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Figure S1: Probability to find a clay layer with an orientation θ around θ0 with ∆θ=10◦.
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Figure S2: Example of snapshot obtained from molecular dynamics simulations. Red: Oxy-
gen atoms; white: Hydrogen; Dark blue: Na+; Yellow: Si; Pink: Mg; Light Blue: Al

S3



Elements for demonstrating the expression of Smod(Q,t)

Considering a motion in three-dimensions bound only in the direction z, the expression

S(Q,ω) derived by Bee et al1 can be written as Sz−bounded(Q,t):

Sz−bounded(Q, t) = e−D∥(Q
2
x+Q2

y)t

∫ L

−L

p(z, t) cos(Qzz)dz (S1)

where L is the distance of confinement and p(z, t) is the probability to find an H atom at

time t at the position z, given that it was at the origin at t = 0. Qx, Qy and Qz are the

coordinates of the wavevector Q. If the density of H atoms in the interlayer is assumed to

be uniform, the diffusion equation verified by p(z, t|z0, 0), the probability to find the atom

at (z, t) when at z0 at t = 0, is

∂p(z, t|z0, 0)
∂t

= D⊥
∂2p(z, t|z0, 0)

∂z2
(S2)

where D⊥ is the diffusion coefficient perpendicular to the clay layers. With reflecting bound-

ary conditions on the walls, the above equation has an analytical solution which can be

written in the form of a series expansion1 :

p(z, t|z0, 0) =
1

L
+

2

L

∞∑
n=1

cos
(nπz

L

)
cos

(nπz0
L

)
e

−n2π2D⊥t

L2 (S3)

Assuming z′ = z−z0, p(z, t|z0, 0) can be integrated over all possible values of z0, i.e. between

0 and L− z′ for z′ > 01 :

p(z′, t) =
L− z′

L2
+

∞∑
n=1

[
L− z′

L2
cos

(
nπz′

L

)
− 1

nLπ
sin

(
nπz′

L

)]
e

−n2π2D⊥t

L2 (S4)
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which leads to :

∫ L

0

p(z′, t) cos(Qzz
′)dz′ =

(1− cos(QzL))

Q2
zL

2

+
∞∑
n=1

(1− (−1)n cos(QzL))
2Q2

zL
2

(n2π2 −Q2
zL

2)2
e

−n2π2D⊥t

L2 (S5)

Using similar reasoning for z′ < 0, after integating z0 between −z′ and L, we finally obtain :

∫ L

−L

p(z′, t) cos(Qzz
′)dz′ =

2(1− cos(QzL))

Q2
zL

2

+ 2
∞∑
n=1

(1− (−1)n cos(QzL))
2Q2

zL
2

(n2π2 −Q2
zL

2)2
e

−n2π2D⊥t

L2 (S6)

In order to take into account the mosaicity, we must average this result over θ, the angle

between the wave-vector Q and the direction perpendicular to the clay layers.

Considering a distribution of orientations P (θ), such that
∫ π

0
P (θ)dθ = 1, we get :

Smod(Q, t) = ⟨Sz−bounded(Q, t)⟩θ =
∫ π

0

P (θ)e−D∥(Q
2
x+Q2

y)t

∫ L

−L

p(z, t) cos(Qzz)dzdθ (S7)

With Qz = Q cos θ and Q2
x +Q2

y = Q2(1− cos2 θ), we arrive at :

Smod(Q, t) = 2e−D∥Q
2t
[∫ π

0
dθP (θ)eD∥Q

2 cos2 θt
(

1−cos(QL cos θ)
Q2L2 cos2 θ

)
+

∑∞
n=1 2e

−n2π2D⊥t

L2
∫ π

0
dθP (θ)eD∥Q

2 cos2 θt
(

Q2L2 cos2 θ(1−(−1)n cos(QL cos θ))
(n2π2−Q2L2 cos2 θ)2

)] (S8)

Here P (θ) was modeled by a gaussian centered on θ0, P (θ) = P0 exp− (θ−θ0)2

∆θ2
. Numerically,

the integral over θ was calculated between θ0−5∆θ and θ0+5∆θ, the function being negligible

beyond.
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Figure S3: S⊥(Q, t) obtained with the model of equation 7, with D∥ = 8.9×10−10 m2.s−1 and
D⊥/D∥=0.5. Black: Q=0.2 Å−1, red: Q=0.6 Å−1. Solid line: pure perpendicular diffusion
(∆θ = 0), dashed line: ∆θ = 10◦, dotted line: ∆θ = 20◦. In the case of pure perpendicular
diffusion, S⊥(Q, t) decreases towards a plateau which is higher at lower Qs. The mosaicity
causes the decrease of S⊥(Q, t) down to 0 (note that immobile hydrogens are not taken into
account in this calculation). This decrease is all the more rapid as the mosaicity and D∥ are
high.
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Figure S4: Auto-correlation function of Ψ(t) for TIP4P2005/clayFF at T=300 K. The thick
black line is the average of the other curves, which corresponds to the different interlayers
spaces analyzed.
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Figure S5: Comparison of experimental and transformed simulated S∥(Q, t) at T=255K
(left) and T=350K (right) with TIP4P2005/clayFF (top) and SPC/ClayFFmod (bottom).
Relaxation times (abscissa) have been multiplied by a factor in order to fit the experimental
data at best. Black: Q = 0.2 Å−1, red: Q = 0.3 Å−1, blue: Q = 0.6 Å−1. Solid line:
simulations, circles: NSE experiments.
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Figure S6: ln(D) as a function of 1/T for water in bihydrated saponite from NSE experi-
ments and simulations (black plus: NSE experiment, red circles: TIP4P2005/ClayFF, blue
triangles: SPC/ClayFFmod) and bulk water from NMR experiments (green crosses). Linear
regressions are indicated by solid lines.
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Methodology for the calculation of MSD of water molecules

inside and outside cation hydration spheres.

From radial distribution functions gNaOW between sodium ions and water oxygens (see figure

S8), the first minimum Rmin at 3.2 Å can be taken as the radius of the hydration sphere.

Then a water molecule is considered inside the hydration sphere when its distance to a cation

is less that Rmin (state 0) and outside when it is higher than Rmin (state 1). In order to

calculate the MSD of molecules inside hydration spheres, only molecules in state 0 must be

counted. Thus, a molecule in state 0 initially must be discarded in the MSD calculation as

soon as it leaves the hydration sphere. However, some of the molecules located at a distance

close to Rmin from the cations make some unsusccessful attempts to leave the hydration

sphere by going shortly to state 1 and return rapidly to state 0, because of relatively low

energy barriers between the two states. If Rmin is taken as a strict limit between state 0

and state 1, these molecules are rapidly lost for the calculation of residence time and mean-

squared displacement, although it would be more physical to consider that they remain in

state 0. Moreover, these molecules are even faster lost when the time step between two

configurations decreases, which makes the results dependent on the time step. That is why

we chose a different definition of states 0 and 1.

Approximating the mean force potential between Na+ and OW as kBT ln(g(r)) and

following the SSP (stable state picture) approach described in ref,2 a molecule is considered

in state 0 if its distance to the cation is lower than the position of half the energy barrier

necessary to go from state 0 to state 1. Likewise, a molecule is considered in state 1 if its

distance to the cation is higher than the position of half the energy barrier necessary to go

from state 1 to state 0. These two distances are 2.7 and 3.7 Å respectively and are indicated

by pluses on figure S8. Then a molecule initially in state 0 is considered to remain in state

0 as long as its distance to the cation remains less than 3.7 Å. Likewise, a molecule initially

in state 1 is considered to remain in state 1 as long as its distance to the cation remains

S10



Figure S7: Left: gNaOW(r) in bihydrated saponite with SPC/clayFFmod force field. Right:
approximated mean force potential between Na+ and OW (kBT units).

more than 2.7 Å. It allows to discard fast recrossings between the two states and to strongly

attenuate the time step dependence.

The mean-squared displacement of molecules in state i is then calculated using:

MSDi(t) =
⟨(∆x2(t) + ∆y2(t))Si(t)⟩

⟨Si(t)⟩
(S9)

where Si(t)=1 if the molecule remains continuously in state i between 0 and t in the frame

of the SSP approach, and Si(t)=0 otherwise. The angle brackets denote the average over

the molecules. ⟨Si(t)⟩ can also be approximated by a decreasing monoexponential in order

to deduce a residence time.
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Figure S8: Na+ distribution along z in a bihydrated hectorite, simulated with
TIP4P2005/ClayFF force field. This Figure has to be compared to Figure 10 in the main
text that shows the case of saponite.

S12



0 0.005 0.01 0.015
time (ns)

0

2

4

6

8

10

M
SD

 (Å
2 )

P0(t)
P1(t)
MSD0(t)
MSD1(t)

TIP4P/clayFF

SPC/clayFFmod

Figure S9: Comparison of the two force fields for the saponite clay at T = 300K: Solid line:
TIP4P2005/clayFF force field, dashed line: SPC/ClayFFmod force field. Zoom of the short
times of Figure 11 of the main text, see the legend of Figure 11 for details.
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Figure S10: Same plot as the Figure 11 of the main text, here for 250K. Comparison of
the two force fields for the saponite clay: Solid lines: TIP4P2005/clayFF force field, dashed
lines: SPC/ClayFFmod force field. The subscript 0 (resp. 1) corresponds to water molecules
belonging to (resp, not belonging to) the cation hydration spheres (state 0 or state 1). The
left scale corresponds to the presence probabilities Pi(t) (in percents): Blue: P0(t), green:
P1(t). The right scale corresponds to the parallel mean-squared displacements MSDi(t) =
⟨x2+y2⟩

2
of water molecules in state 0 (MSD0(t), black curves) or state 1 (MSD1(t), red curves).

The turquoise highlighted zones correspond to the zone used for the linear regression of MSD1

to calculate D∥1 (see Table S1 gathering the maximal times used τ80% under which 80% of
water in state 1 stayed in state 1).
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Figure S11: Same plot as the Figure 11 of the main text, here for 350K. Comparison of
the two force fields for the saponite clay: Solid lines: TIP4P2005/clayFF force field, dashed
lines: SPC/ClayFFmod force field. The subscript 0 (resp. 1) corresponds to water molecules
belonging to (resp, not belonging to) the cation hydration spheres (state 0 or state 1). The
left scale corresponds to the presence probabilities Pi(t) (in percents): Blue: P0(t), green:
P1(t). The right scale corresponds to the parallel mean-squared displacements MSDi(t) =
⟨x2+y2⟩

2
of water molecules in state 0 (MSD0(t), black curves) or state 1 (MSD1(t), red curves).

The turquoise highlighted zones correspond to the zone used for the linear regression of MSD1

to calculate D∥1 (see Table S1 gathering the maximal times used τ80% under which 80% of
water in state 1 stayed in state 1).
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Table S1: τ80% (ps) corresponding to the time after which P1 has decreased to 80% for the
two force fields and the three temperatures studied.

τ80% 255 K τ80% 300 K τ80% 350 K
TIP4P2005/clayFF 54 18.3 8.5
SPC/clayFFmod 75 18 8
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