
HAL Id: hal-04784101
https://hal.science/hal-04784101v1

Preprint submitted on 14 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Configuration of Cycle Duration in Cyclic Queuing and
Forwarding

Damien Guidolin–Pina, Marc Boyer, Jean-Yves Le Boudec

To cite this version:
Damien Guidolin–Pina, Marc Boyer, Jean-Yves Le Boudec. Configuration of Cycle Duration in Cyclic
Queuing and Forwarding. 2024. �hal-04784101�

https://hal.science/hal-04784101v1
https://hal.archives-ouvertes.fr

1

Configuration of Cycle Duration in Cyclic
Queuing and Forwarding

Damien Guidolin--Pina, Marc Boyer, and Jean-Yves Le Boudec, Fellow, IEEE,

F

Abstract—Cyclic Queuing and Forwarding (CQF) is a mechanism de-
fined by IEEE TSN for providing low jitter in a deterministic network. CQF
uses a common time cycle and two buffers per node output port. During
one cycle, incoming packets are stored in one buffer while packets in the
other buffer are being transmitted; at the end of a cycle, the roles of the
two buffers are exchanged. CQF provides very simple bounds on latency
and jitter. Its correct operation requires a large enough cycle duration
so that all packets received by a node in one cycle can be forwarded
during the next cycle. We give a necessary and sufficient condition for
this to hold. Our condition depends on the link properties and the flow
characteristics at the network input. We apply the condition to obtain the
minimal admissible cycle duration. We observe that the minimal cycle
duration is not always margin-safe, i.e., larger values might be non-
admissible, which suggests replacing the minimal cycle duration with
the minimal margin-safe cycle duration.

Index Terms—TSN; CQF; Peristaltic Shaper; Cyclic Queuing and For-
warding.

1 INTRODUCTION

To offer a standard real-time data network, the IEEE Time
Sensitive Networking working group has defined several
extensions to Ethernet. Among others, Cyclic Queuing and
Forwarding (CQF), inspired by the “stop-and-go” queuing
[1], has been defined in order to offer guaranteed delay
and limited jitter [2]. In short (see Section 2 for more
details), CQF considers a common time cycle, T , and uses
two queues per node output port to alternatively store or
forward packets. It guarantees that the delay experienced by
a packet crossing h nodes along its path is between (h−1)T
and (h+ 1)T .

CQF can be used by time-triggered flows whose emis-
sion times are statically known in advance for every packet
[3], [4], or by asynchronous flows, whose emission times are
not known in advance. In this paper, we consider a CQF net-
work used by asynchronous flows. We allow arbitrary link
speeds between nodes. Asynchronous flows are assumed
to be constrained by arrival curves (e.g. the number of bits
emitted during τ seconds does not exceed rτ + b, where r is
the rate limit and b the allowed burst) [5].

CQF has appealing characteristics: it is simple to im-
plement, offers a simple expression of the latency bound,

• Damien Guidolin--Pina is with RealTime-at-Work, 54000 Nancy, France.
• Marc Boyer is with ONERA/DTIS, Université de Toulouse – F-31055

Toulouse, France.
• Jean-Yves Le Boudec is with EPFL, 1015 Lausanne, Suisse.

provides a limited delay jitter (2T) [6] and can also easily
handle cyclic dependencies (whereas other real-time mech-
anisms may require some attention in such cases, [7]–[10]).
However, the correct operation of CQF requires that the
following two properties hold:

• time alignment: all packets sent by a node in one cycle
are received by the next downstream node in one cycle
(and not spread over several consecutive cycles);

• large enough cycle: all packets received by a node in one
cycle can be forwarded during the next cycle.

To achieve the former property, a guard band is used
at the beginning and end of every cycle. The minimum
value of the guard band depends on the cycle offsets, the
transmission and propagation times, and the clock stability
properties. It can be computed using the methods in [11]. In
this paper, we assume that the guard band and the offsets
are computed such that the time-alignment condition holds.

The latter property, which is the focus of this paper,
depends on the duration of the cycle and on the traffic.
Obviously, the sum of the rates of all flows traversing a
link must be less than the link speed, but this may not be
sufficient, due to burstiness. A large cycle duration can ac-
commodate more bursty sources but leads to larger latency
and jitter. Our main result, in Theorem 1, is a necessary and
sufficient condition for the large-enough-cycle condition to
hold. It involves the link characteristics and the arrival
curves of flows (i.e. rates and bursts) at the network input.
Remarkably, it is only the value of bursts at the network
input that matters, whereas in general, the burstiness of
flows increases due to multiplexing inside a network. Our
analysis reveals that CQF limits such a burstiness increase
to a timescale less than the cycle duration, which explains
its attractive low-jitter property. Our result incorporates the
effect of clock non-idealities.

Then we apply Theorem 1 to compute the minimal
cycle duration for a given configuration of links and flows.
Minimizing the cycle duration is of primary interest as it
determines the end-to-end delays and jitters. Surprisingly,
we find that the set of admissible cycle durations (i.e.,
that guarantees the large-enough-cycle property) is not an
interval. Specifically, increasing the value of an admissible
cycle duration may make it non-admissible, which may be a
problem in practice as it is common to add a safety margin.
This motivates the definition of the smallest admissible
value such that any larger value is also admissible, which we

2

Fig. 1: Queues of a bridge using CQF policy.

call ”margin-safe cycle duration”. Numerical experiments
indicate that the margin-safe cycle duration may be twice as
large as the minimal cycle duration when the system load
exceeds 60%.

The rest of the paper is organized as follows. Section 2
gives a description of CQF, the system assumptions, and the
notation. Section 3 gives our main result, namely, a practical
condition for the large-enough-cycle condition to hold. In
Section 4, we apply the main result to the computation of
the minimal cycle duration and show in some examples that
it may not be margin-safe. Section 5 provides a review of the
state of the art and Section 6 concludes the paper.

2 PRESENTATION OF CQF

The standard documents that describe CQF use the term
“frame” for “packet”, as is typical for layer-2 standards. In
the scientific literature, it is more common to use “packet”,
and we follow this convention.

2.1 CQF in isolation

Per port behaviour

Consider a TSN output port, as represented in Figure 1,
with two queues, called q0 and q1, dedicated to a set of
CQF flows. Theses two queues represents a single CQF
class on this port (for other TSN mechanisms, a traffic class
corresponds to a single queue, but CQF requires two). The
CQF node has a periodic behaviour, with period T > 0
(called “cycle time”), assumed to be the same for all CQF
nodes in the network. Each node tags each interval as even
or odd. The packets received during an even cycle are stored
in the queue q1, whose gate is closed, meaning that the
packets are not forwarded. During this even cycle, the gate
of the queue q0 is open, and the packets compete with other
queues for transmission (using a non-preemptive arbitration
policy). During an odd cycle, the converse behaviour occurs.
A guard band, of duration S, forbids any emission at the
start and the end of each cycle.

This behaviour is illustrated in Figure 2. Packets A, B,
C are received during cycle 1, an odd cycle; they are stored
in the queue q0 and the output gate of this queue is closed.
As soon as this gate is open (at the start of cycle 2, plus the
guard band), packets A, B, C are forwarded on the output
link. During this cycle 2, the received packets D and E are
stored in the queue q1, and forwarded in cycle 3.

Fig. 2: Local behaviour of a CQF node.

Fig. 3: Behaviour of a sequence of CQF nodes.

Global behaviour

When several nodes are involved, CQF requires a time-
alignment condition, which expresses that the cycle bound-
aries of nodes are enough aligned such that all packets sent
by a node in one cycle are received by the next downstream
node in one cycle. CQF requires all clocks to be synchro-
nized, but the cycle start times need not be exactly the same
at every node, and may differ by some offsets, not shown
on the figures. The time alignment condition requires the
guard band to be large enough; the minimal guard band
duration depends on the offsets and the quality of time
synchronization: it can be computed using the method in
[11]. In this paper, we assume that this time alignment
condition holds. The global behaviour of CQF network can
then be illustrated as in Figure 3 (where the queue and gate
states have been omitted). Here, packets A, B and D emitted
by the end-system in cycle 1 are forwarded by the switch
SW1 at cycle 2, then forwarded by the switch SW2 at cycle
3, etc.

For correct operation, in addition to the time-alignment
condition, CQF also requires that cycles are large enough to
be able to empty one buffer in one cycle. Figure 4 illustrates
the issue, by showing a case where this latter condition does
not hold. Here, too many packets are received in cycle 1, so
that not all packets received in cycle 1 can be transmitted
in cycle 2 (this is the case for packet C, the transmission of
which has to be postponed to cycle 4). Note that if the bitrate
of the link from SW to ES3 were 11/9 larger than the one of
the incoming links, such a problem would not occur.

The goal of this paper is to establish the conditions for
the cycle-time to be large enough. When this and the time-
alignment condition hold, CQF guarantees that if a flow
follows a path made of h hops, its end-to-end delay is in
the range [(h − 1)T, (h + 1)T] and its delay-jitter is upper
bounded by 2T [12]. For example, any packet in Figure 3
experiments a delay between 2T and 4T .

3

Fig. 4: Example of cycle time not large enough.

2.2 CQF, interference and other classes
One strength of CQF is that it may host several kinds of
traffic. Whereas the previous section was presenting CQF in
isolation, this section shows hows CQF is inserted in a TSN
output port.

As depicted in Figure 1, a CQF class may share the
output port with other queues. There are up to 8 queues in a
TSN output port, formally called “traffic classes”, numbered
from #0 to #7.

The arbitration policy is a static priority (class #7 having
the highest priority). A CQF class can be set to any priority
level. We may have q1 = #7 and q0 = #6 to set CQF to the
highest priority, but we may also have q1 = #6 and q0 = #5
and leave class #7 to some higher priority flows. The system
depicted in Figure 1 represents a system where q1 = #n,
q1 = #(n − 1) with some n such that 7 > n > 1. In this
paper, we assume only that the CQF queues are adjacent
i.e., the difference between the priority level of the two CQF
queues is always equal to one. Also note that q1 = #7 and
q0 = #6 and q1 = #6 and q0 = #7 give similar behaviour1.
The CQF packets may have to compete with higher priority
flows when their own gate is open2 and also with one lower
priority packet.

Consider first a system without preemption. Higher
priority packets may compete with CQF at any time when
CQF gate is open, even if they have to wait the end of a
CQF packet to access to the output link. Lower priority
packet may also compete at any time, but since they are
of lower priority, they will lose the arbitration when the
CQF gate is open. Note that one lower priority packet
may start its emission before the gate opening, and keep
the link up to end of emission (as illustrated by packet
LP-1 in Figure 5-(a)). Then, the blocking related to lower
priority packet is upper bounded by the maximal size of
a lower priority packet (while any upper bound on the
blocking due to higher priority packet must be provided by
the network designer3). Figure 5-(a) also shows that, once

1. The standard name the queues used by CQF either “queue 1”
and “queue 2” when presenting the behaviour [13, § T.2], but also
uses the expressions “queue 7” and “queue 6” when entering into
implementation details [13, § T.4]. To avoid this ambiguity, we have
introduced notations q0 and q1.

2. Note that there may exist several CQF classes of different priorities,
then, a CQF class may have to compete with a higher priority CQF class
[5].

3. It may be also partially deduced from the configuration of the
policing elements [14].

Fig. 5: Impact of CBS integration with other priorities,
without preemption (assuming that CQF packets A, B and
C have been received during the previous cycle).

all CQF packets received in the previous cycle have been
forwarded, lower priority packets can be sent (cf. packet
LP-2).

Another effect may prevent CQF from using the full gate
opening time: the next-closing-event blocking. In TSN, if a
packet cannot be fully emitted before the next closing of its
own gate, it will not be sent. Then, considering the example
of Figure 5-(b), if the last CQF packet C is too large w.r.t the
next closing event, the remaining part of the cycle cannot
be used by CQF. Note that, in our interpretation of the
standard, one lower priority packet can be sent during this
time if its own gate is open during enough time (even if it
may imply to do such arbitration in a very short time), but
such a situation is not represented in Figure 5-(b) for sake
of simplicity. As will be shown in Section 3, in a correctly
configured CQF network4, CQF packets will not suffer the
next-closing-event blocking effect associated to the end of
the cycle.

A preemption mechanisms is introduced in [15], [16].
The transmission of a preemptable packet can be interrupted
if an express packet is ready for transmission; if it remains
at least 144 bytes of the preemptable packet to be emitted
[17], the transmission of the preemptable packet is stopped
and the transmission of the express packet starts. When
the preemptable packet is again eligible for transmission,
it can resume the transmission but an overhead is added.
Note that there is one single level of preemption: an express
packet that has preempted a preemptable packet cannot be
preempted by another express packet, regardless of their
relative priorities.

If the queues of priority lower than the two CQF
queues are preemptable, and if the CQF queues are express,
the blocking due to lower priority packet is reduced to
143 bytes. The associated overhead (20 bytes, added at
packet restart, denoted “O” in Figure 6) will not compete
with CQF in the current cycle (it will be sent when CQF
does no more require access to the link). But in this case,
the higher priority packets will not be able to preempt
CQF packets. This situation is illustrated in Figure 6-(a): the
transmission of LP-1 is interrupted by the transmission of
A, and restarts after the transmission of C.

4. A more formal condition on the configuration will be given in
Section 3.

4

Fig. 6: Impact of CBS integration with other priorities, with
preemption (assuming that CQF packets A, B and C have
been received during the previous cycle). The relative size
of the packets and the overhead does not fit the reality.

If the CQF queue is preemptable, and if some higher pri-
ority queue is express, the CQF packets can be preempted,
creating some overhead that will use part of the bandwidth
in the current cycle. Note that even if a CQF packets can
be preempted several times, one high priority packet can
create at most one preemption overhead. Then the number
of overheads in one cycle is upper bounded by the number
of higher priority packets in this cycle.

CQF may also interfere with Scheduled Traffic, imple-
mented using a Time Aware Shaper (TAS, [18], [19]), that
will require an exclusive access to the output port, and close
the gate of the CQF packet during the transmission of a
Time-Triggered packet (also called scheduled packet), even
in an open cycle. Such a gate closing of duration d will have
a worst-case impact larger than d: due to the next-closing-
event blocking, one may loose one full packet size per TAS
window in the CQF cycle, as illustrated in Figure 7-(a). Note
that [20] propose to use (and extend) the guard band to send
the scheduled traffic to avoid this effect.

One may also consider that preemption may be used to
reduce this blocking effect, as illustrated in Figure 7-(b), but
our understanding of standard is that a closing event does
not trigger a preemption (only express packets do).

One may wonder if, at gate re-opening, CQF may suffer
for a lower priority blocking, as at start of CQF cycle. In the
common TAS implementation, using exclusive gating, this is
not the case. With exclusive gating, during a TAS window,
all other gates are closed, then all these gates re-open at the
same time, and CQF will win any arbitration with lower
priority packets.

In summary, during an open cycle, CQF may be blocked
by:
• one single lower priority packet (the amount of block-

ing being a full packet if there is no preemption, and if
there is preemption and if the CQF queue is express
and the lower priority queues are preemptable, this
blocking is reduced to 143 bytes);

• some non scheduled higher priority flow;
• some preemption overhead, if there is preemption and

the CQF queue is preemptable and the higher priority
flows are express (the amount of overhead can be a
bounded number of higher priority packet);

Fig. 7: Impact of TAS/CBS integration, with or without
preemption of packet C. (assuming that CQF packets A, B
and C have been received during the previous cycle). The
relative size of the packets and the overhead does not fit the
reality.

Fig. 8: A CQF cycle of 5ms with 5 gate closing (dedicated to
TAS) – units are in milliseconds.

• several closed windows (due to TAS), each window of
duration d leading to a loss of Rd+163×8 pseudo-bits.

We let Blj,k denote the amount of blocking due to all
these effects, during cycle k of the CQF port j. Note that
Blj,k is either 0 or not less than 72 bytes (minimal size of
and Ethernet packet plus the preamble). In addition, we let
Blj denote an upper bound on the amount of blocking due
to all these effects on the CQF port j i.e., for all k ∈ N,

Blj ≥ Blj,k. (1) {eq:alphaHP}{eq:alphaHP}

The bound Blj is reachable if there exists a behaviour of the
system and a cycle k such that Blj = Blj,k.

The bound Blj must not consider the blocking due to
the next-closing-event associated with the end of the cycle
because, as mentioned above, in a correctly configured CQF,
this does not affect CQF packets.

In the rest of this section we illustrate the computation
of Blj on a few examples.

Consider a port j, with some for Scheduled Traffic in
class #7, some high-priority traffic in class #6, and a CQF
class using queues #5 and #4 and some other traffic in
lower-priority queues #3 to #0 on a 1Gb/s output link. The
CQF cycle time is 5ms. The TAS mechanisms reserves for the
scheduled traffic one window of 0.1ms every millisecond
(using 10% of the bandwidth) with an offset of 0.5ms relative
to the start of the cycle time. The traffic in class #6 uses no
more than 15% of the bandwidth in each cycle. The cycle
with gate closing is depicted in Figure 8.

If the system is without preemption, a bound Blj can be

5

computed as

one low priority packet︷ ︸︸ ︷
1542× 8b +

class #6 usage︷ ︸︸ ︷
5ms× 1Gb/s× 15

100
+ 5× (0.1ms× 1Gb/s + 168× 8b)︸ ︷︷ ︸

5 closed windows

.
(2)

If the CQF class can preempt the lower priority traffic (if
the preemption is on, and the classes #6, #5 and #4 are
express and the classes #3 to #0 are preemptable), then a
bound Blj can be computed as

one low priority non-preemptable packet︷ ︸︸ ︷
143× 8b +

class #6 usage︷ ︸︸ ︷
5ms× 1Gb/s× 15

100
+ 5× (0.1ms× 1Gb/s + 168× 8b)︸ ︷︷ ︸

5 closed windows

.
(3)

If the CQF class can be preempted by the higher priority
traffic (if the preemption is on, and the classes #6 is ex-
press, and the classes #5 to #0 are preemptable), then, the
preemption overhead must be taken into account, leading
to the following value for Blj :

one low priority non-preemptable packet︷ ︸︸ ︷
143× 8b +

class #6 usage︷ ︸︸ ︷
5ms× 1Gb/s× 15

100
+ 5× (0.1ms× 1Gb/s + 168× 8b)︸ ︷︷ ︸

5 closed windows

+ n× 20b︸ ︷︷ ︸
preemption overhead

,
(4)

where n is an upper bound on the number of packets of
class #6 in each cycle (if a minimal size on the packet
size L#6 is known, then n ≤ 5ms×1Gb/s× 15

100

L#6
, but depending

on the context, there may be other ways to get an upper
bound, based on the stream traffic contract or more generic
approaches [21]).

2.3 Time Synchronisation and Clock Nonidealities and
Arrival Curves.
CQF requires that network nodes are time synchronized, us-
ing for example [22]. For simplicity, in Figures 3 and 4, cycles
of different nodes are drawn perfectly aligned, but in reality,
perfect time synchronization does not exist; furthermore,
transmission and propagation delays should be accounted
for and there may be a different time offset at every node
(this may mitigate the time alignement issue [11]). The role
of the guard band is to avoid all time alignment problems.

At the microsecond time scale, clock nonidealities also
have to be taken into account. In the context of a time-
sensitive network, clock non ideality is captured by three
network-wide parameters: the clock stability bound ρ ≥ 1,
the timing jitter bound η ≥ 0 and the synchronization error
bound ∆ ≥ 0 [23]. In a TSN network synchronized with
gPTP (generic PTP), the reference values are ρ = 1.0001 [22,
Annex B.1.1], η = 2ns [22, Annex B.1.3.1] and ∆ = 1µs [22,
Section B.3]. These parameters provide error bounds for the
difference in measurements of one same interval performed
with two different clocks; specifically, if one clock measures
a duration d and the other one a duration d′, then

max

(
d− 2∆,

d− η
ρ

)
≤ d′ ≤ min(d+ 2∆, ρd+ η). (5){eq-clk}{eq-clk}

2.4 System Model and Notations

The notation used throughout the paper is listed in Table 1.
The system of interest is a network and one CQF class; if the
network has several CQF classes, the other CQF classes are
considered as higher or lower priority classes with respect
to the CQF class of interest. The network is made of switches
and end-systems.

Flows of data are generated at end-systems. The number
of bits generated by flow i at its source end-system is con-
strained by an arrival curve αi, i.e., αi(d) is an upper bound
on the number of bits generated by flow i on any interval
of duration d, including any overhead like preamble and
inter-frame gap (this is called an arrival curve in network
calculus). For example, a flow i that is constrained to emit
at most L bits every τ seconds is characterized by the arrival
curve αi(d) = L

⌈
d
τ

⌉
where d·e denotes the ceiling function.

Such an arrival curve provides the most accurate delay and
backlog bounds [24], but, for tractability, is often replaced by
a linear upper bound (called leacky bucket function) such as
αi(d) = rd + b where b = L is called the burst parameter
and r = L

τ the rate parameter.
The arrival curve αi expresses quantities that are imple-

mented using the local clock of the source. When another
system, such as a switch output port, needs to make as-
sumptions about the number of bits generated by the source
during a time interval measured with this system’s clock
(not the source’s clock), then the arrival curve needs to be
inflated in order to account for clock non-ideality [23]. The
arrival curve for flow i that can be assumed by a system that
is not the source of flow i is derived from (5) and is given
by

α̃i(d) = αi (min(d+ 2∆, ρd+ η)) . (6) {eq:arrival_curve}{eq:arrival_curve}

In other words, the number of bits generated by source
i during any time interval of duration d, as measured by
the local clock of a switch, is upper bounded by α̃i(d). For
example, if αi(d) = rd+ b (leaky bucket function), then

α̃i(d) = min (rd+ 2r∆ + b, rρd+ rη + b) . (7) {eq-jksd}{eq-jksd}

Let P denote the set of CQF output ports in the network;
note that the end-system output ports typically do not
implement CQF, and thus P only includes output ports of
switches, not of sources. The duration of the CQF cycle is
T , and there is a guard band of duration S at the beginning
and at the end of every cycle. These values are identical at
all ports. In contrast, the links may have different bit rates.
Port j uses a time offset oj (with 0 ≤ oj < T), at which the
initial cycle begins. And the kth cycle starts at oj + kT (up
to clock nonidealities).

Finally, let Fl(j) denote the set of flows crossing the CQF
port j.

3 CONDITION ON THE CYCLE TIME

In this section we give a necessary and sufficient criterion
for the large-enough-cycle (LEC) condition to hold.

Theorem 1 (Global LEC Condition). Assume that the guard
band and the offsets are such that time alignment holds [11]. Let

6

TABLE 1: Notations.

P Set of CQF ports in the network

Rj Bit rate of port j

∆ Clock synchronization error bound (e.g. ∆ = 1µs)

ρ Clock stability bound (e.g. ρ = 1.0001)

η Clock timing jitter bound (e.g. η = 2ns)

T Duration of cycle

S Guard band at begin and end of a cycle

oj Cycle offset at port j

bxc Floor of the real number x

n%m Remainder modulo m of the integer n

Ini
j(k) Number of bits of flow i that arrive at port j in

cycle k

Outij(k) Number of bits of flow i leaving port j in cycle k

OutHP
j (k) Amount of higher priority data competing for the

access to port j during cycle k

Fl(j) Set of flows crossing port j

Blj Upper bound on the amount of blocking due to
other classes on the CQF port j (Section 2.2)

αi(d) Upper bound on the number of bits generated by
flow i on any interval of duration d measured
with the source’s clock

α̃i(d) Upper bound on the number of bits generated by
flow i on any interval of duration d measured
with the clock of a switch

Tj Set of T respecting eq. (8) on port pj
T opt Global minimal cycle time

T safe Global minimal margin safe cycle time

T conc Maximum of local concave cycle time

T > 0, it satisfies the Large Enough Cycle condition if for every
port j ∈ P ∑

i∈Fl(j)

α̃i(T) ≤ Rj(T − 2S)− Blj . (8) {Cond:LLEC}{Cond:LLEC}

Conversely, if Blj is reachable for every port j (see Equation (1)
and its comments), this is a necessary condition.

The theorem gives a condition on the cycle time T
that depends on the system load via the arrival curves at
network input: the condition at port j does not depend
on the number of hops between the sources of the flows
and this port. Indeed,a remarkable property of CQF, which
appears in the proof of the theorem, is that the burstiness of
flows measured at the duration of the cycle time, does not increase
as flows progress through the network. This is in stark contrast
with other network scheduling techniques (such as FIFO
per-class), where it is known that flow bursiness increases
at every hop.

Figure 9 illustrates Theorem 1 with a simple situation,
with only two CQF flows. Graphically, the solutions of
Equation 8 are all the times T such that the sum of the
arrival curves (the plain black curve) is below the service
curve (the dotted red curve). This set of solution is shown
in thick blue along the T axe and it will be defined in the
following section, Section 4.1.1. Also, the specific times T opt

j

and T safe
j will also be presented in Section 4.1.1.

T (µs)1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

y(bit)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

T
opt
j T

safe
j

y = Rj(T − 2S)− Blj
y =

∑
α̃(T)

Tj

Fig. 9: Illustration of Tj , α1(d) =
⌈
d
4

⌉
, α2(d) = 2

⌈
d
5

⌉
, Rj =

1bit/µs, S = T
100 , (ρ, η,∆) = (100

99 , 0, 0), Blj = 2bit.

Sketch of proof.: The proof of the sufficient condi-
tion is as follows:

1) Let Bj,0(k) denote the backlog in qj,0 at the end of cycle
k (and similarly for Bj,1(k)). Also let Inij(k) denote the
number of bits of flow i that arrive at port j during
cycle k. We show the following property: for a given
port j and a given cycle k, if there is no backlog at the
end of the previous cycle (Bj,(k+1)%2(k − 1) = 0) and
the amount of data received during the current cycle
(
∑
i∈Fl(j) Inij(k)) is upper bounded by Rj(T −2S)−Blj

then there is no backlog at the end of the current cycle
(Bj,k%2(k) = 0).

2) Let l(i, j) denote the number of hops from the source
of the flow i until port j (l(i, j) = 1 if port j is the
first switch output port on the path of flow i). For two
positive integers k, d, we say that the property P (k, d)
holds if and only if, for all j ∈ P and all i ∈ Fl(j) such
that l(i, j) ≤ d, the following four properties hold:

Inij(k) ≤ α̃i(T) (P1)

Bj,(k+1) % 2(k − 1) = 0 (P2)

Bj,(k+1) % 2(k) ≤ Rj(T − 2S)− Blj (P3)

Inij(k) = Outij(k + 1). (P4)

We prove this property by a double induction on k and
d. The property P (k, d) shows that the burstiness of
flows in CQF does not increase along the path of the
flows and is bounded by what enters during a cycle of
duration T (P1). Also it gives an upper bound on the
buffer usage (P2 and P3). Finally, (P4) implies the LEC
condition.

The necessary condition is proven by exhibiting a trajec-
tory that achieves the bound.

The full proof is given in Appendix A.

4 COMPUTATION OF THE CYCLE TIME

Theorem 1 gives a condition on the cycle time T that
depends on the arrival curves at network input. The next
step is to use the condition to determine admissible values
of T . Suprisingly, as we show now, if some value T satisfies

7

the condition in Theorem 1, there may exist some T ′ > T
that does not. This makes the problem of choosing a good T
more complex than expected.

4.1 Local Conditions on Cycle Time
4.1.1 Definitions
Definition/Property 1 (Local, Minimum Cycle Time). Con-
sider a port j. Define Tj as the set of values of the cycle time T

that satisfy (8) for this value of j. Let T opt
j

def
= inf Tj . If T opt

j > 0,
then T opt

j ∈ Tj .

In other words, T opt
j is the smallest cycle time that

satisfies the large-enough-cycle condition at port j. Because
the arrival curves in (8) cannot generally be assumed to be
continuous (only left-continuity is generally assumed, [25]),
it is not obvious whether the infimum of Tj is in Tj . The
proof that this does hold is given in Appendix B.

Since the latency is directly related to the cycle time, it
seems beneficial to chose the smallest value, and thus T opt

j is,
as far as latency is concerned, the optimal cycle time when
considering the constraints at port j. However, as we see
next, it may not be the most desirable value.

This is because, in general, we cannot expect Tj to be an
interval. The set Tj is plotted as a thick line along the T axis
on Figure 9. It is not an interval. In particular, the optimal
cycle time is T opt

j = 9.18µs, but the value T = 12µs is not a
correct cycle time (it does not belong to Tj).

In practice, when we choose a cycle time, we may want
to round it up in order to keep some margin in view of a
future evolution of the system. Choosing T

opt
j is therefore

not always a good option. This leads to the following
definition:

Definition/Property 2 (Local, Margin-Safe Cycle Time).
Consider a port j. We say that T satisfies the local margin-safe
condition at port j if and only if, for all t ≥ T , t ∈ Tj . Let
T safe
j denote the set of values that satisfy the local margin-safe

condition at port j and T
safe
j

def
= inf T safe

j . If T safe
j > 0, then

T safe
j =

[
T

safe
j ,+∞

)
.

The property says that the set of values of T that satisfy
the local margin-safe condition at port j is always a closed
interval. The proof is given in Appendix C. By definition,
every T ≥ T safe

j satisfies the LEC condition at port j.
It follows immediately from the definitions that T safe

j ≥
T

opt
j , but in general we cannot expect that there is equality.

For example, in Figure 9, T safe
j = 12.24µs whereas T opt

j =
9.18µs.

4.1.2 Concave Arrival Curves
In the special case where all arrival curves are concave, the
complexity that comes from the fact that Tj may not be an
interval disappears:

Property 1 (Concavity and valid cycle times). Consider a
port j, if

∑
i∈Fl(j) α̃

i is concave5 and T
opt
j > 0, then Tj =[

T
opt
j ,+∞

)
and T opt

j = T
safe
j .

5. f : R+ → R+ is concave if ∀x, y ∈ R+,∀p ∈ [0, 1], pf(x) + (1 −
p)f(y) ≤ f(px+ (1− p)y)

The proof is given in Appendix F.
As mentioned in Section 2.4, it is common to simplify

network calculus computations by replacing the exact ar-
rival curves (which typically contain steps) by linear upper
bounds. When incorporating clock non-idealities into the
model, this leads to concave, piece-wise linear arrival curves
as in (7). Applying this idea leads to a closed-form upper
bound on T opt

j and T safe
j :

Definition/Property 3 (Local, Concave Cycle Time). Con-
sider a port j, some burst and rate values b, r, and some
clock imperfections characterized by ∆, ρ, and η such that∑
i∈Fl(j) α̃

i(d) ≤ min (2r∆ + b+ rd, η + b+ ρrd), define

T conc
j

def
= min


b+2r∆+2RjS+Blj

Rj−r

b+η+2RjS+Blj
Rj−ρr

, (9) {eq:Tlin}{eq:Tlin}

• then T safe
j ≤ T conc

j .
• Moreover, if

∑
i∈Fl(j) α̃

i(d) =

min (2r∆ + b+ rd, η + b+ ρrd), then T
opt
j = T

safe
j =

T conc
j .

The proof is by simple algebra for the first point. The sec-
ond comes from the previous property, Property 1. It follows
immediately that any T ≥ T conc

j satisfies the local LEC con-
dition at port j. We always have T opt

j ≤ T safe
j ≤ T conc

j , but in
general we have strict inequalities. In Section 4.3 we perform
numerical experiments and see that the suboptimality of
T conc
j can be large. The effect of the clock imperfections is

discussed in Section 4.4.

4.2 Global cycle time

Now, consider several CQF nodes in a network. A cycle T
satisfies the global LEC condition if and only if it satisfies the
local LEC condition for every output port j.

Definition/Property 4 (Global, Minimum Cycle Time). De-
fine T as the set of values of the cycle T that satisfy (8) for all ports
j ∈ P , i.e. T =

⋂
j∈P Tj . Define T opt = inf T . If T opt > 0, then

T opt ∈ T .
Also, T opt ≥ maxj∈P T

opt
j and the inequality is strict, in

general.

The proof is in Appendix D.
Figure 10 shows an example where T opt > maxj∈P T

opt
j .

We consider two CQF ports of the network where α1(d) =
2
⌈
d

2.5

⌉
is an arrival curve of the flows crossing the port 1,

and α2(d) = 3
⌈
d
5

⌉
is an arrival curve of the flows crossing

the port 2. Locally, as illustrated, the optimal cycle times are
T

opt
1 = 2µs and T

opt
2 = 3µs. But, the optimal cycle time

of the network is T opt = 4µs 6= max(T
opt
1 , T

opt
2) = 3µs

(T = 3µs is not a correct cycle time for the CQF port 1).
Again, it is still not margin-safe. For example, T = 5.5µs

is not a global correct cycle time because it is not a local
correct cycle time for both ports.

Definition/Property 5 (Global, Margin-Safe Cycle Time).
Consider a network composed of a set of CQF ports: P . We say
that T satisfies the global margin-safe condition if, and only if, for
all t ≥ T , t ∈ T . Let T safe denote the set of values that satisfy

8

T (µs)1 2 3 4 5 6 7 8 9 10

y(bit)

1

2

3

4

5

6

7

8

9

10

11

12

T
opt
1

T
opt
2

T opt

y = Rj(T − 2S)

y = α2

y = α1

Fig. 10: Illustration of Tj for j ∈ {1, 2} with α1(d) = 2
⌈
d

2.5

⌉
,

α2(d) = 3
⌈
d
5

⌉
, Rj = 1bit/µs, S = 0, (ρ, η,∆) = (0, 0, 0),

L = 0.

the global margin-safe condition at port j and T safe = inf T safe. If
T safe > 0, then T safe =

[
T safe,+∞

)
. Furthermore

T safe = max
j∈P

T
safe
j . (10)

The proof is in AppendixE.
Finally, assume that we overapproximate arrival curves

by linear functions, and let T conc
j be the resulting local, linear

cycle time at port j. Then let T conc = maxj∈P T
conc
j . It

follows that T conc is a margin-safe cycle time of the network
and T opt ≤ T safe ≤ T conc.

4.3 Numerical Experiments

We use some global parameters such that the link speed
fixed at 100 Mb/s. Also, we consider that only CQF is
present in our experiments i.e., it doesn’t exist any inter-
ference due to higher or lower priority flows (∀j,Blj = 0).
Also, we consider a guard time equal to 10% of the cycle
time T , according to the results from [11]. Finally, for the
clock imperfections, we use the the standard values recalled
in Section 2.3: (ρ, η,∆) = (1.0001, 2ns, 1µs).

Then, we introduce a set of flow patterns as shown in
Table 2. As we can see, each entry represents on average ca.
one percent of the link load. We randomly add flows in our
experiments.

To illustrate the problem of the choice of the cycle time,
we consider 2 topologies : one node and a line of 16 nodes.
The aim is to show the property of the different cycle times.

4.3.1 One node
First, we consider a simple CQF node. We compute the four
cycle time (T opt, T safe, T conc) and see the differences on this
topology.

In this experiment, we start with one flow and then
randomly add a flow from the set until we have 90 flows;
at every step we compute the different cycle times (for 90

TABLE 2: Recapitulative table of the packet parameters

Size (byte) Period (ms) Load (% of R)
96 1 0.798
128 1 1.024
200 2 0.8
256 2 1.024
496 4 0.992
512 4 1.024
1000 8 1
1024 8 1.024
1504 12 1.003
1520 12 1.013

0 20 40 60 80
Relative load (% of R)

0

5

10

15

20

25

30

35

Cy
cle

 ti
m

e
(m

s)

Topt

Tsafe

Tconc

Fig. 11: Illustration of the latencies for one configuration of
the OneNode topology.

flows, the average load of the output link is 90%). Figure 11
illustrates the results of one configuration.

To see the difference between the cycle times, we com-
pare the ratios T safe

T opt and T conc

T opt in Figure 12.
Then, to see more relevant results, we made 100 config-

urations and for each one and for each number of flows,
we compute the different cycle times. Then, we draw the
boxplot of the latency values in Figure 13 and the ratio
values in Figure 14 (the ratios T safe

T opt are in blue and T conc

T opt in
green).

Interpretations: Using the two figures, Figure 13 and
Figure 14, we can highlight some trends and remarks. The
concave cycle time (here T conc) starts to distance the others
(more than 1.5 times the other cycle times) from 40 precent
of the load whereas the difference between the margin-safe
one (T safe) and the optimal one (T opt) is visible around
70 percent of the load. Even if the difference between the
optimal safe one (T safe) and the concave one (here, T conc)
seems to grow with the load, it is not a linear increase.
Indeed, around 80 percent of the load, we can see that the
difference can pass from on average 7ms to 1ms.

4.3.2 Line
Secondly, we want to see the difference between the cycle
times in a Line of 16 nodes. Here, we will see if the

9

0 20 40 60 80
Relative load (% of R)

0

1

2

3

4

Ra
te

 o
f t

he
 c

yc
le

 ti
m

e
Tsafe/Topt

Tconc/Topt

Fig. 12: Illustration of the ratios for one configuration of the
OneNode topology (T

safe

T opt (in blue dots) and T conc

T opt (in green
crosses)).

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 10
0

Relative load (% of R)

0

10

20

30

40

50

cy
cle

 ti
m

es
 (m

s)

Box Plot Topt

Box Plot Tsafe

Box Plot Tconc

Fig. 13: Illustration of the latency results for 100 configura-
tions of the OneNode topology.

successive nodes influence the cycle times.
To this end, we randomly pick two integer (i, j) between

2 and 15 and three flows from the set defined in Table 2. We
route each flow as follows (see Figure 15):

1) the first one starts at the first node (SW1) and leaves
the line at the switch i.

2) the second one enters in the line at the switch i (SWi)
and leaves the line at the switch j.

3) the third one enters in the line at the switch j (SWj)
and leaves the line at the last switch (SW16).

The results for a single configuration of the line is illus-
trated in Figure 16.

To see the difference between the cycle times, we com-
pare the ratio T safe

T opt (in blue) and T conc

T opt (in green) in Figure 17.
Then, to see more relevent results, we made 100 config-

urations and for each one and for each number of flows,
we compute the different cycle times. Then, we draw the

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 10
0

Relative load (% of R)

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

ra
te

s

Box Plot Tsafe/Topt

Box Plot Tconc/Topt

Fig. 14: Illustration of the ratio results for 100 configurations
of the OneNode topology (T

safe

T opt (in blue) and T conc

T opt (in green)).

SW1 SWi SWj SW16

Fig. 15: Illustration of the line topology.

boxplot of the latency values in Figure 18 and the ratio
values in Figure 19 (the ratios are T safe

T opt (in blue) and T conc

T opt

(in green)).
Interpretations: The trends are similar to the experiments

of the single node. In particular, we can see with these two
figures, Figure 13 and Figure 14, that the concave cycle time
(here, T conc) starts to distance the others (more than 1.5 times
the other cycle times) from the 50 precent of load and the
difference between the margin-safe one and the optimal one
is visible around 70 percent of load.

0 20 40 60 80
Relative load (% of R)

0

5

10

15

20

25

Cy
cle

 ti
m

e
(m

s)

Topt

Tsafe

Tconc

Fig. 16: Illustration of the latency results for one configura-
tion of the Line of 16 nodes.

10

0 20 40 60 80
Relative load (% of R)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ra
te

 o
f t

he
 c

yc
le

 ti
m

e

Tsafe/Topt

Tconc/Topt

Fig. 17: Illustration of the ratio for one configuration of
the Line topology (T

safe

T opt (in blue dots) and T conc

T opt (in green
crosses)).

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 10
0

Relative load (% of R)

0

10

20

30

40

50

cy
cle

 ti
m

es
 (m

s)

Box Plot Topt

Box Plot Tsafe

Box Plot Tconc

Fig. 18: Illustration of the latency results for 100 configura-
tions of the Line topology.

4.4 Influence of clock imperfections

In this section, we numerically evaluate the influence of the
clock imperfections by comparing our results with those
that would be obtained if we would assume clocks to be
perfect. The results with the latter assumption are obtained
to setting ρ = 1 and η = 0. Specifically, we draw, using
the same configuration as in Figure 11, on the same graph,
the computed margin-safe cycle time with and without
considering the clock imperfections (T safe and T safe perfect
respectively) as shown in Figure 20. We can see, for this
configuration sample, the effect of clock imperfection is
negligible except for two points, where it is large: for one
point (at around 70% load) the values are 5.525 ms (perfect
clock) and 8 ms (with clock imperfection); for the other (at
around 80% load) the values are 16.727 ms (perfect clock)
and 23.998 ms (with clock imperfection).

As before, we repeated the experiment and drew 100

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 10
0

Relative load (% of R)

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

ra
te

s

Box Plot Tsafe/Topt

Box Plot Tconc/Topt

Fig. 19: Illustration of the ratio results for 100 configurations
of the Line topology (T

safe

T opt (in blue) and T conc

T opt (in green)).

0 20 40 60 80
Relative load (% of R)

0

5

10

15

20

25
Cy

cle
 ti

m
e

(m
s)

Tsafe perfect
Tsafe

Fig. 20: Illustration of the latencies for one configuration of
the OneNode topology with and without clock imperfec-
tions.

configuration samples (i.e, with 8900 cycle times in total,
with 89 cycle times per configuration). We found 22 points
(out of 8900) where the margin-safe cycle times which are
different if we consider or not the clock imperfections. We
also computed the minimum cycle times and found only
two points where they differ. However, the difference at
these 24 point is not negligible, ranging from 7µs to 7271µs
with an average of 642µs.

Regarding the concave cycle times, all the computed
cycle times are different, but with a small difference, in
average equal to 4.37µs.

5 RELATED WORK

The principle of cutting the time in equals slices, and to
forward a packet in the slice following its reception slice has
been first presented in [1]. It was designed to reduced the
jitter and buffer occupancy w.r.t. to FIFO policy. Note that

11

the delay bound in this first work was [hT, 2hT], whereas
the modern evaluation is [(h− 1)t, (h+ 1)T]. The extension
to multiple cycle has been proposed in [26].

CQF can be used to transfer two kinds of flows: either
time-triggered flows (a.k.a. scheduled flows), whose emis-
sion time of each packet is statically known in advance or
for asynchronous flows (a.k.a. sporadic flows) where only
admissible burst and rate are known [5, § 1.2].

The initial proposal in [26] was targeting asynchronous
flows, but multiple works have been done on the building
of a global schedule adapted to CQF. The Injection Time
Planning (ITP) mechanism computes the global cycle time
and per-flow offsets for periodic flows in order to maximize
the admissible load while satisfying this constraint [3]. The
approach is generalized in [4] by adding in each End-System
an “adapter” in charge of implementing the injection using
a list of queues, and also by providing an online algorithms.
It assumes that all offsets are equals, and the guard band
only has to absorb the clock synchronization precision.

Several extensions of CQF have been proposed, like
CQF 3-queues [27], Paternoster [28], Scalable Deterministic
Forwarding (SDF, [29]) and Cycle Specified Queuing and
Forwarding (CSQF, [30]). A global survey can be found in
[6].

The performances of CQF are compared with Time-
Aware Shaper (TAS), Multi-CQF (CQF with multiple cycle,
[5], not addressed in this paper) and CSQF in [31]. It shows
the benefits of these extensions w.r.t. the simple CQF. Strictly
periodic flows are considered, but with unknown offsets.
The problem of finding an adequate cycle time is discussed
but its configuration is postponed to further works [31,
§ V.C].

Also note that all these extensions use 3 or even 4
queues, whereas Ethernet/TSN offers only 8 queues (or
even less, depending on the implementation). Since a real-
time network may have many types of traffic, each with
specific requirements, the mapping from traffic types to only
8 TSN classes may become an issue [32].

A comparison between CQF and CBS on an automotive
use case is done by simulation in [33], assuming strictly
periodic flows.

6 CONCLUSION

This study focuses on the use of CQF for carrying asyn-
chronous flows.

One major trade-off of CQF is the choice of cycle time: a
short cycle time reduces the latency and jitter but can only
admit small bursts, limiting the number of admissible flows
to a small part of the bandwidth.

This paper proves (in Theorem 1) that the burstiness
does not increase along the path, even in the presence of
nonideal clocks, allowing one to check the cycle time by
only considering the flow characteristics at network input.

It also points out that the optimal cycle time (T opt) is
not margin-safe (i.e. is not robust to small changes: for
ε > 0, T opt + ε is not necessarily a valid cycle time), which
is a serious industrial limitation, since it complicates the
possible evolutions of a system.

We also provide a simple expression (T conc) for an upper-
bound on the margin-safe cycle time and provide several

evaluations of its suboptimality. These experiments show
that the differences between the optimal cycle time (T opt)
and the best margin-safe cycle time (T safe) grow with the
network load, but the difference between T safe and T conc is
not monotonous with the network load.

Finally, regarding the clock imperfections, we highlight
that they often do not influence the cycle times. However,
when they do, the difference between the ones that ignores
the clock imperfections and the true ones can be large.
This suggests that the clock imperfections should not be
overlooked.

REFERENCES

[1] S. Golestani, “Congestion-free transmission of real-time traffic in
packet networks,” in Proc. of the Ninth Annual Joint Conference of the
IEEE Computer and Communications Societies (INFOCOM ’90), 1990,
pp. 527–536 vol.2.

[2] “IEEE Standard for Local and metropolitan area networks–Bridges
and Bridged Networks–Amendment 29: Cyclic Queuing and For-
warding,” IEEE, IEEE Standard 802.1Qch, 2017.

[3] J. Yan, W. Quan, X. Jiang, and Z. Sun, “Injection time planning:
Making cqf practical in time-sensitive networking,” in Proc. of
the 39th IEEE Conference on Computer Communications (INFOCOM
2020), 2020, pp. 616–625.

[4] W. Quan, J. Yan, X. Jiang, and Z. Sun, “On-line traffic scheduling
optimization in ieee 802.1Qch based time-sensitive networks,” in
Proc. of the Int. Conf. on High Performance Computing and Communi-
cations; Int. Conf. on Smart City; 6th Int. Conf. on Data Science and
Systems (HPCC/SmartCity/DSS). IEEE, 2020, pp. 369–376.

[5] N. Finn, “Mutiple cyclic queuing and forwarding,” IEEE
802.1 Working Group, Tech. Rep. df-finn-multiple-CQF-0919-v01,
September 2019. [Online]. Available: https://www.ieee802.org/
1/files/public/docs2019/df-finn-multiple-CQF-0919-v01.pdf

[6] A. Nasrallah, V. Balasubramanian, A. S. Thyagaturu, M. Reisslein,
and H. ElBakoury, “Cyclic queuing and forwarding for large
scale deterministic networks: A survey,” ArXiv, vol. abs/1905.08478,
2019.

[7] B. Jonsson, S. Perathoner, L. Thiele, and W. Yi, “Cyclic
dependencies in modular performance analysis,” in Proc.
of the 8th Int. Conf on Embedded Software (EMSOFT’08).
ACM Press, 2008, pp. 179–188. [Online]. Available: http:
//doi.acm.org/10.1145/1450058.1450083

[8] D. Starobinski, M. Karpovsky, , and L. Zakrevski, “Application of
network calculus to general topologies using turn-prohibition,” in
Proc. of the 21st Annual Joint Conference of the IEEE Computer and
Communications Societies, June 2002, pp. 411–421.

[9] L. Thomas, J.-Y. Le Boudec, and A. Mifdaoui, “On cyclic
dependencies and regulators in time-sensitive networks,” in IEEE
Real-Time Systems Symposium, RTSS 2019, Hong Kong, SAR, China,
December 3-6, 2019. IEEE, 2019, pp. 299–311. [Online]. Available:
https://doi.org/10.1109/RTSS46320.2019.00035

[10] S. Plassart and J.-Y. L. Boudec, “Equivalent versions of total flow
analysis,” 2021. [Online]. Available: https://arxiv.org/abs/2111.
01827

[11] D. Guidolin--Pina, M. Boyer, and J.-Y. Le Boudec, “Configuration
of guard band and offsets in cyclic queuing and forwarding,”
Tech. Rep., Sep. 2022, forthcoming. [Online]. Available: https:
//hal.archives-ouvertes.fr/hal-03772877

[12] A. Nasrallah, V. Balasubramanian, A. S. Thyagaturu, M. Reisslein,
and H. ElBakoury, “Cyclic queuing and forwarding for large
scale deterministic networks: A survey,” ArXiv, vol. abs/1905.08478,
2019.

[13] “IEEE standard for local and metropolitan area networks – bridges
and bridged networks,” IEEE, IEEE Standard 802.1Q, 2018.

[14] “IEEE standard for local and metropolitan area networks–bridges
and bridged networks–amendment 28: Per-stream filtering and
policing,” IEEE, Standard 802.1Qci, 2017.

[15] “IEEE standard for local and metropolitan area networks – bridges
and bridged networks – amendment 26: Frame preemption,” IEEE
Standard 802.1Qbu, 2016.

[16] IEEE, “IEEE standard for ethernet amendment 5: Specification and
management parameters for interspersing express traffic,” IEEE
Standard 802.3br, 2016.

https://www.ieee802.org/1/files/public/docs2019/df-finn-multiple-CQF-0919-v01.pdf
https://www.ieee802.org/1/files/public/docs2019/df-finn-multiple-CQF-0919-v01.pdf
http://doi.acm.org/10.1145/1450058.1450083
http://doi.acm.org/10.1145/1450058.1450083
https://doi.org/10.1109/RTSS46320.2019.00035
https://arxiv.org/abs/2111.01827
https://arxiv.org/abs/2111.01827
https://hal.archives-ouvertes.fr/hal-03772877
https://hal.archives-ouvertes.fr/hal-03772877

12

[17] D. Thiele and R. Ernst, “Formal worst-case performance analysis
of time-sensitive ethernet with frame preemption,” in 2016 IEEE
21st International Conference on Emerging Technologies and Factory
Automation (ETFA). IEEE, 2016, pp. 1–9.

[18] S. S. Craciunas, R. S. Oliver, M. Chmelı́k, and W. Steiner,
“Scheduling real-time communication in IEEE 802.1Qbv time
sensitive networks,” in Proceedings of the 24th International
Conference on Real-Time Networks and Systems (RTNS’16), ser.
RTNS’16. New York, NY, USA: Association for Computing
Machinery, 2016, pp. 183–192. [Online]. Available: https:
//doi.org/10.1145/2997465.2997470

[19] P.-J. Chaine and M. Boyer, “Shortening gate closing time to limit
bandwidth waste when implementing time-triggered scheduling
in tas/tsn,” in Proc. of the 15th Junior Researcher Workshop on Real-
Time Computing, Paris, France, 2022. [Online]. Available: https://
rtns2022.inria.fr/files/2022/06/proceedings jrwrtc2022 final.pdf

[20] Y. Huang, S. Wang, B. Wu, T. Huang, and Y. Liu, “TACQ: enabling
zero-jitter for cyclic-queuing and forwarding in time-sensitive
networks,” in ICC 2021 - IEEE International Conference on Commu-
nications, 2021, pp. 1–6.

[21] M. Boyer and P. Roux, “Embedding network calculus and event
stream theory in a common model,” in Proc. of the 21st IEEE Int.
Conf. on Emerging Technologies and Factory Automation (ETFA 2016),
Berlin, Germany, September 2016.

[22] “IEEE/ISO/IEC International Standard for Information
technology–Telecommunications and information exchange
between systems–Local and metropolitan area networks–Part
1AS:Timing and synchronization for time-sensitive applications in
bridged local area networks, ISO/IEC/IEEE 8802-1AS:2021(E),”
2021.

[23] L. Thomas and J.-Y. Le Boudec, “On time synchronization issues
in time-sensitive networks with regulators and nonideal clocks,”
Proceedings of the ACM on Measurement and Analysis of Computing
Systems, vol. 4, no. 2, pp. 1–41, 2020.

[24] S. M. Tabatabaee, M. Boyer, J.-Y. Le Boudec, and J. Migge, “Ef-
ficient and accurate handling of periodic flows in time-sensitive
networks,” in 2023 IEEE 29th Real-Time and Embedded Technology
and Applications Symposium (RTAS). IEEE, 2023, pp. 303–315.

[25] A. Bouillard, M. Boyer, and E. Le Corronc, Deterministic network
calculus: From theory to practical implementation. John Wiley &
Sons, 2018.

[26] S. J. Golestani, “A stop-and-go queueing framework for con-
gestion management,” in Proceedings of the ACM symposium on
Communications architectures & protocols, 1990, pp. 8–18.

[27] N. Finn, J.-Y. Le Boudec, E. Mohammadpour, J. Zhang,
J. Farkas, and B. Varga, “Detnet bounded latency-02,”
https://www.ietf.org/proceedings/103/slides/slides-103-detnet-
07-detnet-bounded-latency-02.pdf, Bangkok, November 8th
2018.

[28] M. Seaman, “Paternoster policing and scheduling,” IEEE,
Tech. Rep., May 2019, revision 2.1. [Online]. Available:
https://grouper.ieee.org/groups/802/1/files/public/docs2019/
cr-seaman-paternoster-policing-scheduling-0519-v04.pdf

[29] L. Qiang, X. Geng, B. Liu, T. Eckert, L. Geng,
and G. Li, “Large-scale deterministic ip network,”
IETF, Internet-Draft draft-qiang-detnet-large-scale-detnet-05,
2019. [Online]. Available: https://datatracker.ietf.org/doc/html/
draft-qiang-detnet-large-scale-detnet-05

[30] M. G. Chen, G. Xuesong, and Z. Li, “Segment
routing (sr) based bounded latency,” IETF, Internet-
Draft draft-chen-detnet-sr-based-bounded-latency-01, May 2019.
[Online]. Available: https://datatracker.ietf.org/doc/html/
draft-chen-detnet-sr-based-bounded-latency-01

[31] K. Alexandris, P. Pop, and T. Wang, “Configuration and evalua-
tion of multi-cqf shapers in IEEE 802.1 time-sensitive networking
(tsn),” IEEE Access, 2022.

[32] “Time-sensitive networking profile for industrial automation,”
IEEE 802, Tech. Rep., 2021.

[33] L. Leonardi, L. L. Bello, and G. Patti, “Performance assessment
of the IEEE 802.1Qch in an automotive scenario,” in Proc. of the
AEIT Int. Conf. of Electrical and Electronic Technologies for Automotive
(AEIT AUTOMOTIVE), 2020, pp. 1–6.

Damien GUIDOLIN--PINA is an industrial
PhD student at RealTime-at-Work since 2021,
with academic enrollment at ISAE SUPAERO.
His academic supervisor is Marc Boyer (On-
era/DTIS). He received an engineering degree
from ISAE ENSMA, Poitiers, France, in 2020.
He then joined RealTime-at-Work, a French soft-
ware editor helping OEMs and Tier1s design
safe & cost optimized Electrical/Electronic (E/E)
communication architectures for 10 months as
a software engineer working on implementing

some IEEE TSN features in RTaW-PEGASE, an industry-leading plat-
form for the design, configuration, and simulation of embedded com-
munication architectures. His research focuses on the performance of
real-time communication systems, mainly using the Network Calculus
theory.

Marc BOYER received the Engineering de-
gree in computer science from Toulouse INP-
ENSEEIHT, Toulouse, France, in 1996, and the
Ph.D. degree in computer science from the Uni-
versité Paul Sabatier Toulouse III, Toulouse, in
2001. He was an Assistant Professor with the
Network Department, Toulouse INP-ENSEEIHT,
from 2002 to 2008. He is currently a Research
Scientist with the Office National d’Etudes et de
Recherches Aérospatiales (ONERA), Toulouse.
His research interests focuses on embedded

networks (AFDX, TSN) and the performances of these networks, mainly
using the network calculus theory.

Jean-Yves LE BOUDEC is honorary professor
at EPFL and fellow of the IEEE. He gradu-
ated from Ecole Normale Supérieure de Saint-
Cloud, Paris, where he obtained the Agrégation
in Mathematics with rank 4 in 1980, and re-
ceived his doctorate in 1984 from the University
of Rennes, France. From 1984 to 1987 he was
with INSA/IRISA, Rennes. In 1987 he joined Bell
Northern Research, Ottawa, Canada, as a mem-
ber of scientific staff in the Network and Product
Traffic Design Department. In 1988, he joined

the IBM Zurich Research Laboratory where he was manager of the
Customer Premises Network Department. In 1994 he became associate
professor at EPFL. His interests are in the performance and architecture
of communication systems and smart grids. He co-authored a book
on network calculus, which serves as a foundation for deterministic
networking, an introductory textbook on Information Sciences, and is
the author of the book ”Performance Evaluation”. He received numerous
awards, among which the IEEE millenium medal, the Infocom Best
Paper award, the ACM Sigmetrics Best Paper award, the ACM Conext
Best Paper Award, the IEEE Communication Society William R. Bennett
Prize, the IEEE Security and Privacy Test-of-Time award and the EPFL
I&C Best Teacher Award.

https://doi.org/10.1145/2997465.2997470
https://doi.org/10.1145/2997465.2997470
https://rtns2022.inria.fr/files/2022/06/proceedings_jrwrtc2022_final.pdf
https://rtns2022.inria.fr/files/2022/06/proceedings_jrwrtc2022_final.pdf
https://grouper.ieee.org/groups/802/1/files/public/docs2019/cr-seaman-paternoster-policing-scheduling-0519-v04.pdf
https://grouper.ieee.org/groups/802/1/files/public/docs2019/cr-seaman-paternoster-policing-scheduling-0519-v04.pdf
https://datatracker.ietf.org/doc/html/draft-qiang-detnet-large-scale-detnet-05
https://datatracker.ietf.org/doc/html/draft-qiang-detnet-large-scale-detnet-05
https://datatracker.ietf.org/doc/html/draft-chen-detnet-sr-based-bounded-latency-01
https://datatracker.ietf.org/doc/html/draft-chen-detnet-sr-based-bounded-latency-01

13

APPENDIX A
PROOF OF THEOREM 1
To prove this theorem, we need to introduce first further
notations. In addition, we have to bound the cycle gap
between two nodes. We also introduce the per. Finally, we
prove the main theorem.

A.1 Further notations

A.1.1 Notation for Routing
The routing of flows is static and is described by means
of a function pred(), such that pred(i, j) = j′ means that
flow i goes from output port j′ to output port j. For
example, on Fig. 4, and for a flow f (resp. g) going from
ES1 (resp. ES1) to ES3 trough SW, and using output ports
pES1 (resp. pES2) and pSW , it comes pred(f, pSW) = pES1

and pred(f, pES1) =⊥where⊥means f has no predecessor
passing through pES1.

A.1.2 Notation for Backlog
As mentionned in the sketch of proof, we also introduce
Bj,0(k), Bj,1(k): the backlog in qj,0, qj,1 respectively at the
end of cycle k ≥ 0, with the convention that ∀j : Bj,0(−1) =
Bj,0(−2) = Bj,1(−1) = Bj,1(−2) = 0. To find the expres-
sion of the backlog, we just translate the presentation of the
CQF per port behaviour of Section 2.1 into mathematical
expressions.

This backlog counts not only the packets themselves, but
also the overhead of the physical layer6.

Regarding a even cycle, the backlog in the queues at a
cycle k depends on the backlog of the previous one, the
cycle k− 1. Also, acccording to Section 2, the backlog in the
queue q0 depends on what is leaving from the queue during
this cycle k, i.e.

Bj,0(k) = Bj,0(k − 1)−
∑

i∈Fl(j)

Outi,j(k),

and the backlog in the queue q1 depends on what is entering
in the queue, i.e.

Bj,1(k) = Bj,1(k − 1) +
∑

i∈Fl(j)

Ini,j(k).

Reciprocally, for the odd queue, we have

Bj,0(k) = Bj,0(k − 1) +
∑

i∈Fl(j)

Ini,j(k),

Bj,1(k) = Bj,1(k − 1)−
∑

i∈Fl(j)

Outi,j(k).

Thus, using the modulo notation, we have

Bj,(k+1) % 2(k) = Bj,(k+1) % 2(k − 1) +
∑

i∈Fl(j)

Ini,j(k),

(11){eq:B:in}{eq:B:in}

Bj,k% 2(k) = Bj,k% 2(k − 1)−
∑

i∈Fl(j)

Outi,j(k). (12){eq:B:out}{eq:B:out}

6. In the switch memory, only the Ethernet packet is stored, from
MAC destination address up to the CRC/FCS. But when accounting
for the time usage of the physical layer, one have to count also the
preamble and the inter packet gap.

A.2 Cycle gap

Formally, we assume that for any port j, and any output
port j′ in the next switch, for any cycle index k at j, there
exists an integer δ such that all packets sent by j in cycle k
are received by node j′ in cycle k+δ (this property is proved
in [11, §4]). And since this topology relations is encoded in
the pred relation, it becomes:

∀j ∈ P,∀i ∈ Fl(j),∃δpred(i,j),j ∈ N,∀k ∈ N,
Outipred(i,j)(k − δpred(i,j),j) = Inij(k).

(13) {eq:out-is-next-in}{eq:out-is-next-in}

We bound this δ between two nodes.

Lemma 1. Consider a system with all nodes time aligned. Let
j ∈ P be a port, i ∈ Fl(j) be a flow and δpred(i,j),j ∈ N define as
in Equation (13). Then, δpred(i,j),j ≥ −1.

Moreover, it exists configurations where δpred(i,j),j = −1.

Proof of δ··· ≥ −1. Consider a system with all nodes time
aligned. Let j ∈ P be a port, i ∈ Fl(j) a flow and
δpred(i,j),j ∈ N defining as in Equation (13).

δpred(i,j),j exists for any valid clock trajectory and the
perfect clock is a valid trajectory (∆ = 0, ρ = 1, η = 0).
Then, from the necessary theorem in [11, §4.2],

δpred(i,j),j =

⌊
T − S + P i,pred(i,j) + zj + oi − oj

T

⌋
(14)

where P i,pred(i,j), P i,pred(i,j) is the upper and lower bound
on propagation time, zj , zj is the upper and lower bound on
switching time and Ei,pred(i,j) is the minimum transmission
time of CQF packet from pred(i, j) to j.

By construction, we have T − S +P i,pred(i,j) + zj + oi −
oj ≥ Ei,pred(i,j) +S+P i,pred(i,j) +zj+oi−oj . Consequently,
to find a lower bound, we will use the greater one. Also,
according to Section 2.4, 0 ≤ o < T then −T < oi − oj < T

and according to [11, §3], 0 ≤ S ≤ T−E
2 . Consequently,

δpred(i,j),j =

⌊
T − S + P i,pred(i,j) + zj + oi − oj

T

⌋
(15)

⇔
T − S + P i,pred(i,j) + zj + oi − oj

T
− 1 < δpred(i,j),j

≤
T − S + P i,pred(i,j) + zj + oi − oj

T
(16)

=⇒
T − S + P i,pred(i,j) + zj + oi − oj

T
− 1 < δpred(i,j),j

(17)

=⇒
T + P i,pred(i,j) + zj − T

T
− 2 < δpred(i,j),j (18)

=⇒
P i,pred(i,j) + zj

T
− 2 < δpred(i,j),j (19)

=⇒ δpred(i,j),j > −2 (20)

But δpred(i,j),j ∈ N then δpred(i,j),j ≥ −1.

Proof that δ··· = −1 is a possible value. Let construct an exam-
ple where δpred(i,j),j = −1. Consider an ideal configuration
with perfect clocks, no switching time and no jitter on the

14

Cycle 0

Node 1 Node 2 Node 3
0

T – ε/2
T

S = P + ε
F’

F’

F

F

Cycle 0

Cycle 0

Cycle 1

Cycle 2

Cycle 1

Cycle 2 Cycle 1

Fig. 21: Illustration of a configuration where δi,predi,j = −1.

propagation. Then, according to the necessary theorem in
[11, §4.2],

δpred(i,j),j =

⌊
T − S + Pi,pred(i,j) + oi − oj

T

⌋
= −1 (21)

⇒ −1 ≤
T − S + Pi,pred(i,j) + oi − oj

T
< 0 (22)

⇔ −T ≤ T − S + Pi,pred(i,j) + oi − oj < 0 (23)

Such case can appear, for example, in a configuration
with 3 nodes in sequence: Node 1, Node 2, Node 3. Let
ε = 0, 01.Pi,pred(i,j), let offsets o1 = 0, o1 = T − ε

2 and
o3 = 0, and S = Pi,pred(i,j) + ε. Then,

T − S + Pi,pred(i,j) + oi − oj = −ε
2
. (24)

Figure 21 illustrates this example. The packet F can’t be sent
before the openning guard band, here T + S = T + P − ε
and the last packet F ′ is sent just before the closing guard
band, here 2T −S = 2T −P −ε. Then, the last bit of the last
packet arrives at 2T − P − ε+ P = 2T − ε and the cycle of
Node 2 ends at time 2T − ε

2 , just after the packet F ′ arrives.
The same way, Node 2 sends packets to Node 3.

Consequently, Node 2 receives packets from a greater
cycle from Node 1, i.e. δ1,2 = −1 and Node 3 receives
packets from a lower cycle from Node 2 i.e. δ1,2 = 1.

A.3 Local LEC Condition

The next property represents the core of CQF: if the queue
(k + 1) % 2 is empty at the end of cycle k − 1 and if the
sum of incoming amount of CQF data is “not too large” at
cycle k w.r.t. cycle time and blocking (cf. Section 2.2), then
the output in cycle k + 1 is equal to the input at cycle k and
the queue (k + 1) % 2 is again empty at end of cycle k + 1.

Property 2 (Per cycle LEC condition). Let j ∈ P be a port and
k ∈ N be a cycle. If Bj,(k+1) % 2(k − 1) = 0 and∑

i∈Fl(j)

Inij(k) ≤ Rj(T − 2S)− Blj,k (25){eq:LLEC:local-cond}{eq:LLEC:local-cond}

then, Bj,k% 2(k) = 0 and

∀i ∈ F ,Outij(k + 1) = Inij(k). (26)

Proof. Let j a port of P and k a cycle. Since the proof
involves only the port j, we omit the j exponent and
subscripts for clock c, backlog B and throughput R.

The first part consist in evaluating the number of bits
that could be send by the port during one cycle. The
common notion of throughput given in “bit per second”
relies on the notion of second, but the implementation relies
on local clocks, and the bit time is based on the local clock
(the IFG and preamble being in charge of absorbing a clock
drift between the emitting and receiving nodes). Then, we
consider that, in a cycle k+1, i.e. between the instants when
the local clock value is (k+1)T +S+o and (k+2)T −S+o,
the port can emit R(T − 2S) bits.

When local clock value is (k + 1)T + S + o, when
the cycle k + 1 starts, the gate of the queue q(k+1) % 2

opens. The backlog of q(k+1) % 2 at end of cycle k is
Bj,(k+1) % 2(k) = Bj,(k+1) % 2(k − 1) +

∑
i∈Fl(j) In

i
j(k)

(from eq. 11). By hypothesis, Bj,(k+1) % 2(k − 1) = 0, so
Bj,(k+1) % 2(k) =

∑
i∈Fl(j) In

i
j(k).

Since the sum of the CQF backlog (
∑
i∈Fl(j) In

i
j(k)) and

the blocking (Blk) is less than the number of bit opportuni-
ties in the window R(T − 2S) bits, it may appear obvious
than all the backlog can be transmitted. But the blocking
factor Blk does not account for next-closing-event blocking.
What we have to prove is that it does not occur in our case.

The key argument is that, since all CQF packets to be
sent in this window are in the queue from the start of the
window, there is no idle time up to the transmission of
the last CQF packet (all bit transmission opportunities are
either used by CQF or counted in the blocking term Blk)
and there always is enough time for each CQF packet to be
fully transmitted before the closing event of the window.

Formally, assume they are n packets in queue q(k+1) % 2

at time t0 = (k + 1)T + S + o, the i-th packet being of size
Li (including the preamble and inter packet gap overhead),
starting with i = 1. Then

∑n
i=1 Li = Bj,(k+1) % 2(k) =∑

i∈Fl(j) In
i
j(k). Let ti be the start of transmission of the

i-th CQF packet (without any assumption at this step that
all the n packets will be transmitted) and tn+1 the closing
time of the window. Let bli being the amount of blocking
between ti and ti+1 (if any) or tn+1.

By induction, let show that for all i ∈ [1, n], the i-th
packet can be send, and use the property that ti = t0 +∑i

m=1 blm+
∑i−1

m=1 Lm

R . For i = 1, consider the system at t0.
The first packet is ready to be sent. It may experience some
blocking, bl0, but bl0 ≤ Blk, so, at time t0+ bl0

R , the remaining
time is tn+1 − (t0 + bl0) = (2T − S) − bl0

R ≤ (2T − S) −
Blk
R which is not less than

∑
i∈Fl(j) In

i
j(k)

R . Then, it remains
enough transmission bit opportunity up to the end of the
window and packet L1 can be sent.

For any p > 1, at time tp−1 +
blp
R =

∑p
m=1 blm+

∑p−1
m=1 Lm

R ,
the remaining time is

tn+1 − (tp + blp) = (2T − S)−
∑p
m=1 blm +

∑p−1
m=1 Lm

R
(27)

≤ (2T − S)− Blk +
∑p−1
m=1 Lm
R

(28)

which is not less than
∑

i∈Fl(j) In
i
j(k)−

∑p−1
m=1 Lm

R =
∑n

m=p Lm

R .
Then, it remains enough transmission bit opportunity up to
the end of the window and packet Lp can be sent.

15

A.4 Induction property

First, let l(i, j) be the lenght of the path from the source of
the flow i until the port j. By convention, we fix l(i, j) = 0
if the port j is not the path of the flow i.

Hence, we have the following relation: l(i, j) =
l(i,pred(i, j)) + 1.

Then, we introduce the property P (k, d) defined as

∀j ∈ P,∀i ∈ Fl(j), | l(i, j) ≤ d, (29)

Inij(k) ≤ α̃i(T) (P1){eq:P1}{eq:P1}

& Bj,(k+1) % 2(k − 1) = 0 (P2){eq:P2}{eq:P2}

& Bj,(k+1) % 2(k) ≤ Rj(T − 2S)− Blj (P3){eq:P3}{eq:P3}

& Inij(k) = Outij(k + 1). (P4){eq:P4}{eq:P4}

Let us prove this property by induction. To do that, we
introduce a lexicographical order defined as

(k, d) > (k′, d′)⇔
{
k > k′

k = k′ & d > d′
. (30)

• For k = 0 and any d ∈ N, let j ∈ P be a port and i ∈ Fl(j)
a flow such that l(i, j) ≤ d.
– P1:
∗ If the flow i comes from a end-system (pred(i, j) =⊥,
j = fst(i)) then Inij(0) is the amount of data send
by the flow i on the first interval. By definition of
the arrival curve enlarged due the clock nonidealities
(Equation 6), Inij(0) ≤ α̃i(T).
∗ Else, the flow i comes from a bridge. However, all the

bridge queues of the network are empty at the first
cycle. So Outipred(i,j) = 0 and Inij(k) = 0 ≤ α̃i(T).

Thus,
∀j ∈ P,∀i ∈ Fl(j), Inij(0) ≤ α̃i(T) (31)

– P2: By definition of B, Bj,1(−1) = 0.
– P3: By definition of B,

Bj,1(0)
(12)
= Bj,1(−1) +

∑
i∈Fl(j)

Inij(0) (32)

(P2)
=

∑
i∈Fl(j)

Inij(0) (33)

(P1)
≤

∑
i∈Fl(j)

α̃i(T) (34)

(8)
≤ Rj(T − 2S)− Blj . (35)

– P4: From eq. (8), (P1) and (1) it directly comes∑
i∈Fl(j)

Inij(0) ≤ Rj(T − 2S)− Blj,k, (36)

that, using Prop. 2 knowing that Bj,1(−1) = 0, implies
∀j ∈ P,∀i ∈ Fl(j) : Inij(0) = Outij(1).
Then, ∀d ∈ N, P (0, d) is true.

• Induction step: let k > 0, d > 0, assume ∀(k′, d′) <
(k, d), P (k′, d′). Let j ∈ P be a port and i ∈ Fl(j) be a
flow such that l(i, j) ≤ d.
– P1:
∗ If the flow i comes from an end-system, like in the

case k = 0, Inij(k + 1) ≤ α̃i(T).

∗ If the flow i comes from a switch, since the cycles are
time aligned, cf. eq. (13):

Inij(k + 1) = Outipred(i,j)(k + 1− δpred(i,j),j). (37)

According to Property 1, δpred(i,j),j ≥ −1. Then,
· If δpred(i,j),j ≥ 0: We have that ∀k′ < k, d′ ∈
N, P (k′, d′) is true, in particular (P4) so

Inipred(i,j)(k−δpred(i,j),j) = Outipred(i,j)(k+1−δpred(i,j),j).
(38)

Also (P1) is true then, Inipred(i,j)(k − δpred(i,j),j) ≤
α̃i(T). Then,

Inij(k + 1) = Inipred(i,j)(k − δpred(i,j),j) ≤ α̃i(T).
(39)

· If δpred(i,j),j = −1: then Outipred(i,j)(k + 1 −
δpred(i,j),j) = Outipred(i,j)(k + 2). As (P4) of P(k,
d-1) is true, we have

Outipred(i,j)(k + 2) = Inipred(i,j)(k + 1). (40)

Also, (P1) is true so

Inij(k + 1) = Inipred(i,j)(k + 1) ≤ α̃i(T). (41)

– P2: By defintion of B,

Bj,k% 2(k)
(11)
= Bj,k% 2(k − 1)−

∑
i∈Fl(j)

Outij(k) (42)

(12)
= Bj,k% 2(k − 2) +

∑
i∈Fl(j)

Inij(k − 1)

−
∑

i∈Fl(j)

Outij(k)
.

(43)

But, P(k-1) is true and in particular (P2) then,Bj,k% 2(k−
2) = 0.
Also, (P4) is true then, Inij(k − 1) = Outij(k). Then,
Bj,k% 2(k) = 0.

– P3: By defintion of B,

Bj,k% 2(k + 1)
(12)
= Bj,k% 2(k) +

∑
i∈Fl(j)

Inij(k + 1).

(44)

According to P2, Bj,k% 2(k) = 0 and P(k) is true with in
particular (P1) then,

Bj,k% 2(k + 1)
(P2)
=

∑
i∈Fl(j)

Inij(k + 1) (45)

(P1)
≤

∑
i∈Fl(j)

α̃i(T) (46)

(8)
≤ Rj(T − 2S)− Blj . (47)

– P4: From eq. (8), (P1) and (1) it directly comes∑
i∈Fl(j)

Inij(k) ≤ Rj(T − 2S)− Blj,k, (48)

that, knowing that Bj,k+1%2(k) = 0, Prop. 2 can be
applied, and Outij(k + 2) = Inij(k + 1).

So P (k, d) holds.

16

By induction, P (k, d) is true forall (k, d) ∈ N2, and since
P (k, d) is a property stronger than the statement of the the-
orem then, it is proved. (∀(j, k, i) ∈ (P,N, Fl(j)),Outij(k +

1) = Inij(k) so, the system has a Large Enough Cycle).

A.5 Proof of the necessary condition

We will prove this condition by contraposition. Let us sup-
pose it exists j ∈ P such that∑

i∈Fl(j)

α̃i(T) > Rj(T − 2S)− Blj . (49){eq:contrapositive}{eq:contrapositive}

Let us construct a counter example. Let k ∈ N be a cycle
such that for any CQF flow i passing through j, k is greater
than the length of the path between the source and this port
j.

Then, we assume that each CQF flow generates a load of
α̃i(T) during each cycle.

As all the previous ports own a Large Enough Cycle, we
have that the quantity of data from the CQF flows passing
to j at cycle k is equal to the sum of each load of the CQF
flows i.e., ∑

i∈Fl(j)

Inij(k) =
∑

i∈Fl(j)

α̃i(T).

We also assume that a lower priority flows with the
maximum size arrive at just before the the CQF flows can
be transmitted, at kT +S − ε. Then, the output of the lower
priority flows at the cycle k + 1 is OutLP

j (k + 1) = L
LP

.
Finally, we assume that on this port j, a quantity of

higher priority flows of load Blj − L
LP

arrives just af-
ter the lower priority packet ends its transmission i.e., at
kT + S + L

LP

Rj
− ε. Then, the output of the higher priority

flows at the cycle k + 1 is OutHP
j (k + 1) = Blj − L

LP
.

However, the number of bits of the CQF flows leaving
the port j in cycle k+ 1 is bound by the maximum quantity
of data which can leave the port j minus the lower and
higher priority flows i.e,

OutCQFj (k + 1) =
∑

i∈Fl(j)

Outij(k + 1) (50)

≤ Rj(T − 2S)−OutHP
j (k + 1)−OutLP

j (k + 1)
(51)

= Rj(T − 2S)− Blj . (52)

According to the proposition: Equation 49,∑
i∈Fl(j)

Inij(k) >
∑

i∈Fl(j)

Outij(k + 1) (53)

Then, it exists a flow i such that Inij(k) > Outij(k + 1) and
the cycle is not large enought.

Consequently, if the network has Large Enough Cycle
then for all port j,∑

i∈Fl(j)

α̃i(T) ≤ Rj(T − 2S)− Blj . (54)

APPENDIX B
PROOF OF DEFINITION/PROPERTY 1

Proof. If T opt
j = 0, it does not satisfy Theorem 1. Let T opt

j >
0. Let (tn)n∈N be a decreasing sequence such that ∀n ≥
0, tn ∈ Tj and limn→∞ tn = T

opt
j . We have∑

i∈Fl(j)

α̃i(T
opt
j) ≤

∑
i∈Fl(j)

α̃i(tn) ≤ Rj(tn − 2S)− Blj

where the left inequality is because α̃i() is wide-sense
increasing and the right inequality is because tn ∈ Tj . Thus∑
i∈Fl(j) α̃

i(T
opt
j) ≤ Rj(tn−2S)−Blj . Taking the limit gives

∑
i∈Fl(j)

α̃i(T
opt
j) ≤ Rj(T opt

j − 2S)− Blj

which shows that T opt
j ∈ Tj .

APPENDIX C
PROOF OF DEFINITION/PROPERTY 2

Proof. It follows immediately from the definition that if T ∈
T safe
j and T ′ ≥ T then T ′ ∈ T safe

j . It follows that T safe
j is

an interval, of the form either
(
T safe
j ,+∞

)
or
[
T safe
j ,+∞

)
.

Using the same arguments as in Appendix B, we obtain that
T safe
j ∈ Tj , hence T safe

j ∈ T safe
j , and thus only the latter form

is possible.

APPENDIX D
PROOF OF DEFINITION/PROPERTY 4

Proof. The proof that T opt ∈ T uses the same arguments as
the proof in Appendix B. Since T opt ∈ Tj , it follows that
T opt ≥ T

opt
j for every j, hence T opt ≥ maxj∈P T

opt
j . The

fact that the inequality is strict in general follows from the
example in Figure 10.

APPENDIX E
PROOF OF DEFINITION/PROPERTY 5

Proof. The proof that T safe =
[
T safe,+∞

)
is similar to

Appendix C.
Let Tmax = maxj∈P T

safe
j . We have to prove T safe =

Tmax.
On one hand, as ∀j ∈ P , Tmax ≥ T safe

j and each T safe
j is

margin safe, then Tmax ∈
⋂
j∈P Tj and it is a margin-safe

cycle time for each CQF port. Consequently, ∀t ≥ Tmax, t ∈⋂
j∈P Tj , and by definition of the infimum, Tmax ≥ T safe.

Conversely, for any fixed j, T safe ⊂ T safe
j hence T safe ≥

T safe
j . Since this holds for every j, it follows that T safe ≥
Tmax.

17

APPENDIX F
PROOF OF PROPERTY 1
Proof. We want to prove that if

∑
i∈Fl(j) α̃

i is concave,

Tj =
{
t ∈ R+ |

∑
i∈Fl(j) α̃

i(T) ≤ Rj(T − 2S)− Blj
}

=

[T opt,+∞).
We focus on the complementary and will prove

that if there is a solution, then the set cTj ={
t ∈ R+ |

∑
i∈Fl(j) α̃

i(T) > Rj(T − 2S)− Blj
}

is an up-
per bounded interval, i.e. equals to [0, T opt).

Let T1, T2 /∈ Tj . As
∑
i∈Fl(j) α̃

i is concave, ∀p ∈ [0, 1] we
have pT1 + (1− p)T2 ∈ [T1, T2], and∑
i∈Fl(j)

α̃i(pT1 + (1− p)T2) ≥

p

 ∑
i∈Fl(j)

α̃i(T1)

+ (1− p)

 ∑
i∈Fl(j)

α̃i(T2)


> p(Rj(T1 − 2S)− Blj) + (1− p)(Rj(T2 − 2S)− Blj)

> Rj(pT1 + (1− p)T2 − 2S)− Blj .

Consequently, pT1 + (1− p)T2 /∈ Tj and cTj is an interval.
Now, in the specific cases where Tj = ∅ or Tj = R+

∗ ,
T

opt
j = +∞ or T opt = 0 are respectively the lower bound of
Tj . Otherwise, there exists T , T ∈ cTj such that cTj = |T , T |
where | means that the interval can be open or closed or
semi-closed.

Let us check if 0 ∈ cTj :
∑
i∈Fl(j) α̃

i(0) = 0 and the left
side term is Rj(0 − 2S) − Blj = −2RjS − Blj . Then, there
are different possibilites:

1) −2RjS − Blj < 0: T = 0 and cTj = [0, T).
2) −2RjS − Blj = 0: Using the concavity between 0 and
T ∈ cTj , ∀p ∈]0, 1[,∑
i∈Fl(j)

α̃i(pT + (1− p)0) =
∑

i∈Fl(j)

α̃i(p · T)

≥ p

 ∑
i∈Fl(j)

α̃i(T)

+ (1− p)

 ∑
i∈Fl(j)

α̃i(0)


≥ p

 ∑
i∈Fl(j)

α̃i(T)


as T is not a solution, we have

> pRjT

= RjpT.

Consequently, T = 0 and cTj = [0, T).
Consequently, Tj ⊆ R+ is a lower bounded interval.
Now, let us prove that this bound is reachable. Let

Tj = inf Tj . Using the same argument as in the proof in
Appendix B we have Tj = [Tj ,+∞).

