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ABSTRACT

Context. Timing of pulsar PSR J0337+1715 provides a unique opportunity to test the strong equivalence principle (SEP) with a
strongly self-gravitating object. This is due to its unique situation in a triple stellar system with two white dwarfs.
Aims. Our previous study suggested the presence of a strong low-frequency signal in the timing residuals. We set out to model it on a
longer dataset in order to determine its nature and improve accuracy.
Methods. Three models are considered: chromatic or achromatic red-noise, and a small planet in a hierarchical orbit with the triple
stellar system. These models are implemented in our numerical timing model. We perform Bayesian inference of posterior distribu-
tions. Best fits are compared using information-theoretic criteria.
Results. Chromatic red noise from dispersion-measure variations is ruled out. Achromatic red noise or a planet in keplerian orbit
provide the best fits. If it is red noise then it appears exceptionally strong. Assuming the presence of a planet, we obtain a marginal
detection of mutual interactions which allows us to constrain its mass to ∼ 0.5MMoon as well as its inclination. The latter is intriguingly
coincident with a Kozai resonance. We show that a longer observation span will ultimately lead to a clear signature of the planet model
due to its mutual interactions with the triple system. We produce new limits on SEP violation: |∆| < 1.5 ·10−6 or |∆| < 2.3 ·10−6 at 95%
confidence level under the planet or red-noise hypothesis, respectively. This model dependence emphasises the need for additional
data and model selection. As a by-product, we estimate a rather low supernova kick velocity of ∼ 110 − 125km/s, strengthening the
idea that it is a necessary condition for the formation of pulsar triple systems.

Key words. Gravitation – (Stars:) pulsars: individual PSR J0337+1715 – Stars: neutron – Radio continuum: stars – Planetary systems

1. Introduction

Being extremely accurate clocks (Manchester 2017), millisec-
ond pulsars (MSPs) undergo particular scrutiny for any timing ir-
regularity that may be the signature of a wide variety of phenom-
ena, including studies of stellar evolution (e.g. Tauris & van den
Heuvel 2023; Tauris et al. 2017), the discovery of the first extra-
solar planets (Wolszczan & Frail 1992), the ongoing pursuit of
a low-frequency gravitational-wave background (e.g. Reardon
et al. 2021; Alam et al. 2021; Chen et al. 2021), constraining
the neutron-star equation of state (e.g. Fonseca et al. 2021; Riley
et al. 2021), or tests of gravity theories (e.g. Freire & Wex 2024;
Kramer et al. 2021).

⋆ Email: guillaume.voisin@obspm.fr

One of the most prominent systems for the study of stel-
lar evolution and especially for tests of gravity theories is
PSR J0337+1715 (J0337 hereafter). This pulsar was discovered
in the GBT drift-scan survey (Boyles et al. 2013; Lynch et al.
2013), and the triple nature of the system was confirmed by Ran-
som et al. (2014). The pulsar follows a ∼ 1.6-day orbit with the
inner ∼ 0.2M⊙ Helium white dwarf, which is detectable at op-
tical wavelengths (Kaplan et al. 2014); together they form what
we shall call the inner binary. The centre of mass of the inner
binary can be seen as orbiting with the outer ∼ 0.4M⊙ white
dwarf in ∼ 327 days. Interestingly, the orbits have low eccen-
tricities and are nearly coplanar, which has proved fundamental
for understanding the evolution of the system (Tauris & van den
Heuvel 2014).
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Altogether, the triple system extends over ∼ 1 AU, which
makes it uniquely compact compared to other multiple systems.
The first pulsar in a triple system was PSR B1620−26 (Backer
et al. 1993; Thorsett et al. 1999) constituted of a likely gas-giant
companion orbiting a pulsar-white dwarf binary in a hierarchical
orbit (Sigurdsson et al. 2003; Sigurdsson & Thorsett 2005). To
our knowledge, three other hierarchical triple systems are sus-
pected: PSR J1959+2048 (PSR B1957+20) which is a black-
widow pulsar that has recently been suggested to be associated
with a distant low-mass stellar companion in a ∼ 12, 000 year
orbit (Burdge et al. 2022) extending over ∼ 600AU, the redback
pulsar PSR 2043+1711 has a suspected distant stellar compan-
ion (Donlon et al. 2024), and the pulsar binary PSR J1618−3921
shows anomalous orbital-period variations and spin period sec-
ond derivative compatible with the presence of a third object in
the system(Grunthal et al. 2024). There is yet another system,
PSR J1903+0327 (Champion et al. 2008), which is thought to
have formed in a triple system, but later became unstable (Freire
et al. 2011; Portegies Zwart et al. 2011; Pijloo et al. 2012) and is
currently a unique type of binary system.

The presence of a MSP in such a relatively compact triple
stellar system allows for a unique test of the universality of free
fall (UFF) involving a strongly self-gravitating object (Freire
et al. 2012; Ransom et al. 2014; Shao 2016; Archibald et al.
2018; Voisin et al. 2020b, 2022). We now discuss the reasons
for this and why this is important, for a more detailed explana-
tion see Voisin et al. (2020b).

The UFF, extended to self-gravitating objects is the gravita-
tional weak equivalence principle, or GWEP, (Will 2014). To-
gether with the local Lorentz and position invariances of gravity,
these constitute the strong equivalence principle (SEP). Testing
the SEP is of great importance because all valid theories of grav-
ity, only general relativity (GR) fully embodies it1, all others pre-
dict some type of SEP violation. This means that a violation of
the SEP is perhaps the most promising avenue for finding new
physics beyond GR; this also means that searching for SEP vio-
lation will either rule out GR (in case of a detection), or alterna-
tive theories of gravity (in case of a non-detection).

In alternative theories of gravity such as scalar-tensor the-
ories (Damour & Esposito-Farèse 1993; Damour & Esposito-
Farese 1996), violation of GWEP takes the form of an effective
body-dependent gravitational constant Gab = Gba = G(1 + ∆ab)
where G is the Newtonian gravitational constant and ∆ab is a vi-
olation parameter the definition of which is theory-dependent. In
weakly self-gravitating bodies this reduces to the usual discrep-
ancy between inertial and gravitational masses. Assuming WEP
applies, the ratio of the two masses is then proportional to the
fractional gravitational binding energy where the proportional-
ity coefficient is the so-called Nordtvedt’s parameter (Nordtvedt
1968). One can see that in a binary system orbiting according
to Newton’s equations of motion, substituting G for Gab only
amounts to re-scaling masses and, those being unknown, does
not allow for any constraint on SEP (which is no longer true
with post-Newtonian equations of motion). In a triple system,
however, there is no such degeneracy. That is why the WEP has
been tested using two masses of various compositions falling in
the gravitational field of a third one, as in the case of the MI-
CROSCOPE experiment which had two masses in Earth orbit
for 1 year (Touboul et al. 2022).

1 The only other SEP-abiding theory is Nordström’s scalar theory
Deruelle (2011), however, this was shown to be inconsistent with sev-
eral experimental results on light deflection.

The GWEP was first tested with the Lunar Laser Ranging
(LLR) experiment, where the triple system of self-gravitating
objects is the Earth-Moon-Sun (⊕ - ◦ -⊙) system. The extremely
accurate determination of the Moon’s distance provided by LLR
resulted in a tight limit on the Nordtvedt effect (Nordtvedt 1968),
and a resulting limit of ∆⊕⊙−∆◦⊙ = (3.0±5.0)×10−14 (Hofmann
& Müller 2018). However accurate, this result provides a weak
limit to the SEP (in particular the Nordtvedt parameter) because
of the small binding energies of the Earth and Moon. Further-
more, such weak-field limits do not constrain the strong-field
regime because of additional theory-dependent effects that may
arise, such as spontaneous scalarisation (Damour & Esposito-
Farèse 1993; Damour & Esposito-Farese 1996).

For this reason, experiments with pulsars as the compact ob-
ject are important. Prior to the discovery of J0337, the best that
could be done was the Damour-Schäffer test (Damour & Schäfer
1991) where the triple system is, effectively, a near-circular pul-
sar - white dwarf binary evolving in the gravitational potential of
the Galaxy. A violation of GWEP would polarise the orbital ec-
centricity of the binary towards the Galactic centre. Using one of
the most accurately timed pulsars, PSR J1713+0747, Zhu et al.
(2019) obtained |∆pG − ∆cG| < 2 × 10−3 at 95% confidence level
(95% C.L.) from the lack of variation of the orbital eccentricity
of the system. This type of tests have a main limitation, which is
the weak gravitational acceleration of the Galaxy. After the dis-
covery of J0337, it became clear that the system is an extremely
sensitive probe of GWEP violations, given the (locally) much
stronger field of the outer white dwarf star compared to the field
of the Galaxy.

As was first shown in Ransom et al. (2014) and Archibald
et al. (2018), the aforementioned compactness of the J0337 sys-
tem makes it necessary to integrate numerically the three-body
equations of motion at first post-Newtonian order in order to
model the timing data. This means a large computational cost
compared to the usual pulsar-timing modelling which relies on
analytical expressions for binary systems. To do these numerical
integrations, Voisin et al. (2020b) developed independently a nu-
merical timing model (Nutimo) (Voisin et al. 2020b) which sup-
ports the strong-field generalisations of the parametrised post-
newtonian equations of motion (for instance Damour & Taylor
(1992) and appendix A of Voisin et al. (2020b) ), which is nec-
essary for a test of alternative theories of gravity, and in partic-
ular the UFF. J0337’s orbital motion is weakly relativistic, and
as such not very sensitive to post-Newtonian effects (Damour &
Taylor 1992) which are the key to test general relativity in rela-
tivistic pulsar binaries (Kramer et al. 2021); this is not a problem
because any violation of the GWEP would appear at the Newto-
nian level in the equations of motion.

Using independent datasets and independent analysis,
Archibald et al. (2018) and Voisin et al. (2020b) showed that
this system constrains deviations from GWEP to |∆| < 2.6 · 10−6

and |∆| < 2.1 · 10−6, respectively, at 95% C.L., where ∆ denotes
a violation of GWEP between the pulsar and any of the compan-
ions. In both cases, these results represent an improvement of
nearly three orders of magnitude compared to the best previously
available test of GWEP with a neutron star, using the above-
mentioned PSR 1713+0747 (Zhu et al. 2015). This demonstrates
how relevant J0337 is for this kind of work. A notable difference
between the two approaches is the fact that the limit of Archibald
et al. (2018) is mostly based on limits on systematics, while the
limit of Voisin et al. (2020b) is mostly statistical. The latter was
additionally able to constrain the longitudes of ascending nodes
of the system.
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Motivation of this work: Here, we continue the work of Voisin
et al. (2020b) with an extended timing dataset of J0337 from
the Nançay radiotelescope, now spanning approximately 8 years
(against 5 previously). The main motivation for the continued
timing of this system is to improve the test of the GWEP pro-
vided by J0337.

A second motivation of this paper, which is linked with the
first one, is to investigate an unmodelled low-frequency signal in
the timing of J0337. This signal was already present in Voisin
et al. (2020b) , but it was interpreted as a possible red-noise pro-
cess intrinsic to the pulsar emission mechanism (e.g. Shannon
& Cordes 2010; Lyne et al. 2010) and left unmodelled Instead,
uncertainties were widened in order to accommodate this effect
and produce a conservative estimate of the posterior distribution
functions, and particularly that of the ∆ parameter. However, in
the more recent data discussed in this work, its amplitude in-
creased to ∼ 4µs, which is to be compared to the ∼ 2µs uncer-
tainty on individual times of arrival. This amplitude is such that
it systematically limits the GWEP test with J0337. Thus, we aim
at modelling it and evaluating the nature of its cause.

To do this, we consider two types of model for this low-
frequency component: 1) red timing noise (chromatic or achro-
matic) or 2) the presence of a planet in a wide hierarchical orbit
around the triple stellar system. The latter option is motivated
by the unusually large amplitude of the signal compared to other
known red-noise processes in millisecond pulsars (see section 5).
Precedents of companions initially associated with strong tim-
ing noise include the already mentioned planet around the pul-
sar binary PSR B1620−26 (Backer et al. 1993; Thorsett et al.
1999), as well as the likely distant stellar companion to the iso-
lated pulsar PSR J1024−0719 (Bassa et al. 2016; Kaplan et al.
2016). To these can be added the proposal that the noise of PSR
J1939+2134 (PSR B1937+21) may be caused by an asteroid belt
Shannon et al. (2013). In any case, the apparent periodicity of
the signal is comparable with the 8-year observation span, which
will render our conclusions concerning its cause necessarily pre-
liminary.

A third motivation of this paper is a more detailed study of
its evolution, which is also important for evaluating whether the
presence of a planet is possible.

Since of the discovery of PSR B1257+12 (Wolszczan &
Frail 1992) and its system of two terrestrial-mass and one moon-
mass planets (Konacki & Wolszczan 2003), only 5 more pulsars
have been found to host planets (Niţu et al. 2022; Vleeschower
et al. 2024, and references therein), four of which are dense,
Jupiter-mass ‘diamond planets’ that are likely remnant white
dwarf cores (Bailes et al. 2011). The fifth one is the planet in
the PSR B1620−26 system (Backer et al. 1993; Thorsett et al.
1999; Sigurdsson et al. 2003). In addition come the already men-
tioned candidate companion to PSR J1555−2908 Nieder et al.
(2022) and the possible asteroid belt around PSR J1939+2134
(PSR B1937+21) Shannon et al. (2013). Surveys have put limits
on the planet population, in particular (Kerr et al. 2015) around
young pulsars and Behrens et al. (2020) for millisecond pulsars,
both of which detected no planets.

More recently Niţu et al. (2022) studied a broader sample of
800 pulsars and found 15 candidates, most of which are consid-
ered likely to be quasi-periodic noise of magnetospheric origin.
In some of these cases simultaneous pulse-profile variations can
be observed, clearly pointing at that explanation.

These examples show the particular difficulty involved in de-
tecting small planets. However, in the case of J0337, a clearer
signature can be expected due to the specific mutual interactions
within a 4-body system.

In the remaining of this paper we present the extended
dataset in section 2, describe the models in section 3, and the
posterior inference and fitting results in section 4 and end with a
discussion of the consequences of the two main hypotheses, red
noise or planet, in section 5.

2. Observations

The pulsar J0337+1715 has been regularly observed since July
2013 every 2 or 3 days with the Nançay radio telescope (NRT)
using its L-band receiver at a central frequency of 1484 MHz.
The NRT is a meridian Kraus design collector equivalent to a 94-
meter dish able to conduct ∼ 1 hour observations on any given
source within its declination range each day. The dual linear po-
larisation signals are sent to the Nançay Ultimate Pulsar Pro-
cessing Instrument (NUPPI, Desvignes et al. (2011); Cognard
et al. (2013)), an instrument that is able to coherently dedisperse
a total bandwidth of 512 MHz. In this work, we use a dataset of
12474 20-mins integrated times of arrival (ToA) divided in four
128 MHz bands observed between MJD 56492 and MJD 59480
(July 2013 and September 2021) 2. As in the previous analysis
presented in Voisin et al. (2020b) where details can be found,
the times of arrival are estimated using the pat tool from the
PSRCHIVE software library (Hotan et al. 2004), with the Fourier
domain with Markov chain Monte Carlo (FDM) method. Note
that two more years of data were added for this analysis.

At MJD 58631, new cooled pre-amplifiers were installed at
the telescope, boosting the sensibility in the upper part of the
band (∼ 1550-1730MHz) and slightly changing the overall pulse
shape (the exact pulse shape is smoothly frequency dependent).
Around MJD 58780, we started a better polarisation calibration
observing a slow, strong and polarised pulsar over 1 hour and the
receiver rotating for ∼180 degrees (Guillemot et al. 2023). Thus
the quality of the data determination in the range MJD 58631 –
58780 has been altered due to inappropriate calibration. In prac-
tice, this leads to significantly larger ToA uncertainties during
that ∼150 days period, reflecting that small discrepancy between
the template and the distorted daily profiles. As a result, although
we do not expect the timing analysis to be significantly biased
(thanks to wider uncertainties), we preferred to conservatively
excise the range MJD 58631 – 58780 from our dataset.

3. Models

The present analysis is based on the numerical timing model of
Voisin et al. (2020b) . In the remainder of this section, we fo-
cus on two types of extension of the model aimed at explain-
ing the residual low-frequency signal (see footnote 2). The first
extension assumes that the signal is due to a generic achro-
matic red-noise process modelled by a Fourier decomposition
with a power-law spectrum, and an optional chromatic com-
ponent caused by non-linear variations of dispersion-measure
(DM) over time. The second extension assumes that the signal
is caused by a small planet in a hierarchical orbit with the triple
system. Parameters associated with the triple system are defined
as in Voisin et al. (2020b) , but nonetheless reviewed in Sec. 3.2
such that this paper is self-contained.

All models include astrometric and pulsar spin parameters
which were described in(Voisin 2017; Voisin et al. 2020b). As-
trometric parameters are right ascension, declination and dis-

2 Dataset, version of Nutimo used in this work, and results are avail-
able on Zenodo at https://doi.org/10.5281/zenodo.13899771.
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tance as well as the associated proper motion. Intrinsic parame-
ters are the spin frequency and its derivative re-scaled to absorb
the linear and quadratic effects of the Einstein and Shklovskii
delays (Voisin et al. 2020b). Except in the dedicated chromatic
model (see below), dispersion measure is fitted using two param-
eters, a constant value and a linear drift.

3.1. Red noise

Red noise in pulsar timing can be due to several causes. If it is
chromatic, then the most common cause are variations of dis-
persion measure, which are a propagation effect caused by fluc-
tuations of the column density of electrons in the interstellar
medium. Such variations can be disentangled from achromatic
signals if the observation is spectrally resolved, which is the case
in the present work. Other sources of chromatic noise are scat-
tering and band noise which we do not consider in this work.
Achromatic red noise, on the other hand, is intrinsic to the sys-
tem (e.g. Shannon & Cordes 2010), and has been proposed to be
caused by magnetospheric variations Lyne et al. (2010); Tsang &
Gourgouliatos (2013), changes in the neutron star interior (e.g.
Melatos & Link 2014, and references therein), or by an asteroid
belt around the pulsar (Shannon et al. 2013).

The latter case illustrates the difficulty there can be in dis-
entangling possible orbital motion caused by low-mass objects
from other sources of noise. A recent example is the proposed
presence of a small planet orbiting the black-widow system host-
ing PSR J1555−2908 (Nieder et al. 2022) in order to explain an
unusually strong red noise signal.

3.1.1. Achromatic red-noise

In recent years, red noise has been modelled for an increasing
number of millisecond pulsars in the context of pulsar timing ar-
rays (e.g. Chalumeau et al. 2022; Alam et al. 2021; Goncharov
et al. 2021). Achromatic red noise is usually modelled as a trun-
cated Fourier series the coefficients of which follow a Gaussian
stochastic process with a power-law power-spectrum density. In
order to select the best noise model, the posterior distribution
function is marginalised over the deterministic part (the rest of
the timing model) common to all models and selection is based
on the comparison of their evidence using a Bayes factor (see,
e.g. Chalumeau et al. 2022).

We face several difficulties in the present work: i) we want
to compare the red-noise model to other models which, involv-
ing a planet, are deterministic, ii) we cannot perform analyti-
cal marginalisations over all the common parameters due to the
numerical nature of the model and iii) evidence computation is
computationally expensive. Note that point iii) is largely a con-
sequence of point ii). On the other hand, given the relatively lim-
ited observation span only a few Fourier components are actually
necessary, which makes it possible to describe red noise with a
deterministic model.

Thus, we add to the timing formula a truncated Fourier series
the amplitudes of which follow a power law. This is equivalent to
the average spectrum produced by a stochastic Gaussian process
as described above. Formally, it can be written as

F(ta) =
n∑

k=1

A
kγ

sin (2kπνta + ϕk) , (1)

where A is the amplitude of the Fourier component at the fun-
damental frequency ν, γ is the power-law index, ϕk are phases

at each harmonic k, and ta are the times of arrival in the solar-
system-barycentre frame. Note that the difference introduced by
using times of arrival instead of times of emission is negligible
given the time scale and amplitude of the signal.

We consider models from 2 to 5 Fourier components that we
call ‘PLn’ where n ∈ {2, 3, 4, 5}. There are 3+n fitted parameters
which are ν, A, γ, ϕk∈[1,n]. We remark that, contrary to the stochas-
tic process approach, we here fit for the fundamental frequency
ν. Indeed, under the prior assumption that the Fourier spectrum
is given by a power-law, the stochastic approach evaluates the
probability of the signal being described by a complete Fourier
series and therefore the fundamental frequency can be fixed to
the inverse of the data span. Equation (1) is only a truncated
series which therefore has additional freedom. Additionally, as-
suming the signal results from a stochastic process, we are here
fitting a particular realisation of it which is unlikely to follow an
exact power-law spectrum, especially truncated. Fitting for the
fundamental frequency may partially compensate for this.

3.1.2. Chromatic contribution: DMX

In order to test if the measured signal is due to variations in the
interstellar medium, we tested a model combining an achromatic
red-noise signal as described above with a variable dispersion
measure (DM). The observation span was split in 10 evenly dis-
tributed intervals each with a different DMX value of DM, where
X runs from 1 to 10. In this way, each interval covers ≃ 299
days which is much smaller than the residual signal timescale
of ∼ 3000 days and can capture it reasonably well if the signal
turns out to be chromatic. On the other hand, this time interval is
comparable to the orbital period of the outer binary (PO ≃ 327
days) which avoids any correlations by averaging any effect due
to the outer-binary motion over the interval.

3.2. A planet in a hierarchical orbit with the triple stellar
system

A smooth, slow and quasi-sinusoidal signal is expected from a
planet of mass mπ orbiting the triple system in a hierarchical
orbit, that is with a period PΠ ≫ PO with PO the orbital period of
the outer white dwarf, and a mass sufficiently small to ensure that
its gravitational field is negligible compared to the fields within
the triple system. In the present case, it is sufficient to consider
planets of mass mπ ≪ M⊙. The only measurable effect given
the amplitude of the signal (a few µs) is the so-called Rœmer
delay induced by the planet, that is the variation of the distance
between the pulsar and the observer induced by the presence of
the planet.

One of the key difficulties is to disentangle the planet signal
from red noise. Indeed, for relatively wide orbits (a few years)
the Rœmer delay of a low-mass companion is purely sinusoidal
(with a first harmonic in case of an eccentric orbit), which can
easily be absorbed into red-noise provided the signal is weak
enough (due to low mass) and the number of observed orbital
revolution is few, which for long wide orbits is usually the case.
In the case of J0337, however, the more complex orbital config-
uration can in principle lift this degeneracy, as we show below.

In practice, we have implemented in Nutimo the possibility
to add extra bodies the orbits of which are integrated numerically
along with the orbits of the pulsar and the two white dwarfs. As
in Voisin et al. (2020b) , we have validated the accuracy of the
integration in order to obtain a numerical timing accuracy at the
level of a few nanoseconds.
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3.2.1. Parametrisation

We extend here the orbital hierarchical parametrisation of the
triple system (Voisin et al. 2020b; Archibald et al. 2018) in or-
der to include a fourth body. In doing so, we explain how this
parametrisation is related to Jacobi coordinates.

Let (R,V)k∈{p,i,o,π} be the positions and velocities of the pul-
sar (p), inner white dwarf (i), outer white dwarf (o) and planet
(π) relative to the inertial reference frame associated with their
centre of mass. We call ‘inner binary’ the set I = {p, i} with cen-
tre of mass b, ‘outer binary’ the set O = {b, o} with centre of
mass (t) which is also the centre of mass of the triple system,
and we call planetary binary the set Π = {t, π} the centre of mass
of which is the centre of mass of the whole system.

One can decompose the position of the pulsar as

Rp = Rp/b + Rb/t + Rt, (2)

and similarly its velocity Vp. In Voisin et al. (2020b) , only the
first two terms were present on the right-hand side. They de-
scribe the motion of the pulsar relative to the inner-binary centre
of mass, and of the inner binary with respect to the centre of mass
of the system. Here, we add a third term that describes the mo-
tion of the triple system with respect to the centre of mass of the
whole system which includes a planet. Thanks to the hierarchy
of the system each term follows an approximately Keplerian mo-
tion (see also appendix B) which makes a parametrisation of po-
sitions and velocities in terms of osculating orbital elements rele-
vant. In addition, mutual interactions as well as Shapiro and Ein-
stein delays allow one to constrain the four masses. This leads
to the following correspondence between the state vectors and
masses on one side, and orbital elements on the other side,


(R,V)p/b ,
(R,V)b/t ,
(R,V)t ,

mp,mi,mo,mπ

 ↔


ap, eI, ωI, tascp, iI,Ωp,

ab, eO, ωO, tascb, iO,Ωb,
at, eΠ, ωΠ, tasct, iΠ,Ωt,

mi/mp, PI, PO, PΠ

 (3)

where ax, eX , ωX , tascx, iX ,Ωx are the semi-major axis, orbital ec-
centricity, argument of periastron, time of passage at the as-
cending node3, inclination of the orbital plane with respect to
the plane of the sky, and longitude of ascending node of bod-
ies (or effectively a centre of mass) x ∈ {p, b, t} and binaries
X ∈ {I,O,Π}. Note that we use lower-case letters when an orbital
element refers to a body in particular, while we use an upper-case
letter when the orbital element is associated with the binary as a
whole independently of its components. On the first three lines,
the correspondence between state vectors and orbital elements
is performed using the post-Newtonian formalism of Damour &
Deruelle (1985) (see also Voisin et al. (2020b) ). Except for the
inner binary, this is equivalent to using the usual definition of
orbital elements (e.g. Beutler 2004). On the last line, the masses
mp,i,o,π are related to the mass ratio mi/mp and orbital periods
PI,O,Π using Kepler’s third law. The state vectors of each indi-
vidual bodies are derived from the left-hand side of Eq. (3) us-
ing centre-of-mass relations at first post-Newtonian order Voisin
et al. (2020b) (the centre of mass of the whole system being at
the origin of coordinates, by definition).

In practice, the fitted parameters are combinations of the or-
bital elements in Eq. (3). These choices reflect usual practices
in pulsar timing, as well as relative sensitivity and correlations

3 For practical purposes we use only an approximation of the time of
passage at the ascending node which is defined relative to the time of
periastron passage tp by tascx = tpX − PXωx/2π.

between parameters (see Tables E.1 and 2. Of particular interest
are the use of Laplace-Lagrange parameters eX cosωX , eX sinωX
particularly adapted to low-eccentricities (e.g. Lange et al.
2001), and the use of δi = iI − iO, δΩ = Ωb − Ωp which allow
us to better reflect the fact that the two orbits I,O are co-planar
within error bars (see below).

3.2.2. Effects of mutual interactions

Anticipating the results of section 4, the only measurable ef-
fect of a small planet is through the induced Rœmer delay.
This results from the fact that its orbit is not relativistic, and its
small mass and large orbital inclination suppress the Einstein or
Shapiro delay down to the nanosecond level at most. The Rœmer
delay is caused by the variation of the projected distance of the
pulsar onto the line of sight of an observer located at the Solar
system barycentre,

∆R = −
n⊙ · Rp

c
= −

1
c

(
n⊙ · Rp/b + n⊙ · Rb/t + n⊙ · Rt

)
, (4)

where n⊙ is the unit vector pointing from the Solar system to
the pulsar system barycentre, and the right-hand side is obtained
using Eq. (2).

In the present analysis, Rp is computed numerically. How-
ever, it is interesting to use the decomposition of Eq. (2) in order
to estimate what can be measured. We show in appendix B that
the three terms in Eq. (2) map to Jacobi coordinates. These co-
ordinates permit a perturbative treatment of the orbital dynamics
which shows that, as said above, each term follows a Keplerian
motion at leading order. That means that in first approximation,
each term in Eq. (4) can be expressed using the usual binary ex-
pression of the Rœmer delay (see Eq. (B.16) or (e.g Hobbs et al.
2006; Lyne & Graham-Smith 2012)). However, the sole detec-
tion of the Keplerian Rœmer delay only allows one to constrain
5 parameters out of 7 associated with the planetary binary: the
orbital period PX , the semi-major axis projected onto the line of
sight ax sin iX , the orbital eccentricity eX and argument of peri-
astron ωX , where x and X are defined as above.

As per our parametrisation, the mass of the planet is the so-
lution of Kepler’s third law

a3
t n2
Π = G

m3
π

(mt + mπ)2 , (5)

where nΠ = 2π/PΠ is the planet’s mean motion. The three stel-
lar masses, and therefore the mass mt = mp + mi + mo, can be
determined thanks to mutual interactions, Shapiro and Einstein
delays within the triple system (Voisin et al. 2020b) . However,
ax is degenerate with sin iX at Keplerian order.

In appendix B, we derive a simplified model of the first-order
correction to the orbital motion of the planetary binary using
Laplace-Lagrange perturbation theory. It amounts to decompos-
ing Rt = RK

t + δRt where the first term describes a Keplerian
orbit of the planet with a point mass mt at t, and the second term
accounts for the finite size of the triple system to first order in
the ratio between the size of the planetary binary and that of the
outer binary. It leads to a Rœmer delay term δ∆R = −n⊙ · δRt/c
of the form, Eq. (B.22),

δ∆R = αt (γc cos nOt + γs sin nOt) , (6)

where nO = 2π/PO is the mean motion of the outer binary and
α, γc, γs are constants defined in (B.23)-(B.25). This functional
time dependence, a sinusoidal oscillation at the outer-binary pe-
riod the amplitude of which is growing linearly in time, is not
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degenerate with other components of the timing formula and can
in principle allow for the separate measurement of αγc and αγs.

Importantly, γc and γs are independent functions of inclina-
tion iΠ and longitude of ascending node Ωt, while α is derived
from these as well as the Keplerian parameters of the system.
This means that it is sufficient to detect the leading order correc-
tion of Eq. (6) to constrain all seven parameters associated with
the planet’s orbit and mass.

3.3. Test of the equivalence principle

Each of the above two model categories is also divided in two
depending on whether general relativity (GR) is assumed to be
correct or if GWEP is being tested. The equivalence princi-
ple can be parametrised at Newtonian and post-Newtonian or-
der by an effective, body-dependent, gravitational constant char-
acterising the interaction between two bodies a and b, that is
Gab = Gba = G (1 + ∆ab) where G is the Newtonian gravita-
tional constant (see also section 1 and Eq. (20) of Voisin et al.
(2020b) ). In GR, ∆ab = 0.

Solar-system experiments put strong constraints on the weak
equivalence principle, as well as the strong equivalence prin-
ciple in the weak-field regime (Touboul et al. 2019; Hofmann
& Müller 2018). As shown in Voisin et al. (2020b) , we can
use these constraints to assume that within the precision of our
experiment and (at least) within the framework of Bergmann-
Wagonner scalar-tensor theories, any detectable violation of SEP
can only be due to the pulsar, that is the only strongly self-
gravitating object. Thus, the only sensitive parameter is ∆ ≡ ∆pb
where b ∈ {i, o, π}.

4. Results

We have compared 7 different models all assuming that GR is
correct. They are summarised in table 1. We ran two additional
models testing for SEP violation (see below). We inferred the
posterior distribution functions (PDF) of each model using a
Markov Chain Monte Carlo algorithm (MCMC) following the
same procedure as in Voisin et al. (2020b) . In particular, we
used the same astrometric priors as in Voisin et al. (2020b) de-
rived from Gaia DR2 (Lindegren et al. 2018) and spectroscopic
observations of the inner white dwarf (Ransom et al. 2014; Ka-
plan et al. 2014). We used our own implementation (Voisin et al.
2020b) of the affine-invariant ensemble-sampling algorithm de-
scribed in Goodman & Weare (2010); Foreman-Mackey et al.
(2013).

The analysis is carried out on a chain sample with a length of
at least 60,000, corresponding to more than 100 ensemble auto-
correlation times. We used a set of 192 walkers saved to the chain
every 5 iterations of the stretch move (see Goodman & Weare
2010). We evaluate the accuracy of derived statistics (e.g. Dunk-
ley et al. 2005) by estimating the standard deviation of the mean
and standard-deviation estimators, σ̂m̂ and σ̂σ̂ respectively, over
at least 50 sub-chains (each spanning at least 2 ensemble auto-
correlation times). The ratios of these quantities to the full-chain
standard deviation σ, σ̂m̂/σ and σ̂σ̂/σ respectively, are used as
‘convergence ratios’(Dunkley et al. 2005)4. We consider conver-

4 Let us note that (Dunkley et al. 2005) estimate directly the variance of
the mean of the whole chain using a more refined spectral method while
we estimate variances of a sample of sub-chains by the usual variance
estimator. These sub-chain variance estimates ought to be larger than
full-chain variances since the estimator scales as ∼ 1/n where n is sam-
ple size. Therefore, albeit simpler, this method is conservative.

gence is reached when both indicators are below 0.1 for every
parameter chain.

4.1. Overall model comparison

Table 1. Summary of the best-fit statistical properties of the models
fitted to the dataset of this paper.

Model Npar χ2 Rχ2 ∆AIC ∆BIC
Planet 32 +2.4 +0.0003 +4.4 +12
Kepler 30 +4.0 0.0002 +2.0 -5.4
PL2/Kepl1 30 +19 +0.0014 +17 +9.6
PL3 31 15511.9 1.2466 15573.9 15804.3
PL4 32 +4.8 +0.0005 +6.8 +14
PL5 33 -5.4 -0.0002 -1.4 +14
PL3DM10 39 -17 -0.0006 -1.3 +58

Notes. Npar is the number of parameters of the model, χ2 the minimum
chi squared, Rχ2 is equal to χ2/Ndof where Ndof = 12474−Npar. AIC
and BIC are the Akaike and Bayesian information criteria, respectively.
The ‘PL3’ line is the reference fit subtracted from all the other lines. All
models assume GR. Models are described in Sec. 4.1: ‘Planet’ is the full
4-body numerical model; ‘Kepler’ is the purely keplerian model with-
out mutual interactions; ‘PLn’ are models with n sinusoidal harmonics
following Eq. (1) in order to account for red noise; PL2 is equivalent to
a planet in Keplerian orbit with the centre of mass of the triple system at
leading order in eccentricity (no mutual interactions), and thus denoted
‘PL2/Kepl1’; PL3DM10 fits separate DM within 10 evenly distributed
intervals on top of 3 harmonics (note the other models have DM and
DM’ parameters which are here removed).

We compared the best-fitting solutions of each model using
both the Akaike (AIC) (Akaike 1974) and Bayesian Informa-
tion Criteria (BIC) (Schwarz 1978) (see Table 1). To do so we
computed the best-fitting solutions of each model by fitting them
to the data using the deterministic minimizer Minuit (James &
Roos 1975) starting from the best-fitting solution derived from
the MCMC run. The obtained solution was always very close
to the MCMC one, as expected, but important compared to the
modest differences we found between models.

We ran 4 PLn models, from n = 2 to n = 5 Fourier compo-
nents, initialising the PLn + 1 run from the outcome of the PLn
run in order to limit computational cost. We ran two planetary
models: a fully keplerian one (called ‘Kepler’), and a numerical
integration (‘Planet’)5 including all the effects of mutual inter-
actions. We note that the PL2 model is equivalent to the Kepler
model at leading order in eccentricity (see appendix A), which
is why we denote it ‘PL2/Kepl1’. Given the small difference be-
tween Kepler and PL2/Kepl1, no additional MCMC was done
for Kepler and its best-fitting solutions are based on a Minuit
refit of PL2/Kepl1 thus saving on computing power.

Assuming the presence of a planet, the PL2/Kepl1 and Ke-
pler models differ mostly by the addition of a third harmonic
corresponding to the second-order term in eccentricity of the
keplerian Rœmer delay (see appendix A). Contrary to the PL3
model, the phase of the third harmonic is not independent from
the two others, and its amplitude is not determined following
a power law. Given e ∼ 0.25 and a projected semi-major axis
x ∼ 4µs (see Table 2), the amplitude of this harmonic is only
about ⃝(xe2) ∼ 0.25µs. However small, this additional compo-
nent appears to be captured by the Kepler model as both AIC
and BIC are significantly better than for PL2/Kepl1 in Table 1.
This can be visualized in Fig. E.1 where the small but significant
5 We use ‘Planet’ with capital P whenever referring to the model.
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Fig. 1. Dispersion measure per time interval in the model PL3DM10.
The x axis gives the time interval index, and intervals are equal. Error
bars delimit the 68% confidence region.

peak (< 0.5% probability compared to white noise) at the third
harmonic of the PL2/Kepl1 model residuals disappears with the
Kepler model (see also Fig. 3). Thanks to its limited number of
parameters the Kepler model has the best BIC of all.

The Planet model has a moderately better χ2 but due to its
two additional parameters accounting for inclination and longi-
tude of ascending node, its AIC and BIC are not as good as those
of the Kepler model, and even worse than PL2/Kepl1 concern-
ing BIC. This suggests that mutual interactions may be detected,
since the χ2 is better, but only marginally which is in line with
the large uncertainty on the planet mass (see Table 2).

Assuming the red-noise hypothesis, that is the PLn models,
PL3 is clearly favoured by BIC and only marginally worse than
PL5 according to AIC (∆AIC ≃ −1.38). Thus, we make it our
reference achromatic red-noise model in the following. PL3 has
the best χ2 of all models, moderately better than Planet (∆χ2 ≃

−2.4), and a moderately better AIC than Kepler (∆AIC ≃ −2.0)
but significantly worse BIC (∆BIC ≃ +5.4).

In Table 1, one notices that PL4 is actually a worse fit than
both PL3 and PL5. In theory, since PL3 is nested in PL4 the χ2 of
the latter is expected to be at least as good as that of the former.
We interpret the fact that it is not the case here as one of the lo-
cal minima which we routinely encountered while fitting. More
details are given in appendix C, but it is sufficient here to say
that although Table 1 is the result of our best efforts within the
limits of reasonable computing resources, it cannot be excluded
that the differences between the models are below the level of
systematics induced by local minima.

We also ran a model called PL3DM10, for which the MCMC
only sampled the 6 achromatic red-noise parameters, the 10
DMX DM parameters as well as the pulsar spin parameters f̄ ,¯̇f
(see table E.1) since they may also correlate with the long-term
effects of red noise. All orbital and astrometric parameters were
fixed to their best-fitting PL3 values so as to optimise compu-
tational costs. Note that DM and DM′ were also fixed to their
PL3 value thus subtracting that linear trend from the computed
DMX. The resulting DM values are shown in Fig. 1 as a func-
tion of the corresponding time interval. No clear DM variation
is seen given that the dispersion of the DMX values is compa-
rable to their uncertainties, and to the uncertainty on the global
DM parameter as well (Table E.1). However, we note that AIC
marginally favours PL3DM10 over PL3 (∆AIC = −1.3) but that

Fig. 2. Top: Best-fit residuals of model PL3. Bottom: Difference be-
tween residuals of best-fit PL3 and Planet models. Error bars are not
shown for clarity, but median 1-sigma uncertainty is 1.9µs and mean is
2.2µs.

BIC strongly rejects it (∆BIC = 58) owing to the large number
of additional parameters required.

4.2. Details of the Planet and PL3 models

The inherently different nature of the Planet and PL3 models
justify a more detailed look at both of them. If the planet hy-
pothesis is restricted to the Kepler model, which can be seen as a
sub-model of Planet, then it performs similarly to PL3 across all
statistical metrics in Table 1. In addition, the potential systematic
errors in best-fit estimation do not reasonably allow us to favour
one hypothesis over another solely based on those statistical cri-
terion (appendix C).

as well as the potential systematic errors in best-fit estimation
(appendix C)

We have collated the results of the MCMC Planet and PL3
runs in Table E.1 for parameters common to the two models and
Table 2 for model specific parameters. Additionally partial cor-
relation plots of each PDF are given in appendix D, and complete
ones can be found on the repository in footnote 2.

The timing signal introduced by both models are shown in
Fig. 3. In that figure we have also represented the signal from the
PL2/Kepl1 model, the Kepler model (appendix A), as well as the
perturbative model described in appendix B. It can be seen that
the Kepler model captures the third orbital-frequency harmonic
similarly to PL3, while the perturbative model captures the dom-
inant contribution from mutual interactions but lacks power at
the third harmonic due to its limitation to first order in eccentric-
ity. In the frequency domain, one sees that the largest difference
between the PL3 and Planet models peaks at the outer binary
frequency, as expected from the perturbative model, and decays
in lower and upper frequency tails around that peak. However, as
can be seen in the periodogram of best-fit residuals in Fig. E.1,
this particular frequency does not allow for a clear signature with
the current data as it is already very well fitted due to the outer
binary contribution. In the case of PL3, Kepler, and PL2/Kepl1,
it even appears to be over-fitted. Besides that, both the Planet,
Kepler, and PL3 models appear consistent with white-noise in
Fig. E.1 insofar as their residuals lie within the 95% confidence
region for such noise.
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In Table E.1, parameters that are common to both models are
equal within error bars. Uncertainties on orbital parameters ap-
pear to be similar although systematically slightly smaller in the
Planet model. On the other hand, uncertainties of spin parame-
ters are an order of magnitude smaller in the PL3 model. These
two parameters are the only two that significantly correlate with
the low-frequency signal due to their ability to effectively ab-
sorb parabolic trends. Therefore, this difference probably comes
from the two different ways that spin parameters correlate with
model-specific parameters.

It is noteworthy that the orbital plane of the inner binary
still cannot be separated from that of the outer binary which is
reflected by their relative inclination δi and relative longitude
of ascending nodes δΩ being consistent with zero within error
bars in both models. We also note that the tension in declination
proper motion µδ compared to its GAIA prior that was observed
in Voisin et al. (2020b) has disappeared in the present results.

The longitude of ascending node Ωb is incompatible with
that of Voisin et al. (2020b) . During the course of the MCMC
runs (irrespective of the models), a peak at the beat frequency
between the Earth orbital period and outer-binary period became
clearly visible in the residual periodogram as the low-frequency
signal was being fitted out. This peak is characteristic of the
annual-orbital parallax (Kopeikin 1995) which, in the absence of
mutual interaction, is the only way to measure Ωb by timing 6.
However the MCMC seemed unable to find a solution account-
ing for this peak while staying in the vicinity of the initial value
of Ωb, and the assumption was made of a local minimum around
the Ωb value from Voisin et al. (2020b) . The MCMC chain was
restarted with values of Ωb offset by ±90 deg and 180 deg from
that of Voisin et al. (2020b) . All converged to the value reported
in Table E.1 which successfully fits out annual-orbital parallax.
This value is 180 deg away from Voisin et al. (2020b) (within un-
certainty), thus suggesting that mutual interactions in the triple
system can constrain the longitude of ascending node with a de-
generacy of ±180 deg lifted by the detection of annual-orbital
parallax. Dedicated analytical or numerical work is needed to
verify this conjecture.

An important point is that the uncertainty rescaling param-
eter EFAC is now down to ≃ 1.11 from ≃ 1.31 in Voisin et al.
(2020b) which translates into a significant improvement in ac-
curacy. This is due to the fact that EFAC was previously absorb-
ing the dispersion resulting from the unaccounted low-frequency
signal. On the other hand, a fit with Minuit (James & Roos
1975) indicates that EFAC would need to be up to ∼ 1.6 in order
to accommodate that signal in the longer dataset of this paper if
it remained unmodelled

4.3. Galactic motion

For J0337 we are in the rare position of knowing the 3D velocity
of a pulsar system with respect to the Solar System Barycentre
(SSB). The transverse velocity (magnitude and direction) is ob-
tained from proper motion and distance (see Table E.1). High
resolution spectroscopy of the inner white dwarf allowed the de-
termination of the systemic radial velocity: 29.7 ± 0.3 km s−1

(Kaplan et al. 2014). With this information at hand, starting with
the current location of the pulsar one can integrate its Galactic
motion back in time. To do this, we use the Solar position and
velocity parameters, the Galactic potential, and the software of
McMillan (2017). Figure 4 shows the Galactic orbit of the J0337
system during the past 500 Myr. It is obvious that the system

6 It is also possible to use scintillation arcs (Reardon et al. 2020).

Fig. 3. Comparison of numerically computed Rœmer delay with first-
order and Keplerian-order approximations. Approximate expressions
have been least-square fitted to the numerical result. Top: the 3 versions
as well as residuals of the least-square fit (lower panel). Bottom: Lomb-
Scargle periodogram of the 3 versions. Vertical dashed lines mark the
fundamental (black), second harmonic (grey) and third harmonic (dash-
dotted grey) of the planet period. Vertical dotted lines mark the funda-
mental (black) and first harmonic (grey) of the outer-binary period.

follows approximately the overall Galactic rotation. Indeed, its
speed relative to the frame co-rotating with the Galaxy remains
in the range ∼ [30, 55] km s−1 in the entire integration span (see
Fig. 5). This finding will be of particular importance for Sec. 5.3,
where we discuss the evolutionary history of the system, as it
suggests that the formation of the pulsar had only a small kick
imparted on the system.

4.4. Tests of the strong equivalence principle with Planet or
PL3

In order to test the SEP, we completed MCMC runs of the PL3
and Planet models while letting the SEP ∆ parameter free (in-
stead of fixed ∆ = 0 when assuming GR). For other parameters
results are compatible with the GR runs reported in Table E.1 and
2, although with much wider error bars for the orbital parame-
ters due to their strong correlations with ∆. Besides the extended
dataset and lower EFAC, this mainly explains why uncertainties
reported in Table E.1 can be orders of magnitudes smaller than
in Voisin et al. (2020b) which reported only an SEP run. In Fig.
6, we report the marginal PDF of the SEP ∆ parameter for both
models. Their 95% confidence region can be expressed as

∆ = 0.97+1.58
−1.48 × 10−6 and |∆| < 2.29 × 10−6 (PL3), (7)

∆ = 0.51+1.14
−1.28 × 10−6 and |∆| < 1.46 × 10−6 (Planet). (8)

In both cases the width of the confidence region of ∆ is reduced
by ∼ 12% with respect to Voisin et al. (2020b) . This can be
related to the reduction by ∼ 16% of the EFAC parameter as-
suming a locally linear dependence on this parameter. However,
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Fig. 4. Galactic motion of the J0337 system during the past 500 Myr.
The blue dot marks its current position. The orange dot shows the loca-
tion of the Sun. The orbit was calculated with the Galactic gravitational
potential and the software provided by McMillan (2017).
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Fig. 5. Velocity of the J0337 system with respect to the local Galactic
co-rotating frame during the last 500 Myr.

the bound on |∆| is improved by 30% with respect to Voisin et al.
(2020b) in the Planet model while it worsens by 10% in the PL3
model. The latter case is due to the fact that the mean value of
the distribution is offset from 0 by more than 1 sigma.

5. Discussion

Our results show that DM variations cannot be responsible for
the ∼ 4µs amplitude of the observed low-frequency signal (Fig.
1), but may at most contribute marginally at the ∼ 0.1µs level,

Fig. 6. Measurements of the SEP violation parameter ∆ (left column)
and its absolute value |∆| (right column) assuming the PL3 (upper row)
or Planet (bottom row) models. Vertical dotted lines mark the mean
value of the distributions, while the vertical dashed lines delimit the
95% confidence regions.

if at all. Thus, in what follows we consider only the achromatic
models.

The red-noise model following a power-law spectrum with 3
Fourier components (the PL3 model) is that which provides the
best description of the data from an information-theoretic point
of view. However, the physical nature of the signal in the planet
and the red-noise hypotheses are completely different, while the
difference in terms of fitting residuals is minute, as can be seen
in Figs. E.1 and 2. Besides, even in the Planet model a mod-
erate red-noise component is not unexpected, typically at the
∼ 0.1µs level. We did not try such a planet+red noise model
since the additional complexity seems disproportionate with re-
spect to the Planet model residuals, and would likely lead to
over-fitting. However, our main goal was to address the large 4µs
signal which both red-noise and Planet models do successfully.
Thus, in what follows we discuss separately the two hypothesis.

5.1. Achromatic red-noise hypothesis

Red noise in millisecond pulsars has been extensively studied
in the frame of pulsar timing arrays (PTAs). Here we compare
the red-noise properties of J0337 to those of the 67 different
pulsars7 studied by the NANOGrav (Alam et al. 2021), EPTA
(Chalumeau et al. 2022), and PPTA (Goncharov et al. 2021;
Reardon et al. 2021). In those works, red noise is modelled as a
Gaussian process over a Fourier basis characterised by a power
spectrum density of the form P(ν) = αA2

GP(ν/yr−1)−γGP where
α = 1/12π2 in Chalumeau et al. (2022); Goncharov et al. (2021)

7 The 6 EPTA pulsars in the cited reference are also among the
NANOGrav 47 pulsars, and we count 6 out of 26 pulsars in common
with the PPTA dataset.
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Table 2. Mean values of model-specific parameters of the MCMC runs assuming the PL3 (left) and Planet (right) models with their 68% confidence
intervals.

Parameter Symbol PL3GR PlanetGR Symbol Parameter
Fitted values

Fundamental frequency (day−1) ν 3.44(28)+61
−54 × 10−4 3310+280

−260 PΠ Orbital period (d)
Amplitude at ν (µs) Aν 4.4(82)+22

−19 (6.5)+1.6
−1.4 × 10−6 at sin iΠ Projected semi-major axis (lt-s)

Power-law index γ 2.73(26)+68
−61 −(1.5)+1.4

−1.6 × 10−5 at cos iΠ Co-projected semi-major axis (lt-s)
Phase 1 (rad) ϕ1 −0.21(54)+19

−17 0.2(51)+32
−37 eΠ sinωt Laplace-Lagrange

Phase 2 (rad) ϕ2 −0.77(74)+68
−61 (5.7)+2.4

−2.4 × 10−2 eΠ cosωt Laplace-Lagrange
Phase 3 (rad) ϕ3 −1.42(21)+68

−61 56549+3333
−20 tasct Time of ascending node (MJD)

1.(25)+62
−53 × 102 Ωt Longitude of planet ascending node (◦)

Derived values
Fundamental period (days) 1/ν 2904.6+4.6

−5.1 (1.65)+1.6
−0.89 × 10−5 aπ Semi-major axis (lt-s)

Amplitude at 1yr−1 (µs) A1yr−1 1.55(16)+61
−68 × 10−2 157+11

−54 iΠ Orbital inclination w.r.t. plane of sky (◦)
119+16

−42 × 102 δiΠ Orbital inclination w.r.t. triple system (◦)
0.2(57)+29

−31 eΠ Orbital eccentricity
77.2+6.0

−7.2 ωt Longitude of periastron (◦)
57258+3270

−77 × 104 tpΠ Time of periastron passage (MJD)
(1.23)+1.1

−0.66 × 10−8 mπ Planet-companion mass (M⊙)

Notes. Uncertainties, central values, and notations defined as in Table 1. Parameters common to both models are reported in Table E.1.

or α = 1 in Alam et al. (2021), AGP is the amplitude of the pro-
cess at frequency ν = 1yr−1 and γGP is its exponent. Although we
did not use a Gaussian process framework and therefore cannot
make a rigorous comparison, we may estimate the parameters
of a Gaussian red-noise process that would produce the same
average spectrum as the one we fit in this paper. Up to an or-
der one factor, we get AGP ∼ A (T/α)1/2

(
ν/yr−1

)γGP/2
where we

used the notations of Eq. (1), T is the time span of observations,
and γGP ∼ 2γ. Using the results of our PL3 model, we obtain8

AGP ∼ α
− 1

2 0.04 µs yr1/2 and γGP ∼ 5.4.
The value of the exponent places it among the steepest

red-noise spectra, as is expected from a very smooth, quasi-
sinusoidal signal. On the other hand, the amplitude of the sig-
nal, ∼ 4.4µs at a period of 8 years (∼ 4.4µs@8yr), is only sur-
passed by PSR J1824-2452A with ∼ 8µs@8yr and γGP ≃ 5
among pulsars with a similarly steep spectrum (Goncharov et al.
2021). It is followed by PSR J1939+2134 (PSR B1937+21) with
∼ 1µs@8yr and γGP ≃ 5.4 (Goncharov et al. 2021; Reardon et al.
2021). Interestingly, PSR J1824-2452A and PSR J1939+2134
are both somehow extreme MSPs. They have the second and
third largest spin-down power of all MSPs, Ė ∼ 2 × 1036erg/s
and ∼ 1 × 1036erg/s respectively (Reardon et al. 2021), as
well as the second and fourth largest spin-down rates, accord-
ing to the ATNF catalogue (Manchester et al. 2005), with ḟ ∼
−2 × 10−13Hz/s and ḟ ∼ −4 × 10−14Hz/s respectively Rear-
don et al. (2021). They are also among MSPs with the youngest
characteristic ages with 30 and 240 million years, respectively.
All these quantities are one to two orders of magnitude above
the bulk of MSPs. Both pulsars are also among the few MSPs
known to produce giant pulses (e.g. Knight et al. 2006). These
characteristics are significant whether one considers that achro-
matic red noise is due to activity in the magnetosphere (Lyne
et al. 2010) or to turbulence in the superfluid core of the neutron
star (Melatos & Link 2014) since in both cases a correlation with
spin-down rate is expected.

8 Equivalently log10(AGP/yr3/2) ∼ −13.9 with α = (12π2)−1 or
log10(AGP/yr3/2) ∼ −14.9 with α = 1.

Empirically, a correlation is indeed observed over the general
pulsar population (Hobbs et al. 2010; Lyne et al. 2010; Shan-
non & Cordes 2010). A scaling law ∝ f α| ḟ |β can be fitted to the
amplitude of red noise. In particular, (Shannon & Cordes 2010)
found α ≃ −1.4; β ≃ 1.1. At that time only a few MSPs showed
detectable noise, notably PSR J1939+2134, and it appeared con-
sistent with that scaling law. Restricted to a population of pulsars
with comparable spin frequencies f this law means that noise
should correlate with spin-down rate ḟ or even spin-down power.
More generally, it indicates that the characteristic spin-down age
τ = f | ḟ |−1 can be used as a reasonable estimate, as was also
noted in (Hobbs et al. 2010): the younger the more noisy.

On the other hand, J0337 does not show any uncommon in-
trinsic properties but a spin-down power of Ė ∼ 3 × 1034erg/s,
spin-down rate of ḟ ∼ −2 × 10−15Hz/s, and characteristic age
of 2.4 billion years. These quantities place J0337 in the bulk of
the distribution of MSPs and according to the aforementioned
scaling law its noise amplitude should be at least 5 to 10 times
weaker. We note that this is actually the case of the other MSPs
with comparably steep index (>4) in (Chalumeau et al. 2022;
Goncharov et al. 2021; Alam et al. 2021). However limited, these
comparisons suggest that if indeed red noise causes the observed
signal from J0337 then it is unusually strong, especially when
one considers how steep its spectrum is.

In some of the occurrences where the timing noise is strong,
a correlated variation of the pulse profile has been observed
(Lyne et al. 2010). Consequently, we have tested the presence of
such a slow variation of the pulse shape. To do so, we have built
a series of 100-day integrated profiles distributed over the whole
observation span. We then used the the pat tool of PSRCHIVE
in order to compare them to our main template used for ToA
determination after correcting for phase shifts. The differences
between the main template and sub-integrations can be quanti-
fied by calculating their reduced χ2, as shown in Fig.7. The re-
duced χ2 is usually close to 1, indicating that we do not detect
any significant pulse shape variations, except in May-Oct 2019
for ∼150 days (MJD 58631 to MJD 58780). This corresponds
to the period of instrumental modifications (see Sec. 2) that we
have eventually excised. In order to quantify the dispersion of re-
duced χ2, we show their two-standard-deviation interval in Fig. 7
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Fig. 7. Reduced χ2 of the residuals between each 100-day sub-profile
and the main template as a function of date. Two sub-profiles are in
the time interval when imperfect polarisation calibration was performed
(‘UnperfectPolCal’, see main text). The inset shows the residuals ob-
tained for one of these sub-profiles, while others do not show discernible
structure (i.e. noise). The two horizontal lines delimit the two-standard-
deviation interval around the mean of the reduced χ2 distribution cor-
responding to σred.χ2 ≃ 0.043 (imperfect polarisation region excluded).

computed on the clean χ2 sample only. All but one element fall
into that region, in line with expectations. Indeed, each profile
possesses ∼ 2000 degrees of freedom, thus the χ2 distribution is
well approximated by a Gaussian law and the above-mentioned
interval corresponds to a probability of 95%.

5.2. Planet hypothesis

Assuming a mere keplerian orbit of the planet without mutual in-
teractions, the Kepler model appears to be favoured by BIC and
moderately disfavoured by χ2 and AIC. The full Planet model
does not improve sufficiently its χ2 in order to improve either
AIC or BIC compared to Kepler, but its two additional parame-
ters are nonetheless constrained by MCMC albeit with relatively
large uncertainties. This allows us to discuss the complete solu-
tion constraining all seven parameters reported in Table 2, and in
particular what they indicate about the formation and stability of
the system.

The Planet model points to a very low-mass planet in a wide
eccentric orbit around the stellar triple system. The mass of the
planet is 1.23+1.1

−0.66 × 10−8M⊙ which is about 1.3 × 10−5MJup,
∼ 0.004MEarth or ∼ 0.4MMoon. As such, it is lighter than any
of the planets orbiting PSR B1257+12 (Konacki & Wolszczan
2003) and could be the lightest exoplanet to date according to
the extrasolar planet encyclopedia9.

We have evaluated the short-term stability of the orbit of
the candidate planet by applying the frequency analysis method
of Laskar (1988, 1990, 1993, 2005) in the eccentricity-period
plane, Fig. 8, with the help of the TRIP software (Gastineau &
Laskar 2011). These two parameters are relevant for stability
as they control the distance to the triple system, and other pa-
rameters are fixed to their best-fitting values. If the system was

9 The catalogue at exoplanet.eu reports one lighter planet around
the white dwarf WD 1145+017. However, it seems that this object
could be composed of multiple disintegrating planetesimals Croll et al.
(2017).

perfectly integrable, it would possess an intrinsic set of funda-
mental frequencies (related to the existence of action-angle co-
ordinates), that would be constant over time. These frequencies
could be retrieved very accurately by running the frequency anal-
ysis method on a numerical solution of the system. For a weakly
chaotic system, however, fundamental frequencies can still be
defined, but they are now valid only in a restricted interval of
time, as chaos makes the system slowly diffuse in the available
region of the phase space. The measure of the drift of the funda-
mental frequencies then gives a direct indication of the level of
chaos present in the system (see Laskar 1990). Here, we are in-
terested in the fundamental frequency n of the planet associated
with its orbital motion (i.e. its ‘mean’, or ‘proper’ mean motion):
its drift rate informs us about the short-term orbital stability of
the planet. In practice, we run the frequency analysis on the two
halves of a 2000-year numerical integration of the orbits; Fig. 6
shows the difference between the two values of n obtained.

We can see in Fig. 8 that larger eccentricities or smaller pe-
riods lead to unstable motion due to the stronger influence of
the inner triple system. Mean-motion resonances with the outer
binary are also a noticeable source of chaos. Due to its large
uncertainty, the confidence region of the planet overlaps with
the unstable stripes associated with the 9:1 to 11:1 resonances.
However, most of the region remains compatible with short-term
stability, and it contains niches in which virtually no chaos is de-
tected (values < 10−5). Due to the very short period of the in-
ner binary, studying the long-term (Gyr) stability of the system
would require to build a dedicated averaged model, which is out
of the scope of the present work. We have nonetheless pushed
numerical integration of the best-fitting solution to 100,000 years
with reasonable accuracy (and to 100 Myrs without general rela-
tivity), and did not see any long-term drift of the planet’s orbital
elements.

Yet, long-term numerical integrations of the best-fitting so-
lution reveal an intriguing behaviour for the planet’s orbit. First,
we note that the best-fit inclination of the planet’s orbital plane
with respect to the plane of the inner two binaries is δiΠ =
119+16

−42
◦ (Table E.1). This indicates that the motion of the planet

is very inclined, and very likely retrograde, with respect to the
orbits of the two inner binaries. More puzzling, this confidence
interval is centred on the inclination of the exterior von Zeipel-
Lidov-Kozai resonance10, whose location can be approximated
by cos(δiΠ) = −1/

√
5, that is, δiΠ ≃ 116.6◦ (see Gallardo et al.

2012; Saillenfest et al. 2016). Contrary to the classic von Zeipel-
Lidov-Kozai resonance for an outer perturber (see von Zeipel
1909; Lidov 1962; Kozai 1962), this resonance appears beyond
quadrupole order, so its width is quite narrow in inclination. And
yet, long-term numerical integrations with initial conditions cho-
sen near the best-fit solution show that the planet can stably
librate within the resonance. This peculiarity is directly appar-
ent when using a system of coordinates in which the third axis
is aligned with the total angular momentum. In this reference
frame, the orbital inclination of the two inner binaries is close
to zero and the inclination of the planet is close to δiΠ. As the
planet is in the Kozai resonance, its eccentricity and inclination
are affected by correlated oscillations, and its argument of pe-
riastron oscillates around π/2 (instead of circulation between 0
and 2π see Fig. 9). As the resonance only spans a few degrees in
inclination, obtaining this configuration in a hierarchical system
with nearly-circular inner perturbers may seem hard to attribute

10 This is the usually called Lidov-Kozai effect. We follow here Ito &
Ohtsuka (2024) who showed that earlier work by von Zeipel should also
be acknowledged. See references in the text.
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Fig. 8. Chaos map representing the variation of the proper mean mo-
tion |n f − ni| between 2 halves of a 2000-year integration on a grid of
120×120 initial conditions in the period-eccentricity plane of the planet.
White pixels represent orbits that are so chaotic that we could not run
the frequency analysis. The eccentricity grid initially went all the way
to 0.9 but we show here only the 102 lower values as nearly all pixels
in the last 18 lines are white. Vertical dotted lines show the positions of
resonances 8:1 to 12:1 with the outer-binary period. The cross shows the
mean parameters of the planet as reported in Table E.1, and the ellipses
represent the 1 and 2-sigma confidence regions, respectively.

Fig. 9. Evolution of the eccentricity and inclination of the planet as
a function of its argument of periastron. Orbital elements are measured
with respect to the orbital plane of the inner two binaries. The small dots
show the trace of a 20-Myr numerical integration of the planet, as given
by a N-body integrator without general relativity. Initial conditions are
chosen near the best-fit orbit.

to chance – even though the confidence region is wider than the
resonance.

Considering this unlikely coincidence, we may conjecture
that the Kozai resonance stabilises the planet’s orbit, possibly
because of the bounded secular evolution of the argument of pe-
riastronωπ it implies. Indeed, an argument of periastron confined
near π/2 means that when the planet is at pericentre, it is always

away from the orbital plane of the two binaries. If this conjecture
is correct, then the planet may be the only remnant of a larger
population of small bodies that were on less stable orbits, or al-
ternatively may have formed there from the gas expelled during
the recycling of the pulsar as discussed below.

5.3. Planet formation and survival

The formation of the triple compact-object system J0337 is truly
remarkable, and modelling its formation is a major challenge
(Tauris & van den Heuvel 2014). The system has survived at
least three stages of mass transfer (including one common en-
velope (CE) phase) and the supernova (SN) explosion that cre-
ated the pulsar. On top of this, the system has managed to re-
main dynamically stable on a long-term (Gyr) timescale. Tauris
& van den Heuvel (2014) found a possible solution for J0337
using a self-consistent and semi-analytical approach. Their solu-
tion is not unique due to degeneracy and it should thus be consid-
ered a solution rather than the solution. An interesting question
is if their formation model can be extended to accommodate the
formation, and survival, of a planet?

In the following, we adapt the formation model of Tauris &
van den Heuvel (2014) — see their Table 1 and Fig. 1 for an
overview of the various stages involved (with the corresponding
stage numbers, which we refer to below). We begin by noting
that in stage 2, it has been suggested that planets may form from
the condensation of vast amounts of material ejected in the equa-
torial region during a CE phase (Beuermann et al. 2010; Schle-
icher & Dreizler 2014; Bear & Soker 2014).

Although we cannot rule out the possibility of an outer planet
forming from material ejected by the giant-star progenitors of
the WDs (stages 6 and 8), such a formation process seems un-
likely. It would require a rare and complex mechanism, facing
many challenges not present in traditional planet formation mod-
els (Drążkowska et al. 2023). One major issue is that, even for
a single red-giant star, enough dust and gas would need to accu-
mulate in the circumstellar envelope for planetesimals (the small
building blocks of planets) to form. Additionally, the gas and
dust would need to cool and condense over a prolonged period
before a planet could develop, and this cooling phase is critical
since high temperatures would inhibit planet formation. In the
formation model of Tauris & van den Heuvel (2014), the ma-
terial would likely be ejected via isotropic re-emission during
RLO with high pressure and temperature, meaning the material
would likely be blown away before planet formation could occur.
That said, it remains a puzzle how some WDs and pulsars have
orbiting planets, and further research is required on this topic.

Assuming a planet did form during the CE ejection in
stage 2, we can still adopt the original scenario and model pa-
rameters derived by Tauris & van den Heuvel (2014), given the
very small planet mass of only Mplanet = 1.23 × 10−8 M⊙. At
stage 4, just prior to the SN explosion, we can calculate the prob-
ability that this planet survived the kinematic effects of the SN.

Figure 10 displays the probability of a planet surviving the
SN explosion as a function of its pre-SN orbital period and the
observed present-day systemic velocity of J0337. This probabil-
ity can be calculated directly from the equations in Hills (1983):

Pbound =
1
2

{
1 +

[
1 − 2∆M/M − (vsys/vrel)2

2 (vsys/vrel)

] }
, (9)

where M is the total mass of the system, ∆M is the amount of
material ejected in the SN, vrel =

√
GM/a is the relative velocity
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Fig. 10. Probability of a planet surviving the SN explosion as a function
of its pre-SN orbital period and the present-day systemic velocity of
J0337. The red circle marks our default value with vsys = 44 km s−1 and
P planet

orb = 1000 days, yielding Pbound = 33%, see text.

between the triple system (“body 1”) and the planet (“body 2”),
where a is the separation between the centre of mass of the triple
system and the planet (assumed to be in a pre-SN circular or-
bit), and finally where vsys is the present-day observed velocity
of J0337 with respect to its local standard of rest. The calculation
is made by considering the triple system and the planet as an in-
effect two-body problem, which is a good approximation given
the large orbital separation of the planet and the fast-moving SN
ejecta. In this picture, we therefore consider vsys as the “kick” im-
parted on the triple system (“body 1”). For a general discussion
of dynamical effects of asymmetric SNe in hierarchical multiple
star systems, see Pijloo et al. (2012), and references therein.

The parameter values needed for Eq. (9) are as follows at
stage 4: M = 4.10 M⊙ (1.70 + 1.10 + 1.30 M⊙), ∆M = 0.42 M⊙,
vsys = 44 km s−1 and P planet

orb = 1000 days. The latter two val-
ues are our default values: vsys = 44 km s−1 corresponds to
our estimated value of the peculiar, i.e. with respect to the lo-
cal standard of rest, velocity of J0337 (see Section 4.3) and
P planet

orb = 1000 days is selected as a typical value from our range
of solutions to the SN event based on Monte Carlo simulations
with 2×106 trials, following the recipe of Tauris et al. (2017). In
these Monte Carlo simulations, we have imposed a criterion of
a post-SN orbital period of the planet of 910 days (±3%). This
value is found by calculating backwards from stage 9 (present
day) to stage 5 (right after the SN explosion, and before the for-
mation of the two WDs), considering the mass lost from the sys-
tem when the main-sequence star progenitors of the WDs evolve
to fill their Roche lobes and undergo mass transfer (Tauris & van
den Heuvel 2023). The orbital separation ratio (before and af-
ter the mass loss) will simply scale inversely to the total mass
ratio: a/a0 = M0/M. Based on our Monte Carlo simulations,
we find maximum pre-SN orbital periods of {2430; 1890; 910;
410} days for vsys ={20; 44; 70; 100} km s−1, respectively. The
minimum pre-SN orbital period is about 100 days. It is limited
by the condition of long-term dynamical stability of the system.

In terms of the effect of the interaction of the SN ejecta on
the planet, the effect is expected to be negligible (Wheeler et al.
1975; Liu et al. 2015). This is mainly due to the large orbital
separation of the planet at the moment of the SN. In addition, the
surface area of the planet is presumably quite small, and its mass

density is likely to be larger than that of a main-sequence star
(∼ 1 g cm−3) or a gaseous planet (∼ 0.1 g cm−3). For comparison
the Moon has a mean mass density of ∼ 3.3 g cm−3.

The large orbital inclination of δiΠ = 119+16
−42
◦ of the planet

could have an origin in the SN explosion. It is certain that if the
kick (or resulting recoil of the inner system) has a velocity vector
which is not exactly in the orbital plane, then the system will
be tilted. Whether or not this is sufficient to explain the orbital
inclination of the planet is uncertain, and this inclination could
also be due to dynamical interactions within the system.

To summarise, we find from calculations in Fig. 10 a most
likely expected probability of the planet to survive the SN explo-
sion of order 20%–50% (33% for our default value). Therefore,
if a planet is present in the J0337 system with an orbital period
of about 3310 days, and if this planet formed from ejected CE
material in stage 2, then we find it quite likely that the planet
could have survived the kinematic impact of the SN that created
the neutron star (NS) in this system.

5.3.1. Constraining the NS kick

To place constraints on the kick velocity imparted directly on the
NS at its formation is also possible, albeit rather complicated,
and a proper treatment is beyond the scope of this paper. Us-
ing a step-by-step Monte-Carlo approach, however, where the
kinematic effects are evaluated as in-effect two-body problems
(step 1 consisting of “body 1”: NS+WDi+WDo and “body 2”:
planet; step 2 consisting of “body 1”: NS+WDi and “body 2”:
WDo; step 3 consisting of “body 1”: NS and “body 2”: WDi) we
find a rough constraint on the NS kick of w ≃ 110 − 125 km s−1.
Here we made the assumption that the direction of recoil (or
“kick”) velocities is always isotropic. This is not likely to be
the case because of the momentum in the pre-SN orbital plane in
each step (only for the actual kick imparted onto the NS in step 3
is this a good assumption). Nevertheless, it seems to us that the
resulting value of w may not change by much taking such ef-
fects into account. A NS kick value of w ≃ 110 − 125 km s−1 is
somewhat on the low side for measured pulsar kicks (with aver-
age values above 400 km s−1, Hobbs et al. 2005). However, it is
not an unusual small kick. Moreover, it is an obvious selection
effect that the J0337 system exists and thus the kick could not
have been very large (see also discussions in Tauris & van den
Heuvel 2014).

In addition the small kick inferred for J0337, and its rel-
atively small velocity relative to its local Galactic co-rotating
frame (see Fig. 4) are very similar to those observed for
PSR J1903+0327 (Freire et al. 2011, see especially their Fig.
10), a system that is thought to have originated as a triple, which
later became unstable because of the widening of the inner bi-
nary (then a low-mass X-ray binary) caused by the mass trans-
fer to the NS Freire et al. (2011); Portegies Zwart et al. (2011).
This, again, emphasizes the importance of small SN kicks for the
preservation of hierarchical systems

6. Conclusions

We have extended the work of Voisin et al. (2020b) by using
a 700 day longer dataset of the Nançay timing data of PSR
J0337+1715, and most importantly by attempting to model its
residual long-term signal which has an amplitude of ∼ 4.4µs
over ∼ 3000 days. To this end, we have complemented the nu-
merical timing model for the triple stellar system introduced in
(Voisin et al. 2020b) with either an achromatic red-noise com-

Article number, page 13 of 23



A&A proofs: manuscript no. J0337

ponent or a planet in a hierarchical orbit around the triple sys-
tem. Both models have been implemented in the code Nutimo
(Voisin et al. 2020b). We note that the NRT ToAs considered in
this study were extracted from total intensity profiles. In future
work we will consider using ToAs extracted from polarimetric
profiles with the Matrix Template Matching (van Straten 2006)
technique, which was shown by Guillemot et al. (2023) to sig-
nificantly improve the quality of the NRT timing, by compen-
sating for imperfect polarisation calibration. See footnote 2 for
software and data release.

We show in Sec. 4.2 that with sufficient data the Planet model
can display a clear signature distinguishing it from red noise.
However, we have attempted to select the best model using the
AIC and BIC statistical criteria but acknowledge that the differ-
ence between models is within the systematic uncertainties in
our numerical optimisation procedure given our current dataset.
Nonetheless, both the red-noise and planet hypothesis are able
to produce residuals which appear consistent with white noise,
Fig. E.1.

The best red-noise model contains 3 Fourier harmonics the
amplitude of which decreases with a steep power-law index of
∼ 2.7 (or ∼ 5.4 in the power convention, see Sec.5.1). The Planet
model implies a Moon mass object in a hierarchical ∼ 3000-
day orbit around the triple system, a ∼ 0.25 eccentricity and a
∼ 119◦ inclination with respect to the fundamental plane of the
triple system. Triple system, DM, and astrometric parameters are
compatible within uncertainties such that they essentially model-
independent. The full characterisations of the system assuming
both models is presented in Tabs. E.1 and 2.

From a Bayesian point of view, one may wonder which
model is a priori more probable. Planets around pulsars are rare
(Kerr et al. 2015; Behrens et al. 2020; Niţu et al. 2022), how-
ever PSR J0337+1715 is itself a unique system with an unusual
formation channel. Thus, it is possible that the probability of ex-
istence of a planet in such a system is not as small as in the gen-
eral population. In Sec. 5.3 we propose a scenario derived from
Tauris & van den Heuvel (2014) in which the planet forms from
the material expelled during the first common envelope phase in
the evolution of the triple system and survives the subsequent
stages of evolution. In Sec. 5.2, we show the likely short-term
stability of the inferred orbit and notice that the confidence inter-
val on its inclination with respect to the triple system is centred
on the value of the exterior von Zeipel-Lidov-Kozai resonance.
This resonance is narrow and the confidence interval still allows
for a mismatch. However, if such a correspondence were con-
firmed it seems unlikely that such a coincidence would happen
by chance. This leads us to conjecture that this particular orbit
may be more stable, possibly making this planet the only rem-
nant of a larger population formed out of the expelled material.
As a by-product of this study, we estimate a rather low supernova
kick of ∼ 110−125km/s, not unlike the kick of PSR J1903+0327
which is believed to have originated as a triple system as well
(Freire et al. 2011). This supports the idea that low kicks might
be a condition of survival of such systems.

On the other hand, the achromatic red noise is a common
phenomenon, usually associated to processes intrinsic to the pul-
sar that remain to be fully understood (Lyne et al. 2010; Melatos
& Link 2014). However, the amplitude of the signal has been
shown empirically to scale with quantities such as the spin-down
age, spin-down rate or power of the pulsar (Hobbs et al. 2010;
Lyne et al. 2010; Shannon & Cordes 2010). In Sec. 5.1 we show
that, according to those scalings, the red-noise amplitude neces-
sary to explain the observed signal is a clear outlier by a factor
of 5 to 10. Indeed, PSR J0337+1715 lies in the bulk of the mil-

lisecond pulsar distribution where red-noise should be barely de-
tectable with our data, if at all. A possible signature of strong red
noise due to magnetospheric activity is its correlation to pulse
profile variations, as observed in other pulsars (Lyne et al. 2010),
but we do not find any evidence of such variations here. Contrary
to the planet hypothesis, we currently do not see any reason to
speculate that such a discrepancy could be related to the particu-
lar formation channel of the system.

We updated our previous limit on violations of the strong
equivalence principle (Voisin et al. 2020b). In Sec. 4.4, we show
that the limit is somewhat model-dependent, with |∆| < 2.29 ×
10−6 assuming the best red-noise model and |∆| < 1.46 × 10−6

assuming the Planet model (both delimiting the 95% confidence
region). If the latter represents a 30% improvement compared to
Voisin et al. (2020b), the former is 10% worse. This systematic
uncertainty emphasises the importance of selecting the correct
model with future data.
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Appendix A: Second-order keplerian Rœmer delay

The Rœmer delay due to a pulsar orbiting in a binary system is
given by (Blandford & Teukolsky 1976),

∆R = x
(
sinω (cos E − e) +

√
1 − e2 cosω sin E

)
, (A.1)

where x is the projected semi-major axis , e is the orbital ec-
centricity, ω the argument of periastron, and E the eccentric
anomaly. The latter is solution of Kepler’s equation,

E − e sin E = σ, (A.2)

where σ = n(t−Tp) with time t, time of passage at periastron Tp
and n = 2π/P for orbital period P.

Kepler’s equation can be solved iteratively at any order in
e using a fixed-point method following En+1 = σ + e sin En.
Injecting E2 into Eq. A.1 and Taylor expanding we obtain the
second-order Rœmer delay,

∆R = x
[
sin ϕ (A.3)

+
e
2

(cosω sin 2ϕ − sinω cos 2ϕ − 3 sinω)

−
e2

8
{(cos 2ω + 4) sin ϕ − sin 2ω cos ϕ

−3 cos 2ω sin 3ϕ + 3 sin 2ω cos 3ϕ}
]
,

where we define ϕ = n(t−Tasc) with Tasc0 = Tp−ω/n which cor-
responds to the time of ascending node at order e0. The first two
lines correspond to the small-eccentricity timing model of Lange
et al. (2001) where one can identify the Laplace-Lagrange pa-
rameters e sinω and e cosω. In all rigour we left here the term in
∼ e cosω which is dismissed as an unnecessary additional con-
stant in Lange et al. (2001) but can play a role in case of peri-
astron precession (Susobhanan et al. 2018; Voisin et al. 2020a).
Apart from this term, Eq. (A.3) was also derived in Zhu et al.
(2019).

We can see in Eq. (A.3) that the effect of taking into ac-
count second-order terms is i) to modify the coefficients in front
of first-harmonic terms and ii) to add signal at the third har-
monic frequency. Without the third-harmonic contribution, i)
would merely amount to an effective eccentricity and argument
of periastron. However thanks to third harmonics this degen-
eracy is lifted and first-harmonic amplitudes become second-
degree polynomials in eccentricity.

Most importantly in the frame of this work, we can see that
once limited to first order, this timing model is equivalent to the
PL2 model. Moreover, we see that all five elements x, e, ω,Tp, n
can be measured independently at this order up to an error
⃝

(
e2

)
. The equivalence between PL2 as given by Eq. (1) and

this model approximately goes as follow,

n = 2πν, (A.4)
x = A, (A.5)

Tp = Tref −
ϕ2 − ϕ1

ν
, (A.6)

ω = 2ϕ1 − ϕ2, (A.7)
e = 21−γ. (A.8)

The approximation lies in the fact that we neglected the differ-
ence between emission time and arrival time, ∆ = ta− te Einstein
delay excluded, such that Eqs. (A.4)-(A.8) are valid up to cor-
rections of order⃝ (∆/P) << 1.

All subsequent harmonics are fully determined by these
same five parameters, and therefore the keplerian model has a

higher predictive power than models such as PL3 which requires
additional phase parameters. In addition it can be seen that con-
trary to the PLn models, amplitudes are not determined by a
power law past PL2.

Appendix B: Simplified perturbative model

In order to assess how well the orbital motion of a small planet in
a hierarchical orbit can be characterised we derive in this section
an analytical model for a simplified configuration. The aim is to
compute the leading order perturbation due to the planet beyond
the Keplerian motion it induces on the barycentre of the triple
stellar system (see below).

We model the system by three bodies: the first one corre-
sponds to the inner binary, the second one to the outer white
dwarf and the last one to the planet. The extent of the inner bi-
nary is thus neglected. We also assume Newtonian dynamics. Let
us note that this three-body modelling could also be applied to
the triple system itself since it is also hierarchical.

We denote M0,1,2 the masses and R0,1,2,V0,1,2 the position
and velocity vectors. Indexes refer to the three bodies in the same
order as above. The inner binary is represented by the position
and velocity of its barycentre (R0,V0) and the sum of the masses
of its two components. The justification for neglecting the dy-
namics of the inner binary is that due to its small extent relative
to the separation with the planet it is much less sensitive to the
planet perturbation than the outer binary. The problem is treated
using Jacobi coordinates (e.g. Murray & Dermott 1999),

r0 = B2, (B.1)
ri = Ri − Bi−1 (i > 0), (B.2)

where the centre of mass of the first i + 1 bodies is

Bi =
1
σi

i∑
k=0

Mk Rk, (B.3)

with σi =
∑i

k=0 Mk.
With these coordinates r1 is the vector connecting the inner

binary to the outer white dwarf, which we shall call the outer
binary, and r2 the vector going from the centre of mass of the
triple stellar system to the planet. Given that the planet follows
an orbit about 5 times wider than the size of the triple system
and that its mass is negligible compared to those of the stars we
introduce the following scalings:

ϵ ∼ M2/M0,1 ≪ 1, (B.4)
η ∼ r2/r1 ∼ R2/R0,1 ≪ 1, (B.5)

where we use the notation V = ∥V∥.
Using canonical coordinates and their conjugate momenta

P0,1,2, the Hamiltonian of the system is given by

H =
1
2

2∑
k=0

P2
k

Mk
−

∑
0≤k<l≤2

GMk Ml

∥Rl − Rk∥
, (B.6)

where G is the gravitational constant.
We now decompose the Hamiltonian in an dominant inte-

grable part H0 and a perturbing term H1 using Jacobi coordinates
Eqs.(B.1)-(B.2) and their conjugate momenta pi. The kinetic part
of the Hamiltonian Eq.(B.6) keeps the same form after the sub-
stitution Pk → pk,Mk → mk where m0 = σ2 (the total mass
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of the system) and mi>0 = miσi−1/σi. Noting that p0 is the to-
tal momentum of the system, we choose it to be zero without
loss of generality. Further, the interaction term between 0 and 1
is also left unchanged since r1 = R1 − R0. On the other hand,
the two terms involving the planet are expanded in powers of η.
Collecting the terms,

H0 =
p2

1

2m1
+

p2
2

2m2
−

Gm1σ1

r1
−

Gm2σ2

r2
, (B.7)

H1 = −
1
2
σ2

σ1

Gm1m2

r2

3
2

 r1 · r2

r2
2

2

−

(
r1

r2

)2 +⃝(
η3

)
. (B.8)

One can see that H1 is of order η2 compared to the last term
of Eq. (B.7) and of order ηϵ compared to the penultimate term,
which justifies it being treated as a perturbation. We also note
that σ2/σ1 = 1 + ⃝(ϵ) and therefore it will be omitted in the
following (however it would have to be kept if this methodology
was applied to the triple stellar system).

The dominant Hamiltonian H0 is recognised as the Hamilto-
nian of a mass m1 orbiting around a central mass σ1 and a mass
m2 independently orbiting around a central mass σ2. Thus the
solution is exactly given by two Keplerian orbits.

Appendix B.1: Timing model corresponding to the dominant
Keplerian Hamiltonian

We consider only the largest delay, that is the Rœmer delay,

∆R = −
n⊙ · R0

c
, (B.9)

where n⊙ is a unit vector along the direction going from the So-
lar system barycentre to the pulsar system barycentre and c is
the speed of light. Note that the motion of the pulsar is approx-
imated here again to the motion of the barycentre of the inner
binary R0. A complete treatment could formally be obtained by
replacing R0 by Rp = R0 + δRp where the second term accounts
for the inner binary motion relative to its barycentre as well as
every effect due to mutual interactions not accounted for in our
treatment.

In terms of Jacobi coordinates,

R0 = −
M1

σ1
r1 −

M2

σ2
r2, (B.10)

where according to the exact Hamiltonian H0 r1,2 follow Keple-
rian orbits of the form

ri = ai


cos Ei − ei√
1 − e2

i sin Ei

0


Fi

, (B.11)

where Fi is the frame adapted to the orbital motion of coordinate
i, that is with the direction of periastron along the x axis and or-
bital angular momentum along the z axis, ai is the semi-major
axis, Ei is the eccentric anomaly and ei the eccentricity. Kepler’s
equation relates Ei to the mean anomaly Mi = 2π(t − Ti)/Pi,
where Pi is the orbital period and Ti the time of periastron pas-
sage,

Ei − ei sin Ei =Mi. (B.12)

In order to express the Keplerian Rœmer delay one needs to
express both n⊙ and R0 in the same frame. We choose a frame
where n⊙ is the third basis vector. We call it the observer’s frame

FO (who would be standing at the Solar system barycentre). Or-
bital inclinations i j are then defined relative to n⊙ and longitudes
of ascending nodesΩ j define a rotation around n⊙. Together with
the arguments of periastron ω j these angles define the rotations
relating the observer’s frame and F j,

r j|FO= RΩ j Ri j Rω j r j|F j , (B.13)

where RΩ j ,Ri j ,Rω j are rotation matrices (see e.g. Beutler), and
r j|F refers to the coordinate of r j in frame F. From there, the
formula expressing the Keplerian Rœmer delay ∆ j = −n⊙ · r j/c
is well known (e.g. Lyne & Graham-Smith 2012; Hobbs et al.
2006),

∆ j = −
a j sin i j

c
(B.14)(√

1 − e2
j sin E j cosω j + cos E j sinω j − e j sinω j

)
,

Note that the last term of Eq. (B.14) is usually omitted because
it contributes only a constant delay to the timing solution, but we
write it here for completeness as it can become important when
orbits are perturbed (e.g. Voisin et al. 2020a). Let us also remark
that this formula is independent of Ω j and that a j cannot be sep-
arated from sin i j which leads to the impossibility of measuring
independently these three parameters with the Keplerian Rœmer
delay alone.

Inserting Eq.(B.10) into (B.9) we can write

∆R = −

2∑
j=1

M j

σ j
∆ j. (B.15)

Appendix B.2: Perturbation

We now turn to the perturbative treatment of H1, Eq.(B.8), using
Laplace-Lagrange’s variation of the orbital elements. In order to
retain only the strongest effects and to keep the treatment as sim-
ple as possible we neglect all eccentricities, and we retain only
secular terms. Note that we neglect eccentricity only in pertur-
bative terms, not in leading order terms, that is Eq.(B.14). Thus
we seek a Rœmer delay of the form Eq.(B.15) with

∆ j = ∆
(0)
j + δ∆ j (B.16)

where ∆(0)
j is given by Eq.(B.14), and

δ∆ j = δ

(
−

a j sin i j

c

(
sin

(
n jt + ϕ j

)))
, (B.17)

which denotes the variation of the leading order term in ec-
centricity of Eq.(B.14). For convenience we introduced ϕ j =
ω j − n jT j such that at leading order n jt + ϕ j = E j + ω j.

The outer-binary term in Eq.(B.15) is dominant since
r2M2/σ2 ∼ (ϵ/η)r1M1/σ1 and in the present case ϵ ≪ η. There-
fore we shall focus on the perturbation of ∆1. Without loss of
generality we choose a frame such that Ω2 = 0 such that Ω1 is
defined relative to the longitude of ascending node of the planet.

In order to get rid of periodic terms we average H1 over
M1, being understood that P1 ≫ P2, and obtain H̄1 =

(2π)−1
∫ 2π

0 H1dM1. Although straightforward, this operation is
very lengthy. We used the formal calculus software Sage (Devel-
opers 2022) in order to manipulate the large expressions gener-
ated, without any particular difficulty. Therefore in what follows
we only report the important steps and the main results.
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The resulting perturbing Hamiltonian does not depend on
ω1,2,T1, E1, e1,2,Ω2. The relevant Laplace-Lagrange variational
equations are

i̇1 = −
1

n1a2
1 sin i1

∂H1

∂Ω1
, (B.18)

Ω̇1 =
1

n1a2
1 sin i1

∂H1

∂i1
, (B.19)

ϕ̇1 = −
1

n1a1

(
1

a1 tan i1

∂H1

∂i1
+ 2
∂H1

∂a1

)
, (B.20)

ȧ1 = ṅ1 = ė1 = 0. (B.21)

We seek solutions of the form x(t) = x(0) + δx(t) where x(0) ∈

{a1, n1, i1,Ω1, ϕ1} are the constant orbital elements that are so-
lution of the unperturbed system. To leading order in perturba-
tion we may thus substitute x → x(0) in the right-hand side of
Eqs.(B.18)-(B.21) and integrate in order to obtain δx =

∫
ẋdt. In

order to focus on the main contributions we keep only terms di-
verging with time, that is terms ∝ E2. In the following, we drop
the (0) exponent for readability since orbital elements always re-
fer to the unperturbed solution, that is x = x(0) unless otherwise
stated.

Substituting x → x + δx(t) into Eq. (B.17) we obtain an ex-
pression of the form

δ∆1 = αt (γc cos E1 + γs sin E1) (B.22)

where E1 = n1(t − T1) at leading order in eccentricity and

α =
3
8

Gm2a1

cn1a3
2

, (B.23)

γs = − sinΩ1 cos i1 sin i2 (B.24)
(cos i1 cos i2 + cosΩ1 sin i1 sin i2) ,

γc = sin i1

(
cos2 i1 cos2 i2 −

10
3

)
(B.25)

+ cosΩ1 sin i2 cos i2 cos i1
(
1 + 2 sin2 i1

)
+(cosΩ1 sin i2)2 sin i1

(
1 + sin2 i1

)
.

In order to validate the ability of our perturbative approach
to capture the main features of the Rœmer delay induced by the
planet we have fitted ∆1, obtained by substituting Eq.(B.22) in
Eq. (B.16), to the numerically computed Rœmer signal. The fit-
ting was done using a Levenberg-Marquardt method11. The re-
sult is shown in Fig.3, where the Keplerian component ∆(0)

1 is
also reported, and we can see that the perturbative formula suc-
cessfully captures the dominating frequencies, that is the planet
and outer binary orbital frequencies. The main residual appears
at the first harmonic of the planet orbital frequency.

The parameters αγc, αγs can in principle be fitted indepen-
dently due to the Fourier decomposition theorem. Since α only
occurs as a common scaling in Eq.(B.22), we focus on γc, γs.
If their relation to Ω1, i2 is not degenerate, Eqs. (B.24)-(B.25),
then this allows to lift the degeneracies of the Keplerian compo-
nent and fully characterise the planet’s orbit and mass. In order
to check for the absence of degeneracy, we plotted in Fig.B.1
γc(Ω1, i2), γs(Ω1, i2) for i1 = 39 deg, which approximately cor-
responds to the observed inclination of the outer binary. We see
that although not degenerate, γc is about 5 times larger than γs
for this particular inclination i1. Given the overall weakness of
the signal, it might therefore be difficult to constrain accurately
both i1 and ω2 in this particular case.
11 Implemented in the Scipy least_square routine.

Fig. B.1. Maps representing the values of γc (left) and γs (right) as a
function of (Ω1, i2) for i1 = 39 deg.

Appendix C: Best-fit systematics

Table C.1 summarises all the fits that have been performed, while
Table 1 only contains the best fit for each model. The proce-
dure involved using either the mean, ‘mean, ’or the maximum-
posterior probability (including prior), ‘max’ element of the
MCMC sample of each model as the starting point for a deter-
ministic fit using the Minuit library. Then, this ‘refit’ converges
to the local optimum. The fact that the local optima generally
depend on their starting points is evidence for a rough likelihood
surface with multiple nearby local maxima. Note that each refit
has been iterated one more time in order to make sure that this
difference was not related to an approximate convergence of the
algorithm.

Surprisingly, the PL4 model produced less optimal log-
likelihood than the PL3 model, although the latter is nested in
the former. In order to attempt to find a better solution we ran
two MCMC: one starting from the last chain elements of the PL3
run and another from the PL5 run, which we call PL4bis. How-
ever, none of these fits performed better than PL3, suggesting
additional complications in the probability landscape.

The Planet model behaves somewhat differently than the oth-
ers. Indeed it is the one where the likelihood difference between
the mean and max solutions is by far the largest, and the best fit
is given by the max, suggesting that the posterior probability dis-
tribution is asymmetric or has multiple modes. This is consistent
with its more irregular correlation plots, Fig. D.2, compared to
the PL3 correlations in Fig. D.1. We also note that although the
Planet max solution has the best log-likelihood of all models, the
gain after refitting is more moderate than in other models.

To sum up, Table C.1 shows that a difference of a few units in
log-likelihood may not be safely considered as significant given
the systematic uncertainty of the fitting procedure.
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Table C.1. List of all fits carried out for each model assuming GR. The reduced χ2, Rχ2 , is equal to χ2/Ndof where Ndof = 13534 − Npar. AIC
and BIC are the Akaike and Bayesian information criteria, respectively. For each model the first line is the reference fit subtracted from all the
other lines. The last line is the best fit of each given model which appears in Table 1 (except for ‘PL4 bis’). ‘mean’ means that it is the mean of the
MCMC sample, ‘max’ that it is the element in the sample with the highest likelihood, and ‘refit’ means that a local fit using the Minuit library
(see sec.4.1) from either the ‘mean’ or ‘max’ solution has been performed. For model ‘PL4’, ‘bis’ refers to a separate MCMC run (see text).

Model Npar χ2 Rχ2 ∆AIC ∆BIC
PL2/Kepl1 30

mean 15531.9 1.24814 15591.9 15814.8
max 8.09 0.00065 8.09 8.09
refit max 4.64 0.000373 4.64 4.64
refit mean -0.915 -7.35e-05 -0.915 -0.915

PL3 31
mean 15543.4 1.24917 15605.4 15835.8
max 7.93 0.000637 7.93 7.93
refit max -31.5 -0.00253 -31.5 -31.5
refit mean -30.7 -0.00247 -30.7 -30.7

PL3DM10 39
mean 15496.8 1.24622 15574.8 15864.6
max -0.509 -4.09e-05 -0.509 -0.509
refit max -1.87 -0.000151 -1.87 -1.87
refit mean -2.22 -0.000179 -2.22 -2.22

PL4 32
mean 15569.8 1.25139 15633.8 15871.6
max 7.56 0.000608 7.56 7.56
refit max -50.3 -0.00404 -50.3 -50.3
refit mean -53.2 -0.00427 -53.2 -53.2

PL4 bis 32
mean 15558.3 1.25047 15622.3 15860.1
max 9.62 0.000773 9.62 9.62
refit mean -38.2 -0.00307 -38.2 -38.2
refit max -36 -0.00289 -36 -36

PL5 33
mean 15535.8 1.24876 15601.8 15847.1
max 4.82 0.000388 4.82 4.82
refit max -24.2 -0.00195 -24.2 -24.2
refit mean -29.3 -0.00236 -29.3 -29.3

planet 32
max 15520.9 1.24746 15584.9 15822.7
mean 520 0.0418 520 520
refit mean -1.76 -0.000141 -1.76 -1.76
refit max -6.56 -0.000527 -6.56 -6.56

Appendix D: Posterior distribution functions of
model-specific parameters

Model specific parameters, as reported in Table 2, are not sig-
nificantly correlated with other parameters of the timing model
except for the rescaled spin parameters f̄ ,¯̇f . Therefore we show
in this appendix the corresponding ‘correlation plots’ (or ‘cor-
ner plots’) showing the posterior distribution function of the PL5
and Planet model marginalised along all but two dimensions (or
one across the diagonal), Fig. D.1 and Fig. D.2 respectively.
Both correspond to the version of these models that assumes GR
(namely PL5GR and PlanetGR). Full correlation plots are pro-
vided as online supplementary material.
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Fig. D.1. Correlation plot of the posterior distribution function of the PL3 model using the corresponding MCMC-generated sample, and restricted
to f̄ ,¯̇f as well as PL3 specific parameters.
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Fig. D.2. Correlation plot of the posterior distribution function of the PlanetGR model using the corresponding MCMC-generated sample, and
restricted to f̄ ,¯̇f as well as Planet specific parameters.
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Appendix E: Additional material

Fig. E.1. Periodogram of the post-fit residuals, sampled at 1/T where T is the time span of observations, and ranging in frequency from 1/T
to 1day−1. Vertical dashed lines represent the best-fit planet orbital frequency, outer binary and inner binary orbital frequencies, from left to
right. The vertical dotted line marks the third harmonic of the planet orbital frequency. Horizontal grey lines describe the 95% region obtained
by bootstrapping white noise: the central dotted line is the median, dashed lines delineate the 2.5% and 97.5% levels, and thin dotted lines the
0.5% to 99.5% interval. For clarity, these lines have been smoothed as they are otherwise noisy. In the low-frequency part of the plot, until
5/PO ≃ 1.5 × 10−2day−1 where PO is the outer binary period, we show the periodograms of the planet (dashed orange), Kepler (dash-dotted red),
PL2/Kepl1 (dotted green), and PL3 (solid blue) models. In the higher frequency part only PL3 is shown for clarity as the difference with other
models becomes much smaller.
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Table E.1. Mean values of the MCMC runs of the PL3 and Planet models with their 68% median confidence intervals.

Parameter Symbol PL3GR PlanetGR
Fixed values

Reference epoch (MJD) Tref 56492
Position epoch (MJD) Tpos 57205

Fitted values
Right ascension α 3h37m43s.82700(43)+66

−67 3h37m43s.82700(94)+63
−64

Declination δ 17deg15m14s.817(63)+38
−37 17deg15m14s.817(75)+40

−33
Distance (kpc) d 1160+53

−51 1182+53
−55

Right-ascension proper motion (mas yr−1) µα 6.1(37)+70
−68 5.9(82)+70

−80
Declination proper motion (mas yr−1) µδ −5.(34)+25

−26 −4.(83)+29
−25

Radial proper motion (mas yr−1) µd 5.(63)+31
−32 5.(52)+32

−28
Dispersion measure (pc cm−3) DM 21.316(46)+12

−12 21.316(46)+11
−11

Dispersion measure variation (pc cm−3 yr−1) DM′ (1.7)+2.1
−2.1 × 10−5 (1.6)+1.9

−2.0 × 10−5

Rescaled spin frequency (Hz) f̄ 365.953337902243(85)+81
−81 365.9533379022(56)+11

−11
Rescaled spin frequency derivative (10−15 Hz s−1) f̄ ′ −2.35631(40)+48

−45 × 10−15 −2.356(45)+11
−12 × 10−15

Inner orbit I of pulsar p w.r.t. inner-binary centre of mass b
Orbital period (d) PI 1.62939900(75)+42

−42 1.62939900(83)+38
−41

Projected semi-major axis (lt-s) ap sin iI 1.2175276(17)+56
−56 1.2175276(25)+54

−56
Inclination offset (◦) δi = iI − iO 1.2+2.3

−2.4 × 10−3 8+21
−23 × 10−4

Laplace-Lagrange eI cosωp 6.937(38)+40
−40 × 10−4 6.937(32)+37

−42 × 10−4

Laplace-Lagrange eI sinωp −8.59(37)+40
−41 × 10−5 −8.59(42)+36

−35 × 10−5

Time of ascending node (MJD) tascp 55917.15894(93)+19
−19 55917.15894(89)+19

−17
Long. of asc. nodes offset (◦) δΩ = Ωb −Ωp (1.7)+1.3

−1.3 × 10−4 (1.5)+1.2
−1.2 × 10−4

Outer orbit O of b w.r.t. triple-system centre of mass t
Orbital period (d) PO 327.25512(55)+10

−10 327.25512(61)+10
−11

Projected semi-major axis (lt-s) ab sin iO 74.672344(35)+22
−23 74.672344(31)+21

−22
Co-projected semi-major axis (lt-s) ab cos iO 91.4(10)+37

−37 91.4(02)+35
−32

Laplace-Lagrange eO cosωb 0.03511469(40)+28
−27 0.03511469(43)+28

−27
Laplace-Lagrange eO sinωb −0.00352492(40)+19

−18 −0.00352492(22)+19
−18

Time of ascending node (MJD) tascb 56230.195329(47)+83
−82 56230.195329(01)+79

−78
Longitude of ascending node (◦) Ωb 145.9+1.4

−1.5 148.0+1.7
−1.5

Inner mass ratio mi/mp 0.1373(76)+12
−12 0.1373(77)+12

−12
ToA uncertainty rescaling EFAC 1.11(77)+76

−73 1.11(72)+75
−79

Derived values
Parallel proper motion (km s−1) V∥ 29.77+0.90

−1.1 29.(72)+76
−83

Plane-of-sky proper motion (km s−1) V⊥ 43.0+2.2
−2.0 41.4+2.1

−2.2

Spin frequency (Hz) f 365.9533629(82)+13
−13 365.9533629(80)+12

−12
Spin frequency derivative (10−15 Hz s−1) ḟ −2.29(06)+43

−40 × 10−15 −2.29(67)+41
−43 × 10−15

Inner orbit I of p/b
Semi-major axis (lt-s) ap 1.924(46)+48

−48 1.924(39)+46
−43

Orbital inclination (◦) iI 39.2(47)+11
−11 39.2(48)+10

−11
Orbital eccentricity eI 6.990(40)+40

−40 × 10−4 6.990(36)+37
−42 × 10−4

Longitude of periastron (◦) ωp −7.06(16)+33
−33 −7.06(20)+29

−28
Time of periastron passage (MJD) tpI 55917.1269(88)+15

−15 55917.1269(86)+13
−13

Longitude of asc. node (◦) Ωp 145.9+1.4
−1.5 148.0+1.7

−1.5
Outer orbit O of b w.r.t. triple-system centre of mass t
Semi-major axis (lt-s) ab 1.180(33)+28

−29 × 102 1.180(27)+27
−25 × 102

Orbital inclination (◦) iO 39.2(45)+11
−11 39.2(48)+10

−10
Orbital eccentricity eO 0.03529117(20)+29

−29 0.03529117(21)+29
−28

Longitude of periastron (◦) ωb −5.73232(85)+27
−27 −5.73232(56)+27

−27
Time of periastron passage (MJD) tpO 56224.98440(20)+19

−19 56224.98440(42)+19
−19

Pulsar mass (M⊙) mp 1.43(82)+12
−12 1.43(80)+12

−11
Inner-companion mass (M⊙) mi 0.197(58)+15

−15 0.197(55)+15
−14

Outer-companion mass (M⊙) mo 0.410(18)+31
−31 0.410(12)+31

−29

Notes. Error bars apply to the digits between parenthesis and delimit the 68% median confidence region, namely the interval excluding 16%
of the distribution above and below it. The central value quoted is the best-fit value. Upper-case indices I,O refer to the inner, outer and planet
binaries respectively. Lower-case indices p, i, o refer to the pulsar, inner white dwarf, outer white dwarf, and planet respectively, and b, t refer to
the inner-binary and triple-system centre of mass, respectively. Data spans MJD 56492−59480. Solar system ephemeris is DE430. Model-specific
parameters are reported separately in Table 2.
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