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Abstract

Quantum Approximate Optimization Algorithm (QAOA) is one of the most short-term

promising quantum-classical algorithm to solve unconstrained combinatorial optimization

problems. It alternates between the execution of a parametrized quantum circuit and a

classical optimization. There are numerous levers for enhancing QAOA performances, such

as the choice of quantum circuit meta-parameters or the choice of the classical optimizer.

In this paper, we stress on the importance of the input problem formulation by illustrating

it with the resolution of an industrial railway timetabling problem. Specifically, we present

a generic method to reformulate any polynomial problem into a Polynomial Unconstrained

Binary Optimization (PUBO) problem, with a specific formulation imposing penalty terms

to take binary values when the constraints are linear. We also provide a generic reformulation

into a Quadratic Unconstrained Binary Optimization (QUBO) problem. We then conduct

a numerical comparison between the PUBO with binary penalty terms and the QUBO

formulations proposed on a railway timetabling problem solved with QAOA. Our results

illustrate that the PUBO reformulation outperforms the QUBO one for the problem at

hand.

keywords: Combinatorial optimization, Quantum optimization, QAOA, Railway

timetable, Unconstrained binary model
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1 Introduction

Today, a major part of optimization problems in the industrial context are challenging, with

resolutions that remain difficult using current classical methods. The difficulty in solving these

problems, namely finding the optimal solution(s), stems both from the inherent combinatorial

complexity, often NP-hard, and from the industrial scale of the instances involved. Facing these

obstacles, quantum computing is expected to both improve solution quality and reduce compu-

tation time. Such expectations are not demonstrated on problems of industrial, practical scale

yet, and represent ongoing research. Some operational search methods using quantum algo-

rithms present theoretical advantages compared to classical ones (Ambainis et al., 2019; Grange

et al., 2024; Montanaro, 2020; Nannicini, 2021; Kerenidis and Prakash, 2020), but they require

high-quality quantum resources to be implemented. Specifically, they need quantum computers

with many qubits that can interact two by two, and quantum operations that can be applied

in a row without generating too much noise. However, the current quantum computers do not

respect these criteria, encouraging the researchers to look into lighter algorithms, waiting for

more powerful machines to be built. They consist of hybrid algorithms that take advantage of

both quantum and classical resources. Indeed, quantum resources can focus on the critical as-

pects of the algorithm that utilize quantum information theory, while the more computationally

demanding tasks are handled by classical resources. Such algorithms are metaheuristics, the

most famous being the Quantum Approximate Optimization Algorithm (QAOA) introduced

by Farhi et al. (2014) to solve the MAX-CUT problem. QAOA takes place in the larger class

of Variational Quantum Algorithms (VQAs) (Cerezo et al., 2021; Grange et al., 2023) which

consist of alternating between a quantum circuit and a classical optimizer. Even if these algo-

rithms have no performance guarantee for general problems, they are of great interest today

because they have the convenient property of an adjustable quantum circuits’ depth, making

them implementable on the current NISQ computers (Preskill, 2018).

Recently, several combinatorial problems have been solved using QAOA. One can mention the-

oretical problems such as MAX-CUT (Farhi et al., 2014), Travelling Salesman Problem (Ruan

et al., 2020), MAX-3-SAT (Nannicini, 2019), Graph Coloring (Tabi et al., 2020), Job Shop

Scheduling (Kurowski et al., 2023) and Vehicle Routing (Azad et al., 2022). More industrial

problems have also been tackled, such as knapsack problem for battery revenue (de la Grand’rive

and Hullo, 2019) or smart charging of electric vehicles (Dalyac et al., 2021; Kea et al., 2023).

However, due to the small size of instances processed today (imposed by the weak maturity of

quantum computers) and to the nature of heuristics whose performances are evaluated empiri-

cally, no quantum advantage is emerging yet.
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Several levers are available when solving a problem with QAOA. For instance, one can choose

the function that guides the classical optimizer, the depth or the type of gates used in the

quantum circuit. Their impact in QAOA’s performances have been proved (Barkoutsos et al.,

2020; Li et al., 2020; Nannicini, 2019). However, the lever of the formulation of the combinato-

rial optimization problem has been less tackled in the literature, even though the shape of the

quantum circuit is known to depend directly on the input problem. VQAs, and thus QAOA,

necessitate the combinatorial optimization problem to be formulated as an Unconstrained Bi-

nary Optimization one, where the function is polynomial. While many real-world problems are

constrained, transforming them into unconstrained problems represents a significant challenge,

which could improve the performance of QAOA. The impact of the reformulation was first stud-

ied for Quadratic Unconstrained Binary Optimization (QUBO) reformulations. Indeed, QAOA

derives from the Quantum Annealing algorithm of Kadowaki and Nishimori (1998), algorithm

that takes as input an Ising Model, a model of ferromagnetism in statistical mechanics, which

is equivalent to a QUBO problem. Thus, natively, the comparison of different formulations of

QUBO models for a given problem recently raised interest in the community, for instance for the

graph coloring problem (Tabi et al., 2020) or for Max-k-colorable subgraph problem (Quintero

et al., 2022). However, there are in fact no inherent degree limitations of the objective function.

Some studies investigate Polynomial Unconstrained Binary Optimization (PUBO) formulations

but, as far as we know, a generic reformulation approach is still lacking. These studies compare

QAOA’s performances of PUBO and QUBO formulations for specific problems such as for the

Traveling Salesman Problem (Salehi et al., 2022), the graph coloring problem (Campbell and

Dahl, 2022), or a minimization problem with continuous variables (Stein et al., 2023). However,

they show an advantage of PUBO formulations that is often attributed to the reduction of the

number of qubits required, though this may not be the only factor at stake. PUBO formula-

tions offer several benefits: they not only reduce the number of qubits significantly but they

also provide greater flexibility in shaping constraints, for instance by assigning specific binary

values to the penalty functions.

In this paper, we propose a generic reformulation for any polynomial problem into a PUBO

problem, alongside with a specific reformulation in the case of linear constraints, exploiting

PUBO’s ability to enforce penalty terms to take 0 and 1 values. We also present two generic

QUBO reformulations for comparison, also applied to polynomial problems. Finally, we nu-

merically compare QAOA performances of the PUBO formulation with binary penalty values,

with one of the QUBO formulations on an industrial use-case: a railway timetabling problem.

The timetabling we study consists of finding the transportation plan maximizing the operat-
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ing profit according to the customers’ demand taking into account the availability and cost of

both the network and the rolling stock. It has been developed by the research department of

the French Railway Company SNCF in order to help operators conceiving optimal high-speed

train timetables. Its simplification, necessary because of the weak maturity of current quantum

computers, leads to a Bin Packing problem with slight modifications on the constraints.

The paper is structured as follows. In Section 2, we propose generic reformulations of any

problem with integer variables, polynomial objective function and polynomial constraints into

PUBO and QUBO problems. We also provide a specific PUBO reformulation for the case of

linear constraints, enforcing penalty terms to take binary values. In Section 3, we describe the

nominal railway timetabling problem, we present a simplified version and we reformulate it as a

PUBO and a QUBO following the methods of Section 2. Eventually, in Section 4, we illustrate

the impact of the reformulation on QAOA’s performances by solving several instances, revealing

that PUBO with binary penalty values performs better than QUBO for our problem.

2 Generic reformulations

Variational Quantum Algorithms (VQAs) tackle unconstrained problems. However, most real-

world combinatorial problems are constrained. Some constraints are directly related to the

definition of the problem, for instance, that a city is visited exactly once by the salesman in the

TSP. Some others express real-world limits, such as the limited number of seats on a train or

the finite size of a knapsack, involving numerical constants in the description of the problem.

In both cases, we need to reformulate the problem as an unconstrained optimization problem

to solve it with VQAs. To remove the constraints, a common approach is to integrate them as

penalty terms in the objective function. Examples of such reformulations for several NP-hard

problems into QUBO problems are proposed in the literature (Glover et al., 2022; Lucas, 2014).

Notice that other techniques to remove constraints have been proposed, such as modifying the

circuit of VQAs to express the constraints (Hadfield et al., 2019).

In this section, we aim to widen the range of problems we can address with VQAs. For

that, we provide a general method to transform any problem with integer variables, a polyno-

mial objective function, and polynomial constraints into an equivalent PUBO problem. Then,

taking advantage of the wide possibilities of PUBO formulations, we propose a specific PUBO

formulation with binary penalty terms, for problems with linear constraints only. Finally, we

provide two different general transformations into an equivalent QUBO problem. Two problems

are said to be equivalent if and only if they have the same optimal solution(s) with the same

optimal value.
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2.1 Integration of constraints

First, we present a generic way to remove constraints from a nominal constrained problem and

ensure that the reformulation into the resulting unconstrained problem is valid, i.e. that the

resulting problem is equivalent to the nominal problem. Specifically, let us consider the problem

min
x∈X

f(x)

subject to the set of constraints {k ∈ K}
(Nominal)

For each constraint k ∈ K, we define a penalty function πk : X → R+ that satisfies, for x ∈ X ,

πk(x)


= 0 if x satisfies constraint k

≥ 1 if x violates constraint k

We reformulate the constrained problem (Nominal) as follows.

Definition 2.1. The unconstrained problem, for which we integrate the constraints of the nom-

inal problem as penalty terms in the objective function, is

min
x∈X

f(x) +
∑
k∈K

λkπk(x) , (Unconstrained)

where the λk > 0 are penalty coefficients.

Thus, the reformulation of (Nominal) into (Unconstrained) not only requires finding the

penalty functions πk, as we will discuss in Subsections 2.3 and 2.4, but also requires choosing

the numerical values of the penalty coefficients λk. Next, we provide a general lower bound for

them.

Let us note fmin := min{f(x) : x ∈ X} the minimum value of f , fmax := max{f(x) : x ∈ X}

its maximum value, and f∗ := min
x∈X

{f(x) : x respects constraint k, ∀k ∈ K} the optimal value

of (Nominal).

Proposition 2.2. If we set, for all k ∈ K,

λk ≥ fmax − fmin ,

thus, we ensure that (Nominal) is equivalent to (Unconstrained).

Proof. The smallest value of an unfeasible solution of (Unconstrained) is always larger than the

minimum value of f plus the penalty cost of violating at least one constraint k′, namely, larger

than

fmin + λk′ .

Thus, for λk ≥ fmax − fmin for any constraint k, the smallest value of an unfeasible solution
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of (Unconstrained) is larger than

fmin + λk′ ≥ fmin + fmax − fmin = fmax > f∗ .

Moreover, by definition of the penalty function, the values of the objective function of the two

problems coincide on feasible solutions. Consequently, the optimal value of (Nominal), and its

corresponding solution, is equal to the one of (Unconstrained).

Notice that if we set λk ≥ fmax − fmin for all k ∈ K, not only (Unconstrained) has the

same optimal solution as (Nominal), but also any feasible solution (of (Nominal)) has a lower

loss function value in (Unconstrained) than any unfeasible solution (of (Nominal)). This latter

property is worth noting because VQAs are heuristics, so they do not always find the optimal

solution but solutions close to the optimal (in terms of the loss function). In practice, if fmin ≥ 0,

an upper bound of fmax provides a lower bound for each λk. Thus, setting λk ≥ fmax ensures

the new unconstrained problem to satisfy the above-mentioned properties.

In this subsection, we showed that reformulating a constrained problem into an unconstrained

problem amounts to finding the penalty functions for each constraint. Next, we present a broad

class of problems for which we provide the expression of the penalty functions.

2.2 Class of eligible problems

We present a class of problems (IP-poly) for which we provide next a method to reformulate

them as PUBO and QUBO problems. This class contains problems with integer variables, a

polynomial objective function, and polynomial constraints.

Definition 2.3. Let n ∈ N be the number of variables and let m ∈ N be the number of con-

straints. We call (IP-poly) the following class of problems.

min
x

f(x1, . . . , xn) (IP-poly)

subject to gk(x1, . . . , xn) ≤ 0 , ∀k ∈ [m]

xi ∈ N, ∀i ∈ [n]

where the functions f and gk, for any k ∈ [m] := {1, . . . ,m}, are polynomial. Specifically,

min
x

∑
γ=(γ1,...,γn)∈Γ

αγx
γ1
1 . . . xγnn (IP-poly)

subject to
∑

γ=(γ1,...,γn)∈Γk

βk,γx
γ1
1 . . . xγnn ≤ 0 , ∀k ∈ [m] (Ck)

xi ∈ N, ∀i ∈ [n]
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where Γ ⊆ Nn is a finite set and αγ ∈ R for γ ∈ Γ; and for all k ∈ [m], Γk ⊆ Nn is a finite set

and βk,γ ∈ Z for γ ∈ Γk.

2.3 Reformulation into PUBO

In this subsection, we present a generic method to reformulate any problem of (IP-poly) into

a PUBO problem (Subsubsection 2.3.1). We also provide a reformulation in the case of linear

constraints of the nominal problem (Subsubsection 2.3.2), enforcing a certain shape of the

penalty functions.

2.3.1 General PUBO reformulation

The two steps to reformulate any problem of (IP-poly) into a PUBO problem are the follow-

ing. First, we transform the integer variables into binary variables. Second, we integrate the

constraints into the objective function as penalty terms. Let us specify each of these steps.

The first step is the transformation of integer variables into binary variables. For that, we

replace each integer variable xi, for i ∈ [n], by its binary decomposition

xi =

⌊log2(x)⌋∑
j=0

x
(j)
i 2j .

Thus, this decomposition requires ⌊log2(x)⌋+ 1 binary variables x
(j)
i ∈ {0, 1}.

The second step is the integration of the constraints into the objective function as penalty

terms. It is done as follows. Let us consider the constraint (Ck)∑
γ=(γ1,...γn)∈Γk

βk,γx
γ1
1 ...xγnn ≤ 0 . (Ck)

This step aims at finding a penalty function for the above-mentioned constraint. Notice that

after the first step, all variables are binary, so the integer variables of the left-hand side of (Ck)

would be replaced by their binary description, adding more terms to the sum. Thus, without

loss of generality, we assume henceforth that all the xi are binary variables. It results the

following upper bound: ∣∣∣∣∣∣
∑
γ∈Γk

βk,γx
γ1
1 ...xγnn

∣∣∣∣∣∣ ≤
∑
γ∈Γk

|βk,γ | =: UBk .

Thus, we define the penalty function associated with Constraint (Ck) as follows.

Proposition 2.4. For k ∈ [m], the function

πPUBO
k (x1, . . . , xn) =

UBk∏
j=0

∑
γ∈Γk

βk,γx
γ1
1 ...xγnn + j
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is a penalty function for Constraint (Ck).

Proof. On the one hand, if (x1, . . . , xn) satisfies the constraint, it means that
∑

γ∈Γk
βk,γx

γ1
1 ...xγnn

takes a value in J−UBk, 0K and then there exists j ∈ J0,UBkK that makes the product equal

to 0, i.e. πPUBO
k (x1, . . . , xn) = 0. On the other hand, if (x1, . . . , xn) violates the constraint,

the term
∑

γ∈Γk
βk,γx

γ1
1 ...xγnn is strictly positive. Precisely, because each βk,γ is in Z, the term∑

γ∈Γk
βk,γx

γ1
1 ...xγnn cannot be smaller than 1, leading to πPUBO

k (x1, . . . , xn) ≥ 1.

2.3.2 Case of linear constraints

Let us suppose that the constraints of (IP-poly) are linear. In that case, we propose penalty

functions that take binary values. Specifically, the penalty function takes value 1 if the corre-

sponding constraint is violated and 0 otherwise. The choice of such binary functions is motivated

by understanding wether of not controlling the violation of cost of each constraint improves per-

formances of VQAs to solve such problems. This is discussed in Section 4.

In what follows, we provide penalty functions of binary values of equality and inequality

constraints where the variable-dependent term is the sum of binary variables. Notice that for

the case of a weighted sum of binary variables (with weights in Z), the penalty function can be

easily deduced.

Let us begin with the penalty term for equality constraints.

Property 2.5. Let us consider the constraint, for n ∈ N and c ∈ N,

n∑
i=1

xi = c . (Eq)

For c ∈ N∗, the penalty function is, for x ∈ {0, 1}n,

πeq
c (x) = 1 +

n∑
k=c

(−1)k−c+1

(
k

c

) ∑
i={i1,...,ik}∈Ink

xi1 . . . xik ,

where Ink denotes all the sets of k elements in [n]. For the specific case of c = 0, the penalty

function is

πeq
0 (x) =

n∑
k=1

(−1)k+1
∑
i∈Ink

xi1 . . . xik .

See proof in Appendix A.1. Next, we define a penalty term for inequality constraints. Prop-

erty 2.6 deals with the inferiority case whereas Property 2.7 tackles the superiority case.

Property 2.6. We consider the constraint, for n ∈ N and c ∈ N,

n∑
i=1

xi ≤ c . (Inf)
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The associated penalty function is, for x ∈ {0, 1}n,

πinf
c (x) =

n∑
k=c+1

(−1)k−c+1

(
k − 1

c

)∑
i∈Ink

xi1 . . . xik .

See proof in Appendix A.2.

Property 2.7. We consider the constraint, for n ∈ N and c ∈ N∗,

n∑
i=1

xi ≥ c . (Sup)

The associated penalty function is, for x ∈ {0, 1}n,

πsup
c (x) = 1 +

n∑
k=c

(−1)k−c+1

(
k − 1

c− 1

)∑
i∈Ink

xi1 . . . xik .

See proof in Appendix A.3.

2.4 Reformulation into QUBO

Any problem of (IP-poly) can also be reformulated as a QUBO problem. We present two

possible generic ways to do so.

The first one is to compute the PUBO penalty term πPUBO
k resulting of the two steps presented

in the previous subsection, and hereafter to decrease its degree until it is equal to 2. For that,

we reduce recursively the degree of each monome of degree larger than 3 by using the following

method of linearization. Repeat until no monome of degree at least 3 exists:

1. Choose a monome of degree larger than 3.

2. Pick two (binary) variables appearing in the monome xi and xj and replace the product

xixj by the new binary variable yij in every monomes of the penalty function πPUBO
k (x)

where it appears.

3. Add the term λ(xixj − 2xiyij − 2xjyij + 3yij) to πPUBO
k , with λ > 0 a constant.

Thus, it decreases the degree of the considered monome (and possibly other monomes) by 1.

Notice that the term

penlin(xi, xj , yij) := xixj − 2xiyij − 2xjyij + 3yij

is a penalty term associated to the constraint linearization xixj = yij . Indeed, Table 1 shows

that penlin is equal to zero if the value of the triplet (xi, xj , yij) satisfies the constraint (rows in

bold), and larger than 1 otherwise.

The second way to provide quadratic penalty terms is the following. Given the constraint

with binary variables (Ck) resulting from the first step of PUBO formulation presented in the
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xi xj yij penlin(xi, xj , yij)

0 0 0 0

0 1 0 0

1 0 0 0

1 1 0 1

0 0 1 3

0 1 1 1

1 0 1 1

1 1 1 0

Table 1: Values of function penlin

previous subsection, linearize it as proposed above. Let us note Link(x, y) ≤ 0 the resulting

constraint, where the y variables are resulting from the linearization process. Thus, the penalty

term associated with this constraint is

πQUBO
k (x, y) = min

s∈J0,−minx,y Link(x,y)K
(Link(x, y) + s)2 .

Indeed, for a given (x, y):

• If the constraint is satisfied, i.e. Link(x, y) ≤ 0, there exists a value of s ∈

J0,−min
x,y

Link(x, y)K such that Link(x, y) + s = 0, and thus πQUBO
k (x, y) = 0.

• Otherwise, Link(x, y) > 0 and there is no value in s ∈ J0,−minx,y Link(x, y)K such that

s = −Link(x, y), and thus πQUBO
k (x, y) ≥ 1.

Notice that we suppose that the constraint can be satisfied, namely that minx,y Link(x, y) ≤ 0.

Eventually, because VQAs can only deal with one optimization problem, the optimization

problems mins resulting from the expression of the penalty functions πQUBO
k must join the initial

optimization problem minx,y of the loss function resulting of the first step of PUBO formulation.

Gathering the optimization problems of penalty terms with the nominal optimization problem

leads to a overall minimization problem over the slack variables (s) in addition to the decision

variables (x, y). The optimal solution(s) of the overall minimization problem coincide with

the optimal solution(s) of the two-level optimization problem, but it is worth noting that the

optimization process is different and leads, among other, to non-optimal values of slack variables

for optimal values of decision variables. This phenomenon is discussed in Section 4.

Thus, there are m additional variables sk ∈ J0,−minx,y Lin(x, y)K (eventually written with

binary variables), for k ∈ [m], in the overall optimization QUBO problem. Henceforth, we call
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these variables slack variables to emphasize the fact that they do not represent nominal decision

variables but additional variables coming from the reformulation.

Next, we present the railway timetabling problem at hand and apply both QUBO and PUBO

reformulations presented in the section.

3 A railway timetabling problem and its reformulations

3.1 Nominal problem

Railway timetabling problems are crucial problems for railway companies. A first version of the

timetable is often planned several years in advance, and is related to other planning problems,

such as crew scheduling or rolling stock scheduling. The goal of timetabling is to ensure the sat-

isfaction of customers, the minimization of delays thanks to robustness and resilience properties,

the minimization of costs, and the validation of both operational and security constraints.

The railway timetabling problem for high-speed trains at the French Railway Company SNCF

we are considering is the following: according to the customers’ demand (estimated from past

data) and the availability of the network and the rolling stock, the aim is to find the transporta-

tion plan maximizing the operating profit. The output is a timetable of trains, the associated

rolling stock schedule, and a forecast of the passengers for each train and journey. The optimal

solution is the best compromise between the revenues generated by the customers’ journeys

and the production costs (network, rolling stock, human resources, etc.). It is formulated as an

Integer Linear Programming (ILP). Let us provide a basic description of it while explaining the

important ideas to understand the simplification proposed below. First, we describe the main

sets of an instance of our problem.

• S, the set of Train-paths. A train-path is a timed unitary portion of tracks. It defines the

availability to run a carriage over a portion of tracks over a given time period.

• T, the set of available Trains. A train is described as a union of train-paths. A train

is defined by its origin, destination, and the served stations, with departure and arrival

times for each station. A train uses the same carriage throughout the journey.

• G, the set of Groups of customers. A group gathers customers that have the same pref-

erences on journeys, namely, customers wanting to leave, respectively arrive, at the same

station and at the same time.

• R = {(t, g) ∈ T × G : group g accepts to take train t}, the set of possible Customers’

journeys. This set expresses the possibilities to satisfy the customer groups’ demands.
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Other sets are required, such as the set expressing the different incompatibilities between train-

paths or the set of trains that can be coupled. Besides sets, many constants appear in the

original formulation, both in the objective function and in the constraints, such as the maximum

capacity of a carriage, the toll cost of a train-path, or the average receipt for a journey.

Second, let us introduce the variables of this problem, which are binary or integers.

• x ∈ {0, 1}|T |, where xt = 1 iff t ∈ T is used in the timetable.

• u ∈ {0, 1}|S|, where us = 1 iff the train-path s ∈ S is used.

• z ∈ N|R|, where zr is the number of customers for journey r ∈ R.

The objective function leads to finding the timetable providing the best compromise between

customers’ demand satisfaction and production cost. Specifically,

max
xt,us,zr

α(zr)− β(xt, us) ,

where α(zr) is a linear function representing the receipts generated by selling tickets and

β(xt, us) is a linear function representing the total cost associated with the use of train-paths

and carriages. An optimal solution to our problem is a feasible timetable that maximizes the

above loss function. The feasibility of a timetable is defined by many linear constraints such

as forbidding customers to take a train not used in the timetable, ensuring that the maximum

capacity of a train is satisfied on each train-path, or setting a minimum daily frequency for

a given journey. In practice, this railway timetabling problem requires about twenty sets and

constants to define an instance of the nominal problem, while it requires four types of binary

or integer variables, a linear function, and ten types of linear constraints, two of which are soft

constraints. Today, this problem is solved with an ILP solver and, depending on the instance,

it can be hard or even impossible to find an optimal or near-optimal solution. For example,

the optimal solution of the problem for the sector between two French cities Paris and Lyon

is found within a second whereas the solution for timetabling of the inter-regional trains has a

gap of 67% from the optimal solution after 10 minutes of running time. No solution is found

for larger instances such as the perimeter of the entire metropolitan French territory.

While Section 2 proves that this railway timetabling problem can be solved theoretically with

quantum-classical metaheuristics, because it belongs to (IP-poly), we need to simplify it by

putting aside some assumptions to be able to solve it on current quantum machines, or classical

simulators of quantum machines. Indeed, the size of the original problem would be too large

even considering instances on small geographical sectors and short periods of time (one day).

For example, the instance on the sector Paris-Lyon for one day only, which covers 6 stations,
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amounts to 176 customer groups for around 25 000 customers, 87 feasible trains, and 157 train-

paths leads to a nominal problem with 8 000 binary variables. Additionally, VQAs require

unconstrained problems (QUBO or PUBO problems), integrating constraints in the objective

function costs in terms of additional variables (for QUBO reformulation) and additional gates

(for QUBO and PUBO reformulation) as explained in Section 2. As an example, the QUBO

formulation of the above-mentioned instance requires roughly 12 000 additional qubits, ending

up to 20 000 qubits for the total description of the instance. This size prohibits a resolution on

current gate-based quantum hardware that does not exceed a hundred qubits with a reasonable

gate error rate, without mentioning the high connectivity that would be necessary. While

keeping the essence of the initial timetabling problem, we consider a simplification that is an

extended version of a Bin Packing problem, as we detail next.

3.2 Extended Bin Packing Problem simplification

Let us present the simplified version of the nominal railway problem that results in an Extended

Bin Packing problem. This simplification retains the core aspects of the original problem while

relaxing certain operational requirements. As mentioned above, this simplification is motivated

by two things. The first one is to reduce the number of decision variables, and thus the number of

qubits, to describe an instance. The second one is to ease the transformation of the constrained

problem into an unconstrained one, avoiding too many additional qubits and too many gates

for the implementation of the quantum circuit of VQAs. Moreover, the Extended Bin Packing

problem is NP-hard as the nominal problem, which comforts the interest of this choice.

The simplification is done as follows. Let m ∈ N be the number of customer groups and

n ∈ N the number of available trains. We define

• G := {g1, . . . , gm}, a set of m ∈ N customer groups.

• T := {T1, . . . , Tn}, the set of n ∈ N available trains, where each train Ti ⊆ G is the set of

groups that accept to take this train.

We consider that a customer group gk, for k ∈ [m], is satisfied if at least one of the trains

matching its demand (the Tis such that gk ∈ Ti) is in the output timetable.

Additionally, we suppose that each group contains the same number of customers. The latter

assumption does not cause too much loss of generality because one can always define the smallest

group as a unit and duplicate groups that are bigger. For each available train Ti, i ∈ [n], we

specify

• pi ∈ R+, the benefit of selling tickets to one group for train Ti.

13



• ci ∈ R+, the cost of using train Ti.

We note CMax ∈ N the maximum number of groups a carriage can accommodate, i.e. the

maximum capacity of a carriage divided by the (fixed) number of customers in a group. We

define below the problem considered, called Extended Bin Packing.

Definition 3.1 (Extended Bin Packing problem). The binary decision variables for the Ex-

tended Bin Packing problem are of two types. The first one indicates if the train is taken in the

timetable: ∀i ∈ [n],

xi =


1 if Ti is taken in the timetable

0 else

The second assigns groups to trains in the timetable: ∀i ∈ [n], ∀j ∈ [m],

yij =


1 if group gj takes train Ti

0 else

Notice that we declare a variable yij if and only if gj ∈ Ti, namely that train Ti can satisfy

group gj. It avoids unnecessary variables and reduces the number of y variables from nm to

q :=
∑n

i=1 |Ti|. The problem can be seen as a variation of the Bin Packing problem, where each

bin has a different capacity, and not every item has to be put in a bin because we are rather

looking for the best compromise between the cost of using bins and the reward of putting items

into bins. Hence we call this modelization the Extended Bin Packing problem. It is stated as

follows:

min
x,y

n∑
i=1

cixi −
n∑

i=1

∑
j∈[m]:
gj∈Ti

piyij (Extended-BP)

subject to
∑
i∈[n]:
gj∈Ti

yij ≤ 1, ∀j ∈ [m] (Uni)

∑
j∈[m]:
gj∈Ti

yij ≤ CMax · xi, ∀i ∈ [n] (Capa)

xi ∈ {0, 1}, ∀i ∈ [n]

yij ∈ {0, 1}, ∀i ∈ [n], j ∈ [m] such that gj ∈ Ti

Constraint (Uni) ensures that each customer group takes at most one train from those available

in the timetable, and Constraint (Capa) both expresses the limited capacity of a carriage and

forbids a group to take a train unused in the timetable.
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Next, we provide reformulations of this simplified model into QUBO and PUBO problems to

be able to solve it with QAOA.

3.3 Reformulations into QUBO and PUBO problems

In this subsection, we provide reformulations of (Extended-BP) into PUBO and QUBO prob-

lems. For the PUBO formulation, we apply the method presented in Subsubsection 2.3.2 which

has the specificity to have binary penalty values. For the QUBO formulation, we apply the

second method of Subsection 2.4, which is the most common QUBO reformulation encoun-

tered in the literature. For both reformulation, we need to integrate two different types of

constraints, (Uni) and (Capa). We recall them below. The first constraint, expressing that a

group takes at most one train, is: for all j ∈ [m],∑
i∈[n]:
gj∈Ti

yij ≤ 1 . (Unij)

The second type of constraint, the capacity constraint, is: for all i ∈ [n],∑
j∈[m]:
gj∈Ti

yij ≤ CMax · xi . (Capai)

3.3.1 PUBO reformulation with penalty binary values

Based on Subsection 2.3, and more specifically on the properties of Subsubsection 2.3.2, it

results the following penalty terms for the Extended Bin Packing problem as a PUBO.

Proposition 3.2 (Penalty term for Constraint (Unij)). Let j ∈ [m] and let us note Gj the set

of indices of trains accepted by group gj. The function, for x ∈ {0, 1}n, y ∈ {0, 1}q,

penUnij(x, y) =

|Gj |∑
k=2

(−1)k(k − 1)
∑

I=(i1,...,ik)⊆Gj :
|I|=k

yi1,j . . . yik,j

is a penalty term for Constraint (Unij).

Proof. Use Property 2.6 for the binary variables yij such that i ∈ Gj , and for the constant

c = 1.

Proposition 3.3 (Penalty term for Constraint (Capai)). Let i ∈ [n]. The following function is

a penalty term for Constraint (Capai). For x ∈ {0, 1}n, y ∈ {0, 1}q,

penCapai(x, y) = (1− xi) · pen0(x, y) + xi · pen1(x, y) ,
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where

pen0(x, y) =

|{j:i∈Gj}|∑
k=1

(−1)k+1
∑

J⊆{j:i∈Gj}:
|J |=k

yi,j1 . . . yi,jk

and

pen1(x, y) =

|{j:i∈Gj}|∑
k=CMax+1

(−1)k−CMax+1

(
k − 1

CMax

) ∑
J⊆{j:i∈Gj}:

|J |=k

yi,j1 . . . yi,jk .

Proof. We distinguish two cases.

• If xi = 0, then we use Property 2.5 for the binary variables yij such that j ∈ {j : i ∈ Gj},

and for the constant c = 0, which provides the term pen0(x, y).

• If xi = 1, then we use Property 2.6 for the binary variables yij such that j ∈ {j : i ∈ Gj},

and for the constant c = CMax, which provides the term pen1(x, y).

Eventually, we add the two terms as follows, each one appearing when the condition on xi is

satisfied, to obtain the final penalty function: (1− xi) · pen0(x, y) + xi · pen1(x, y).

It results from the two propositions above the reformulation of our simplified prob-

lem (Extended-BP) into a PUBO problem.

Proposition 3.4 (Extended-BP into PUBO). The reformulation of (Extended-BP) as a PUBO

problem is:

min
x∈{0,1}n
y∈{0,1}q

n∑
i=1

cixi −
n∑

i=1

∑
j∈[m]:
gj∈Ti

piyij (Extended-BP-PUBO)

+
m∑
j=1

λu,jpenUnij(x, y) +
n∑

i=1

λc,ipenCapai(x, y) ,

where λu,j , λc,i ∈ R∗
+ for all j ∈ [m], i ∈ [n] are the penalty coefficients, and where the penalty

functions are defined in Propositions 3.2 and 3.3.

3.3.2 QUBO reformulation

Applying the second method of Subsection 2.4, the penalty terms for the Extended Bin Packing

problem as a QUBO are the following.

Proposition 3.5 (Quadratic penalty terms of Constraints (Unij) and (Capai)). The penalty

term for the first Constraint (Unij) is, for j ∈ [m],

penUniQuboj(x, y) = min
sj∈{0,1}

∑
i∈Gj

yij + sj − 1

2

.
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The penalty term for the second constraint (Capai) is, for i ∈ [n],

penCapaQuboi(x, y) = min
ri∈J0,CMaxK

 ∑
j:i∈Gj

yij − CMax · xi + ri

2

.

In the binary model, the integer slack variables ri are replaced by their binary expressions

rbini :=
∑⌊log2(CMax)⌋

l=0 2k · rbini,k , for rbini,k ∈ {0, 1}. In total, the penalty constraints introduce

roughly (m+n · log2(CMax)) slack binary variables (denoted by s and r) to the initial Extended

Bin Packing problem to express the following QUBO formulation.

Proposition 3.6 (Extended-BP into QUBO). The reformulation of (Extended-BP) as a

QUBO problem is

min
x∈{0,1}n,
y∈{0,1}q
s∈{0,1}m,

rbin∈{0,1}n·log2(CMax)

n∑
i=1

cixi −
n∑

i=1

∑
j∈[m]:
gj∈Ti

piyij (Extended-BP-QUBO)

+

m∑
j=1

λu,j

∑
i∈Gj

yij + sj − 1

2

(1)

+
n∑

i=1

λc,i

 ∑
j:i∈Gj

yij − CMax · xi + rbini

2

,

where λu,j , λc,i ∈ R∗
+ for all j ∈ [m], i ∈ [n] are the penalty coefficients.

Not only does the proposed QUBO formulation require additional qubits compared to the

PUBO formulation, but it also has penalty terms that take integer values (and not binary

values). These two facts are observed and discussed in the next section.

4 Numerical results

In this section, we illustrate the importance of the input problem formulation. Specifically,

we compare the results of solving the (Extended-BP-QUBO) and the (Extended-BP-PUBO)

reformulations with QAOA on several small instances, showing a trend regarding these two

reformulations. For details on QAOA description and implementation, readers can refer to the

paper of Grange et al. (2023).

4.1 Instances and results

Let us consider the three instances below (Instance A, Instance B, Instance C). Each set rep-

resents a train and each element represents a customer group. In Table 2, we provide for each

instance: the numerical values for the problem description (cost of using a train c, benefit of
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selling a ticket p, maximum capacity CMax), the optimal solutions and their respective op-

timal values, and the numerical values of the penalty coefficients (coefficients λu, λc) for the

QUBO and PUBO reformulations. Notice that we only describe the set of trains in the opti-

mal timetable, without specifying the assignment of each customer. The assignment is unique

and straightforward for Instances A and B, but for Instance C, there are actually 11 optimal

solutions, but still with the 3 sets of trains described in Table 2.

Figure 1: Instance A

Figure 2: Instance B
Figure 3: Instance C

Instance A Instance B Instance C

Number of trains 3 3 3

Number of customer groups 2 4 5

Cost ci,∀i ∈ [n] 1 1 1

Benefit pi,∀i ∈ [n] 1 1 1

Maximum capacity CMax 2 2 2

Optimal solutions (in red)

Optimal value (f∗) -1 -2 -2

Range of objective function values (fmin; fmax) (−4; 3) (−6; 3) (−8; 3)

QUBO penalty coefficients λu,i = λc,j ,∀i ∈ [n], j ∈ [m] 8 10 12

PUBO penalty coefficients λu,i = λc,j ,∀i ∈ [n], j ∈ [m] 8 10 12

Table 2: Description of instances, their optimal solutions and the reformulation coefficients.

In Table 3, we provide the statistics of the two reformulations (QUBO and PUBO) when

solving 100 times each of the three instances with QAOA. The details of the results for the 100

runs are displayed in Figure 4. For a run, QAOA returns the best solution encountered during

the hybrid optimization, that is the basis state with the smallest loss function value among all

the Nshots ×Noptim basis states measured in total, where Noptim is the number of iterations of

18



the classical optimizer, and Nshots the number of shots to sample the quantum state at each

iteration. Here, Nshots is set to 10 to maintain a reasonable ratio between the sample size and

the search space size, thus preserving the relevance of our experiments’ scalability. The classical

optimizer is chosen to be COBYLA, and no restriction is put on Noptim. Finally, the depth of

QAOA is set to 1 to ensure that the circuit depth remains manageable relative to the instance

size. For each run, we return the loss function value of the unconstrained problem for the

solution given by QAOA, and apply the solution to the initial Extended Bin Packing problem

to return if it is optimal, feasible non-optimal, or infeasible.

Instance A Instance B Instance C

QUBO PUBO QUBO PUBO QUBO PUBO

Number of qubits 15 7 17 9 20 11

Proportion of

optimal solutions
6% 71% 4% 61% 8% 55%

Proportion of feasible

non-optimal solutions
84% 29% 84% 39% 79% 45%

Proportion of

infeasible solutions
10% 0% 13% 0% 13% 0%

Table 3: QAOA solution returned for QUBO and PUBO reformulations. The optimality, feasi-

bility non-optimality and infeasibility labels relate to the Extended Bin Packing problem (not

yet reformulated).

Notice that we implement QAOA solely using the pre-coded COBYLA optimizer and building

the quantum circuits from Qiskit library to be executed on the classical 32-qubit simulator of

IBM (backend named qasm simulator). We do not use the pre-coded QAOA function provided

by Qiskit and implement, for the PUBO formulation, the quantum circuit with the decomposi-

tion proposed by Grange et al. (2023) (Proposition 37). The choice of executing the quantum

circuits on a simulator instead on a real quantum hardware is motivated by the fact that today,

available quantum backends are still noisy. Thus, to exhibit the impact of the formulation of the

input problem on QAOA performances, we decide to use a simulator to isolate this parameter

from noise and evaluate its real impact.

The PUBO formulation gives better results than the QUBO one on the three instances

considered here. Table 3 shows that over 100 runs over each of the 3 instances, QAOA has never

returned an unfeasible solution with the PUBO formulation, whereas between 10% and 13% of

the solutions returned with the QUBO formulation are infeasible depending on the instances.

This means that for some runs of the QUBO formulation, none of the feasible solutions were
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Figure 4: Details of the states returned by running QAOA 100 times for each of the 3 instances

(Instance A: row 1, Instance B: row 2, Instance C: row 3) and for each formulation (QUBO: left

column, PUBO: right column). The loss function values relate to the unconstrained problem

whereas the optimal/feasible non-optimal/infeasible labels’ solutions relate to the Extend Bin

Packing problem (not yet reformulated).

measured during the whole simulation. Moreover, the PUBO formulation gives far more optimal

results than the QUBO formulation: depending on the instances, between 55% and 71% of the

runs with the PUBO formulation gave an optimal solution, while is was only 4% to 8% for the
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QUBO formulation. Figure 4 provides a first insight into the reasons of those differences. First,

notice that the packets that can be observed for the QUBO formulation correspond to different

values of the penalty functions: each time a penalty function is increased by 1, it adds λc or λu

(depending on the constraint) to the loss function of the unconstrained problem. The PUBO

reformulation should present packets as well, but they are not visible in our tests because the

PUBO problem is well optimized, and only solutions belonging to the first packet are returned.

Those diagrams show that for the PUBO formulation, the optimization always encounters one

of the first best solutions in the feasible space, while for the QUBO formulation, the optimizer

seems to get lost in the multiple packets of the constraints, and does not always reach the feasible

space. Notice that for the QUBO reformulation, optimal solutions from the point of view of the

nominal problem do not necessarily minimize the loss function of the unconstrained problem

(as mentioned in Subsection 2.4 as gathering two minimization problems) because additional

variables are not always well optimized. This is why feasible solutions not only appear in the

first packet, meaning the one of lower cost. For the PUBO formulation, the packets of higher

cost contain only infeasible solutions.

4.2 Discussion

The results of the previous subsection show that the PUBO formulation outperforms the QUBO

one for the problem at hand. The possible reasons for this behavior are analyzed below.

Impact of the number of qubits. The first advantage of PUBO reformulations is that they

necessitate less qubits than QUBO reformulations. This is a general difference between QUBO

and PUBO reformulations, and is not specific to the two particular reformulations which are

considered here. Indeed, in the general case, QUBO reformulations use additional variables, thus

additional qubits, to integrate the constraints (see Section 2). This difference has two impacts

on the quantum part of the hybrid optimization of QAOA. First, PUBO reformulations would

be possible on smaller-scale quantum devices. Second, the quantum space to sample is much

smaller for PUBO than QUBO as its size evolves exponentially with the number of qubits.

Thus, with the same sample size (10 shots here), the probability to measure a good or even

optimal solution during the optimization process is enhanced for PUBO reformulations. In our

experiment, it is undeniable that the number of qubits plays a role in the advantage of PUBO

over QUBO, facilitating the measurement of good solutions at each iteration of the classical

optimizer. Our QUBO reformulation uses roughly (m+ n · log2(CMax)) more qubits compared

to the PUBO one. For the three instances of our experiment, it correspond approximately to

doubling the number of qubits between the PUBO and the QUBO formulations.
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Impact of additional variables. As mentioned above, using additional variables for QUBO

reformulations has a direct impact on the number of qubits and thus on the size of the quantum

circuit. However, it also impacts the classical optimization process. In the nominal constrained

optimization problem, the set of constraints defines the feasible space by drawing boundaries in

the optimization space. In the PUBO reformulation, the same optimization space is kept, but

an important cost is assigned to the loss function when crossing the constraints boundaries. On

the other side, the QUBO reformulation increases the dimension of the optimization space with

additional variables to assign this cost to the loss function. Consequently, the problem has to be

optimized over those new variables as well. When those variables are not correctly optimized,

they take the advantage over the cost of the nominal problem in the new loss function because

they result in huge penalty terms. Consequently, the relevant information, meaning the value

of the nominal loss function, gets blured. This phenomenon can be observed in our experiments:

in Figure 4 the optimal solution of the initial problem (in orange) can have a loss function value

different from the smallest one possible and even larger than other non-optimal solutions for

the QUBO reformulation. This is due to the introduction of the additional variables (s, rbin)

in (Extended-BP-QUBO) that can take values such that the penalty terms are non-zero, even

if the decision variables (x, y) representing a solution of the initial problem are optimal. Thus,

finding an optimal solution for the initial problem embedded in a non-optimal solution of the

unconstrained problem is a coincidence and has nothing to do with optimization. It points out

a limit of the QUBO formulation with additional variables that blur the loss function. Notice

that this phenomenon does not appear for the PUBO formulation (Extended-BP-PUBO) (on

the right column) because there are no additional variables.

Impact of the optimization landscape. As explained before, when a constrained problem

is reformulated into an unconstrained one, the uncrossable boundaries of the constraints are

replaced by a supplementary cost in the loss function. With the QUBO reformulation, this

cost can take a large range of values, and the loss function has to be optimized over it even if

it is not meaningful for the problem at stake. As long as the feasible space is not reached, the

cost that is optimized has no meaning relatively to the nominal problem. The PUBO problem

proposed here is meant to mimic the initial constrained problem, by adding an almost constant

step to the optimization landscape when crossing the feasible space boundaries. To achieve this

property, the penalty functions are built to take only two values: 0 if the associated constraint

is satisfied, 1 otherwise. Depending on the classical optimizer, this simplified landscape could

facilitate the optimization. In our experiments, it could be partly responsible for the better

results of the PUBO formulation, because COBYLA does not get lost in optimizing over the
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infeasible space as for the QUBO formulation.

To summarize, several factors explain the advantage of our PUBO formulation with binary

constraints over the generic QUBO formulation. First, the QUBO formulation requires more

qubits than the PUBO formulation for the same instance of the nominal problem, leading

to a lower probability to measure a good basis state during the optimization. Second, the

additional variables necessary for the QUBO reformulation have to be optimized as well. They

blur the relevant loss function, and add dimensions to the space to be optimized classically.

Eventually, these new variables also give rise to a large range of values of the penalty terms,

leading to an optimization landscape of the QUBO reformulation which does not reflect the

one of the unconstrained initial problem. Those two last points result in an optimization

landscape that the classical optimizer does not seem to handle very well according to the

three instances solved above. Thus, solving the Extended Bin Packing problem with QAOA

achieves better performances with the unconstrained formulation (Extended-BP-PUBO) than

with the (Extended-BP-QUBO) formulation on these instances.

5 Conclusion

In this paper, we present generic reformulations of unconstrained combinatorial problems to

be solved by Variational Quantum Algorithms, and among them, QAOA. Specifically, we

introduce a Polynomial Unconstrained Binary Optimization (PUBO) formulation and two

generic Quadratic Unconstrained Binary Optimization (QUBO) formulations, valid for every

constrained polynomial optimization problem. In addition, we take advantage of the large pos-

sibilities offered by PUBO formulations to propose a formulation of optimization problems with

linear constraints into a PUBO problem with binary penalty values. We apply this last formu-

lation and the most common QUBO one on a simplified railway timetabling problem stemming

from an industrial problem, and solve each of them with QAOA on several small instances.

Our numerical experiments show that the PUBO performs better, drawing a trend for larger

instances which haven’t been solved yet by lack of high-quality quantum resources. The results

speak in favor of the PUBO formulation because it requires less qubits than the QUBO formu-

lation, do not introduce additional variables and seems to present an optimization landscape

nicer for the classical optimizer. As soon as large and high-quality quantum hardwares are

available, we will be able to deal with the nominal (and more complex) railway timetabling

problem of SNCF, comparing PUBO and QUBO formulations on it. This would be the first

step of considering quantum algorithms to solve industrial problems.
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However, the two reformulations we compare in this paper involve many simultaneous effects,

and further studies should be necessary to clearly distinguish their respective impacts. On the

one hand, we should study the impact of additional variables by comparing a generic PUBO

formulation (Subsubsection 2.3.1) and a generic QUBO formulation (Subsection 2.4). In order to

distinguish the impact of additional variables on the classical optimization from the impact of the

number of qubits, QAOA could be run with an exact classical computation of the expectation

value of the loss function at each iteration of the optimizer. On the other hand, we should

analyze the effect of the shape of the penalty functions and the range of values they can take

(binary or not) by comparing the two PUBO formulations presented in Subsection 2.3. Future

work should also be dedicated to assess the impact of the noise by implementing QAOA on

current quantum computers. Working on noisy quantum computers might be advantageous for

the QUBO formulation because of a simpler quantum circuit with a smaller depth.
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A Omitted proofs

A.1 Proof of Property 2.5

Property 2.5. Let us consider the constraint, for n ∈ N and c ∈ N,

n∑
i=1

xi = c . (Eq)

For c ∈ N∗, the penalty function is, for x ∈ {0, 1}n,

πeq
c (x) = 1 +

n∑
k=c

(−1)k−c+1

(
k

c

) ∑
i={i1,...,ik}∈Ink

xi1 . . . xik ,

where Ink denotes all the sets of k elements in [n]. For the specific case of c = 0, the penalty

function is

πeq
0 (x) =

n∑
k=1

(−1)k+1
∑
i∈Ink

xi1 . . . xik .

Proof. Let x ∈ {0, 1}n. Let us begin with the case c = 0.

• If x satisfies (Eq), then
∑n

i=1 xi = 0 by definition, and it directly results that πeq
0 (x) = 0.

• If x violates (Eq), then we note α :=
∑n

i=1 xi. By definition of the violation, α ∈ J1, nK.

Thus, because for k > α, any product of k variables is equal to 0,

πeq
0 (x) =

α∑
k=1

(−1)k+1
∑
i∈Iαk

xi1 . . . xik

=

α∑
k=1

(−1)k+1

(
α

k

)

= −

(
α∑

k=0

(−1)k
(
α

k

)
− 1

)

= 1−
α∑

k=0

(−1)k1α−k

(
α

k

)
= 1 . (Newton binomial formula)

Let us next consider the case c ∈ N∗.

• If x satisfies (Eq), then it exists c variables equal to 1. Let us refer to them as x̂1, . . . , x̂c.

Thus,
∑

i∈Inc xi1 . . . xic = x̂1 . . . x̂c = 1, and
∑

i∈Ink
xi1 . . . xik = 0 for k > c. It results that

πeq
c (x) = 1 + (−1)c−c+1

(
c

c

)
· 1 = 1− 1 = 0 .

• If x violates (Eq), then by definition
∑n

i=1 = α ̸= c:

– If α < c, thus
∑

i∈Ink
xi1 . . . xik = 0 for any k ≥ c, leading to πeq

c (x) = 1− 0 = 1.
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– If α > c, thus
∑

i∈Ink
xi1 . . . xik =

(
α
k

)
for any c ≤ k ≤ α, and

∑
i∈Ink

xi1 . . . xik = 0 for

any k > α. It results that

πeq
c (x) = 1−

α∑
k=c

(−1)k−c+1

(
k

c

)(
α

k

)
,

where we can show by manipulating factorials that(
k

c

)(
α

k

)
=

(
α

c

)(
α− c

k − c

)
.

Thus,

πeq
c (x) = 1−

α∑
k=c

(−1)k−c+1

(
α

c

)(
α− c

k − c

)

= 1 +

(
α

c

) α−c∑
k=0

(−1)k
(
α− c

k

)
= 1 +

(
α

c

)
(1− 1)α−c = 1 .

A.2 Proof of Property 2.6

Property 2.6. We consider the constraint, for n ∈ N and c ∈ N,

n∑
i=1

xi ≤ c . (Inf)

The associated penalty function is, for x ∈ {0, 1}n,

πinf
c (x) =

n∑
k=c+1

(−1)k−c+1

(
k − 1

c

)∑
i∈Ink

xi1 . . . xik .

Proof. Let x ∈ {0, 1}n.

• If x satisfies (Inf), then
∑

i∈Ink
xi1 . . . xi1 = 0 for any k > c. Thus, πinf

c (x) = 0.

• If x violates (Inf), let us note
∑n

i=1 xi = α > c. Thus,

∑
i∈Ink

xi1 . . . xik =


(
α
k

)
for k ∈ Jc+ 1, αK

0 for k > α

It results that

πinf
c (x) =

α∑
c+1

(−1)k−c+1

(
k − 1

c

)(
α

k

)
.

Next, we prove by recurrence over c ∈ J0, α− 1K the proposition

P(c) : “πinf
c (x) = 1, for all x ∈ {0, 1}n violating (Inf)” .
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Initialization: P(α− 1) is True. Indeed, for x violating (Inf),

πinf
α−1(x) = (−1)α−(α−1)+1

(
α− 1

α− 1

)(
α

α

)
= 1 .

Recurrence: Let c ∈ J1, α − 1K, and let us assume that P(c) is True. Let us show that

P(c− 1) is also True. For x violating (Inf),

πinf
c−1(x) =

α∑
k=c

(−1)k−c

(
k − 1

c− 1

)(
α

k

)

= (−1)c−c

(
c− 1

c− 1

)(
α

c

)
+

α∑
k=c+1

(−1)k−c

(
k − 1

c− 1

)(
α

k

)

=

(
α

c

)
−

α∑
k=c+1

(−1)k−c+1

((
k

c

)
−
(
k − 1

c

))(
α

k

)
(Pascal’s triangle)

=

(
α

c

)
−

α∑
k=c+1

(−1)k−c+1

(
k

c

)(
α

k

)
+

α∑
k=c+1

(−1)k−c+1

(
k − 1

c

)(
α

k

)
︸ ︷︷ ︸

πinf
c (x)

=

(
α

c

)
−

α∑
k=c+1

(−1)k−c+1

(
k

c

)(
α

k

)
+ 1 . (Recurrence hypothesis)

Identically to the proof of the penalty term of constraint (Eq) for the case c ∈ N∗, we can

show that
α∑

k=c+1

(−1)k−c+1

(
k

c

)(
α

k

)
=

(
α

c

)
.

Thus, it results that πinf
c−1(x) =

(
α
c

)
−
(
α
c

)
+ 1 = 1.

A.3 Proof of Property 2.7

Property 2.7. We consider the constraint, for n ∈ N and c ∈ N∗,

n∑
i=1

xi ≥ c . (Sup)

The associated penalty function is, for x ∈ {0, 1}n,

πsup
c (x) = 1 +

n∑
k=c

(−1)k−c+1

(
k − 1

c− 1

)∑
i∈Ink

xi1 . . . xik .

Proof. Let x ∈ {0, 1}n. It is sufficient to show that πsup
c (x) = πeq

c (x) − πinf
c (x), for c ∈ N∗.

Indeed, if we note α :=
∑n

i=1 xi, we have the following results.
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• If x satisfies (Sup) (meaning that α ≥ c):

– If α = c : πeq
c (x) = πinf

c (x) = 0, thus πsup
c (x) = 0.

– If α > c : πeq
c (x) = πinf

c (x) = 1, thus πsup
c (x) = 0.

• If x violates (Sup) (meaning that α < c), we have πeq
c (x) = 1 and πinf

c (x) = 0, leading to

πsup
c (x) = 1.

Thus, it remains to prove that πsup
c (x) = πeq

c (x)− πinf
c (x).

πeq
c (x)− πinf

c (x) = 1 +

n∑
k=c

(−1)k−c+1

(
k

c

)∑
i∈Ink

xi1 . . . xik −
n∑

k=c+1

(−1)k−c+1

(
k − 1

c

)∑
i∈Ink

xi1 . . . xik

= 1 + (−1)c−c+1

(
c

c

)∑
i∈Inc

xi1 . . . xik +

n∑
k=c+1

(−1)k−c+1

((
k

c

)
−
(
k − 1

c

))∑
i∈Ink

xi1 . . . xik

= 1− (−1)c−c+1

(
c− 1

c− 1

)∑
i∈Inc

xi1 . . . xik +

n∑
k=c+1

(−1)k−c+1

(
k − 1

c− 1

)∑
i∈Ink

xi1 . . . xik

= 1 +
n∑

k=c

(−1)k−c+1

(
k − 1

c− 1

)∑
i∈Ink

xi1 . . . xik

= πsup
c (x) .
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