
HAL Id: hal-04783574
https://hal.science/hal-04783574v1

Submitted on 14 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamic reconstruction for digital tomosynthesis: A
phantom proof of concept for breast care

Matteo Barbieri, Clément Jailin, Laurence Vancamberg, Stéphane Roux

To cite this version:
Matteo Barbieri, Clément Jailin, Laurence Vancamberg, Stéphane Roux. Dynamic reconstruction for
digital tomosynthesis: A phantom proof of concept for breast care. Biomedical Physics & Engineering
Express, 2024, 10 (5), pp.055026. �10.1088/2057-1976/ad6773�. �hal-04783574�

https://hal.science/hal-04783574v1
https://hal.archives-ouvertes.fr


Dynamic reconstruction for digital tomosynthesis: A

phantom proof of concept for breast care

Matteo Barbieri1,2, Clément Jailin1,2, Laurence Vancamberg1 and
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Abstract.

Objective: Digital tomosynthesis (DTS) is a type of limited-angle Computed Tomography (CT)

used in orthopedic and oncology care to provide a pseudo-3D reconstructed volume of a body part

from multiple X-ray projections. Patient motion during acquisitions results in artifacts which af-

fect screening and diagnostic performances. Hence, accurate reconstruction of moving body parts

from a tomosynthesis projection series is addressed in this paper, with a particular focus on the

breast. The aim of this paper is to assess the feasibility of a novel dynamic reconstruction tech-

nique for DTS and evaluate its accuracy compared to an available ground truth.

Approach: The proposed method is a combination of a 4D dynamic tomography strategy lever-

aging the formalism of Projection-based Digital Volume Correlation (P-DVC) with a multiscale

approach to estimate and correct patient motion. Iterations of two operations are performed: i)

a motion-corrected reconstruction based on the Simultaneous Iterative Reconstruction Technique

(SIRT) algorithm and ii) a motion estimation from projection residuals, to obtain motion-free

volumes. Performance is evaluated on a synthetic Digital Breast Tomosynthesis (DBT) case.

Three slabs of a CIRS breast phantom are imaged on a Senographe Pristina™, under plate-wise

rigid body motions with amplitudes ranging up to 10 mm so that an independent measurement

of the motion can be accessed.

Results: Results show a motion estimation average precision down to 0.183 mm (1.83 voxels),

when compared to the independent measurement. Moreover, an 84.2% improvement on the mean

residual error and a 59.9% improvement on the root mean square error (RMSE) with the original

static reconstruction are obtained.

Significance: Visual and quantitative assessments of the dynamically reconstructed volumes show

that the proposed method fully restores conspicuity for important clinical features contained in

the phantom.

Keywords: Digital tomosynthesis, Dynamic tomosynthesis, Dynamic reconstruction, 3D motion

estimation, Digital Breast Tomosynthesis
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1. Introduction

Digital tomosynthesis (DTS) is a type of limited-angle Computed Tomography (CT) used in the

medical field to provide pseudo-3D images for screening and diagnostic purposes. However, due

to the smaller number of available radiographs (9-60) and limited gantry angle (25° to 40°) [17],

DTS provides lower depth resolution than CT while limiting patient radiation dose and cost. The

technology has rapidly evolved in the last three decades [16, 17] and has demonstrated clinical

benefits in breast [24, 50, 52], thoracic [3, 20, 32] and orthopedic [9] care by reducing the tissue

superimposition issue observed in 2D radiographs.

Nevertheless, the top patient-related artifact in both CT [12, 42] and DTS [21, 31] is caused

by motion during examination. Patient’s motion causes blurring or replication of structures

in the reconstructed volumes which may prevent radiologists from identifying clinically relevant

features [29]. For instance, Vikgren et al [54] showed that lesions as large as 17 mm were missed

in patients with breathing motion artifacts in thoracic DTS.

Since motion-pollution is a well known limitation in CT and DTS imaging, various strategies

have been developed to milder its impact. Some approaches aimed at removing the motion by

performing simultaneous multiple source X-ray acquisitions [6, 7, 45] or by synchronizing acquisition

rate with an external physiological signal like the heartbeat or breathing cycles. [33, 39] However,

these strategies significantly increase the complexity of the imaging device and protocols. Similarly,

retrospective projection binning (4D-CBCT) [34, 40] was introduced in CT and extended to

DTS [60] to provide easier access to the phases of a given periodic motion. In some cases a motion

estimation was performed in CT between multiple phases to access a global kinematic description

and motion-free reconstruction. [8, 34] However, this approach consists in performing multiple CTs

(or DTS), which increases radiation dose and examination time.

Other strategies that do not rely on multiple sources hardware, external signal inputs or

multiple acquisitions were developed to dynamically estimate the motion in 2D and 3D and provide

a motion-free reconstructed volume from a unique series of projections. These methods are the

focus of our state of the art.

Concerning pure 2D methods applied to CT, estimation of in-plane motion is performed on

raw projection data in CT by different means such as interpolation between successive helical

fan-beam frames, [55] correlation between successive spectral moments of the projections [44, 57]

or cross-correlation between successive projections. [18] Approximate motion corrections in the

projection space were then implemented before feeding the corrected projections to the standard

reconstruction algorithm.

Other 2D/3D hybrid methods estimate the 3D positions of some physical [37] or fiducial [13, 14]

landmarks, reproject them and apply 2D transformations (rigid or non-rigid) to the projections

to minimize the distance between the original landmarks and their reprojected positions. As

previously, the corrected projections are used as input of a reconstruction algorithm. For DTS,

a method similar to [37] has been used to highlight the presence of patient’s motion in Digital
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Breast Tomosynthesis (DBT), [47] and led to a U.S. Patent in 2021. [43] Indeed, since a standard

45 mm breast a DBT examination is longer than a standard Digital Mammography (9s vs. 1s),

motion artifacts in DBT have a higher impact and must be detected and tackled.

More recently, it was acknowledged that a 2D correction of a 3D motion was not sufficient

and methods to include 3D kinematics in the reconstruction process from a single routine scan

were developed. First attempts were made analytically on a motion-compensated Filtered Back-

Projection (FBP) [13] but were limited to the correction of RBMs. This nevertheless enabled

Choi et al to estimate 3D RBMs by minimizing the difference in the projection space of fiducial

landmarks and their reprojection from the current status of the reconstructed volume. Later on,

Motion-compensated SART (McSART) [11, 48] enabled further development in non-rigid 3D motion

estimation. In fact, it enabled the development of other dynamic iterative methods relying on an

estimation of 3D kinematics minimizing the projection residuals — defined as the norm between

the original projections and reprojection of the related motion-corrected volume — such as the

Simultaneous Motion Estimation and Image Reconstruction (SMEIR) [56] or Projection-based

Digital Volume Correlation (P-DVC) reconstruction [27, 28] algorithms. In the latter, the principle

is to exploit a linearization of the dynamic reconstruction problem and to iteratively update a

motion corrected reconstruction with the estimated kinematic fields extracted by Gauss-Newton

minimization over a large kinematic basis.

Finally, the development of artificial intelligence tools applied to the medical field showed good

reconstruction performances and was used for the purpose of dynamic reconstruction. [25, 35, 36]

However, training of such tools requires ground truth information which is hardly accessible in

tomosynthesis due to the specific geometry and ill-conditioning of the inverse problem. Application

of these methods to DTS are still a challenge for reconstruction but may be tackled in a near

future. [46]

Considering options suited to the present use case, i.e., based on a single series of projections,

only some strategies exploiting the tracking and registration of physical landmarks (bright spots

in projections) are available but need to be adapted to the specific case of tomosynthesis. In this

respect, the technique used in Marchant et al. [37] was implemented and used as a baseline for

comparison in the following.

This paper describes a dynamic reconstruction framework which uses the P-DVC formalism

from [28] to estimate motion and an iterative algebraic motion-compensation reconstruction based

on the Simultaneous Iterative Reconstruction Technique (SIRT) algorithm to correct the volumes.

The originality of this work, in the context of DTS reconstruction, lies in its ability to both identify

non-rigid 3D motion and produce a motion-free volume from a single routine scan without the

need for predictable motion, dedicated hardware, or changes to existing clinical procedures. For

this purpose, a novel general method is presented and thoroughly evaluated through a detailed

experimental setup. Since breast imaging is by far the main use application of tomosynthesis,

a widely used breast imaging phantom is selected to represent a reasonable texture and provide
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access to independent motion measurements. Evaluation is then performed both quantitatively and

qualitatively.

The paper is organized as follows: Section 2 presents the Digital Breast Tomosynthesis

framework and the data used for experimental validation. The proposed method for the motion-

compensated reconstruction and kinematic estimation are presented in a general form in section 3

with highlights specific to the breast phantom application case are detailed in 3.3. The results of

dynamic reconstruction experimental validation are presented in section 4 and further discussed in

section 5.

2. Breast phantom application data

Since breast care is the principal use case for DTS, the choice was made to apply the dynamic

tomosynthesis method to Digital Breast Tomosynthesis (DBT). In this section, a brief introduction

to tomosynthesis is presented and the acquisition protocols used for the breast application case are

described.

2.1. Digital Breast Tomosynthesis (DBT) acquisition system

The validation of the proposed method was performed using a Senographe Pristina™ (GE

HealthCare, Chicago, IL, USA) Digital Breast Tomosynthesis system. In this system, the X-ray

source performs a step-and-shoot routine along a circular arc above a fixed detector plane of size

nξ × nη = 2394 × 2850 pixels (pitch of 0.1 mm) and acquires nθ = 9 cone-beam radiographs at

angles {θi}i∈[[1,nθ]] equally distributed between -12.5° and 12.5°. The air gap between the detector

and the top of the patient support is of 23.24 mm, the source rotation center is at a distance of

43.24 mm from the detector and the rotation radius is 616.76 mm long. In the present experiment,

all radiographs are corrected by an angle-wise flatfield acquired beforehand and the terminology

projection refers to the flatfield-corrected and negative-log-transformed radiographs.

To identify the geometry, two orthonormal frames are defined X = {x, y, z} and Ξ = {ξ, η}
which respectively pave the volume and detector plane. Finally, let (nx × ny × nz) be the

reconstructed volume size in voxels.

2.2. Breast phantom acquisitions

In this study, the aim is to synthetically generate a motion-polluted projection series from several

motionless acquisitions. A stack of three, 10 mm thick, plates of the BR3D Breast Imaging phantom

model 020 (CIRS Inc., Norfolk, VA, USA), [15] was used for the experimental validation of the

proposed algorithm. Each plate contains a swirled pattern of tissue-equivalent adipose and glandular

materials mimicking breast texture and additional fibers, spheroidal masses and microcalcification-

like specks are present in one plate providing finer details. Finally, small copper markers were

manually pinned on the boundaries of each phantom plate to provide additional landmarks.
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To generate the synthetic motion-polluted cases, nine motionless DBTs were performed.

Between each motionless DBT, each plate of the phantom was moved independently following

random in-plane Rigid Body Motions (RBM). As described in figure 1a, synthetic motion-polluted

acquisitions are generated by randomly selecting projections from the nine motionless series (one

projection per angle), thus mimicking a motion occurring during a DBT sweep. 30 different and

independent cases were thus generated. The resulting motion, referred to as “shear motion” in the

following, is thus parameterized by 9 degrees of freedom, which depict two orthogonal translations

and a rotation per plate.

In addition, all nine original volumes were reconstructed and the 3D positions of the copper

markers were manually extracted, providing a ground truth for the phantom configuration. Motion

amplitudes were recovered by measuring the displacement of the copper markers and were found

to range up to 10 mm with respect to the configuration of the 0° projection.

(a) (b)

Figure 1: (a) Generation of a synthetic motion-polluted case from multiple series of motionless
projections and reconstruction schemes (b) Projection of the phantom with copper markers
(indicated by white arrows).

3. Methods

This section describes the reconstruction method, the Projection-based Digital Volume Correlation

(P-DVC) formalism and the general method for dynamic (i.e., motion estimation and correction)

reconstruction.

3.1. Reconstruction algorithms

3.1.1. Image formation In this work, the physical model assumes a monochromatic X-ray cone

beam and non-diffracting material. From here on, p(Ξ) = {pθi(Ξ)}i∈J1,nθK of size (nθ, nξ×nη) is the
vector of the projection values for all angles and Π = {Πθi}i∈J1,nθK of size (nθ, nx×ny×nz, nξ×nη)
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the associated projection operator. The flatfield correction is performed with a method adapted

from [26].

3.1.2. Static reconstruction The reconstruction algorithms used in tomosynthesis are similar to

those used for CT imaging, notwithstanding the difference in angle coverage. The main solutions

are algebraic such as ART [23], SIRT, [22] and SART [2] or analytic such as the Filtered Back-

Projection algorithm. [19, 30] Since algebraic methods are known to perform better on limited-angle

problems [40], and because of the limited number of available projections, the SIRT algorithm is

used in the present study.

Let ψ be a vector representing any given 3D volume, the reconstruction in tomosynthesis is

sought as f , a value of ψ minimizing the “projection residual” L2 norm, given a positivity constraint

f = Argmin
ψ>0

i=nθ∑
i=1

∥pθi(Ξ)−Πθi [ψ(X)](Ξ)∥2 . (1)

By denoting fn the solution at iteration n, the general formulation of the SIRT algorithm is given

by

fn+1(X) = fn(X) + λ

i=nθ∑
i=1

CθiΠ
⊤
θiRθi [pθi(Ξ)−Πθi [f

n(X)](Ξ)] (2)

where Cθi and Rθi are diagonal matrices with (Cθi)jj = 1/
∑
l(Πθi)lj , (Rθi)ll = 1/

∑
j(Πθi)lj and

λ a relaxation parameter set to 1.0 in the following. In addition, the process is considered to have

reached convergence if the relative improvement of the residual norm for the current iteration is

lower than 10%.

3.1.3. Motion-compensated reconstruction Motion-compensated reconstruction has been effec-

tively implemented and used in CT dynamic reconstruction frameworks such as the ones from

[28, 48, 56] through a modified version of the SART algorithm. Here, a motion-compensated recon-

struction based on the SIRT algorithm is preferred due to the small number of available projections.

The key for motion compensation is to ensure that numerical projections are performed with

objects deformed to the state of the current time step whereas volume updates are computed in the

reference state as displayed in [41, 53]. For this purpose, the update presented in (2) is transformed

as follows

fn+1(X) = fn(X) + λ

nθ∑
i=1

(CθiΠ
⊤
θiRθi [pθi −Πθi [f

n(X +Ui)]])(X +Wi) (3)

where U = {Ui}i∈[[1,nθ]] is the series of 3D Eulerian displacement fields for each angle θi and

W = {Wi}i∈[[1,nθ]] their Lagrangian counterpart.
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3.2. Motion estimation

3.2.1. Gauss-Newton scheme In the following, f(X) denotes the absorption of the reconstructed

volume (encoded in gray levels), f(X + Ui) the deformed volume at the time of projection i

with Ui =
∑N
j=1uijΦj(X) the related displacement field and Φ(X) a kinematic basis. With those

notations and V representing a vector of the space containing the vector fields Vi for each projection

i, the reconstruction problem presented in (1) becomes

(f(X),U) = Argmin
ψ,V

nθ∑
i=1

∥pθi −Πθi [ψ(X + Vi)]∥2 . (4)

The problem defined by (4) is non-convex and has no ready analytic solution. However, it

may be locally approximated by linearization and successive corrections δUk are sought, such that

Uk+1 = Uk + δUk where δUk is a small perturbation of Uk. Hence,

δUk = Argmin
δV

∑
i

∥pθi(Ξ)−Πθi [f
k(X +Uk

i ) +∇fk(X +Uk
i )δVi](Ξ)∥2

= Argmin
δV

∑
i

∥pθi(Ξ)−Πθi [f
k(X +Uk

i )]−Πθi [∇fk(X +Uk
i )δVi](Ξ)∥2

(5)

given the linearity of the projection. Defining ri(f
k,Uk) = pθi(Ξ) − Πθi [f

k(X + Uk
i )](Ξ) as the

“projection residual” and δVi =
∑N
j=1δvijΦj(X) yields

δuk = Argmin
δv

∑
i

∥ri(fk,Uk)−
∑
j

Πθi [∇fk(X +Uk)Φj(X)]⊤(Ξ) · δvij∥2

= Argmin
δv

∑
i

∥ri(fk,Uk)−
∑
j

Sij(f
k,Uk) · δvij∥2

(6)

with Sij(f
k,Uk) = Πθi([∇fk(X+Uk)Φj(X)]⊤(Ξ) being the projected sensitivity of the kinematics

described by Φj at angle θi. Equation (6) shows that δuk can be estimated by solving a least

square regression problem between the projected residuals r(fk,Uk) and the projected sensitivities

S(fk,Uk), which can be written

δuk = [S(fk,Uk)⊤S(fk,Uk)]−1S(fk,Uk)⊤r(fk,Uk) . (7)

Since the hessian matrix is often badly conditioned, a Tikhonov regularization parameterized by µ

may be added to solve (6), which translates into

δuk = [S(fk,Uk)⊤S(fk,Uk) + µIN ]−1S(fk,Uk)⊤r(fk,Uk) , (8)

with IN the identity matrix of size N ×N .
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3.2.2. Multiscale approach A known limitation of the Gauss-Newton method is that the correction

δu is assumed to be small. Hence, the relevance of the gradient operator is achieved for an upper

bound of the expected motion amplitude ℓ by applying a 2D Gaussian filter of variance σf = ℓ on the

projections and downsampling by retaining 1 out of ℓ×ℓ pixels. A first order Taylor-expansion may

capture a rough estimation of the motion amplitude which can be used as a pre-correction for the

major part of the motion through motion-compensated reconstruction. Then, a finer analysis can

be made with a shallower filter and as ℓ decreases, successive iterations eventually allow to directly

consider the unfiltered projections. This constitutes a multiscale (pyramidal) approach [1], which

can prevent the occurrence of secondary minima trapping and significantly reduce computational

cost.

In addition, the least-squares problem from (6) remains ill-conditioned. The Tikhonov

regularization through parameter µ is a classical trick to circumvent this difficulty. The higher µ is,

the stronger the limitation on poorly-determined kinematic modes. Hence, progressively decreasing

µ when going through the identification iterations will gradually encompass finer motion details.

At a given scale and regularization intensity the identification process is considered to have reached

convergence if the relative improvement of the residual norm after reconstruction is lower than 30.

The run finishes when ℓ = 1 and µ = 0.

3.2.3. Dynamic tomosynthesis algorithm Given the SIRT algorithm and its dynamic counterpart

McSIRT (section 3.1), the general motion identification process is summarized in the pseudo-code

algorithm 1.

The first step is the reconstruction of the polluted volume (u0 = 0) at the scale ℓ assumed

to be the largest patient motion amplitude. From there, the sensitivities and the increment δUk

are computed and used in the subsequent motion-compensated reconstruction. This procedure is

iterated until convergence condition is met. Then, all subsequent scales are considered until ℓ = 1

is reached. For convergence purposes, it is to be noted that every reconstruction (but the first) is

initialized with the result of the previous one. In the case of a scale change, the previous volume is

upsampled by interpolation. Let S(ℓ× µ) be the scheduled steps of scale and regularization.

3.3. Breast phantom application

3.3.1. Kinematics modeling As mentioned in paragraph 3.2.1, the motion estimation is based on a

kinematic basis Φ which should be able to capture the motions occurring during the Digital Breast

Tomosynthesis (DBT) sweep. In accordance with the experiment described in section 2.2, a set of

shape functions Φ is defined as follows to capture the ”shear motion”. Let ϕ and {Zi}i∈[[1,3]] be

defined as

ϕ =


ϕ1 = (1, 0) translation along x-axis

ϕ2 = (0, 1) translation along y-axis

ϕ3 = (y,−x) rotation around origin

, Zi =

{
1 if z ∈ plate i

0 if not
(9)



Dynamic reconstruction for digital tomosynthesis 9

Algorithm 1 Dynamic tomosynthesis algorithm

1: procedure dyn-recon(p, Φ, S(ℓ× µ))
2: u0 = 0
3: k = 1
4: for ℓs × µs in S(ℓ× µ) do
5: ps = rescale(p, ℓs)
6: while Not converged do
7: fk = McSIRT(ps,u

k−1)
8: Compute kinematic update δuk with regularization µs ▷ Equation (7)
9: k = k + 1

10: end while
11: end for
12: fk = McSIRT(ps,u

k−1) ▷ Update with last identification
13: return fk, uk−1

14: end procedure

To account for the independence of the different plate motion, Φ is given by Φi+3(j−1) = ϕiZj ,

thus producing a 9D kinematic basis.

Note that the shape function basis Φ only allows motion within the xy-plane. Because the

actual motion of the phantom does not include motion along the z-axis (2.2) and that the DBT

setup implies a breast compression limiting the motion in that direction, the degree of freedom

along z may be omitted.

3.3.2. Multiscale and regularization steps For the validation experiment, no automatic scheduling

of scale and Tikhonov regularization has been developed. Hence, the empiric parameters used are

reported in table 1.

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7
ℓ 32 16 16 8 4 2 1
µ γ2 γ2 γ7 0 0 0 0

Table 1: Evolution of scale and regularization parameters during convergence, where {γi}i∈[[1,N ]]

are the eigenvalues of the hessian ordered in descending order.

3.3.3. Projection masking The motion estimation defined in (6) is assumed to work on the whole

projection data. However, motion may cause part of the sample to move in and out of the field of

view during the time of the acquisition. Hence the outer parts of the projections can’t be used due

to the potentially missing information and are removed from the motion-identification process by

applying a mask ΞM . Since the expected motion is of about 10 mm, the mask ΞM excludes 100

pixels from the borders in all directions.
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3.4. Comparative analysis

A comparison is performed among 6 reconstructions methods defined bellow.

MP reconstruction: is the motion-polluted reconstruction performed following the scheme in (2)

with the motion-polluted projections as input.

2D warped reconstruction: is an adaptation of the method from Marchant et al [37]. First,

radio-opaque point-like markers are tracked in the projection space and their 3D positions are

estimated. Secondly, the estimated 3D positions are reprojected and used as tie points for non-

rigid projection warping. Finally, a reconstruction following the scheme in (2) is performed with

the warped projections as input. For the present experiment, three visible markers were identified

and used for the projection warping. Two markers were taken from the two largest calcification

clusters and the third one was a visible material spot on the border.

DYNRBM-reconstruction: is a reconstruction performed following the P-DVC scheme defined

in this article while using Φ = ϕ, thus only including the measurement of RBMs (3 degrees of

freedom).

DYNShear-reconstruction: is a P-DVC dynamic reconstruction using the 9D-kinematic basis Φ

defined in 3.3.1

MCGT-reconstruction: is a reconstruction performed with the McSIRT algorithm. Inputs are

the motion-polluted projections and the manually measured displacement fields.

GT-reconstruction: is a reconstruction performed following (2) with a motionless series of

projections as input as described in figure 1a.

3.5. Evaluation criteria

Evaluation metrics were used to assess performance in the projection, volume and kinematic spaces

as well as the clinical outcome.

• Residual metrics: The evaluation criterion for the reconstruction problem is the one

presented in (4) and ensures that the identification procedure leads to a higher consistency

of the solution. The residual fields will be evaluated visually and with their Root Mean

Square Error (RMSE) over the areas within the mask ΞM (3.3.1). r(f,U) = ∥p(ΞM ) −
Π[f(X,U)](ΞM )∥2/

√
#(ΞM ), with ri(f,U) the angle-wise value.

• Volume metrics: The gray-level RMSE is computed with the static volume as a reference.

This is computed within a mask XM excluding the background: R(f,U) = ∥f(XM ) −
fGT (XM )∥2/

√
#(XM ).

• Displacement field metrics: To appreciate the accuracy of the displacement field estimation,

the RMSE of its difference with the ground truth over the mask XM of the object is

reported. For this purpose, the displacement field estimated from the manual measurements

UGT is taken as a reference and the result is expressed in millimeters. R(U) = ∥U(XM ) −
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UGT (XM )∥/
√

#(XM ) is the global difference and R(Ux),R(Uy) the value limited to the x

and y directions.

• Average mean difference of degrees of freedom: As an additional criterion on the

kinematic estimation, the average of the difference between the ground truth and the estimation

is computed over all combinations of motion-polluted cases for all projection angles and degrees

of freedom. This metric is named ∆ and the associated standard deviation is σ∆.

• Image quality metric: As a quantitative image quality metric, the sharpness of a region,

noted s, is computed by taking the standard deviation of the voxels present over a given area.[5]

This area includes the object of interest and a 1 pixel large margin.

• Visual quality assessment: A visual evaluation of a full reconstruction slice is performed to

assess the global improvement in the reconstruction and the visibility of particular embedded

texture such as masses, fibers and microcalcifications. Additional high resolution figures are

provided to specifically assess the microcalcification rendering.

4. Results

In this section, the results of the dynamic reconstruction pipeline applied on the breast phantom

application (2.2) are presented. An in-depth description of a single case is presented in section 4.1

while a statistical analysis on the larger set of cases is presented in section 4.2.

4.1. Single case detailed description

As a first result, figure 2 reports the evolution of the mean residual error r(f,U) for the DYNShear-

reconstruction. The continuous blue line shows its progress throughout reconstruction iterations

while the blue dots show the update of the motion estimation. In addition, green (resp. blue)

dotted lines show the change of scale (resp. regularization intensity) as described in table 1. At a

given resolution and regularization intensity, r(f,U) decreases smoothly (thanks to reconstruction

iterations) and experiences sudden drops immediately after motion estimation steps. These drops

are however smaller as the number of reconstruction iterations increases. When decreasing the

regularization intensity — thus increasing the number of available degrees of freedom — (dotted

blue lines) an increase in the convergence rate is noted until it reaches a new plateau. However,

it is expected to see that the mean residual error significantly increases at each scale upsampling

(green dotted lines), due to the interpolation approximation to initialize the reconstruction at the

new scale.

During the dynamic reconstruction iterations, the degrees of freedom have converged towards

the ones identified from the ground truth. Figure 3 reports the final identified values (blue) for

each degree of freedom at each phantom plate for all projection angles with respect to the manually

measured ground truth (dotted black). Per definition, the displacement at angle 0° is null as the

time of the central projection is considered as the reference.
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Figure 2: Residual norm of the dynamic reconstruction pipeline. Vertical green lines indicate an
image scale change, vertical blue lines a Tikhonov parameter change, and blue dots indicate a
motion estimation update.

Visually, the matching of the identification with the measured ground truth is excellent for the

x-translation and rotations for which the maximum error is respectively 0.16 mm and 0.12°. The

identification of the y-translation presents however a slight linear shift for the lower and middle

plate. This shift reaches about 0.27 mm at the highest angular position of the source and will be

discussed later on.

As a first visual observation, Figure 4 compares the MP-, DYNShear- and GT-reconstructions.

It shows the projection residuals r0◦(f,U)(ΞM ) for angle 0° clipped at ±20% of the total projection

amplitude and cropped by mask ΞM . Visually, a strong reduction of the residual in the areas where

the projection gradient is intense is striking. The discrepancies on the left phantom border and

larger patterns in the object that appear in figure 4a are no longer visible in the residual of the

dynamic reconstruction in figure 4b.

From the clinical point of view, it is interesting to visualize the reconstructed volumes and

assess the motion artifacts. Figure 5 compares the reconstructions from a global point of view on

a slice at height z = 6 mm. Improvement is visible from left to right and top to bottom as the

kinematic models better describe the applied motion. Specifically, global intensity is restored, left

phantom border becomes gradually sharper and the internal structure clearer. In addition, figure 6

displays a high resolution image of the reconstruction slices at z = 6 mm around 3 clusters of

calcifications from the coarser (first row) to the finer ones (3rd row). Thus, it is clear that fine

structures of the imaged sample are recovered by the method proposed in this paper. It is however

to note that the 2D-reconstruction also displays the calcifications at the two first levels but at a
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Figure 3: Identification (blue) of the 9 degrees of freedom for each phantom plate and projection
angle with comparison to the measured ground truth (dotted black).

different height as the other volumes. The finer cluster is however not visible at all.

Lastly, table 2 summarizes the analytical evaluation metrics. The values of r(f,U) show that

the proposed method considerably improves the consistency of the problem by a factor of 84.2%.

In addition, the difference of r(f,U) between the DYNShear- and the MCGT-reconstruction is lower

than the standard deviation of r(f,U) for all static cases. Similar results can be noticed with a

96.8% improvement for R(U) and 59.9% for R(f,U).

4.2. Statistical analysis

A statistical evaluation of the presented method is performed on a set of 30 cases. Since all

dynamic reconstructions are performed with respect to the same configuration state (the one of the

projection at the angle 0°) and that the frame of the kinematic basis is fixed, for all experiments,

the reconstructions are all comparable among each other.

As a first insight, the initial mean residual error r(f,U) of the 30 motion-polluted cases is in

average 1663% higher than the GT-reconstruction. As a result of the dynamic reconstruction, the
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(a) r0◦(f,0) = 7.92 · 10−2 (b) r0◦(f,U) = 1.71 · 10−2 (c) r0◦(f,0) = 1.22 · 10−2

Figure 4: Projection residual of 4a: the MP-reconstruction, 4b: the DYNShear-reconstruction, 4c
the GT-reconstruction.

Table 2: Summary of the main metrics

Reconstruction method r(f,U) R(U), R(Ux), R(Uy) R(f,U)

MP-reconstruction 14.8 · 10−2 5.575, 5.423, 1.350 2.15·10−2

2D warped reconstruction 11.8 · 10−2 NA 2.48·10−2

DYNRBM-reconstruction 4.74 · 10−2 1.452, 0.701, 1.333 1.16·10−2

DYNShear-reconstruction 2.21 · 10−2 0.147, 0.071, 0.135 1.05·10−2

MCGT-reconstruction 2.28 · 10−2 0, 0, 0 1.02·10−2

GT-reconstruction 1.24 · 10−2 NA 0

DYNShear-reconstruction mean residual error is only 124% higher, hence a reduction in average of

1539%. This speaks for a good reconstruction performance and an additional confirmation is that

all the 30 reconstructions are very similar in the areas of interest and look very much like figures 6d1,

6d2 and 6d3. In addition, the average difference between the ground truth displacement field and

the corrected displacement field is of 0.183 mm (1.83 voxels). This difference decomposes into

merely 0.085 mm in the x-axis and 0.168 mm in the y-axis. In comparison, the average initial

mismatch is of 5.345 mm (53.45 voxels), decomposed in 5.224 mm in the x-axis and 1.243 mm in

the y-axis.

Furthermore, a visualization of the algebraic mean estimation error ∆ of the degrees of freedom

for each configuration is presented in figure 7. There, an error below one voxel can be observed

for the x-axis RBM translations with an uncertainty σ∆ being relatively constant with the angular

position of the source. For y-translations and the associated rotations, the average error is higher

and may reach up to 4 voxels. There, the uncertainty seems to increase with the distance to the
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(a) (b) (c)

(d) (e) (f)

Figure 5: Comparison of reconstruction slices of size 100 × 200 mm2 at height z = 6 mm of: (5a)
Motion polluted, (5b) 2D corrected projections, (5c) RBM 3D correction, (5d) Shear 3D correction,
(5e) volume with measured ground truth and (5f) Ground truth static volume.
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(a1) (b1) (c1) (d1) (e1) (f1)

(a2) (b2) (c2) (d2) (e2) (f2)

(a3) (b3) (c3) (d3) (e3) (f3)

Figure 6: Comparison of the reconstruction of calcifications of different sizes. All figures are of size
15.2× 15.2 mm2 at height z = 6 mm. Figures (6a1), (6b1), (6c1), (6d1), (6e1), and (6f1) show the
results on calcifications of size 400 µm ordered as follows: motion polluted, 2D corrected, RBM3D
corrected, Shear3D, ground truth corrected and ground truth. Figures (6a2), (6b2), (6c2), (6d2),
(6e2), and (6f2) refer to 290 µm calcifications and figures (6a3), (6b3), (6c3), (6d3), (6e3), and (6f3)
to 230 µm calcifications.

reference angular position (0°) as is particularly visible in the rotation of the middle slab.

Regarding image quality, an assessment of the central microcalcification of each of the three

clusters shown in figure 5 by computing the sharpness s. [5] As a result, the average sharpness s

and the standard deviation σs are reported in table 3 for the three clusters of the MP-, DYNShear-

and GT-reconstructions.

Table 3: Average sharpness comparison for 3 microcalcification clusters
s · 103 (σs · 103)

Reconstruction method 400µm 290µm 230µm

MP-reconstruction 4.2(0.9) 2.4(0.3) 2.5(0.4)
DYNShear-reconstruction 19.8(1.8) 7.9(1.0) 4.1(0.4)
GT-reconstruction 21.9(0) 8.9(0) 3.9(0)
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Figure 7: Statistical analysis of the difference to ground truth for 30 motion-pollution combinations.

5. Discussion

The comparison presented in the previous section shows that the dynamic correction workflow

described in this paper is able to increase the consistency of the solution with respect to the

problem presented in (4), to match the identification of a ground truth displacement with an

average precision of 1.3 voxels and to improve the visibility of clinical features.

It is to be noted that the multiscale approach is still an empirical choice that was selected

to increase the convergence rate towards the known the ground truth. Indeed, the variance of

the Gaussian filter in the downscaled projections must be of the same order of magnitude as the

amplitude of the displacement left to estimate. For this purpose, one should have an upfront idea of

what the motion amplitude is and select scales so that the condition on δU is satisfied at every time

point. A more automatic definition of the value of the new scale and regularization intensity should

be defined with the help of experience on a greater number of cases. Nonetheless, the selected

values for the scaling and regularization strategies were able to lead to a successful identification
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for all 30 configurations tested and are thus deemed reasonably robust.

However, the linear drift on the identification of the y translation components shown in

figures 3, and 7 is due to the under-determined equation system inherent of tomosynthesis which

uncovers an underlining correlation between y and z motions that can not be entirely resolved. In

fact, in spite of freezing the vertical degrees of freedom in the shape function basis Φ — which

only allows for in-plane RBMs — particular y translations are still able to represent a vertical

displacement. For instance, let A and B be two points at different heights za and zb in the source

motion plane. Then if B moves along the y axis such that it intersects all rays that run from the

source to point A at each time step, the reconstruction cannot distinguish between a static point

(A) and a moving point (B). In addition, improper calibration of the imaging system may also lead

to this kind of systematic bias. As a result, the signal from the lower plate has been reconstructed

at a different height than in the static volume (1 mm higher) even though this is hardly perceptible

in the volume itself. Hence, more clinically-relevant strategies may be envisioned while adapting

the pipeline for a specific application. For instance, temporal regularization of the deformation field

could ensure the continuity and smoothness of the motion with respect to the projection sampling.

Then, although the DYNRBM-reconstruction [18] and 2D-reconstruction [37] techniques are

used in the literature for motion compensation, they are usually applied on CT datasets to correct

for simpler and smaller motions. Hence, their impact is insufficient to correct for the shear motion.

This is visible in table 2 as well as in the visual comparison in figures (5b) (resp. (5c)) and (6b1)

(resp. (6c1)). The reason is that both cited methods do not cover the complexity of the kinematics

induced in the present experimental setup. Nonetheless, it is to be noted that the 2D-reconstruction

does resolve the two largest calcification clusters (the ones where tie points were selected), but

everything around these details is too corrupted for any clinical use. Perhaps, these methods

could be used as an initial guess of the motion estimation to speed up the dynamic reconstruction

process, as the routine described in algorithm 1 requires multiple iterations to converge that are

computationally more expensive than the standard reconstruction process.

In addition, while the displacements during the acquisition were considerably larger than the

ones usually measured during a DBT acquisition (around 1–2 mm, [47, 59]), multiscale approaches

in both the reconstruction and regularization processes enabled to achieve artifact removal, which

would not have been possible if starting from the original projection scale. Figure 7 shows that

the identification in the x-axis has a bias which is inferior 0.1 mm and in the y-axis to 0.4 mm.

Eventually, the combination of the final deformation field shows an average precision of 0.183 mm

which is the same order of magnitude than a voxel. Besides, the precision in the x-axis is of

0.085 mm which is below the voxel size and most of the error comes from the y-axis (0.168 mm),

which is expected following the previous discussion about the under-determined equation system.

The ability to correct such large motions at the level of a single voxel is thereby an excellent

opportunity to reduce the number of retake acquisitions. While the MP-reconstruction shown in

figures (5a) and (6a1) present very blurred texture and a dense cluster of fuzzy microcalcifications,
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figure (6d1) enables clinicians to effectively detect and assess the presence, the size and the type

of microcalcifications. Furthermore, computing the sharpness around the central microcalcification

of all three clusters for 30 cases shows that there is a significant 3-fold improvement from the MP-

reconstruction to the DYNShear-reconstruction. In fact, the sharpness of the corrected image is of

the same order of magnitude as the original GT-reconstruction. In addition, masses (in the outer

part of the phantom) and fibers are equally visible in figure 5d which highlights the advantage

with respect to a 2D-based correction as in figure 5b. The relevance of this results is capital

since the two images may lead to different diagnoses or treatments. Overall, the reason why the

DYNShear-reconstruction proposed here works better than the DYNRBM- and 2D-reconstructions is

that it provides an accurate description of the available kinematics thanks to the function basis Φ.

This comes however with the burden of selecting a basis of shape functions that encapsulates the

underlying motion of the volume while limiting the number of degrees of freedom. In this respect,

the case treated here is simple to model (plate-wise RBMs), but modeling actual patient’s motion

efficiently will be a critical challenge for the transfer to the clinical environment and highly depends

on the targeted medical application. Options to describe the kinematics include splines, [58] a

priori mechanical models of the imaged body part [38] or finite element meshing [28].

Additionally, it is essential to remember that the whole dynamic reconstruction framework

is driven by the projection residuals and the motion estimation is limited by the discrepancies

between the physical setup and projection model. In particular, a significant difference between

CT and DTS reconstruction is that in DTS the resolution in the z-axis is usually higher than

the one theoretically achievable since the number of reconstructed planes is larger than the

number of acquired radiographs. Hence, the reconstruction problem is ill-posed and requires the

introduction of additional constraints to direct the optimization towards an acceptable solution.

Since none of these constraints are sufficient to fully condition the problem, an additional, intrinsic,

regularization of the SIRT algorithm is to be expected and further development should be held in

that direction. Similarly, it is important to control all relevant parameters such as detector noise,

flatfield correction, source positioning uncertainties, non-linear absorption... and ensure that their

impact remains negligible in front of the one of patient-motion. If not, other discrepancy causes

could falsely be explained as patient’s motion and corrupt the dynamic reconstruction. While

here little optimization of the reconstruction process was done (except from the positive constraint

on the reconstructed volume) it is likely that any additional reconstruction improvement such as

assumptions on discrete phases reconstruction [4], total variation (TV) regularization, [49] or beam

hardening correction [10, 51] will contribute to the dynamic pipeline improvement. This is also true

when deciding what kinematic model is used for the motion estimation and any prior knowledge of

the motion that may help to constrain the ill-posed problem can be transparently implemented in

the framework.
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6. Conclusions

The present work aims at improving the tomosynthesis reconstruction of clinical images by

estimating patient’s motion from a single series of motion-polluted projections and performing a

motion-corrected reconstruction. The process is built on 1) a motion-compensation reconstruction

technique derived from the SIRT algorithm and 2) motion estimation based on the P-DVC

formalism. In addition, an image multiresolution approach is exploited to ensure the validity of

the Taylor-expansion at any given step and a progressively vanishing Tikhonov regularization is

applied to gradually increment the number of degrees of freedom used for the motion estimation.

The workflow has been validated on the BR3D model 020 (CIRS Inc., Norfolk, VA, USA) breast

imaging phantom in the case of “shear” motion and has provided considerable improvement with

respect to all evaluation metrics described in paragraph 3.5. More specifically, it has demonstrated

the ability to recover clinical features and decreased the root mean error with the GT-reconstruction

by 59.9%. In addition, the measurement of the deformation field has an average precision of

0.183 mm (x: 0.085 mm, y:0.168 mm), which allows for corrections of the order of magnitude of

the voxel size.

Thanks to the shape function basis Φ the proposed 3D motion identification technique can

be adapted to any kind of kinematics. This includes non-periodic motions, and provides the

flexibility to be tailored to any specific application requirements. While estimation of non-rigid

motions was not tested in the current work, the proposed framework is able to represent the

patient’s motion if given enough degrees of freedom. Thus, future work will focus on the transfer of

this technology to the clinical environment by defining suited kinematic models and incorporating

additional application-dependent constraints to improve the reconstruction process.
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