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The spatial structure of in-gap Yu-Shiba-Rusinov (YSR) bound states induced by a magnetic
impurity in a superconductor is the essential ingredient for the possibility of engineering collective
impurity states. Recently, a saddle-point approximation [Phys. Rev. B 105, 144503] revealed how
the spatial form of a YSR state is controlled by an anisotropic exponential decay length, and an
anisotropic prefactor, which depends on the Fermi velocity and Fermi-surface curvature. Here we
analyze STM data on YSR states in NbSe2, focusing on a key issue that the exponential decay
length predicted theoretically from the small superconducting gap is much larger than the observed
extent of YSR states. We confirm that the exponential decay can be neglected in the analysis of
the anisotropy. Instead, we extract the anisotropic prefactor directly from the data, matching it to
the theoretical prediction, and we establish that the theoretical expression for the prefactor alone
captures the characteristic flower-like shape of the YSR state. Surprisingly, we find that up to linear
order in the superconducting gap the anisotropic prefactor that determines the shape of YSR states
is the same as the anisotropic response to the impurity in the underlying normal metal. Our work
points out the correct way to analyze STM data on impurities in small-gap superconductors, and
reveals the importance of the normal band structure’s curvature and Fermi velocity in designing
multi-impurity in-gap states in superconductors.

I. INTRODUCTION

The local response to single magnetic impurities in
conventional superconductors appears most directly in
the form of pairs of in-gap excitations localized on the
impurity known as Yu-Shiba-Rusinov (YSR) states [1–
3]. YSR states are nowadays routinely probed by scan-
ning tunneling microscopy (STM) experiments [4], and
while an old problem, they have attracted a renewed
wave of interest owing to their potential to extract in-
formation on the properties of the host [5–7], and study
magnetism [8, 9] and spin-transport phenomena [10–13]
at the atomic scale. At the same time, much experimen-
tal and theoretical effort has been devoted to designing
complex structures in real space (e.g. impurity chains or
lattices)[14–27] which are suggested to realize topologi-
cal states of matter harboring Majorana zero modes [28].
Understanding the spatial structure of YSR states is key
for developing this program.

In an isotropic d-dimensional system, the local density
of states (LDOS) of YSR states far away from the impu-
rity behaves according to ∼ e−r/ξ/rd−1, with the super-
conducting coherence length controlling the exponential
decay, ξ ∼ vFℏ

∆ ∼ ξSC. The dependence of the power-
law on the dimensionality of the substrate has been evi-
denced by STM measurements on two-dimensional super-
conductors (d = 2), e.g. NbSe2, where the in-gap LDOS
extends over several nanometers [29–31], thereby render-
ing this class of materials a promising platform for con-
structing collective impurity states [32–36]. In general,
the measured in-gap LDOS oftentimes displays a marked
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anisotropy on length scales largely surpassing the typical
impurity size, and hence attributed to the lower symme-
try of the band structure [30, 37]. The theory of spatial
structure of YSR states is hence intricate, requiring a
blend of information about the substrate’s band struc-
ture, pairing function, and impurity coupling.

Recently, the theory of the quasiparticle focusing effect
(QFE) [38, 39] was extended to superconducting sub-
strates by some of the authors [40], leading to the follow-
ing insights in the limit of weak pairing, ∆/εF ≪ 1, and
at long distances (rkF ≫ 1):

1. The QFE persists, i.e. the response to the impu-
rity in a given real-space direction is controlled by
momenta (denoted critical) on the Fermi surface at
which the Fermi velocity lies parallel or antiparallel
to that real-space direction. This selectivity in re-
ciprocal space controls the spatial anisotropy of the
YSR states; in particular, YSR states are focused
in directions perpendicular to flatter sections of the
Fermi surface.

2. Specifically to gapped superconductors, the in-gap
YSR LDOS has an additional exponentially decay-
ing factor with angularly dependent exponential
decay length, apart from a prefactor and oscilla-
tions, all related to the geometry of the Fermi sur-
face through a simple analytical expression. Impor-
tantly, the prefactor and exponential decay length
are essentially always in phase, i.e. they agree on
the direction along which the LDOS is focused.

This theory describes very accurately the anisotropy of
the characteristic exponential decaying length of YSR
states simulated on a lattice [40] and successfully pre-
dicts the main anisotropy directions of YSR states ob-
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served in NbSe2. However, the tight-binding description
of the Nb-derived bands at the Fermi level [41] in combi-
nation with the small superconducting gap (∆ ∼ 1 meV
[42, 43]), yields an in-gap LDOS with large exponential
decay length (ξTB ∼ 100 nm) [29, 35, 36, 44] that widely
surpasses the extent of the observed YSR states, as well
as the superconducting coherence length reported in this
material (ξexpSC ∼ 10 nm [45–47]). Therefore, there is a
problem in the natural interpretation that the anisotropy
of the coherence length in NbSe2 fundamentally controls
the shape of the YSR LDOS, and theoretical radial fitting
of an exponential decay is questionable.

In this work, we show that the angular dependence
of the LDOS prefactor accounts for the anisotropy of
YSR states in this material, while the radial fitting of the
LDOS can be circumvented, i.e., the (anisotropic) expo-
nential decay can be neglected. This evokes the QFE in
normal metals [38, 39], where standard Friedel oscilla-
tions decay algebraically and lack the exponential factor.
In fact, our analytical expression of the prefactor has the
same functional form, in terms of the Fermi velocity and
curvature of the Fermi surface, as the LDOS in case of a
normal metal. A difference in principle arises when this
expression is evaluated at the critical momenta, which
vary as the band structure of the metal changes into the
one of the superconductor. Surprisingly, we find that up
to linear order in ∆/εF ≪ 1 the prefactor of the impurity-
induced LDOS in the superconductor exactly equals the
one in the parent normal metal. We show that this pref-
actor can be reliably extracted from STM data on NbSe2,
and that the characteristic flower-shaped YSR LDOS is
faithfully modelled by the prefactor alone.

The rest of the paper is organized as follows: we start
by presenting the STM data in Sec. II. Then, in Sec. II A,
we briefly recall the main analytical expressions derived
in [40] and we analyze the spatial anisotropy of the LDOS
prefactor. This analysis is complemented in Sec. II B,
where we study the Fourier transform of the YSR states.
We conclude with a short discussion in Sec. III. Addi-
tional details concerning the experiment and the theory
expressions are presented in the Appendices.

II. RESULTS

We consider STM data on 2H-NbSe2 crystals contain-
ing a few tens of ppm of magnetic atoms measured at
300 mK with a metallic tip (for additional details con-
cerning the fabrication and measurement conditions, see
Appendix A). YSR bound states manifest as an in-gap
peak in the differential-conductance spectrum at the im-
purity location (see Appendix A). In Fig. 1, we present
atomically-resolved data around two independent impu-
rities on the same sample. The constant-current image
[Fig. 1 (a) and (c)] shows the triangular geometry of the
Se lattice without any visible imperfection, implying that
the defect giving rise to the YSR state is most likely an
atom substitution in the Nb layer. The corresponding
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FIG. 1. Spatial data sets 1 and 2. (a) Atomically-resolved
constant-current image of the Se surface of 2H-NbSe2, V = 4
mV, I = 160 pA. (b) In-gap current recorded at V = −0.6
mV showing a six-fold YSR state. The (c,d) The same as
(a,b) for another YSR state, V = 4.2 mV, I = 100 pA. The
lines at the bottom-left corner indicate the crystallographic
axes of 2H–NbSe2. Their length corresponds to 2 nm in both
data sets.

current images recorded before the onset of the super-
conducting coherence peak [Fig. 1 (b) and (d)] show a
marked six-fold anisotropy that constitutes an excellent
example of the QFE on a superconductor.

A. Characterization of the LDOS prefactor in real
space

Let us begin by briefly recalling the theoretical frame-
work to describe the QFE on superconductors. We model
the impurity-substrate system as a classical spin on an
s-wave superconductor.

The Hamiltonian reads,

H = H0 + Himp, (1a)

H0 =
∑
kσ

εkσc
†
kσckσ + ∆

∑
k

c†k↑c
†
−k↓ + h.c., (1b)

Himp = −J
(
c†r0↑cr0↑ − c†r0↓cr0↓

)
, (1c)

where εk is the spin-degenerate normal energy dispersion
of the substrate, ∆ is the BCS superconducting gap and
J is the amplitude of the magnetic exchange coupling
between the superconducting electrons and the spin of
the impurity at r0. Specifically, εk is an effective fifth-
nearest neighbours tight-binding energy dispersion on a
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triangular lattice that describes one of the two lowest-
lying Nb 4d bands of 2H-NbSe2 [41] (see Appendix C).
This description neglects interlayer coupling of the bulk
crystal and assumes that the magnetic impurity couples
to one band only [29, 44]. It also neglects spin-orbit cou-
pling [48], however, it provides a faithful description of
the geometry of the Fermi surface and band structure of
the substrate, which is the crucial element to character-
ize the QFE. In addition, Eq. (1c) assumes a fully local
and isotropic scatterer, thereby neglecting the magnetic
ion’s d-orbital structure and the adsorption site’s sym-
metry. These add to the YSR-state wavefunction some
degree of anisotropy [8, 49]; however, the observed six-
fold anisotropy of the LDOS [Fig. 1 (b) and (d)] occurs on
length scales of several nanometers that largely surpass
the typical orbital size, therefore it can be safely ascribed
to the QFE, and justifies the model’s simplification.

The LDOS at a distance r from the impurity and at the
bound-state energy ES is computed by means of a saddle-
point approximation on the bare propagator valid in the
far-field limit (rkF,min ≫ 1, with kF,min the minimum
Fermi wave vector of the Fermi contour). By further
taking the small-gap limit (∆/εF ≪ 1), the LDOS takes
the approximate form

ρ(r) ∼ 1

r

∑
j,j′

Γj,j′(θr)e−r/ξj,j′ (θr)f [k±
j,j′(θr) · r], (2)

where the angular-dependent prefactor reads

Γj,j′(θr) =
1

|∇εk̃j(θr)
|√κk̃j(θr)

|∇εk̃j′ (θr)
|√κk̃j′ (θr)

, (3)

with |∇εk̃j(θr)
| the Fermi velocity and κk̃j(θr)

the cur-

vature of the Fermi contour evaluated at k̃j(θr). The

critical momenta k̃j(θr) are solutions to the saddle-point
equations in the small-gap limit, namely, points on the
Fermi contour for which the Fermi velocity is parallel to
r,

∇εk̃j(θr)

|∇εk̃j(θr)
| = r̂, (4)

hence their dependence on the polar angle θr which con-
trols the spatial anisotropy of the LDOS. We recall that
the gapped nature of the superconductor yields complex
solutions to the saddle-point equations [40]. However,
up to and including the linear order in ∆/εF, these so-

lutions [i.e. the vectors k̃j(θr)] are real and positioned
on the Fermi contour of the underlying metal. There-
fore, the prefactor Γj,j′(θr) in Eq. (3) in the small-gap
limit is simply determined by the band structure of the
normal metal (see Appendix B). The exponential de-
cay length ξj,j′(θr) depends on the Fermi velocity at

k̃j(θr) and k̃j′(θr), and f [k±
j,j′(θr) · r] is a linear combi-

nation of oscillating functions with typical characteristic

inverse lengths k±
j,j′(θr) = k̃j(θr) ± k̃j′(θr). The indices

j, j′ = 1, . . . , N label the various solutions to Eq. (4).
The form in Eq. (2), derived in Appendix B, is more com-
pact than the form first derived in Ref. [40], as it pairs up
the two contributions from the wavevectors whose respec-
tive Fermi velocities are parallel and antiparallel to the
observation direction [the latter satisfying Eq. (4) with
r̂ → −r̂]. The Fermi contour of NbSe2 consists of three
disconnected pockets centered at Γ, K and K ′, therefore,
N = 3.

To analyze the spatial anisotropy of the STM data we
consider radial averaging in annuli around the impurity
and hence introduce the following quantity:

Iint(θr) =
1

M

∑
Rm∈M(θr)

|Rm| · I(Rm), (5)

where I(Rm) is the measured current at point Rm sitting
at a distance |Rm| from the impurity, while M(θr) is the
set of M points belonging to an angular sector centered
on the impurity, having infinitesimal angular width dθ,
an inner radius R0, and outer radius R0 + δ. As long as
R0 is sufficiently large to make the asymptotic approxi-
mation reasonable (R0 ≫ 1/kmin

F ∼ 0.2 nm for the Fermi
contour under consideration), we can relate Iint(θr) to
the radially-integrated LDOS,

Iint(θr) ∼ ρR0,δ
int (θr) =

1

δ

∫ R0+δ

R0

drrρmax(r), (6)

where ρmax(r) is the term in Eq. (2) with dominant pref-
actor, Γmax(θr) = max{Γj,j′(θr)}. This simplification is
legitimate as the various prefactors Γj,j′(θr) are essen-
tially in phase (see Appendix C for further details). We
can further simplify Eq. (6) by making the following as-
sumptions:

• The integration range δ is larger than the typical
oscillation length, therefore f [k±

j,j′(θr) · r] is aver-
aged out and can be safely ignored.

• The exponential decay length is sufficiently large so
that e−r/ξ(θ) ∼ 1 over the integration range. This
demands R0 + δ ≤ ξexpSC ∼ 10 nm ≪ min{ξj,j′(θr)}.
This approximation also relies on the fact that the
angular dependence of the prefactor and the ex-
ponential decay length are in phase, and therefore
there are not any competition effects.

Under these assumptions ρR0,δ
int (θr) becomes independent

of δ, and further, we have

ρR0,δ
int (θr) ∼ Γmax(θr). (7)

In Fig. 2 we present the result of our analysis in com-
parison with the model curve

Γmodel(θr) = aΓmax(θr) + a0. (8)

Here a is a free parameter in the theory, and a0 is con-
stant shift on the order of the background signal. We
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FIG. 2. Angular dependence of the LDOS prefactor. (a)
and (b) panels correspond to data set 1 and 2, respectively.
Purple-to-yellow curves represent experimental data points
|Iint|(θ) for δ-values specified in the legend and dθ = 2π/100.
Legend inset shows the real-space current data with a lattice
vector aligned with the horizontal axis (θr = 0). We excluded
a range of data points in data set 1 due to interference with
another YSR state (partially visible on the bottom right of
the image).

estimate the latter by taking the signal average far away
from the impurity times the typical integration length

Rn ∼ R0 + δmin+δmax

2 . Experimental data points ρR0,δ
int (θ)

above the background signal collapse onto a universal
curve, thereby supporting the assumptions stated in the
previous paragraph.

The relative angular position of the model curve with
respect to the data points is not a degree of freedom, but
it is determined by the orientation of the lattice vectors
(see legend insets in Fig. 2), the latter being extracted
from the constant-current image of the atomic surface.
We emphasize the agreement between the positions of
the maxima and minima of the model and the exper-
imental curves. While the six-fold nature of the YSR
state may follow trivially from the symmetry of the band
structure, its orientation with respect to the lattice does
not. One could generally expect YSR states to be ori-
ented according to high-symmetry lines; however, it is a
priori equally reasonable for the “petals” of the LDOS to
be along the lattice vectors or in-between. The theory
shows how this is, in fact, determined by the geometry
of the Fermi surface and Fermi velocity.

We note that the periodicity of the data points with

θr exhibits certain higher harmonics, namely, the signal
becomes thinner at the crests and wider at the valleys,
in other words, the “petals” are narrow. This non-trivial
feature is also present in the model curve.

B. Fourier-space analysis

To further confirm the validity of our interpretation, we
study the Fourier transform (FT) of the in-gap recorded
current [Fig. 3 (a)], and we compare it against the FT of
the asymptotic expression of the LDOS, which contains
the prefactor, the exponential decay, and the oscillations,

ρ̃(q) =
∑
j,j′

∫ 2π

0

dθrΓj,j′(θr)F̃j,j′(q, θr), (9)

with F̃j,j′(q, θr) ≡
∫
dre−r/ξj,j′ (θr)f [(k±

j,j′(θr)−q)·r] the

integral over the radial coordinate r (see Appendix D for
details).

(a) (b) (c)

Low

High

FIG. 3. (a) Fourier transform’s modulus of the in-gap current
shown in Fig. 1 (b). The blue hexagon indicates the FBZ
and the blue cross marks one of the Bragg peaks. (b) Fourier
transform’s modulus of the analytical expression of the LDOS
[Eq. (9)] evaluated on the FBZ. (c) same as (b) with constant
prefactor.

The experimental FT of the YSR states exhibits two
salient features that are qualitatively captured by the
model [cf. Fig. 3 (a) and (b)]. The first comprises the
linear segments parallel to the edge of the hexagonal
First Brillouin Zone (FBZ), corresponding to the short
wavelength oscillations of the YSR state. The second
is the six-fold star at small q whose orientation is ro-
tated by π/6 with respect to the YSR state in real-space
(cf. Fig. 1) as expected from the fact that a focused sig-
nal in real-space gives a focused feature in Fourier space
that is in orthogonal direction. The small star in mo-
mentum space is the manifestation of the QFE at large
length scales. Finally, we corroborate that the long-range
anisotropy of the YSR state, i.e., the small-q star feature
in Fourier space, is controlled by the prefactor in the
asymptotic expression of the LDOS: we set Γj,j′(θr) = 1
in Eq. (9) and obtain a FT-map which differs from the
full ρ̃(q) exactly in that it lacks the small-q six-fold star
[Fig. 3 (c)].
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III. CONCLUSIONS

We show that the theory of the quasiparticle focus-
ing effect in two-dimensional superconductors [40] can
be further simplified in application to STM data of su-
perconductors such as 2H-NbSe2, in which the coherence
length derived from the band structure exceeds the spa-
tial extent of YSR states. Our conclusions are established
both by a practical analysis of annuli in real space, and
by analysis of features in Fourier space.

The key physical quantity for all practical purposes be-
comes the prefactor Γ(θr) of the LDOS expression, which
faithfully captures the symmetry, orientation, and angu-
lar profile of YSR states observed in STM experiments.
The prefactor has a simple analytical expression depend-
ing on the Fermi velocity and curvature of the Fermi
surface only. In particular, the LDOS around a magnetic
impurity is preferentially focused in directions perpen-
dicular to flatter sections of the Fermi contour, and in
the small-gap limit it matches the QFE in the underly-

ing normal metal [38, 39]. It would be interesting to test
this matching in future measurements of local response
to impurities in the normal metallic state of NbSe2.

In conclusion, this work demonstrates the applicability
of asymptotic approximations in the spirit of [38–40] for
describing the local response to point defects, and under-
lines the importance of the band structure geometry for
designing collective impurity states.
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Appendix A: Experimental details and additional data

2H-NbSe2 single crystals were grown using an iodine transport method and were unintentionally doped by a few
tens of ppm of magnetic species (Fe, Cr, Mn) contained in the Niobium precursor, see Ref. [29] for more details. The
crystals were mechanically cleaved in cryogenic vacuum at T ∼ 20 K and directly inserted into the STM head [50] at
4.2 K. An etched atomically sharp and stable tungsten tip was used for all measurements, which were performed at
T = 0.3 K. In Fig. 4 we present the dI/dV spectra for the two impurities considered in this work and in Fig. 5 (b,d)
we analyze the anisotropy of the signal recorded at positive bias to complement the data presented in the main text.

80

60

40

20

0

dI
/d

V 
(n

S)

-2 -1 0 1 2
Sample bias (mV)

80

60

40

20

0

dI
/d

V 
(n

S)

-2 -1 0 1 2
Sample bias (mV)

(a) (b)

FIG. 4. Tunneling spectrum taken at the core of the YSR state in Fig. 1a, b (a) and Fig. 1c, d (b) showing the strongest
in-gap peak at VS = −0.1 meV and VS = 0.25 meV, respectively.
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FIG. 5. Same analysis of the LDOS prefactor as in Fig. 2 of the main text for the in-gap current recorded at positive bias, V = 0.6
mV. (a) and (b) correspond to data sets 1 and 2, respectively. The phenomenological parameters in the model curve [Eq. (8)]
for panels [Fig. 2 (a, b), Fig. 5 (a, b)] are: a0 = (−3,−3,−2.5,−2.1) · 10−12 pA · nm and a/ac = (4.45, 4.45, 3.2, 4.45) · 10−7 pA

· nm · meV1/2, with the model curve computed using Eqs. (C1) to (C3b) and “Band 2” parameters in Table I.

Appendix B: Derivation of the LDOS expression

We derive the expression for the in-gap LDOS in Eq. (2), which is equal in value to the main result from [40],
but is further transformed to make explicit that LDOS is real, and that the doubling of critical momenta in the
superconductor with respect to the normal metal does not essentially alter the prefactor. We further show that the
prefactor up to linear order in ∆/εF matches the one of the normal metal.

The bare propagator at energy E < ∆ from ra = r to rb = 0 on an s-wave superconductor (described by the
Hamiltonian in Eq. (1b) of the main text) in Nambu space can be approximated in the far-field limit (rkF,min ≫ 1,
with kF,min the minimum Fermi wave vector of the Fermi contour) as

Ĝ0(r,0;E) ∼ 1√
r

∑
j,ϵ=±

Γj,ϵ(θr) exp

{
− r

ξj,ϵ(θr)
+ i

[
r · Re [kj,ϵ(θr)] + ϵ

π

4

]}(
E + iϵω ∆

∆ E − iϵω

)
, (B1)

where θr is the polar angle on the plane defined by the vector r from the impurity to the point where we seek to
evaluate the LDOS, ω =

√
∆2 − E2 and

Γj,ϵ(θr) =
1

|∇εkj,ϵ(θr)|
√
κkj,ϵ(θr)

, (B2a)

ξj,ϵ(θr) =
1

Im [kj,ϵ(θr)] · r̂ , (B2b)

with |∇εkj,ϵ(θr)| norm of the gradient of the energy dispersion εk, and κkj,ϵ(θr) the curvature of the Fermi contour
εk = 0 evaluated at kj,ϵ(θr). The points kj,ϵ(θr) are the solutions to the saddle-point equations, namely complex
momenta satisfying

εkj,ϵ(θr) = iϵω, (B3a)

∇εkj,ϵ(θr)

|∇εkj,ϵ(θr)|
= ϵr̂, (B3b)

where j = 1, . . . , N denote the solutions from multiple disconnected pockets of the Fermi contour, ϵ = ± and r̂ the unit
vector defined by θr. For our present purpose of analyzing a small-gap superconductor, we consider a perturbative
expansion of the saddle-point equations in ∆/εF, noting that the normal metal is recovered as the pairing vanishes.
This forces two simultaneous limits: (1) ∆/εF → 0, and (2) ES → ∆, which due to the only in-gap state being at
E = ES effectively means that in Eq. (B3a) one has ω → 0. In Ref. [40] it was shown that to linear order in ∆/εF,
the angle-dependent quantities in the exponent of the propagator (B1) take the following form:

Re [kj,ϵ(θr)] = k̃j,ϵ(θr), (B4a)

ξj,ϵ(θr) =
|∇εk̃j,ϵ(θr)

|
ω

, (B4b)
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with k̃j,ϵ(θr) the solutions to the saddle-point equations in the ω → 0 limit,

εk̃j,ϵ(θr)
= 0, (B5a)

∇εk̃j,ϵ(θr)

|∇εk̃j,ϵ(θr)
| = ϵr̂, (B5b)

that is, real momenta positioned on the Fermi contour. To zeroth order in ∆/εF, it is obvious that the prefactor is

real and takes the same form as in the normal-metal propagator, i.e., Eq. (B2a) evaluated at k̃j,ϵ(θr),

Γj,ϵ(θr) =
1

|∇εk̃j,ϵ(θr)
|√κk̃j,ϵ(θr)

. (B6)

The question arises whether there is any non-trivial correction to next-leading order, i.e., linear in ∆/εF. To
show that there is no correction, we consider an expansion of the prefactor in terms of a small complex quan-

tity z with kj,ϵ(θr) = k̃j,ϵ(θr) + z, knowing that z → 0 as ∆/εF → 0. The key point now is that the angu-
lar profile of the measured YSR state depends on the amplitude of the prefactor, so that we write Γj,ϵ(θr) ≡
|Γ| exp(iΦ) and consider the expansion of the real function evaluated for a complex value of its variable, |Γ(z)| ≈√[

Γ(k) + 1
2Γ′′(k)Re(z2)

]2
+
[
Γ′(k)Im(z) + 1

2Γ′′(k)Im(z2)
]2 ≈ Γ(k) + O(∆2), where k ≡ k̃j,ϵ(θr) is the real solution

in the metal [Eq. (B5)]. We used that Γ(k) is real, and further assumed that the correction Im(z) is at least linear in
∆, while the Re(z) is at least quadratic, which is reasonable due to the structure of Eq. (B3a). We note that these
properties of z can be confirmed in the particular example of an elliptic Fermi contour worked out in Ref. [40]. For
the second step in the expansion we also assumed Γ(k) ̸= 0, which is a condition for the entire saddle-point approach
to be valid anyway. Hence the correction of the amplitude of the prefactor is at most second order in ∆/εF, so that
up to and including first order the prefactor is calculated as for the normal metal [Eq. (B6)]. We note that the
prefactor’s phase Φ can in general be linear in ∆/εF, thereby contributing an additional θr-dependent phase to the
bare propagator (and hence the LDOS) whose analysis is beyond the scope of this work.

Continuing now the derivation of the LDOS, to all orders in perturbation theory in the strength of the impurity
potential V̂ , the modification of the LDOS due to a point-like scatterer at r = 0 is given by

ρ(r, E) = − 1

π
Im Tr

[
M̂Ĝ0(r,0;E)T̂ (E)Ĝ0(0, r;E)

]
, (B7)

where T̂ (E) = V̂
[
1 − Ĝ0(0,0;E)V̂

]−1

is the T-matrix and M̂ = (τ0 + τz)/2 projects out the electron-electron

component. Here and in the following τ0,x,y,z denote the Pauli matrices in Nambu space. Note that the counter-

propagator satisfies Ĝ0(0, r;E) = Ĝ∗
0(r,0;E). Since the anisotropy of the LDOS is encoded in the bare propagator

(B1), we simplify by considering a magnetic scatterer only, without non-magnetic scattering amplitude, i.e. V̂ = −Jτ0.

Further, we neglect the anisotropy of the band structure when evaluating Ĝ0(0,0;E) in the T-matrix,

Ĝ0(0,0;E) ≡ 1

V
∑
k

Ĝ0(k, E) ∼ − πν0√
∆2 − E2

(
E ∆
∆ E

)
, (B8)

where ν0 is the density of states at the Fermi level. Under these assumptions and in the small-gap limit we have

ρ(r) ∼ − 1

π
Im

1

r

∑
j,j′,ϵ,ϵ′

Γϵ,ϵ′

j,j′(θr) exp

{
− r

ξϵ,ϵ
′

j,j′(θr)
+ i

[
r ·

(
k̃j,ϵ(θr) − k̃j′,ϵ′(θr)

)
+ (ϵ− ϵ′)

π

4

]} Nϵ,ϵ′

D
, (B9)

where

Γϵ,ϵ′

j,j′(θr) = Γj,ϵ(θr)Γj′,ϵ′(θr), (B10a)

ξϵ,ϵ
′

j,j′(θr) =

(
1

ξj,ε(θr)
+

1

ξj′,ε′(θr)

)−1

, (B10b)

Nϵ,ϵ′ = t0(∆2 + E2) + 2E∆tx + t0ω
2ϵϵ′+ (B10c)

+ iω(Et0 + ∆tx)(ϵ− ϵ′),

D = t20 − t2x, (B10d)
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with t0 = 1 − αE
ω , tx = α∆

ω and α = ν0πJ , and Γj,ϵ(θr) and ξj,ϵ(θr) as defined in Eqs. (B6) and (B4b), respectively.
The energy of the in-gap bound states are given by the poles of the T-matrix, i.e. D = 0, and takes the well known
form,

E±
S = ±∆

1 − α2

1 + α2
. (B11)

To obtain the LDOS of the YSR state [51], we evaluate Nϵ,ϵ′ at E = E+
S and expand D to first order around

E = E+
S to obtain up to a constant prefactor,

ρ(r) ∼ − 1

π
Im

1

r

∑
j,j′,ϵ,ϵ′

Γϵ,ϵ′

j,j′(θr) exp

{
− r

ξϵ,ϵ
′

j,j′(θr)
+ ir ·

(
k̃j,ϵ(θr) − k̃j′,ϵ′(θr)

)} Xϵ,ϵ′

E − ES
, (B12)

where Xϵ,ϵ′ = (1 + α2)eiφϵ,ϵ′ with

φϵ,ϵ′ =

{
0 if ϵ = ϵ′,

ϵ
[
π
2 + arg

(
1 − α2 + i2α

)]
if ϵ ̸= ϵ′.

(B13)

We note that including a non-magnetic component to the scattering potential yields a different expression for Xϵ,ϵ′ ,
but crucially, with the same dependence on ϵ, ϵ′.

The expression in Eq. (B12) can be written in a more compact form by noticing that, owing to the evenness of the

energy dispersion εk, for each point k̃j,+(θr), there exists a point k̃l,−(θr) such that k̃l,−(θr) = −k̃j,+(θr). If the j
pocket is centered around the Γ point, then j = l, but this is not the case in general. The prefactor and characteristic
decay length satisfy that Γj,+(θr) = Γl,−(θr) ≡ Γj(θr) and ξj,+(θr) = ξl,−(θr) ≡ ξj(θr), therefore, by relabelling the

critical points as {ϵk̃j(θr)}j=1...N
ϵ=±

, it becomes obvious that the only contribution to the LDOS comes from the poles

of the T-matrix,

ρ(r) ∼ 1

r

∑
j,j′

Γj,j′(θr)e−r/ξj,j′ (θr)
∑
ϵ,ϵ′

exp
{
i
[
r ·

(
ϵk̃j(θr) − ϵ′k̃j′(θr)

)
+ φϵ,ϵ′

]}
δ(E − ES), (B14)

where Eq. (2) in the main text is recovered by introducing

f [k±
j,j′(θr) · r] ≡

∑
ϵ,ϵ′

exp
{
i
[
r ·

(
ϵk̃j(θr) − ϵ′k̃j′(θr)

)
+ φϵ,ϵ′

]}
, (B15)

that is a real-valued function. With the new notation the ϵ = − solutions to Eq. (C4a) are constructed from the ϵ = +
solutions, therefore Eq. (4) in the main text considers the parallel solutions only. Note, however, that the antiparallel
solutions are encoded in f [k±

j,j′(θr) · r].

Appendix C: Analysis of the tight-binding energy dispersion

The starting point to compute the model curve for the prefactor (Fig. 2 in the main text) is a tight-binding energy
dispersion that describes the two lowest-lying Nb 4d bands of 2H-NbSe2,

εk = µ +

5∑
i=1

tigi(k), (C1)

where ti is the hopping amplitude to the i-th nearest neighbor and

g1(k) = 2 cos ζ cos η + cos 2ζ, (C2a)

g2(k) = 2 cos 3ζ cos η + cos 2η, (C2b)

g3(k) = 2 cos 2ζ cos 2η + cos 4ζ, (C2c)

g4(k) = cos ζ cos 3η + cos 5ζ cos η,+ cos 4ζ cos 2η, (C2d)

g5(k) = 2 cos 3η cos 3ζ + cos 6ζ, (C2e)
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FIG. 6. Examples of critical points for various values of θr. The blue lines indicate the Fermi contour for the chosen 2H-NbSe2
model, i.e. Eq. (C1) with parameters of Band 2. The black arrow represents r̂, i.e., a vector in real space from the impurity
location to an arbitrary position where we evaluate the LDOS. The orange dots on the Fermi contour indicate the corresponding

critical points ϵk̃j(θr), i.e., the solutions to Eqs. (C4a, C4b) (ϵ = +) and their spatially-inverted counterparts (ϵ = −). The
orange arrows indicate the normalized gradient of the energy dispersion at that point, parallel (ϵ = +) and anti-parallel (ϵ = −)
to r̂. (a), (b) and (c) correspond to θr = π/6, π/3, 3π/2, respectively.

with ζ = 1
2kxac and ζ =

√
3
2 kyac, and ac is the lattice constant. The hopping amplitudes are presented in Table I.

We follow Refs. [29, 44] and assume that the adatom primarily couples to one of the bands only. Specifically, we take
Band 2, which we treat as a spin-degenerate energy dispersion.

µ t1 t2 t3 t4 t5

Band 1 10.9 86.8 139.9 29.6 3.5 3.3

Band 2 203.0 46.0 257.5 4.4 -15.0 6.0

TABLE I. Fitted tight-binding parameters for the two lowest-lying Nb 4d bands of 2H-NbSe2. All parameters in meV, for
ac = 3.444 Å. Extracted from Ref. [41]

The Fermi velocity and the curvature of the Fermi contour that control the anisotropy of the LDOS are related to
the energy dispersion as follows,

|∇εk| =
√

(∂kx
εk)2 + (∂ky

εk)2, (C3a)

κk =
(∂kx

εk)2∂2
ky
εk + (∂ky

εk)2∂2
kx
εk − 2∂ky

εk∂ky
εk∂

2
kx,ky

εk

|∇εk|3
. (C3b)

To compute the model curve for the prefactor we first obtain the critical points in the FBZ by numerically solving

εk̃j(θr)
= 0, (C4a)

∇εk̃j(θr)

|∇εk̃j(θr)
| = r̂, (C4b)

for a discrete set of θr values. As the Fermi contour of the energy dispersion in Eq. (C1) has three non-equivalent

pockets, we obtain six critical points {ϵk̃j(θr)}j=1,2,3
ϵ=±

for a given direction in real space determined by θr (see Fig. 6).

This yields a set of six distinct Γj,j′(θr) curves that are essentially in phase [see Fig. 7 (a)]. Crucially, the prefactor
curves are in phase with respect to the characteristic decay length curves as well [Fig. 7 (b)], which justifies the
simplification of taking the dominant prefactor Γmax(θr) = max{Γj,j′(θr)} in the model curve.
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0 π 2π
θr

0.6

1.3
Γ
j,
j′

(a
.u
.)

(a)

0 π 2π
θr

62

88

ξ j
,j
′
(n

m
)

(b)

j, j′

(1, 1)

(1, 2)

(1, 3)

(2, 2)

(2, 3)

(3, 3)

FIG. 7. (a) Angular dependence of the LDOS prefactor. (b) Angular dependence of LDOS exponential decay length with
ω = 1 meV. Each curve denotes an interference term (j, j′) with j, j′ = 1, 2, 3 for pockets centered at Γ = (0, 0), K = (0, 4π/3a)
and K′ = −K. Certain curves are three-fold periodic only reflecting the reduced symmetry of the K,K′ pockets [e.g. (2, 2)],
yet, the six-fold symmetry of the band structure is recovered when taking into account all the interference terms. The curve
presented in Fig. 2 in the main text corresponds to curve (1, 1) in panel (a). Compare with Fig. 6 to observe that both the
prefactor and the exponential decay length are maximal when r̂ is perpendicular to the flattest sections of the Fermi contour.

Appendix D: Derivation of the Fourier transform of the LDOS

We derive here the Fourier transform of the LDOS at the YSR-state energy:

ρ̃(q) ≡
∫

dre−iqrρ(r)

=
∑
j,j′

∫ ∞

0

dr

∫ 2π

0

dθrΓj,j′(θr)
∑
ϵ,ϵ′

exp

{
r

[
ipϵ,ϵ′(q, θr) · r̂ − 1

ξj,j′(θr)

]}

=
∑
j,j′

∫ 2π

0

dθrΓj,j′(θr)
∑
ϵ,ϵ′

eiφϵ,ϵ′
1

ipϵ,ϵ′(q, θr) · r̂ − 1/ξj,j′(θr)
,

(D1)

where pϵ,ϵ′(q, θr) = ϵk̃j(θr) − ϵ′k̃j′(θr) − q, and Eq. (9) in the main text is recovered by setting

F̃j,j′(q, θr) ≡
∑
ϵ,ϵ′

eiφϵ,ϵ′
1

ipϵ,ϵ′(q, θr) · r̂ − 1/ξj,j′(θr)
. (D2)

The maps in Fig. 3 (b) and (c) are obtained by replacing the angular integral by a sum over a discrete set of {θr}
values, for each of which the term

∑
j,j′ Γj,j′(θr)F̃j,j′(q, θr) is evaluated. Importantly, to ensure that ρ̃(q) has the

periodicity of the reciprocal lattice, the pairs of critical points ϵk̃j(θr) − ϵ′k̃j′(θr) have to be mapped onto the FBZ.
Further, as it was shown in Appendix B, the φϵ,ϵ′ phase depends on the nature of the scatterer. For simplicity, we
set α = 1 in Eq. (B13) which assumes the strong-coupling regime, i.e. ES = 0.
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Kim, L. Kipp, and K. Rossnagel, Phys. Rev. B 85, 224532
(2012).

[42] J. G. Rodrigo and S. Vieira, Physica C 404, 306 (2004).
[43] M. Kuzmanović, T. Dvir, D. LeBoeuf, S. Ilić, M. Haim,
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