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Abstract
WiFi-based contactless sensing has attracted a tremendous
amount of attention due to its pervasiveness, low-cost, and
non-intrusiveness to users. Existing systems mainly leverage
channel state information (CSI) for sensing. However, CSI
can only be extracted from very few commodity WiFi devices
through driver hacking, severely limiting the adoption of WiFi
sensing in real life. We observe a new opportunity that a large
range of new-generation WiFi cards can report another piece
of information, i.e., beamforming feedback matrix (BFM). In
this paper, we propose to leverage this new BFM informa-
tion for WiFi sensing. Through establishing the relationship
between BFM and CSI, we lay the theoretical foundations
for BFM-based WiFi sensing for the first time. We show that
through careful signal processing, BFM can be utilized for
fine-grained sensing. We showcase the sensing capability of
BFM using two representative sensing applications, i.e., respi-
ration sensing and human trajectory tracking. Comprehensive
experiments show that BFM-based WiFi sensing can achieve
highly accurate sensing performance on a large range of new-
generation WiFi devices from various manufacturers, moving
WiFi sensing one big step towards real-life adoption.

1 Introduction
In recent years, WiFi-based contactless sensing has at-

tracted lots of attention from both academia and industry
owing to the pervasive deployment of WiFi infrastructure in
indoor environments. A large number of sensing applications
have been successfully demonstrated with WiFi sensing such
as passive localization [25,36], fall detection [42,46], gesture
recognition [38,40], activity recognition [33,45,56], and vital
sign monitoring [61, 67]. The basic principle of WiFi sensing
is that WiFi signals vary with target movement and we can
thus extract target movement information through analyzing
the induced signal variations.

Early research on wireless sensing was mostly based on
software-defined radio (SDR) platforms such as WARP [31]
and USRP [4, 35]. On these platforms, raw WiFi signal sam-
ples can be obtained at very high rates for sensing purposes.

Though promising, there is actually a huge gap between SDR
platform and commodity hardware. Commodity WiFi hard-
ware can only report the processed low-frequency received-
signal-strength-indicator (RSSI) samples. While RSSI can
still be utilized for sensing [48, 59], it is relatively coarse and
only contains signal amplitude information. Researchers fur-
ther proposed to use channel state information (CSI) which
contains both signal amplitude and phase information for
sensing [44, 50, 57, 61]. Although CSI contains finer-grained
information, one critical issue hindering the wide adoption of
CSI-based sensing is that CSI can only be extracted from few
commodity WiFi cards such as Intel 5300 [17] and Atheros
WiFi cards [55] through driver hacking.

In the last few years, we observed an exciting trend which
may be leveraged to address the above issue, i.e., with the pop-
ularity of IEEE 802.11ac standard [47], more and more com-
modity WiFi devices now adopt MU-MIMO (multi-user mul-
tiple input and multiple output) technology [8, 23]. New gen-
eration WiFi cards from Qualcomm, Broadcom, MediaTek,
and others supporting MU-MIMO have become increasingly
dominant on the market. For example, Broadcom BCM4366
and BCM43684 chips are used in ASUS RT-AC86U [22] and
TP-LINK XDR6060 WiFi routers [9]. Qualcomm QCA9886
and QCA9984 are used in Linksys EA8300 and Netgear X4S
R7800 [6].

The key feature of MU-MIMO is enabling a single access
point (AP) to simultaneously transmit to multiple stations. To
enable MU-MIMO, each WiFi station needs to measure the
channel and send the channel measurement, i.e., beamforming
feedback matrix (BFM) to the access point (AP). As BFM
also contains channel information, BFM may also be utilized
for sensing like CSI. There are two obvious advantages of
leveraging BFM for sensing.

• BFM is transmitted without encryption.
• BFM is protocol-compliant, and it can be extracted from

all new-generation MU-MIMO-enabled WiFi devices
without a need of special firmware or driver.

Though promising, we quickly realize the key challenge of
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Figure 1: (a) The trajectory (i.e., a circle) of ideal CSI on the
complex plane. (b) For BFM, the signal variation does not
form a circle on the complex plane.

utilizing BFM for sensing. To reduce the transmission over-
head, BFM does not contain raw channel amplitude/phase
information like CSI. Instead, BFM only contains the SVD-
decomposed component of the channel required for beam-
forming. That is to say, BFM only contains partial information
of CSI. Hence, to utilize BFM for sensing, the key questions
we need to answer are:

• As BFM only contains partial information of the chan-
nel (i.e., CSI), can BFM still be used for sensing?

• Even if BFM can be utilized for sensing, will BFM be
able to achieve comparable performance to that achieved
with CSI?

• A large number of sensing models based on CSI have
been developed. Are those sensing models and algo-
rithms designed for CSI still applicable to BFM sensing?

This paper aims to answer these questions. Specifically,
this paper targets to reveal the relationship between CSI and
BFM and understand the basic principle of BFM sensing.
These theoretical analyses lay a foundation for WiFi sensing
on new-generation cards. Also, we aim to explore the sensing
capability of BFM in real-world environments.

After some initial studies, we find that BFM does change
with target movement. However, different from CSI, the quan-
titative relationship between BFM and target motions does
not exist. One key property utilized to obtain quantitative
measurement (e.g., target movement distance) in CSI-based
sensing is that for small displacements, target motions only
induce a signal phase change and the signal amplitude re-
mains a constant [41, 44]. Thus, the signal variation on the
complex I-Q plane forms a circle as shown in Figure 1(a).
We can therefore use the amount of phase rotation to calcu-
late fine-grained target displacement. However, for BFM, the
signal variation does not form a circle anymore as shown in
Figure 1(b), and that quantitative relationship disappears.

Upon deeper investigation, we find that this is because each
time when BFM is calculated, the BFM is scaled by a time-
varying coefficient. To address this issue, we leverage one
key observation, i.e., although the BFM is scaled by a time-
varying coefficient, the same coefficient is applied to all the
BFM elements. Based on this observation, we define a new
measurement, i.e., BFM-ratio by taking the ratio between two
BFM elements1 for sensing. We demonstrate that theoreti-

1The number of elements equals to the number of antennas at the WiFi

cally, the sensing performance using BFM-ratio can approach
that using CSI. We show that BFM-ratio can be used to not
just detect target motions but also quantitatively sense the tar-
get movement distance. The main contributions of this paper
are summarized below.

• Through theoretically deriving the mathematical relation-
ship between BFM and CSI, we propose a BFM-ratio
model to make fine-grained BFM sensing possible for
the first time. We believe the widely available BFM data
can move WiFi sensing one big step forward towards
wider adoption compared to traditional CSI sensing.

• We explore the sensing capability of BFM both theoret-
ically and experimentally to lay a foundation for WiFi
sensing with new-generation cards.

• We showcase BFM sensing using two representative
sensing applications, i.e., respiration monitoring and hu-
man trajectory tracking. The extensive evaluation demon-
strates the feasibility of BFM sensing on a large range
of new-generation WiFi cards.

2 Background
Before introducing BFM-based sensing, we briefly intro-

duce the background of WiFi CSI and BFM.

2.1 CSI Primer
In a communication system, the channel state describes

how a signal propagates through a wireless channel. For a
signal X to be transmitted and Y to be received, the signal
propagation characteristics are represented by CSI h as Y =
hX + n, where n is the channel-induced noise. In an indoor
environment as shown in Figure 2(a), WiFi signals travel from
a transmitter (Tx) to a receiver (Rx) through multiple paths.
As the signal received by the receiver is a superposition of
signals propagated along multiple paths, mathematically the
CSI with frequency f for a pair of transmitter-receiver at time
t can be expressed as:

h( f , t) =
K

∑
i=1

Aie− j 2π f di(t)
c , (1)

where Ai and di(t) are the signal amplitude attenuation and
the i-th signal path length, respectively. K is the total number
of propagation paths and c is the speed of light.

Among the propagation paths, some are static and do not
change within a short period of time, such as the paths re-
flected from static objects in the environment. Other paths
affected by moving objects (e.g., human motions) are dy-
namic, and the lengths of these paths change with human
motions. CSI can then be denoted as the summation of the
static component and the dynamic component:

h( f , t) = hs( f )+hd( f , t) = hs( f )+Ade− j 2π f d(t)
c , (2)

AP. For example, when there are four antennas at the AP side, there are four
BFM elements.
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Figure 2: (a) The human motion causes variation of the re-
flection path. (b) The ideal CSI on the complex I-Q plane. C0
indicates the initial point of CSI.

where hs( f ) and hd( f , t) are the static component and the
dynamic component, respectively. d(t) is the length of the
dynamic path. According to Equation (2), when the change
of dynamic path length is one wavelength, the dynamic com-
ponent vector hd( f , t) rotates 360 degrees on the I-Q plane as
shown in Figure 2(b).

We denote a( f , t) and θ( f , t) as the amplitude and phase
of CSI h( f , t), i.e., h( f , t) = a( f , t)e jθ( f ,t). For an ideal CSI,
its amplitude and phase can be calculated as [41, 61]:

a( f , t)2= |hs( f )|2+A2
d+2Ad |hs( f )|cos

(
2π f ∆d(t)

c
+ϕ( f )

)
,

(3)

θ( f , t)≈ ∠hs( f )−
Ad sin

(
2π f ∆d(t)

c +ϕ( f )
)

a( f , t)
, (4)

respectively, where ∆d(t) is the path length change. ϕ( f ) =
π+∠hs( f ) + 2π f d0

c represents the supplementary angle of
the initial phase difference between the dynamic component
and the static component, where d0 is the initial dynamic
path length. Equation (3) and Equation (4) show that for one
wavelength change of ∆d, both signal amplitude and phase
change for one cycle.

Given M antennas at the transmitter and N antennas at
the receiver, CSI is a N ×M dimensional complex-valued
matrix H( f , t) for one subcarrier at time t. hp,q( f , t) denotes
the channel state from the q-th antenna of the transmitter to
the p-th antenna of the receiver. Specifically, hp,q( f , t) can be
expressed as ap,q( f , t)e jθp,q( f ,t), where the expression of ap,q
and θp,q( f , t) are presented in Equation (3) and Equation (4)
respectively.

Due to unsynchronized clocks between the WiFi transmitter
and receiver, the phase of actual CSI (denoted as Ĥ( f , t))
contains a time-varying random phase offset ε( f , t). The (p,q)
element of Ĥ( f , t) can then be expressed as:

[Ĥ( f , t)]p,q = ap,q( f , t)e j(θp,q( f ,t)+ε( f ,t)), (5)

where [·]p,q represents the element of the p-th row and q-th
column of a matrix. For the sake of brevity, f and t will be
omitted in the rest of formulas.
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Figure 3: The sounding procedure for MU-MIMO transmis-
sions (IEEE 802.11ac).
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2.2 BFM primer
Beamforming feedback matrix (BFM) is another type of

information in WiFi that is capable of depicting wireless chan-
nels. BFM is mainly used to enable MU-MIMO transmission,
which is one key feature of the 802.11ac WiFi standard.

To support MU-MIMO, WiFi AP needs to know the chan-
nel information between AP and all the stations (STAs). The
channel information (BFM) is sent from STAs to AP in a com-
pressed form, i.e., compressed beamforming feedback (CBF).
With the BFM information, AP can then steer the beams to-
wards the desired directions by adjusting the weight of each
antenna’s transmitted signal.

Although BFM also depicts wireless channel, it is different
from CSI. This is because the AP only requires information
to calculate the antenna weights for beamforming, as opposed
to the entire channel state information. In order to reduce
the high transmission overhead of sending the entire chan-
nel state, STA decomposes the measured CSI using singular
value decomposition (SVD). BFM is then extracted from the
right singular matrix and further compressed as CBF, which
is subsequently sent back to AP.

Taking an AP and a STA as an example, the detailed proce-
dure is shown in Figure 3. It contains the following steps:

• Step 1: AP broadcasts a Null Data Packet Announcement
(NDPA) frame to inform STAs in the same WLAN that
the sounding procedure starts.

• Step 2: AP broadcasts a NDP packet to STAs for CSI
estimation.

• Step 3: STA estimates CSI as a N ×M matrix (Ĥ) for
each subcarrier, where M and N are the numbers of trans-
mitting and receiving antennas, respectively.



• Step 4: STA decomposes Ĥ using SVD operation:

Ĥ = USVH , (6)

where S is a diagonal matrix whose diagonal elements σk
(k = 1, · · · ,min(N,M)) are real singular values. U and
V are left and right singular matrices which are unitary
matrices containing complex-valued elements with a
size of N ×N and M×M, respectively. VH indicates the
Hermitian transpose of V. Mathematically, we have

M

∑
p=1

b2
p,q = 1, (7)

where bp,q is the amplitude of the (p,q) element in V,
and q = 1, · · · ,M.

• Step 5: STA extracts the first Ns singular vectors out of V
to construct a new matrix V for beamforming, where Ns
is the number of spatial streams which is no more than
min(N,M). Before compression, a phase adjustment step
is applied to each column. Specifically, the phase of
each column element of V is subtracted by the phase
of the last element in the column of V , and a phase-
adjusted matrix Ṽ is obtained, which is equivalent to V
for beamforming [23, 34]. Ṽ is known as beamforming
feedback matrix (BFM). Then, Ṽ is further compressed
by applying Givens Rotation to obtain CBF. Figure 4
shows the detailed conversion procedure from CSI to
CBF. For the detailed compression algorithm, please
refer to IEEE 802.11-2016 [14].

• Step 6: STA sends the CBF back to AP. Based on IEEE
standard [14], CBF is transmitted without encryption.

When there are multiple STAs, they send CBF to AP one
by one. CBF is transmitted without encryption and can be
overheard by any third party in the environment.

3 Understanding the relationship between
BFM and human motion

As BFM is partial information of CSI, we proceed in Sub-
section 3.1 to establish the mathematical connection between
BFM and CSI. Based on the established connection, we de-
rive the relationship between BFM and human motion, and
analyze the properties of BFM for sensing in Subsection 3.2.

3.1 The mathematical connection between CSI
and BFM

The data processing procedure from CSI to BFM involves
the decomposition of CSI using SVD to obtain the matrix
V . Subsequently, BFM is derived by applying simple phase
adjustment to the column vector of V . In light of this, our
effort is directed towards understanding the mathematical
relationship between V and CSI, following which we deduce
the relationship between BFM and CSI, utilizing V as an
intermediary.

3.1.1 Relationship between CSI and V
In this section, we study the mathematical relationship

between V and CSI. We construct the following equation:

ĤHĤ = VSHUHUSVH = VSHSVH . (8)

Due to the fact that U is a unitary matrix, we have UHU= E,
where E is an identity matrix. Thus the impact of U can be
eliminated by Equation (8).

We assume that AP has M antennas, STA has N antennas,
and M ≥ N. We first substitute Equation (5) into the left side
of Equation (8) and obtain a M × M matrix and the (p,q)
element can be written as:

[ĤHĤ]p,q =
N

∑
k=1

ak,pak,qe j(θk,q−θk,p), (9)

where p,q = 1,2, · · · ,M. p and q are the antenna index at the
AP while k is the antenna index at the STA. As two antennas
at the AP share the same phase offset, the offset is canceled
out in θk,q −θk,p.

For the right side of Equation (8), if the diagonal matrix S
is marked as diag(σ1, · · · ,σN), and the amplitude and phase
of (p,q) element in V are denoted as bp,q and βp,q respectively,
the (p,q) element of VSHSVH can be expressed as:

[VSHSVH ]p,q =
N

∑
k=1

σ
2
kbp,kbq,ke j(βp,k−βq,k). (10)

According to Equation (8), the items represented by Equa-
tion (9) and Equation (10) are equal. Without loss of general-
ity, we assume there is only one antenna at the STA, that is,
N = Ns = 1, and V is generated using the first singular vector
of the V matrix. We thus have:

σ
2
1bp,1bq,1e j(βp,1−βq,1) = a1,pa1,qe j(θ1,q−θ1,p). (11)

Next, we discuss the relationship between the amplitude and
phase of V and the CSI amplitude and phase.

Amplitude of V . We let p = q and Equation (11) is simpli-
fied as σ2

1b2
p,1 = a2

1,p. Then, the amplitude of elements in V
can be obtained as:

bp,1 =
a1,p

σ1
. (12)

The amplitude of the p-th element in V is equal to a scaled
amplitude of CSI between the p-th antenna of AP and STA,
where the scaling factor is the singular value. Based on Equa-
tion (7), we can further derive the singular value σ2

1 as follows:

σ
2
1 =

M

∑
p=1

a2
1,p. (13)

Equation (13) indicates that σ2
1 is the sum of squares of

the CSI amplitudes between all the AP’s antennas and STA’s



antenna. It should be noted that, under target motions, CSI
amplitude varies and σ1 is thus time varying.

Phase of V . If p ̸= q in Equation (11), we can obtain the
relationship between the phase difference of V and phase
difference of CSI as follows:

βp,1 −βq,1 = θ1,q −θ1,p. (14)

Equation (14) shows that the phase difference between the
p-th and q-th elements in V is equal to the phase difference
between the CSIs of AP’s q-th, p-th antenna and STA.

3.1.2 From V to BFM Ṽ
As AP adjusts the phase of multiple transmitted signals on

multiple antennas simultaneously based on the feedback, the
phase difference matters rather than the absolute phase. To
effectively compress V and reduce the amount of feedback, a
phase adjustment is made first. Specifically, the phase of each
element in V is subtracted by the phase of the last element in
V to obtain BFM Ṽ . The element in Ṽ can be expressed as
follows:

[Ṽ ]p,1 = bp,1e j(βp,1−βM,1) =
a1,p

σ1
e j(θ1,M−θ1,p). (15)

The amplitude of Ṽ is the same as that of V . Since the
amount of phase adjustment is not fed back to AP, we are
unable to reconstruct V but can only reconstruct BFM Ṽ .

To sum up, we establish the mathematical relationship be-
tween BFM and CSI as follows:

• The amplitude of the p-th element in BFM is equal to
the amplitude of CSI between the p-th antenna of AP
and STA scaled by the singular value.

• The phase of the p-th element in the BFM is equal to the
CSI phase difference between AP-last antenna-STA and
AP-p-th antenna-STA.

Noted that in the above derivation, the AP is considered to
have multiple antennas, and the STA is considered to have one
antenna. So the BFM in this case is actually a 1-D vector but
not a 2-D matrix. Therefore, the “element" in the derivation
indicates a single element of a vector.

3.2 Sensing Target Motion using BFM
In the previous section, we establish the mathematical ex-

pression of BFM amplitude and phase. Based on it, we can
analyze the characteristics when we use BFM amplitude and
phase for sensing. We take respiration sensing as an example
to illustrate the concept.

3.2.1 Sensing motion using BFM amplitude
Based on the mathematical relationship between the ampli-

tude (|Ṽ |) of BFM and that of CSI presented in Equation (12)
and the relationship between the CSI amplitude and length
change of the dynamic path (∆d) given in Equation (3), the
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Figure 5: The simulated variation of BFM amplitude (|Ṽ |)
and phase (∠Ṽ ) when dynamic path length changes by 5
wavelengths.

mathematical relationship between |Ṽ | and ∆d can be ob-
tained as follows:

|[Ṽ ]p,1|2 =
a2

1,p

σ2
1

=
Fp +Gp cos

(
2π f ∆d1,p

c +ϕ1,p

)
∑

M
m=1

(
Fm +Gm cos

(
2π f ∆d1,m

c +ϕ1,m

)) ,
(16)

where Fp = |hs1,p |2 +A2
d1,p

, and Gp = 2Ad1,p |hs1,p |. Since the
target is usually far away from the transceiver, we can as-
sume that the dynamic path changes (∆d) at different an-
tennas are equal, i.e., ∆d1,1 = ∆d1,2 = · · · = ∆d1,M . In this
case, we can regard |[Ṽ ]p,1| as a function |[Ṽ ]p,1|(∆d1,p)
with ∆d1,p as the variable because other parameters in Equa-
tion (16) are constants. Then we can obtain |[Ṽ ]p,1|(∆d1,p) =

|[Ṽ ]p,1|(∆d1,p + nλ), where n is an integer. Therefore, each
time the dynamic path length changes by one wavelength, the
BFM amplitude varies by one cycle as shown in Figure 5.

3.2.2 Sensing motion using BFM phase
Based on the mathematical relationship between the

phase (∠Ṽ ) of BFM and that of CSI given in Equation (15)
and the relationship between CSI phase and length change
of dynamic path ∆d given in Equation (4), the mathematical
expression between ∠Ṽ and ∆d can be obtained as follows:

∠[Ṽ ]p,1 =θ1,M −θ1,p = ∠hs1,M −∠hs1p (17)

+
Ad1,p sin

(
2π∆d1,p

λ
+ϕ1,p( f )

)
a1,p

−
Ad1,M sin

(
2π∆d1,M

λ
+ϕ1,M( f )

)
a1,M

.

Similar to BFM amplitude, BFM phase ∠Ṽp,1 can be re-
garded as a function ∠Ṽp,1(∆d1,p) with ∆d1,p as the variable.
Then we can obtain ∠[Ṽ ]p,1(∆d1,p) = ∠[Ṽ ]p,1(∆d1,p + nλ),
where n is an integer. Therefore, each time the dynamic path
length changes by one wavelength, the BFM phase varies by
one cycle as shown in Figure 5.

3.2.3 Sensing using both BFM amplitude and phase
We compare the differences between BFM and CSI patterns

on the complex plane using simulation. By setting the change
of dynamic reflection path length to one wavelength in all the
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Figure 6: Three examples of one single element of BFM on
the complex plane when the dynamic path length increases
by a wavelength (the blue color indicates the starting point).

simulations, we obtain various BFM patterns on the complex
plane under different settings as shown in Figure 6. Different
from the trajectory of CSI which is a circle, the trajectory
of BFM is not a circle but there exist a variety of patterns.
This difference is due to varying BFM amplitude and phase
detailed as below:

• Compared to CSI, the amplitude of BFM is multiplied by
a scaling factor. Since this factor is affected by the signal
amplitude of all antennas, it is a time-varying variable,
causing the BFM amplitude to vary.

• The phase of BFM element is the phase difference of
two antennas. It varies with target movement and the
coupling between phase difference and signal amplitude
is much weaker than that between CSI phase and signal
amplitude.

Due to the clear difference between BFM and CSI patterns
on the complex plane, many existing CSI-based sensing mod-
els and methods cannot be directly applied for BFM sensing.

3.2.4 Case study
We take respiration monitoring as an example to analyze

the characteristics of BFM sensing. Respiration induces repet-
itive small motions. During natural breath, the movement of
the chest is about 5mm [29], and the corresponding dynamic
path length varies by about one-sixth of a wavelength for
5 GHz WiFi signals. When the reflection path length changes
by one wavelength, the BFM amplitude varies for one com-
plete cycle. As respiration causes a change smaller than a
complete wavelength, the BFM amplitude change induced by
respiration is a fragment of the complete curve. The curve
fragments differ when a subject is at different positions, result-
ing in different amounts of amplitude variations as shown in
Figure 7(b). At some positions, the BFM amplitude variations
caused by respiration are large and can be easily detected.
We call such positions ‘good positions’ for sensing. Those
positions with small amplitude variations can be buried by
noise and they are called ‘bad positions’.

Through the above example, we can see that the sensing
performance using BFM amplitude varies across locations.
Similarly, using the BFM phase alone also faces the same
problem. This problem was also studied in a recent work [61].
In this work, the complementary property of CSI amplitude
and phase on sensing capability is utilized to remove those

BFM amplitude variation BFM phase variation

Good 
position

Bad 
position

time time

(a) (b) (c)

Figure 7: (a) At different initial positions, signal variations in-
duced by respiration correspond to different BFM fragments.

‘bad positions’. This is because a ‘bad position’ for CSI am-
plitude is a ‘good position’ for CSI phase, and vice versa.

Unfortunately, such an idea is not applicable in BFM-based
sensing. Taking the BFM trajectory on the complex plane in
Figure 7 as an example, we can see that at the ‘bad’ positions,
both BFM amplitude and phase perform badly with small sig-
nal fluctuation. This is because the complementary property
relies on the circular trajectory. As the BFM trajectory on the
complex plane is no longer a circle, its amplitude and phase
lose the complementary sensing capability.

In summary, the ‘bad position’ problem still exists when
we employ BFM for sensing. Furthermore, conventional so-
lutions such as employing the complementary property of
phase and amplitude can not be applied on BFM sensing. In
addition, because the quantitative relationship between BFM
and target displacement is lost, BFM cannot be used to sense
target displacement.

4 Motion Sensing with BFM-Ratio Metric
To address the ‘bad position’ issue and enable quantitative

target displacement sensing, we propose a new metric named
BFM-ratio and validate its benefits for sensing in this section.

4.1 BFM-Ratio Metric
As demonstrated in Section 3.2, the time-varying scaling

factor in BFM amplitude and uncertain phase offset are the
key reasons corrupting the mapping between BFM and target
motion. To obtain the mapping, we need to eliminate the effect
of the scaling factor on BFM amplitude and the phase offset
on BFM phase. Fortunately, although the scaling factors keep
changing over time, they are identical at different elements of
the BFM matrix, as shown in Equation (12). We thus propose
to leverage the ratio of two BFM elements to eliminate the
effect of the scaling factor. Specifically, we call it BFM-ratio
which can be expressed as:

Ṽ1,p

Ṽ1,q
=

a1,p
σ1

e j(θ1,M−θ1,p)

a1,q
σ1

e j(θ1,M−θ1,q)
=

a1,pe− jθ1,p

a1,qe− jθ1,q
(18)

=
hs1,p +A1,pe j(

2π∆d1,p
λ

+ϕ1,p)

hs1,q +A1,qe j(
2π∆d1,q

λ
+ϕ1,q)

,

where hs1,p is the conjugate of hs1,p . For simplicity, we let
Ap = hs1,p , Aq = hs1,q , Bp = A1,pe jϕ1,p , and Bq = A1,qe jϕ1,q .



When the person is far away from the transceivers, the dif-
ference between the two reflection path length variations can
be regarded to be the same at two close-by antennas, that

is ∆d1,p ≈ ∆d1,q. Therefore, we let Z present e j
2π∆d1,p

λ and

e j
2π∆d1,q

λ . Then Equation (18) can be simplified as:

Ṽ1,p

Ṽ1,q
=

Ap +BpZ
Aq +BqZ

, (19)

where Ap, Aq, Bp and Bq can be regarded as complex con-
stants when the target moves a small distance (e.g., chest
displacement during respiration). Z represents a unit circle
rotating counterclockwise when ∆d1,p is increased by one
wavelength. From Equation 19, we can see that the ratio of
two BFM elements is in the form of the Möbius transforma-
tion [37] as long as ApBq ̸= AqBp. One property of Möbius
transformation is that it maps circles to circles [24]. For the
unit circle of Z, the BFM ratio keeps the shape of a circle on
the complex plane [7]. That is to say, when the path length of
the dynamic signal is changed by one wavelength, the BFM-
ratio vector also experiences a phase rotation of 360 degrees
on the I-Q plane. Based on this property, we can obtain the
following properties of the BFM ratio for sensing:

1. BFM-ratio rotates a circle on the complex plane if the
reflection path length is changed by one wavelength. The
BFM-ratio rotates an arc on the complex plane if the re-
flection path length is changed by less than a wavelength.

2. When the magnitude of the static component of CSI is
larger than that of the dynamic component of CSI (|Aq|>
|Bq|), BFM ratio rotates counterclockwise as the length
of the reflection path increases. Otherwise, it rotates
clockwise. In most cases, the static path component (i.e.,
LoS path and reflection from static objects) is stronger
than the reflection from the human body.

With the above properties, we successfully construct a map-
ping between BFM-ratio and the change in signal path length
induced by motion, laying the foundation for BFM sensing.

4.2 Experiment Verification
We verify the above properties via benchmark experiments.

We utilize a Netgear Nighthawk X4S R7800 WiFi AP as the
transmitter and a Tenda U10 WiFi Dongle as the receiver.
They are placed with a LoS distance of 2.4 m. The central
frequency is set as 5.765 GHz, corresponding to a signal
wavelength of 5.2 cm. To mimic a moving target, an iron
plate was placed on a sliding track in the direction of the
perpendicular bisector of the LoS path, as shown in Figure 8.
We moved the iron plate to vary the reflection path length.
When the dynamic path length changes by one wavelength,
while the trajectory of BFM on the I-Q plane is not circular,
the BFM ratio trajectory is a complete circle as shown in
Figure 9(a). Notably, the BFM ratio rotated counterclockwise
when the plate was moved away from the LoS path, and
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Figure 8: Experiment setting for model verification.
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Figure 9: Trajectory of smoothed BFM ratio when the dy-
namic path length (a) increases by one wavelength (the blue
color indicates the starting point), (b) decreases by one wave-
length, and (c) changes by one-sixth of a wavelength.

clockwise when it approached the LoS path. We also control
the starting position of the iron plate to make the length of the
dynamic reflection path change by one-sixth of a wavelength,
and the trajectory of the BFM ratio is shown in Figure 9(c).
The radian of the BFM ratio trajectory is roughly 60 degrees,
which well matches the theoretical value.

5 Case Study
As BFM ratio restores the quantitative mapping between

signal variation and target motion, various sensing applica-
tions can be realized based on the BFM ratio. In this sec-
tion, we employ two applications, i.e., micro-motion breath
monitoring and macro-motion human walking tracking to
demonstrate the sensing capability of BFM ratio.

5.1 Respiration Monitoring
BFM ratio can be used for reliable respiration monitoring

without incurring the ‘bad position’ problem. We calculate
the BFM ratio of each pair of elements in BFM and perform
this operation on all the subcarriers. For example, when AP
and STA have 4 antennas and 1 antenna respectively with 234
subcarriers, 234×C2

4 streams of BFM ratios can be obtained.
Each BFM ratio stream can be further divided into amplitude
and phase streams, and we can obtain a total of 2808 streams.
We can now extract the respiration information by applying
the principal component analysis (PCA) method. We further
apply the Savitzky-Golay filter on the respiration waveform
to smoothen it. The respiration rate is finally calculated by
performing an auto-correlation operation on the respiration
waveform with a window size of 30 s.

5.2 Human Trajectory Tracking
The proposed BFM ratio can also be used to sense macro-

motions, such as the trajectory of human walking. The key



(a) Asus RT-AC86U (b) Netgear R7800 (c) Linksys EA8100

(d) Linksys MR9000X (e) TP-LINK WDR7660 (f) TP-LINK WDR7661

Figure 10: All tested routers support MU-MIMO technology.

information we use for human trajectory tracking is the move-
ment speed of the target. Recall that the BFM ratio model has
established a quantitative relationship between the BFM-ratio
phase change and the dynamic path length change in Sec-
tion 4.1. By leveraging the geometric relationship between
the target and transceivers, we can convert the path length
change speed into the radial speed of the target with respect
to the transceivers [32]. With another pair of transceivers, we
obtain a second radial speed. By fusing the two speeds, we
obtain the true target velocity. Note that we assume the initial
location of the target is known. Within a short period of time
window such as 0.2 s, we can safely assume the target velocity
is a constant. We can then calculate the target location after
the small time window and iteratively compute the following
locations to enable continuous tracking.

6 Evaluation
In this section, we conduct experiments to evaluate the

performance of applying the proposed BFM ratio metric to
realize two typical sensing applications, i.e., micro-motion
respiration monitoring and macro-motion human tracking.

6.1 BFM collection.
We first test the feasibility of BFM data collection on di-

verse devices and evaluate the performance of sensing using
real communication traffic.
BFM data collection on various devices. To demonstrate
the generality of our approach, we test six different WiFi
routers including Asus RT-AC86U, Netgear R7800, Linksys
EA8100, Linksys MR9000X, TP-LINK WDR7660, and TP-
LINK WDR7661 as shown in Figure 10. We denote the above
routers as R1 ∼ R6. Although these routers are of various
brands and equipped with different WiFi chips, we are able to
successfully collect BFM during the communication process
of these routers without changing any firmware or driver. This
is because BFM is protocol-compliant feedback information
that is available on all the devices that support MU-MIMO.
Sensing under real communication traffic. We also eval-
uate the performance of respiration monitoring under real
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Figure 11: Three typical environments with different levels of
multipath and experiment setup for human respiration sensing.

communication traffic between WiFi AP and STAs. Specifi-
cally, we watch live webcasts, listen to music, and browse the
web to generate different real-world traffic patterns. In this
experiment, we use Asus RT-AC86U as AP and two Tenda
U10 cards as the STAs. For different activities, the packet
rate varies significantly. When watching live webcasts, the
mean sample rate of BFM always exceeds 10 Hz, which is
high enough for respiration monitoring. When listening to
music and browsing the Web, the BFM comes intermittently
and the mean sample rate of BFM is 3 ∼ 6 Hz and 3 ∼ 4 Hz
respectively. For human trajectory tracking, usually a sample
rate higher than 20 Hz is required. To trigger more frequent
beamforming feedback packets, we use the iperf3 tool [30] to
generate UDP traffic from AP to STAs.

6.2 Respiration Monitoring using BFM Ratio
Devices. We employ a Netgear R7800 router equipped with
Qualcomm WiFi QCA9984 chipset as the AP and two Tenda
U10 as the STAs to collect BFM samples. Our system operates
at a central frequency of 5.75 GHz, and the channel bandwidth
is 80 MHz. We use a Netgear A6210 as a sniffer to collect
feedback packets from the STAs.

Environment. We conduct experiments in an empty room
(9.5 m × 9.8 m), a living room (3.4 m × 6.1 m) and an
office (4.4 m × 4 m), as shown in Figure 11. In the living
room and the office, there are a lot of furniture and electrical
appliances which create rich multipath. In the living room,
our transceivers are placed at one side of the room, as shown
in Figure 11(b). In the office, our transceivers are placed at
two sides of the room as shown in Figure 11(c).

Participants. We recruit six volunteers including four males
and two females for our experiment, aged between 23 and
57. Throughout the experiment, the user wears a commercial
sensor (Neulog Respiration Monitor Belt logger sensor NUL-
236 [19]) to obtain ground truth. Their respiration rates range
from 12 to 18 bpm (beats per minute).

6.2.1 BFM vs. BFM ratio.

In this section, we compare the performance of respiration
monitoring based on BFM and BFM ratio. We let the target
breathe naturally at different positions. The positions in the
environment are marked with red dots in Figure 11(a).
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Figure 12: The CDF of respiration sensing error with different
signals as input.

Experiment Results. We show the overall respiration rate
error and also snapshots of the signal patterns.

• Respiration rate error. Figure 12 presents the overall
respiration rate errors of different signals. The median
errors are 1.61 bpm, 1.76 bpm, 1.17 bpm, and 0.44 bpm
for BFM amplitude, BFM phase, BFM amplitude+phase,
and BFM ratio, respectively. The errors of using only
BFM amplitude or phase are the largest, while using
both can only slightly improve the accuracy since the
complementary property does not exist. Due to the com-
plementarity of BFM ratio amplitude and phase in respi-
ration monitoring, significantly better performance can
be achieved.

• Breathing induced signal pattern. Figure 13 presents
the detailed patterns of the amplitude and phase of BFM
and those of BFM ratio. These signals are filtered by a
Savitzky-Golay filter. We can see that while BFM am-
plitude or phase can be used for respiration monitoring
at position 1 and position 2, both of them are too weak
to be used at position 3. In comparison, at all three posi-
tions, at least one of the BFM ratio amplitude and phase
can be utilized for respiration monitoring, outperforming
BFM-based method.

6.2.2 Ideal CSI vs. BFM ratio.
To compare the performance with ideal CSI, we use WARP

V3 platform [39] to collect CSI data. We deploy the AP and
STA with a LoS distance of 2.4 m as shown in Figure 14. We
ask a target to sit in the chair located on the perpendicular
bisector of the LoS path of the transceivers. We record CSI and
BFM data simultaneously when a target breathes naturally.
We vary the distance between the target and the LoS path
from 2 m to 5 m at a step size of 1 m. Since the sample
rates of WARP CSI and BFM are different, we first align the
sample rates of these two signals. In addition, the number of
subcarriers provided by BFM (234 subcarriers) is larger than
that of CSI (56 subcarriers). Here we select the same number
of subcarriers (56) for BFM with equal intervals. Then, we
feed the amplitude and phase of CSI, and the amplitude and
phase of BFM ratio into the method described in Section 5.1
while keeping the other parameters the same.

We plot the mean absolute error (MAE) of respiration rate
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Figure 13: Phase and amplitude patterns of the BFM and BFM
ratio when the subject breathes six cycles at three different
positions. While BFM amplitude or phase can be used for
sensing at Position 1 and 2, neither can be used for sensing at
Position 3. In contrast, at least one of the BFM ratio’s phase
and amplitude can be used for sensing at all locations.
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Figure 14: The experiment setup for respiration monitoring.
A WARP SDR is used to collect CSI readings for comparison
with the BFM-ratio-based method.

with respect to the distance from 2 m to 5 m in Figure 15. The
experiment results show that the MAE of respiration monitor-
ing based on BFM ratio is slightly higher than that of CSI. We
believe this is mainly because WARP is a high-end software-
defined radio platform which allows us to extract cleaner CSI
signal. On the other hand, BFM samples extracted from com-
modity hardware have more noise. Furthermore, since BFM
is obtained from CSI through a series of steps including sin-
gular value decomposition and compression, there can be a
precision loss during the process. Despite that, BFM ratio can
still achieve reliable human respiration sensing. We believe
that the sensing accuracy can be further improved through
signal enhancement algorithms leveraging data from multiple
subcarriers [27].

6.2.3 Impact of device and environment diversity
Device diversity. We keep the same environment setting and
collect BFM with different routers placed at the same loca-
tion one by one as shown in Figure 10. We compare the
archived MAE for respiration rate monitoring. Despite differ-
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ent numbers of antennas equipped, similar MAEs are achieved
at different devices as illustrated in Figure 16. The results
demonstrate that the proposed BFM sensing can be realized
on a large range of WiFi devices.

Environment diversity. We deploy AP and STAs in two
other rooms with rich multipath as shown in Figure 11(b)
and Figure 11(c). The achieved MAEs for respiration rate
sensing are 0.43 bpm and 0.46 bpm respectively, which are
comparable to that in the empty room.

Through-wall deployment. We further conduct experiments
under the following through-wall deployments. AP and sniffer
are in the same room while STAs and the target are in another
room. The MAE of respiration rate is 0.76 bpm. Compared
to the previous experiment where all devices are in the same
room, the dynamic path is now attenuated, which leads to a
decrease of the signal fluctuation caused by respiration. The
error is now larger but still below 1 bpm. Note that the location
of the sniffer does not matter as long as it can overhear the
CBF packets containing BFM information.

Multi-target scenario. In this subsection, we test the capabil-
ity of multi-target respiration monitoring. We consider three
typical cases as shown in Figure 18. For MU-MIMO trans-
mission, at least two WiFi stations need to be involved so we
consider two WiFi stations in these cases.

• Case 1: Two targets are in the same room and the two
targets are close to each other.

• Case 2: Two targets are in the same room but are sepa-
rated from each other with an 8 m distance in between.

• Case 3: Two targets are in different rooms.

In multi-target scenarios, signals reflected from multiple
targets are superimposed. When the distance between targets
is close (Case 1), signals from multiple targets can not be
easily separated in the time domain or spatial domain. We
exploit the independence of breathing patterns between targets
and apply the blind source separation method [60] to obtain
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Figure 17: A through-wall deployment for respiration sensing.
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Figure 18: Experiment environments and setup for multi-
target respiration sensing.

each target’s breathing information. In our experiment, with
BFM ratio as the input, a low MAE of 0.53 bpm can be
achieved. For Cases 2 and 3, the targets are separated by a
large distance or a wall. Each STA’s signal variation is more
affected by the nearer target. The respiration rate of each target
can thus be directly estimated from the BFM ratio variation
of each STA. The MAEs of the estimated respiration rates
in the two cases are 0.44 bpm and 0.38 bpm, respectively.
These achieved low MAEs show that BFM ratio can support
accurate multi-target respiration monitoring.

6.3 Human Tracking using BFM ratio
In this section, we evaluate the performance of applying

BFM-ratio for velocity estimation to support human tracking.

6.3.1 Experiment setup
We conduct experiments in two typical indoor environ-

ments, i.e., an empty room (9.5 m × 9.8 m), as shown in
Figure 19(a), and a meeting room (6.4 m × 6.4 m), as shown
in Figure 19(b). One WiFi AP (Netgear R7800) and two
STAs (Tenda U10) are mounted on tripods at a height of one
meter. We place two STAs at different locations to make the
two AP-STA lines perpendicular to each other. The LoS dis-
tance between the transmitter and receivers is set as 4.2 m.
Three volunteers (2 men and 1 woman) are recruited to partic-
ipate in the experiments. The participants are asked to walk
naturally along ten trajectories of various shapes, including
straight line, diamond, rectangle, triangle and ‘N’ path. Each
volunteer walks along each trajectory 20 times.

6.3.2 Performance of human tracking
We plot the recovered human walking trajectories and the

ground truth trajectories (GTT) in Figure 20. We can see
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Figure 20: Human trajectory tracking results with BFM ratio.

that with just two STAs, we can achieve accurate human
trajectory tracking with commodity WiFi. We present the
tracking error in Figure 21. The median localization error is
0.43 m and 0.72 m in the empty room and in the meeting
room, respectively. This result shows that BFM ratio can be
used to not just detect motion but also quantitatively measure
the motion displacement.

6.3.3 Performance in the challenging real-life scenario
In order to demonstrate the performance of BFM ratio

tracking in real environments with rich multipath and NLoS,
we conduct additional experiments in a living room as shown
in Figure 22(a). The size of the room is 3.4 m×6.1 m, and
most of the space is filled with furniture, including sofas,
coffee table, and TV cabinet. AP and one STA are placed near
the wall. The other STA is placed in the adjacent room with a
wall of 30 cm thickness. The straight-line distances between
two STAs and AP are 4 m. The target starts walking from a
corner near the coffee table and stops at the TV cabinet. We
ask the participant to walk along this trajectory 20 times. An
example of the trajectory estimate is shown in Figure 22(b)
which matches the ground truth. The median localization error
is 0.98 m as shown in Figure 21. Due to richer multipaths,
the tracking error in the living room is larger than those in the
empty room and meeting room.
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Figure 21: CDF plot of the localization error.
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Figure 22: Human trajectory tracking in a multipath-rich and
NLoS environment.

7 Related work
In this section, we briefly review the most related work.

7.1 WiFi based contactless sensing
Due to easy access of RSSI at most WiFi devices, in the

early years, human sensing was mainly based on RSSI read-
ings. RSSI was used for human respiration monitoring [1]
and also for fingerprinting-based localization [59]. However,
as RSSI only contains signal strength information, the perfor-
mance is relatively coarse.

In 2010, some open source CSI tools [17] were developed
to support extracting CSI from several 802.11n WiFi chips.
Since then, CSI-based sensing has drawn widespread atten-
tion in both academia and industry. Promising progress has
been achieved from coarse-grained fall detection [42, 46],
gesture recognition [15, 38, 40], activity recognition [33, 56],
indoor tracking [25, 36, 51] to fine-grained vital sign moni-
toring [61, 67]. Compared to RSSI, CSI contains both am-
plitude and phase information. Richer target context such as
speed and angle can be obtained from CSI data. A lot of mod-
els were developed based on CSI input including CSI-speed
model [44], Fresnel zone model [41, 52], Angle-of-Arrival
model [26] and CSI-ratio model [62]. CSI-based sensing
requires specially tailored WiFi firmware and CSI tools to
extract CSI samples. It thus only works with very few WiFi
cards such as Intel 5300 and Atheros 9x series cards.

On the other hand, BFM can be extracted from a large range
of WiFi devices without the need of hacking WiFi firmware or
drivers. It is thus promising to utilize BFM for WiFi sensing.
There has been some initial exploration of BFM sensing. In a
recent work [20], the authors observed that BFM amplitude is



affected by human respiration and respiration rate can be mon-
itored using BFM. Another recent work [21] further showed
that the number of repetitive activities can be counted using
BFM phase information. However, these initial studies are
empirical research based on experiment observations. There
is no theoretical analysis to help people fully understand the
underlying mechanism and also the relationship between CSI
and BFM. In this work, we lay the theoretical foundation for
BFM sensing and analyze the sensing capabilities of BFM. A
recent work (BeamSense [49]) proposed to recover CSI from
BFM for sensing. To recover BFM from CSI, BeamSense re-
quired to extract both downlink BFM and uplink BFM. While
downlink BFM can be easily extracted, uplink BFM can only
be extracted from 1% WiFi stations, which is acknowledged
in BeamSense. In contrast, downlink CBF alone is enough
for our proposed system to work.

7.2 Other RF-based sensing
In addition to WiFi signals, a wide range of wireless tech-

nologies such as RFID, LoRa, FMCW radar, and IR-UWB
radar, have been used for sensing. RFID is a technology that
locates and identifies tags attached to items using radio waves.
RFID has been utilized to realize sensing applications in-
cluding localization [28], authentication [12], human activity
recognition [58], gesture recognition [70] and material sens-
ing [43, 53]. LoRa is a low-power, long-distance wireless
technology designed for connections between IoT devices.
LoRa is also utilized for contactless sensing applications such
as localization [18], human detection [11], respiration moni-
toring [63] and human tracking [54,63]. Recent works further
applied LoRa signals for multi-target sensing [65] and soil
moisture monitoring [10]. FMCW and IR-UWB radars are
two commonly used radars for contactless sensing. They have
been used for vital sign monitoring [5,16,64,66], human track-
ing [2, 3, 13, 69], and even emotion recognition [68]. While
the above technologies showed promising results in various
sensing applications, they still require dedicated devices that
are not yet widely used in our daily life.

8 Discussion
Privacy concern. Since BFM is not encrypted, anyone in-

cluding attackers can eavesdrop on the BFM transmissions
and use the captured BFM readings to sniff human contexts
such as location and activities. One potential solution is to
apply random offsets (both amplitude and phase offsets) to
each element of the BFM readings to corrupt the quantitative
relationship between BFM ratio and target motion. However,
this method does affect the communication function of BFM.
We thus need to embed the random offsets in the encrypted
WiFi packets to compensate the applied offsets at legitimate
nodes. This will unavoidably lead to more complicated proto-
col design and higher computational load which eventually
may degrade the throughput performance. We believe protect-

ing targets from being sensed by BFM readings is an exciting
topic worth more effort.

AoA and ToF estimation from BFM. The key informa-
tion to enable AoA estimation is the signal phase readings,
more precisely, the phase difference between antennas. Since
BFM preserves the phase difference between antennas dur-
ing the compression process, the steering vector can still be
constructed for AoA estimation. BFM may have difficulties
being used for ToF estimation. This is because the phase re-
lationship between sub-carriers is the key information for
ToF estimates. During the compression process, the phase
readings subtracted at different subcarriers are different, cor-
rupting the phase relationship between subcarriers which is
critical for ToF estimation.

CSI vs. BFM. We believe few manufacturers are willing
to release the raw CSI readings to the public and we do not
expect a change in the near future. There are two main reasons
for this. The first reason is that due to the high sampling rate
and detailed information on each subcarrier, the high transmis-
sion cost of CSI (i.e., a large amount of data) can degrade the
communication throughput. Second, detailed CSI information
can also leak confidential chip performance information to
the public. This is why BFM adopts a lower sampling rate
and only transmits compressed partial data. Therefore, com-
pared to CSI, we believe BFM is the choice for real-world
adoption of WiFi sensing. We believe building the theoretical
foundation for BFM-based sensing moves a big step towards
real-world adoption of WiFi sensing.

9 Conclusion
While WiFi CSI sensing has been popular in the past

decade, CSI can only be extracted from very few WiFi cards,
greatly hindering the adoption of CSI-based WiFi sensing.
We observe an exciting opportunity brought by the new-
generation WiFi devices supporting 802.11ac MU-MIMO
technology, i.e., a new channel information called BFM can be
extracted from a large range of WiFi cards for sensing. In this
paper, we studied the underlying principle of BFM sensing by
revealing the relationship between BFM and CSI. We propose
to take the ratio of two BFM elements to avoid the inherent
issues associated with BFM for sensing. The theoretical anal-
ysis lays a foundation for WiFi sensing on new-generation
WiFi devices. Comprehensive experiments demonstrated the
effectiveness of applying BFM for fine-grained sensing.
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