protection.

5. Scattering of Edge Waves on Defects

We now compute the transmission and reflection coefficients
over various defects using a transfer matrix formalizm adapted
from ref. [42] and presented in Supporting Information. The scat-
tering solution of the ribbon including the defect is obtained as a
function of the incident energy 𝜖. In Figure 4a, we show the am-
plitude and phase of the transmission coefficient for three differ-
ent chiral mirror symmetric defects. The corresponding defects
are illustrated in panels (Figure 4b–d), where the zero energy scat-
tering solutions over these defects are also depicted. As predicted
by our theorem, the transmission coefficient is exactly unity (with
|T| = 1 and arg(T) = 0 mod 2𝜋) at zero energy for all defects.

At energies around zero, the transmission coefficient behavior
varies significantly depending on the shape of the defect, which
can be interpreted in the following way. First, for the defect
of Figure 4b the edge waves always follow molecular zigzag
boundaries, along which edge waves are propagating near 𝜖 =
0. Combined with the perfect transmission T = 1 at 𝜖 = 0, one
expects a good transmission for a broad range of energies around
zero, which is confirmed by our calculation. On the contrary,
if the defect has pieces with edges where edge waves become
evanescent, we expect a lower transmission for 𝜖 away from
zero. For instance, the defect of Figure 4c looks similar to that of
(Figure 4b) but the tip molecule has been put back. As a result,
transmission decreases when the energy departs from zero. The
defect of Figure 4d corresponds to a rather extreme case where
the edge wave has to propagate along a long armchair boundary.
Since edge waves are gapped along armchair boundaries[26] we
expect an exponentially small transmission for 𝜖 inside that gap.
In that respect, it makes the perfect transmission even more
surprising, since the preceding line of reasoning would suggest
an exponentially small transmission also at 𝜖 = 0. In fact, the
scattering can be seen as the result of exciting a quasi bound
state in the continuum through a tunnel effect, which leads

Adv. Physics Res. 2024, 2300102 2300102 (5 of 9) © 2024 The Authors. Advanced Physics Research published by Wiley-VCH GmbH
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Figure 4. Scattering of edge waves on chiral mirror symmetric defects. a) Transmission coefficients as a function of the energy of edge waves on the
three defects: blue (b), red (c), yellow (d). We took Ny = 5, s = 0.25, t = 0.5 and work with the complex energy 𝜖 + i𝜈 with 𝜈 = 10−6 (see Supporting
Information). b–d) Scattering solutions at 𝜖 = 0 on the different defects. Circle radii give the field absolute value, and colors show the phase: due to the
symmetries of the problem, the phase is either 0 (yellow), 𝜋/2 (green), 𝜋 (purple), or −𝜋/2 (cyan).

to a unit transmission. We clearly see the resonance with that
quasi bound state in Figure 4d. We point out that the broadband
phenomenon near zero energy in Figure 4b is rather close to
the valley Hall effect, where edge waves are highly transmitted
from one edge to another along the same valley direction.
However, in our setup, the additional perfect transmission at
𝜖 = 0 protected by chiral and mirror symmetry guarantees a
higher transmission for similar turns, but also allows edge
waves to be transmitted across edges not allowed by valley
conservation.

We complete this section by investigating the transmission co-
efficient trough slabs with mirror and chiral symmetric disorder.
The results are summarized in Figure 5. Inside the slab, we ran-
domly take the hopping coefficients following a uniform prob-
ability density around their mean values corresponding to the
rest of the ribbon and symmetrize about the central axis (see
Figure 5a). The obtained results confirm our theorem that for
all realizations the slab is invisible to the edge waves at 𝜖 = 0.

We would like to emphasize that the topological invisibility
we are demonstrating, i.e., Equation (7), directly comes from
mirror and chiral symmetry (more precisely, Equations (9) and

(13)), and only from that. For instance, the same invisibility
result is true in 1D simple chains (see Figure 1b) on trivial
defects (where topological indices are defined similarly to Equa-
tion (17)). In particular, the results of Figure 4 involve the Kekulé
model, in which a notion of pseudo-spin can be defined,[12]

but the pseudo-spin is not at the origin of the topological
invisibility.

6. Acoustic Networks

We now show that the theoretically predicted invisible defects can
be implemented in classical wave systems. To do so we choose a
recently proposed acoustic continuous system governed by the
Helmholtz equation Δp + k2p = 0 with acoustic frequency 𝜔 =
kc0 (c0 is the speed of sound) that exactly maps to various discrete
lattices and is used to realize various topological phases.[43–45]

The system consists of a network of hollow tubes connected on
a graph, here, a honeycomb one. The Kekulé distortion is repro-
duced by varying the tube cross-sections in the same way as in the
lattice model: cross-sections of intracell tubes 𝜎s differ from that
of extracell ones 𝜎t. We can then show that if all tubes have the

Adv. Physics Res. 2024, 2300102 2300102 (6 of 9) © 2024 The Authors. Advanced Physics Research published by Wiley-VCH GmbH
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Figure 5. Scattering of edge waves on a disordered slab. a) Illustration of a symmetric disordered slab of three columns. Hoppings with added random
values are marked by dashed lines. b) Transmission coefficient as a function of edge wave energy on disordered slabs of three columns. We show the
mean value 〈|T|〉 (blue line) and median (red line). The shaded regions mark the first and last quartiles (dark grey) and first and last deciles (light grey).
Statistics is taken over 200 realizations. We took Ny = 3, s ∈ [0.05, 0.45], t ∈ [0.3, 0.7] and work with the complex energy 𝜖 + i𝜈 with 𝜈 = 10−6 (see
Supporting Information).

same length L, and the transverse dimensions are much smaller
than L, then fixed frequency solutions are obtained as eigenvec-
tors of an effective Hamiltonian on the same graph: 𝜖ϕ = Hϕ,
with ϕ a vector containing the pressure values at every node. 𝜖

is the effective energy related to the acoustic frequency by 𝜖 =
cos (kL). Notice that when 0 < kL < 𝜋, 𝜖 is a decreasing function
of k and as a consequence, the acoustic group velocity vac

g has the

sign of dk
dq

, which is opposite to its lattice counterpart vg =
d𝜀
dq

. The

Figure 6. Finite element simulations of the 2D Helmholtz equation in a Kekulé network. We took tubes with L = 40, 𝜎s = 4 and 𝜎t = 8. a) Transmission
coefficients obtained from numerical simulations as a function of 𝜖 = cos (kL) on the three defects: blue (b), red (c), yellow (d). We took Ny = 5, s =
0.25, t = 0.5. Since the acoustic group velocity sign is flipped with respect to the lattice model, we compare T*(𝜖) with T(𝜖) of Figure 4-a, and hence, we
show − arg(T) rather than arg(T). Invisibility is observed at the shifted energy 𝜖 ≈ 0.047. b–d) Modulus of the pressure field of the scattering solutions
at the value of 𝜖 with unit transmission.
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 27511200, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/apxr.202300102 by B

ibliothèque de Sorbonne U
niversité, W

iley O
nline L

ibrary on [22/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advphysicsres.com


www.advancedsciencenews.com www.advphysicsres.com

hopping coefficients between a node a and b are given by the ratio
of the tubes cross-sections:

Hab =
𝜎ab∑
b′ 𝜎ab′

(18)

where b′ are all nodes connected to a. To obtain open boundary
conditions of the lattice model, we add extra tubes of length L on
every nodes on the edge, with an open end enforcing a vanishing
pressure condition (see ref. [45] for more details).

To illustrate invisibility of chiral mirror symmetric defects we
performed 2D numerical simulations of the Helmholtz equa-
tion (using COMSOL) in a structure reproducing the Kekulé rib-
bons with the same defects as in Figure 4b-d. A monochromatic
source is located on the left of the defect. Because the left and
right moving modes have the same transverse profile, we apply
the same method as 1D waveguides to extract the reflection and
transmission coefficients (see Supporting Information), from the
acoustic pressure at two nodes before and two nodes after the de-
fect. The invisibility is illustrated by the maximum transmission
amplitude equal to unity at a 10−3 precision level and the zero
phase in Figure 6a. Note that a constant (defect independent)
energy shift is observed, which presumably comes from two-
dimensional effects near the junctions. The results of Figure 6,
including the field profiles, reveal a remarkable agreement with
the lattice model predictions (see Figure 4).

7. Conclusion and Outlook

We showed how a combination of chiral and mirror symmetry
can lead to a protected unit transmission at zero energy. Although
our results have mainly been discussed in the context of the
Kekulé model, they are very general: our main theorem (before
Equation (7)) will hold for any model with a single pair of prop-
agating waves at zero energy and the commuting combination
of chiral and mirror symmetries. Moreover, such lattice models
can be obtained in many classical waves systems,[30–32] and we
numerically showed how to realize topological invisibility with
acoustic waves in a network of tubes. The possibility of obtaining
robust waveguiding in passive topological metamaterials should
make it very appealing for applications and we hope that our find-
ings will foster more studies in that direction.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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Supplemental material

Mirror winding number

Here, we briefly reproduce the derivation of the mirror winding numbers, but refer to [27] for more details.
We consider a molecular zigzag edge along the direction a∥ = 2a1 + a2, which is invariant under the mirror
symmetry M about the axis a2. When the Bloch momentum q is parallel to a⊥, M commutes with the
Bloch Hamiltonian H(q). Hence, it can be split into a (one-dimensional) symmetric HS(q⊥) and antisymmetric
HA(q⊥) part. Because M commutes with Γ, both HS and HA are chiral. This means that a winding number can
be computed for each part. For a molecular zigzag edge, a unit cell is chosen as in Fig. 2-(a) in the main text.
We write |j⟩ with j = 1..6 the vector with unit amplitude on site j and zero elsewhere. Now, the symmetric
sector is spanned by

|1⟩, 1√
2
(|2⟩+ |3⟩), 1√

2
(|4⟩+ |6⟩), |5⟩, (1)

while the antisymmetric sector is spanned by

1√
2
(|2⟩ − |3⟩), 1√

2
(|4⟩ − |6⟩). (2)

In this basis, the two sub-Hamiltonian at q∥ = 0 have the chiral form

HS/A(q⊥) =

(
0 QS/A(q⊥)

QS/A(q⊥)
† 0

)
, (3)

with

QS(q⊥) =

(
s
√
2 te2iq⊥

s+ te−iq⊥ s
√
2

)
, (4a)

QA(q⊥) = s− te−iq⊥ . (4b)

An explicit computation of the winding numbers 1
2iπ

∫
Tr(Q−1∂q⊥Q)dq⊥ leads to

(nS , nA) = (0, 0) if s > t, (5a)

(nS , nA) = (1,−1) if s < t. (5b)

We emphasize that nontrivial mirror winding numbers not only guarantee the existence of edge waves, but also
a Dirac point at ε = 0 (gapless edge modes). This is because both winding numbers imply a zero energy solution
localized near the edge. Moreover, the sign of the winding number tells us on which sublattice that solution is.

Dirac points protected by chiral and mirror symmetries

When a two-dimensional system displays commuting chiral symmetry and a spatial symmetry, Dirac points
can be protected by the symmetry combination. Typically, one can use chiral symmetry at high symmetry
points to count the number of zero-modes for each spatial symmetry eigenvalue, as explained in details in [34].
In our work, the spatial symmetry is mirror symmetry. The simplest example of such Dirac point is provided by
a simple chain (see Fig. 1-(b) in the main text) with two sites per unit cell (one A and one B). In this case, the
Dirac point is simply that coming from the band folding of the simple chain, but the symmetry argument implies
that it is stable under all symmetry preserving perturbation. To see this, we consider the mirror symmetry with
axis on the right site of a unit cell. For a general value of q, that symmetry acts as

M(q) =

(
eiq 0
0 1

)
, (6)

such that the Bloch Hamiltonian satisfies

M(q)†H(q)M(q) = H(−q). (7)

At q = 0, we see that both basis vectors, i.e. |1⟩ and |2⟩, belong to the same eigenspace of M (of eigenvalue 1).
Hence, that space has 1 site on A and one on B, and has no symmetry protected zero-mode. On the contrary,
at q = π, |1⟩ is anti-symmetric (eigenvalue −1) while |2⟩ is symmetric (eigenvalue 1). Hence, each sector has a
single state belonging to a certain sublattice, which implies it can only have zero energy. This shows that the
gap must close at q = π for ε = 0.
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In the core of the manuscript, we applied the same argument to a finite width ribbon. Although the argument
is the same, the counting is more involved. We distinguish two types of sites: they either come in mirror pairs,
or are on the symmetry axis. At q = 0, the mirror symmetry has a block diagonal form, acting trivially on
sites on-axis and exchanging mirror pairs off-axis. Notice that a supercell contains two symmetry axes. If M
is defined with respect to one of them, at q = 0 sites on the other axis are also invariant under the action of
M , because they would be mapped to sites on the same axis in the next supercell, which means they pick up a
phase eiq = 1. Thus, with an appropriate site labeling the mirror operator M reads

M =



1
. . .

1
0 1
1 0

. . .

0 1
1 0


. (8)

Using the eigenbasis of M , counting the difference of number of basis vector on each sublattice of the symmetric
(resp. anti-symmetric) subspace gives us the number of symmetric (resp. anti-symmetric) zero modes. We can
build basis vectors of the symmetric subspace as in equation (1) with

|jon axis⟩, and
1√
2
(|joff axis⟩+ |j′off axis⟩), (9)

where j′off axis is the mirror symmetric of the site joff axis. The anti-symmetric subspace is spanned by

1√
2
(|joff axis⟩ − |j′off axis⟩), (10)

similarly to equation (2).
Because the chiral and mirror symmetries commute, each sub-Hamiltonian is chiral, in other words, each

basis vector belongs to a definite sublattice. To perform the counting, we decompose a ribbon supercell as 2Ny

molecules and 4 extra sites to make the upper partially bearded edge (see Fig. 2-(b) in the main text or Fig. S1).
Let us first consider a single molecule: it has 2 sites on the symmetry axis, and 2 pairs off-axis. That gives 4
symmetric basis vector with 2 on A and 2 on B, and 2 anti-symmetric ones with 1 A and 1 on B (see equations
(1) and (2)). We see that each molecule has an equal number of vector on both sublattice for each symmetry
sector. The unbalance comes from the 4 extra sites of Fig. S1. They consist in 2 sites on the axis and 1 pair
off-axis, which leads to 2 symmetric basis vector on B and 1 on A, and a single anti-symmetric one on A. In
total, the symmetric ribbon Hamiltonian is obtained with 4Ny + 1 basis vector on A and 4Ny + 2 on B, while
the anti-symmetric ribbon Hamiltonian is obtained with 2Ny + 1 basis vector on A and 2Ny on B. Hence, as
used in the core of the manuscript, there is one symmetric zero-mode on B and one anti-symmetric zero-mode
on A.
Notice also that the same counting argument can be done for the other high symmetry point q = π. However,

the fact that a supercell is not mirror symmetric itself leads to a different repartition between sublattices for
each symmetry. Indeed, all sites on the second symmetry axis now pick up a minus sign when mirror symmetry
is applied. Hence, these sites contribute to the anti-symmetric basis rather than the symmetric ones. A detailed
counting shows that each symmetry sector is balanced, and thus, no zero energy solution is symmetry protected.
This explains why Kekulé edge waves have a single Dirac point rather than one at each high symmetry point.
This is an important point in this work, as the perfect transmission is protected only when there is a single pair
of propagating modes at ε = 0.

Transfer matrix formalism: Eigenmodes

In this work, the scattering coefficients are obtained using a transfer matrix formalism, which we adapted
from [41] to the present case. The starting point is to write the ribbon eigenvalue problem as

J†Φm−1 +HscΦm + JΦm+1 = εΦm. (11)

In this equation, Φm is a column vector containing the amplitudes on all sites of the supercell m. Moreover,
J (resp. J†) is the matrix containing the hopping relating sites within a supercell to the next (resp. previous)
supercell at m+ 1 (resp. m− 1), and Hsc is the Hamiltonian of an isolated supercell. We now split the set of
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Figure S1: Supercell of a ribbon with mixed edges.

sites within a supercell in three subsets: BL (resp. BR) contains sites connected to the supercell m − 1 (rep.
m+1), while BI contains sites that are only connected to other sites of the same supercell. This decomposition
is illustrated in Fig. S1. Notice that periodicity implies that BL and BR have the same size, which is 2Ny for
the ribbons we consider (see Fig. S1). We now write the solution Φm of equation (11) in blocks:

Φm =

(ϕj)j∈BR

(ϕj)j∈BL

(ϕj)j∈BI

 =

 Vm

Wm

Xm

 . (12)

This block decomposition changes equation (11) into

Vm = tGvvWm+1 + tGvwVm−1, (13a)

Wm = tGwvWm+1 + tGwwVm−1, (13b)

Xm = tGxvWm+1 + tGxwVm−1, (13c)

with G the supercell Green function G(ε) = (ε−Hsc)
−1 written in block components

G(ε) =

Gvv Gvw Gvx

Gwv Gww Gwx

Gxv Gxw Gxx

 . (14)

Since equation (13c) gives us Xm but does not involves Xm±1, we can directly relate Wm and Vm−1 to Wm+1

and Vm. This defines the transfer matrix: (
Wm+1

Vm

)
= M

(
Wm

Vm−1

)
, (15)

with

M = −
(
tGvv −12Ny

tGwv 0

)−1 (
0 tGvw

−12Ny
tGww

)
. (16)

Eigenvectors of the transfer matrix are the modes of the ribbon. By construction, there are 4Ny of them. If
the corresponding eigenvalue λ has a unit modulus, it is a purely propagating mode, otherwise it is evanescent.
Moreover, all modes have a direction of propagation: if |λ| < 1 it is moving to the right, and |λ| > 1 it is moving
to the left. If it is purely propagating (|λ| = 1), there are two options to determine its direction of propagation:
one can compute the group velocity vg, or one can add a small fictitious dissipation ε → ε+ iν with ν > 0 and
apply the previous criterion.
In order to have unambiguously defined scattering coefficients (see below), the last step is to properly normalize

and fix the phase of the propagating modes φ±(ε). We first normalize them by requiring that they carry a unit
(up to the sign) conserved current (this is detailed in the next section). We then fix the phase by requiring a
zero phase on a well-chosen site. Importantly, this site must be chosen so that the symmetry identities (9) and
(13) in the main text are valid. Since Γ act on a site in B as multiplication by 1, the chiral identity (9) in the
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main text requires this site ot belong to sublattice B. Similarly, for the mirror identity (13) in the main text
to hold, the phase-fixing site must be on the symmetry axis (where M acts as multiplication by 1). These two
constraints imply that the site must be labelled 5 within a given molecule (see Fig. 2-(a) in the main text).
Then, any molecule within a supercell work adequately, and we chose the lowest one on the right (see Fig. S1).
Notice that this phase fixing is possible because the amplitude of φ±(ε) does not vanish on site 5 (at least for
ε near 0). Interestingly, this requirement is what distinguish the different roles played by sublattice A and B.
Indeed, one could have tried to define Γ = diag(1A,−1B) instead of (1) in the main text, and fix a zero phase
on sublattice A. However, sites both on A and the symmetry axis are labeled 1 in Fig. 2-(a) in the main text,
and at ε = 0, the amplitudes of both φS and φA vanish on them (the former because it is on sublattice A
and the latter because it is on the symmetry axis), and hence the same is true for φ± (which can be seen in
Fig. 2-(b) in the main text).

Transfer matrix formalism: conserved energy current

A key point in equation (11) is that Hsc is self-adjoint, and that the inter-supercell matrices relating m →
m− 1, and m → m+ 1 are adjoint. This guarantees that there is a conserved current along the ribbon. To see
this, we take the (left) product of equation (11) with Φ†

m. Using the fact that Φ†
m(ε−Hsc)Φm is real, we obtain

Im
(
Φ†

mJ†Φm−1

)
+ Im

(
Φ†

mJΦm+1

)
= 0. (17)

This can now be written as

Jm+1 − Jm = 0, (18)

with

Jm = Im
(
Φ†

m−1JΦm

)
. (19)

Therefore, Jm is a conserved current. Using the block form of Φm, i.e. equation (12), this becomes

Jm = tIm
(
V †
m−1Wm

)
. (20)

This defines a symplectic structure: the fact that Jm is independent of m implies that M ∈ Sp(4Ny,R) [41].
More generally, the current conservation stays valid for any non-periodic ribbon of similar shape. Indeed, if the
hoppings depend on the supercell, equation (11) is changed into

J†
m−1 · Φm−1 +Hsc

m · Φm + Jm · Φm+1 = εΦm. (21)

Notice that unitarity imposes that there is only one set of hopping matrices Jm and not a left and right one.
Following the same steps as before, we obtain he conserved current

Jm = Im
(
Φ†

m−1JmΦm

)
, (22)

which generalizes equation (19). In particular, the current (19) will be conserved across any type of defect or
disorder.

Transfer matrix formalism: scattering matrix

To compute the scattering matrix over a defect, we define the supercell m = 0 so that the defect is entirely
contained within it. This means that for m ̸= 0 the eigenvalue equation is given by equation (11), and for m = 0
it has the same form with Hsc replaced by a defect Hamiltonian Hd. This is illustrated in Fig. S2. A scattering
solution can then be written as:(

Wm

Vm−1

)
=

m⩽0

2Ny∑
j=1

aj(λ
+
j )

mφ+
j + bj(λ

−
j )

mφ−
j ,

=
m>0

2Ny∑
j=1

cj(λ
+
j )

m−1+ndφ+
j , (23)

where φ±
j are the eigenvectors of M with eigenvalues λ±

j propagating to the right (+) or left (−). aj are the

incident amplitudes, related to the outgoing amplitudes by the reflection matrix (bj) = R̂(aj) and transmission
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Figure S2: Kekulé ribbon with a simple defect made of a missing molecule. Decomposition of the defect supercell and
neighboring supercells are emphasized.

matrix (cj) = T̂ (aj). Notice that we also introduce nd, the size of the defect supercell counted in number of
ribbon supercells that would have the same horizontal length (for instance nd = 2 in Fig. S2), ensuring that
T = 1 in the absence of defect. Following the same steps that lead to equation (13), we can relate the amplitudes
on both sides of the defect using the defect Green function Gd(ε) = (ε−Hd)

−1 and its block components as in
equation (14):

V0 = tGd
vvW1 + tGd

vwV−1, (24a)

W0 = tGd
wvW1 + tGd

wwV−1. (24b)

Using the block form of the scattering solution defined in (23), we obtain the set of equations

V̂ +(D+)nd T̂ = tGd
vvŴ

+(D+)nd T̂

+tGd
vwV̂

+ + tGd
vwV̂

−R̂, (25a)

Ŵ+ + Ŵ−R̂ = tGd
wvŴ

+(D+)nd T̂

+tGd
wwV̂

+ + tGd
wwV̂

−R̂. (25b)

In these equations, we defined Ŵ± (resp. V̂ ±) two square matrices made by columns with the W -components
(resp. V -components) of the modes (φ±

j )j=1..2Ny
. We also defined the diagonal matricesD± with the eigenvalues

(λ±
j )j=1..2Ny

in the diagonal. This system can be written

α̂

(
R̂

T̂

)
= β̂, (26)

with the block matrices

α̂ =

(
−tGd

vwV̂
− (V̂ + − tGd

vvŴ
+)(D+)nd

W− − tGd
wwV̂

− −tGd
wvŴ

+(D+)nd

)
,

β̂ =

(
tGd

vwV̂
+

tGd
wwV̂

+ − Ŵ+

)
, (27)

which we solve to obtain R̂ and T̂ . We also normalized all propagating modes so that they carry a unit conserved
current as defined in equation (20). This gives us relations between the reflection and transmission coefficients
restricted to purely propagating modes. For the energy range of edge waves, there are only two such coefficients
that we call R(ε) and T (ε). Current conservation leads to

|T |2 + |R|2 = 1. (28)

Defect topological indices

In the main text, we saw that finding the values of the zero energy reflection and transmission coefficients
boils down to finding on which sublattice the solution of the one-port scattering problems of each symmetry
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Figure S3: One-port scattering problem obtained by symmetry reduction of the two-port scattering problem on the
simple defect of Fig. S2. (a) symmetric subproblem (b) anti-symmetric subproblem.

sector is supported (see Fig S3 for an illustration of the two one-port scattering problems obtained by symmetry
reduction). It turns out that the only information needed to conclude is given by the topological indices of the
defect (as defined in equation (17) in the main text). Here we formulate a general conjecture, which allows us
to treat defects of any indices:

Conjecture: The scattering solution of the one-port problem corresponding to the symmetric (resp. anti-
symmetric) sector has support on sublattice B (resp. A) if and only if ∆S ⩾ 0 (resp. ∆A ⩽ 0).

A direct implication of that conjecture is that a topologically trivial defect, i.e. such that (∆S ,∆A) = (0, 0),
implies that ΦS has support on sublattice B and ΦA on A, just as in the absence of defect, which is the result
we used to prove our main theorem and equation (7) in the main text.
To support that conjecture, we solved the one-port scattering problem using the transfer matrix method for a

variety of defects, and compared the values of RS(0) and RA(0) with the topological indices of the defects. The
results are shown in Table I and all agree with the general conjecture. As a final remark, we point out that the
topological indices have an additive property: if we build a defect by taking out a first (symmetric) defect, and
then a second one, the indices of the total defect are obtained by summing the indices of the first and second
defects. This greatly simplifies the characterization of large defects, as they can be seen as resulting from the
addition of smaller defects.

Table I: Mirror symmetric defects and their corresponding topological indices. The defects pictures show what have been
cut out, as the example of Fig. 3-(c) in the main text.
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Extracting scattering coefficients

Figure S4: Numerical scattering experiment. We solve the Helmholtz equation in the acoustic network, with a monochro-
matic source on one intersection (red square), and obtain the pressure amplitude (for varying energies) on 4 different
intersections (green stars): p1, p2, p3 and p4. In this figure the site of p1 is separated by its mirror symmetric p4 by
n0 = 9. We also added dissipation on the far left and right sides (grey area) to mitigate resonances with the whole
structure.

We show how to extract scattering coefficients from numerical simulations of a problem with source, as was
done to produce Fig. 6 in the main text. The method is adapted from [45] to the present context. The numerical
simulation provides us with a solution Φs at fixed energy ε = cos(kL) and a source located at a chosen site
(network node shown in Fig. S4). The energy is chosen in the range around zero such that only edge waves
propagate. On each side of the defect, sufficiently far that near field effects can be neglected, the solution is a
superposition of traveling waves:

Φs = ALφ+ +BLφ− (left side), (29a)

Φs = ARφ+ +BRφ− (right side). (29b)

We now proceed in two steps: first we obtain the above decomposition from pressure values on well chosen
nodes, and second we extract the scattering coefficients. In the simulations, we take the values of Φs on two
sites for each side of the defect (see Fig. S4), called p1, p2 on the left and p3, p4 on the right. Moreover, we
chose p2 (resp. p4) to be on the same site as p1 (resp. p3) in the next supercell to the right. This means that if

we call φ
(j)
± the mode amplitude on the site j where p1 (resp. p3) is taken, then the mode amplitude where p2

(resp. p4) is taken is e±iqφ
(j)
± . From equation (29), we have explicitly

p1 = ALφ
(j)
+ +BLφ

(j)
− , (30a)

p2 = ALe
iqφ

(j)
+ +BLe

−iqφ
(j)
− , (30b)

and similarly for p3 and p4. We now need to relate the mode amplitude of the left and right moving waves on the
chosen site j. For this we exploit the mirror symmetry of the problem, and the relation (13) in the main text.

Calling n0 the number of supercell separating the site j from its mirror symmetric, we have φ
(j)
− = ein0qφ

(j)
+ .

Now equations (30) can be rewritten in a matrix form(
p1
p2

)
= φ

(j)
+

(
1 ein0q

eiq ei(n0−1)q

)(
AL

BL

)
, (31)

which we invert to get (
AL

BL

)
=

i

2 sin(q)φ
(j)
+

(
e−iq −1

−ei(1−n0)q e−in0q

)(
p1
p2

)
. (32)

To obtain AR and BR as function of p3 and p4 we notice that mirror symmetric swaps the roles of (AL, BL)
with (BR, AR), and (p1, p2) with (p4, p3). Hence,(

BR

AR

)
=

i

2 sin(q)φ
(j)
+

(
e−iq −1

−ei(1−n0)q e−in0q

)(
p4
p3

)
. (33)

Importantly, equations (32) and (33) require the value of q at the chosen energy ε. For this, we also numerically
solved (finite elements in COMSOL) the dispersion relation for a ribbon without defect, and use it to obtain
q(ε).
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For the second step, we decompose Φs on a basis of scattering solutions. A scattering solution with an incident
wave on the left has a (far field) decomposition as written in equation (8) in the main text. To emphasize that
the incident wave comes from the left, we call this scattering solution ΦL rather that Φ in the core of the
manuscript. We now use a convenient property of mirror symmetric scattering problems, namely that the
reflection and transmission coefficients are identical whether the incident wave comes from the left or right.
Hence, the scattering solution ΦR with incident wave on the right decomposes as

ΦR = Tφ− (left side), (34a)

ΦR = Rφ+ + φ− (right side). (34b)

Now, comparing the decomposition of Φs (equation (29)) with that of ΦL (equation (8) in the main text) and
ΦR (equation (34)), we see that

Φs = ALΦL +BRΦR, (35)

from which we deduce

BL = ALR+BRT, (36a)

AR = BRR+ALT. (36b)

Inverting the above system for R and T leads to the expressions for the scattering coefficients

R =
ALBL −ARBR

A2
L −B2

R

, (37a)

T =
ALAR −BRBL

A2
L −B2

R

. (37b)

Lastly, to obtain the (approximate) scattering solutions displaying perfect transmission shown in Fig. 6-(b-d)
in the main text, we tuned the losses in the dissipative layers to minimize the coefficient BR.


