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ABSTRACT
Disease outbreaks are one of the key threats to great apes and other wildlife. Because the spread of some pathogens (e.g.,

respiratory viruses, sexually transmitted diseases, ectoparasites) are mediated by social interactions, there is a growing interest

in understanding how social networks predict the chain of pathogen transmission. In this study, we built a party network from

wild chimpanzees (Pan troglodytes), and used agent‐based modeling to test: (i) whether individual attributes (sex, age) predict

individual centrality (i.e., whether it is more or less socially connected); (ii) whether individual centrality affects an individual's

role in the chain of pathogen transmission; and, (iii) whether the basic reproduction number (R0) and infectious period

modulate the influence of centrality on pathogen transmission. We show that sex and age predict individual centrality, with

older males presenting many (degree centrality) and strong (strength centrality) relationships. As expected, males are more

central than females within their network, and their centrality determines their probability of getting infected during simulated

outbreaks. We then demonstrate that direct measures of social interaction (strength centrality), as well as eigenvector centrality,

strongly predict disease dynamics in the chimpanzee community. Finally, we show that this predictive power depends on the

pathogen's R0 and infectious period: individual centrality was most predictive in simulations with the most transmissible

pathogens and long‐lasting diseases. These findings highlight the importance of considering animal social networks when

investigating disease outbreaks.

1 | Introduction

Across the primate order, nearly 60% of species are threa-
tened with extinction and all nonhuman great apes are either
Endangered or Critically Endangered (Estrada et al. 2017;
IUCN 2021). Diseases are currently considered one of the
main threats to primate survival, along with various other

anthropogenic activities (Rizkalla, Blanco‐Silva, and
Gruver 2007; Köndgen et al. 2008; Almeida et al. 2012; Nunn
and Gillespie 2016; Dunay et al. 2018; Strier et al. 2019; Dietz
et al. 2019; Azevedo et al. 2021; Köster et al. 2022). Because
many pathogens are transmitted via proximity or social
contact, for example, respiratory viruses, sexually trans-
mitted diseases, and ectoparasites, there is a growing interest
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in understanding how networks of interacting individuals
predict chains of pathogen transmission.

In this context, social network analysis has emerged as an
important tool to study the influence of animal behavior on
disease dynamics. For example, the position of an individual or
a group in a social network, whether more or less socially
connected (social centrality), is known to affect pathogen
richness and transmission in both observational (VanderWaal
et al. 2014; Sandel et al. 2020; Deere et al. 2021; Torfs et al. 2021)
and simulation studies (Romano et al. 2016; Webber and Van-
der Wal 2020; Whittier et al. 2022). However, there are different
centrality metrics, and it is necessary to clarify their relative
impact in predicting epidemics (Borgatti 2005; Christley
et al. 2005). For instance, considering grooming networks of
Japanese macaques (Macaca fuscata), direct measures of cen-
trality such as strength centrality, that is, the intensity of social
relationships, were strong predictors of an individual's proba-
bility of becoming infected during a simulated outbreak. In
contrast, indirect measures such as betweenness centrality, that
is, the relative importance of individuals in indirectly connect-
ing other individuals, were better predictors of how quickly an
infectious agent could spread through an entire group (Romano
et al. 2016).

Understanding the influence of individual centrality on patho-
gen transmission is thus not straightforward and another layer
of complexity may be introduced with how pathogen‐specific
characteristics might moderate the effects of host networks on
disease dynamics. Such characteristics include R0, that is, the
expected number of infections produced by a single case in a
naive population, and infectious period, that is, the duration
during which an infected individual is infectious. While the
effect of R0 on the predictive power of centrality metrics over
the course of an outbreak has already been explored (Christley
et al. 2005), to our knowledge, no study has focused on the
effect of infectious period. Hence, there is an open question on
the combined effects of the contagiousness (R0) and infectious
period of a disease agent on the magnitude of centrality effects.

Unraveling these interactions may also be relevant for designing
conservation strategies that rely on identifying individuals that
could be superspreaders (Lloyd‐Smith et al. 2005; Snijders
et al. 2017). For instance, network‐based interventions were
suggested to be effective methods for preventing or slowing
outbreaks (Miller and Hyman 2007; Salathé et al. 2010;

Rushmore et al. 2014; Singh et al. 2021; Moradmand, Siami, and
Shafai 2021; Evans et al. 2023; Berec et al. 2023). When social
network data are not available, it may be possible to consider
interventions based on individual traits like sex and age that
stand in for centrality (Sosa 2016), as has been suggested for
chimpanzees (Rushmore et al. 2014) and humans (Evans
et al. 2023). These individual traits can be assessed for an entire
group in just a few hours compared to weeks for a social net-
work, and are thus particularly valuable when planning an
intervention on a wild, unhabituated, or unstudied group.
However, because of intergroup variability in terms of social
style, social tolerance, and sociodemographic factors (sex ratio,
age ratio, group size) (Cronin et al. 2014; Borgeaud et al. 2016;
van Leeuwen, Cronin, and Haun 2018; van Leeuwen
et al. 2021), it remains unclear to what extent individual traits
are generally good predictors of centrality. Owing to these
challenges, it remains difficult to generalize about the require-
ments for network‐based interventions.

In this study, we investigated: (i) whether individual traits can
be used as proxies for individual centrality; (ii) how an in-
dividual's social centrality influences disease dynamics accord-
ing to different centrality metrics (direct versus indirect), and
the extent to which this influence can be attributed to centrality
purely explained by individual traits; and, (iii) how pathogen‐
specific characteristics might moderate the effects of host net-
works on disease dynamics. We combined SNA and agent‐based
modeling to test the impacts of sociality on the transmission of
various simulated pathogens using an empirical data set col-
lected on wild chimpanzees. Our hypotheses were that: (i) traits
like age and sex are good predictors of an individual's position
within the network (whether more or less central); (ii) an in-
dividual's centrality (and its individual traits, per hypothesis (i))
affects its role in the chain of pathogen transmission, and direct
and indirect metrics exhibit variable influences; and, (iii) the
basic reproduction number (R0) and infectious period modulate
the influence of centrality on the transmission chain within a
network.

Based on previous findings, we expected that male chimpanzees
would be more central in their network than females, as they
are generally more gregarious (i.e., inclined to aggregate) (Itoh
and Nishida 2007; Gilby and Wrangham 2008; Kanngiesser
et al. 2011; Shimada and Sueur 2014). We predicted that central
individuals would acquire a pathogen during simulations and
spread this pathogen to a larger number of individuals in a
shorter amount of time, as was observed in other primate spe-
cies (Romano et al. 2016). We also predicted that this effect
would be stronger when using direct measures of centrality
than when using indirect measures (Christley et al. 2005;
Rozins et al. 2018), as we worked with an unstructured chim-
panzee party network where all possible dyadic associations
may occur (i.e., every individual may associate with every other
individual) (Shimada and Sueur 2014). In other words, direct
connections (e.g., strength) are sufficient to allow whole‐group
transmission, so second‐level connections (e.g., betweenness)
should matter less. Further, we predicted that individual traits,
as a proxy for individual centrality, would partially predict
disease outcomes, as has been reported for chimpanzees pre-
viously (Rushmore et al. 2014). Finally, we predicted that an
individual's centrality should be most influential in the chain of

Summary

• Older male Chimpanzees are the most central within
their network, and their centrality determines their
probability of getting infected during simulated
outbreaks.

• Direct measures of social interaction (strength central-
ity), as well as eigenvector centrality, strongly predict
disease dynamics in the chimpanzee community.

• This predictive power depends on the pathogen's R0 and
infectious period: individual centrality was most pre-
dictive in simulations with the most transmissible
pathogens and long‐lasting diseases.
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transmission for pathogens with a high R0 (Christley et al. 2005)
and long infectious periods, as they lead to longer outbreaks
(Cross et al. 2005), with the most central individuals driving the
spread of the infectious agent. However, we expected centrality
to be less informative once the pathogen consistently achieved
complete transmission. With this study, in addition to the the-
oretical contributions, we hope to provide a framework that can
be applied to species threatened by infectious disease and to
support conservationists and wildlife managers in the decision‐
making process.

2 | Materials and Methods

2.1 | Study Species

We worked with a wild community of chimpanzees (Pan trog-
lodytes schweinfurthii; called M group) in the Mahale Mountains
National Park, Tanzania (Nishida 2011; Nakamura et al. 2015).
Chimpanzees live in permanent social groups and present a
fusion–fission social structure. They form subgroups called
parties on a daily basis that can vary in size and composition
from 1 day to another (Itoh and Nishida 2007). Chimpanzee
group dynamics are characterized by female‐biased dispersal
(Pusey 1980; Walker and Pusey 2020). Social interactions and
centrality in the social network can vary substantially among
females, while males, on the other hand, are generally more
gregarious (Gilby and Wrangham 2008, in Kibale National Park,
Uganda).

2.2 | Data Collection

Network data were collected as described in Shimada and Sueur
(2014). MS collected behavioral data from habituated chim-
panzees of M group from October 4 to November 3, 2010, and
from August 25 to September 17, 2011 (21 and 17
observation days, respectively). At the time of data collection,
the group was composed of 58 individuals, but only 52 were
observed during both research periods. The group included 35
females (17 adults > 13 years old, 9 juveniles between 5 and
13 years old, and 9 dependent offspring ≤ 4 years old) and 17
males (9 adults > 14 years old, 7 juveniles between 5 and
14 years old, and 1 dependent offspring ≤ 4 years old). All 52
individuals were individually identified.

MS collected data on attendance of each group member in
nomadic parties. Nomadic parties were defined according to
Itoh and Nishida (2007, 89) as “loose aggregations in which
members are not always in visible contact, but stay within
acoustic range and roughly travel in the same direction on a
given day.” During each observation day, a party was located
and a single focal individual was selected and followed by MS
and one research assistant for a period of 3 h. Focal observations
were interrupted if the individual was no longer visible. After
the focal follow was finished, an individual in another nomadic
party was selected to avoid observation bias.

To estimate the tendency of each pair of individuals to join the
same nomadic party, we created a party–level association index

(AI) following (Gilby and Wrangham 2008). In this context, the
AI for individuals x and y was calculated as:

P

P P P
AI =

( + − )
,xy

xy

x y xy
(1)

where Pxy is the number of nomadic parties observed that
contained both x and y, Px is the number of nomadic parties
observed that contained x, and Py is the number of nomadic
parties observed that contained y. AIxy takes a value between 0
and 1. A matrix of AIs was built using this method incorpo-
rating all possible dyads in the group using data aggregated
from both research periods. This constitutes our observed
chimpanzee network. Unlike Shimada and Sueur (2014), we
worked directly with the weighted network as a disease may
spread even during rare associations.

2.3 | Theoretical Model of Pathogen
Transmission

We implemented a Susceptible—Infected—Recovered (SIR)
model (Kermack and McKendrick 1927) of an infectious agent
spreading along a social network using Netlogo 6.2.0 (Wilensky
1999). Built upon the models developed in Sueur, Petit, and
Deneubourg (2009) and Romano et al. (2016), this model as-
sumes that pathogen transmission is dependent on the social
relationships between individuals. In the model, we input the
observed chimpanzee network, which considers individual
identities and their strength of social relationships.

To model the spread of a socially transmitted pathogen, we
consider the probability of being infected nonsocially (λ) to be
close to 0. At the beginning of the simulations, the probability of
an individual being infected first is the same for all individuals.
As soon as the first infected individual is randomly selected, the
probability ψi for other individuals to become infected is no
longer the same among individuals, but is dependent on their
social relationships:

 
ψ λ C r k i

C r k i

λ
R= + ( , ) with

( , )
= ,i

k

N
k
N

=1

=1
0 (2)

where C is a mimetic coefficient or amplification process fa-
voring infection, i is the individual at risk of being infected, N is
the group size, and r(k, i) is the weight of an edge linking a pair
of individuals.

At each time step, a new individual's probability ψi of getting
infected is computed for each susceptible individual who then
has a chance to either move from “susceptible” to “infected”
status or remain “susceptible” based on that probability. Model
simulations operate on daily time steps, and each individual's
status is updated just once per time step. To recover from the
illness, the number of days an individual is infected should be
equal to the infectious period, also known as the recovery time
in the model interface. If the individual has been infected for a
number of days less than the infectious period, then the number
of days of being infected increases by 1. Individuals that are
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recovered have permanent immunity against further infection
and will no longer change status during the simulation. The
simulation finishes when there are no more infected or sus-
ceptible individuals remaining.

Finally, to determine how infectious a pathogen is, we set the
basic reproduction number R0 in the model interface. In simple
terms, the higher the R0, the higher the average number of
infected contacts per infected individuals. We tested multiple
values of R0 and of infectious period to simulate disease out-
breaks caused by distinct pathogens. For R0 we followed the
values used in Rushmore et al. (2014), 0.7 being a low conta-
giousness pathogen, 1.5 being a mildly contagious pathogen
such as influenza, 3 being a moderately contagious pathogen
such as Ebola, and 10 being a highly contagious pathogen such
as measles. For infectious period, we followed reports that
infectious periods may range from a few days to 1 month for
pathogens common to humans and great apes (Ekdahl
et al. 1997; Weber, Weber, and Milligan 2001; Chowell
et al. 2004; Rushmore et al. 2014; Scully et al. 2018; Negrey
et al. 2019; Byrne et al. 2020; Morrison et al. 2021). We selected
infectious periods of 3, 7, and 20 days for our simulations and
ran 10,000 simulations for each combination of parameters
(4 values of R0 × 3 values of infectious period). The source code
is available in Zenodo: https://zenodo.org/record/7377819.

For each simulation, we stored the identity of each infected
individual, its position in the order of infection, the latency of
infection (since the previous and the first infection), and the day
the simulation is at. We then computed global outcomes (the
proportion of infected individuals and the duration of trans-
mission events) and individual outcomes of the model (the
probability of an individual i getting infected during the out-
break, the outbreak size and duration once individual i is the
first to be infected). Details of each metric are given in the
Supporting Information.

2.4 | Network Statistics

We used the package igraph version 1.2.6 (Csardi and
Nepusz 2006) in R (R Core Team 2021) to calculate individual
network centralities. Because our association matrix is sym-
metrical and nonbinary, we computed an undirected and
weighted network.

We calculated node strength, betweenness, and eigenvector
centralities, each of which has been previously suggested to
influence pathogen transmission via divergent mechanisms
(Sueur, Jacobs, et al. 2011; Romano et al. 2016; Silk et al. 2017;
Snijders et al. 2017). The strength of a node is the sum of the
weights of all edges connected to it in a weighted network
(Barrat et al. 2004). It can be directed, having both in‐strength
and out‐strength, but since our network is undirected, we used
all the edges connected to each node as that individual's
strength. The eigenvector centrality of a node sums the weights
of all edges connecting it to others as well, but in this case is
also weighted by the collective strengths of all nodes connected
to that focal node (Bonacich 1987). Strength centrality allows us
to determine how likely an individual is to infect or be infected

by others directly through repeated interactions; high strength
increases opportunities for transmission to occur. Eigenvector
centrality encompasses a broader likelihood of acquiring/
transmitting an infection; individuals who are connected to
others who themselves are well‐connected are more likely to
acquire and transmit infections. Both measures thus allow us
to estimate the spreading potential of an individual in different
ways. The betweenness centrality of a node refers to the
number of shortest paths between two other nodes that pass
through that focal node (Freeman 1978). The shortest path can
either be a count or a sum of edge weights, which reflect
betweenness for unweighted and weighted networks, respec-
tively. We used a weighted method in our study, and because
the edge weights are interpreted as distances, we computed the
multiplicative inverse of the edge weights so that the higher is
the AI between two individuals, the shorter is the distance
between them. This measure is important for identifying key
individuals that facilitate transmission between different sub-
groups in a network.

Given the nature of our networks (a party network where all
individuals are connected to others), we explored the need for a
cut‐off to remove the least important connections in the net-
work. We removed the 10% to 90% weakest connections at 10%
steps, and for each cut‐off value, we computed the correlation
between the centrality metrics of the original network and those
of the trimmed network. We found that removing interactions
had nearly no effect on the individuals' strength and eigenvector
centrality (Supporting Information S1: Figure S1). And to
observe a substantial effect on the betweenness, we had to
remove more than 50% of the connections (Supporting Infor-
mation S1: Figure S1) which would deprive the pathogens of
many potential routes of transmission within the network. For
this reason, we chose to use the full network in all analyses.
This decision is also supported by previous studies showing that
removing weak ties tends to homogenize the number of con-
nections in networks (Collier et al. 2022), whereas heteroge-
neity plays an important role in pathogen spread (May, Gupta,
and McLean 2001; Kiss, Green, and Kao 2006).

2.5 | Statistical Analysis

To test whether individual traits (sex and age) predict individual
centrality, we constructed a generalized linear model (glm) for
each metric (i.e., eigenvector, betweenness and strength) as they
are not independent from one another. One may expect an
inverse U‐shaped relationship between age and centrality with a
peak in prime adulthood (between 20 and 35 years old) and a
decline in old age (> 35 years old) (Watts 2018), which could be
analyzed by grouping individuals into age classes. However,
because such a pattern was not observed in our data set
(Supporting Information S1: Figure S2), we decided to use age
as a continuous variable in the analyses. We ran each glm ac-
cording to the distributional characteristics of each metric: a
Gaussian model for strength and eigenvector and a negative
binomial model for betweenness. We used the functions “glm”
from the package stats version 4.0.2 in R, and “glm.nb” from the
package MASS version 7.3‐60 (Venables and Ripley 2002) in R,
respectively. The betweenness variable was transformed to only
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contain integers higher than one. For all models, we ran a series
of diagnostics to test their suitability (i.e., variance inflation,
correlation of fitted and residual values and Cook's distance).
The interaction between age and sex was included in each
model. Although information on dominance rank was available,
we did not use it since it is representative of only eight adult
males.

We tested the effects of the infectious period, the R0 and their
interactions on the proportion of infected individuals and on
the duration of transmission events using glm. We then used
the function “glht” from the package multcomp version 1.4‐14
(Hothorn, Bretz, and Westfall 2008) in R to perform multiple
comparisons of means under general linear hypotheses as post
hoc tests to test for significant effects within each of these
models.

To test the effect of centrality measures on disease dynamics
(the probability of an individual i getting infected during the
outbreak, the outbreak size and duration; once individual i is
the first to be infected), we performed correlation tests using the
Kendall method for each one of the centrality metrics and for all
combinations of R0 and infectious period. We also used node‐
label permutations to test the null hypothesis that individual
centralities did not influence disease dynamics throughout the
distinct values of R0 and infectious period. For each disease
dynamic and each individual centrality metric, under each
combination of R0 and infectious period, we performed 10,000
node‐label permutations of the network. For each replicate we
computed the studied centrality metric for the permuted net-
work and built a glm with the disease dynamic as the depen-
dent variable and the centrality metric as the independent
variable. The null distribution was created by extracting the
centrality metric estimate of each glm and the computation of
the p value consisted in calculating which proportion of esti-
mates from permuted networks was higher (for the individual
probability of being infected and the outbreak size) or lower (for
the outbreak duration) than the estimate from the real network.
Finally, we replicated the previous methods on the residual
centralities obtained from the models testing the effects of
individual traits on centrality. We thus tested the predictive
power of centralities from which we removed the influence of
individual traits, hence interpreting the difference in predictive
power before and after removal as the extent to which the effect
of centrality on disease outcomes may be purely attributed to
individual traits. All analyses were performed in R 4.0.2 and the
significance threshold was set at 0.05.

3 | Results

3.1 | Individual Trait and Centrality

The chimpanzee network of party associations was composed of
52 individuals and every individual shared a link with all other
individuals in the network (Figure 1). A description of the
global network characteristics (density, diameter, and modu-
larity) is available in the Supporting Information. The individ-
ual strength centrality ranged from 11.745 to 30.918
(mean = 23.394 ± 5.033, median = 23.205) and the eigenvector

centrality ranged from 0.346 to 1 (mean = 0.744 ± 0.171,
median = 0.735) showing heterogeneous association patterns
with some individuals having up to three times more contacts
than others. The betweenness ranged from 0 to 33
(mean = 1.923 ± 5.249, median = 0) showing that a few in-
dividuals monopolized the role of bridges between other pairs of
individuals.

In general, our statistical models showed that age and sex, by
themselves, were not good predictors of individual centrality
(Table 1, Supporting Information S1: Table S1). For all cen-
trality metrics, we observed that the older the male, the higher
its centrality (Table 1, Figure 2).

3.2 | Global Outcomes of the Model

An increasing R0 tended to increase the outbreak duration when
it stopped due to a lack of infected individuals (e.g., 3 compared
to 1.5 with an infectious period of 3 days; Figure 3A,B), but it
tended to decrease the outbreak duration when it stopped due to
a lack of susceptible individuals (e.g., 3 compared to 1.5 with an
infectious period of 20 days; Figure 3A,B). In other words, when
the outbreak size increased, the outbreak duration increased
accordingly, until a maximum where the R0 and infectious period
started to allow for complete transmission. From that point, the
more likely the complete transmission, the shorter the outbreak
(Figure 4). Whatever the duration of the infectious period, when
R0 = 10, the outbreak lasted for approximately 10 days
(Figure 3B). Outbreak sizes and durations produced by the var-
ious R0 and infectious periods were all significantly different
from each other (Supporting Information S1: Tables S2–S4), but a
few combinations of parameters showed nonsignificant interac-
tions in models for the proportion of infected individuals only
(Supporting Information S1: Table S5).

3.3 | Individual Outcomes of the Model

3.3.1 | Individual Probability of Getting Infected

The probability of an individual being infected was positively
and significantly correlated with all three centrality measures,
but less strongly correlated with betweenness than with
strength and eigenvector centrality (Figure 5; Table 2).
Increasing R0 and infectious period increased the correlation
between the probability of being infected and the individual
centrality measures (Table 2). Regardless of the combination
of parameters, the node permutation test was significant
(p‐random< 0.05; Table 2), meaning that the individual prob-
abilities of being infected resulting from the simulations were
the result of a transmission pattern that is different from what is
expected under a random network. This was not the case for a
high R0 and a high infectious period, which allowed a quasi‐
constant complete transmission in the betweenness model, thus
causing a plateau (e.g., R0 = 10 and infectious period = 20 days;
Table 2). The correlations with residual centralities followed the
same pattern and were generally no more than 0.5 times weaker
than the correlations with the corresponding full centralities,
except for residual betweenness which showed a proportionally
much lower predictive power than betweenness (Table 2).
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FIGURE 1 | Party association network of chimpanzees from M group—Mahale Mountains National Park, Tanzania. The node size represents the

strength of the individual, the node color represents its sex (green =male; pink = female), and the label, its age in years. Individuals are positioned

according to their strength centrality, following the layout Atlas Force 2 in Gephi 0.9.2 (Bastian et al. 2009).

TABLE 1 | Parameter estimates from generalized linear models explaining variation in individual centrality according to individual traits.

Factor Estimate Standard error z Value p Value

Model (gaussian): strength ~ sex × age

Intercept 21.172 1.04 20.358 < 2e−16***

Sex (male) 2.463 2.043 1.206 0.234

Age 0.014 0.043 0.335 0.739

Sex (male): age 0.208 0.096 2.169 0.035*

Model (gaussian): eigenvector ~ sex × age

Intercept 0.668 0.035 18.818 < 2e−16***

Sex (male) 0.083 0.07 1.195 0.238

Age 5.19E−04 0.001 0.358 0.722

Sex (male): age 0.007 0.003 2.166 0.035*

Model (negative binomiale): betweenness ~ sex × age

Intercept 1.026 0.302 3.4 6.74E−04***

Sex (male) 0.391 0.55 0.711 0.477

Age −0.014 0.013 −1.092 0.275

Sex (male): age 0.06 0.025 2.351 0.019*

Note: Significant codes are marked as follows: ***p< 0.001, **p< 0.01, *p< 0.05.
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3.3.2 | Proportion of Infected Individuals According to
the First Infected Individual's Centrality

The proportion of infected individuals (i.e., a proxy for outbreak
size) depended on the centrality of the first individual infected.
The higher the strength, betweenness, and eigenvector cen-
trality of this individual, the larger the outbreak size

(Supporting Information S1: Figure S3). Correlations between
outbreak size and betweenness were slightly weaker than with
either strength or eigenvector, yet still significant (Supporting
Information S1: Table S6). High values of R0 tended to increase
the correlation between the outbreak size and individual cen-
trality, especially when the infectious period was short, up to a
plateau (Supporting Information S1: Table S6). However,

FIGURE 2 | Individuals' strength depends on both their age and sex. Observed patterns are the same with eigenvector and betweenness

centralities.

FIGURE 3 | Global outcomes of the model. Proportion of infected individuals (A) and duration of transmission events (B) depending on four

values of R0 (0.7, 1.5, 3, and 10) and three values of infectious period/recovery time (3, 7, and 20 days).
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increased infectious period reduced the correlation between the
outbreak size and individual centrality, leading to a pattern in
which the outbreak size was similar to what would be expected
of transmission on a random network, according to the per-
mutation tests (Supporting Information S1: Table S6). The
correlations with residual centralities followed the same pattern
and were generally no more than 0.5 times weaker than the
correlations with the corresponding full centralities (Supporting
Information S1: Table S6).

3.3.3 | Duration of Transmission Event According to
First Infected Individual Centrality

In general, the duration of transmission events (i.e., a proxy for
outbreak duration) was negatively correlated with all three
centrality measures (Supporting Information S1: Table S7).
Increasing R0 tended to decrease the outbreak duration when
complete transmission was achieved but increase it otherwise
(Supporting Information S1: Figure S4). High R0 also increased
the negative correlations between outbreak duration and the
centralities of the first infected individual (Supporting Infor-
mation S1: Table S7). High infectious period increased the
outbreak duration (Supporting Information S1: Figure S4) and
strengthened correlations between the outbreak duration and
the centralities of the first infected individual (Supporting
Information S1: Table S7) by decreasing variance (Supporting
Information S1: Figure S4). Low values of R0 and infectious
period were more likely to produce outbreak durations that

were not different from those expected if transmission was oc-
curring on a random network (Supporting Information S1:
Table S7). Finally, the combination of infectious period = 3 days
and R0 = 3 presented a surprising positive correlation between
all tested centrality metrics and the duration of transmission
events. The correlations with residual centralities followed the
same pattern and were generally no more than 0.5 times weaker
than the correlations with the corresponding full centralities
(Supporting Information S1: Table S7).

4 | Discussion

This study investigated the impact of sociality on pathogen
transmission in wild chimpanzees to check whether (i) indi-
vidual traits can be used as proxies for individual centrality,
(ii) how an individual's social centrality influences disease
dynamics, and (iii) whether characteristics of infectious agents,
such as their basic reproduction number (R0) and infectious
period, influence the predictive power of network centrality
measures. We observed that an interaction between sex and age
predicted centrality; as expected, males were more central than
females, with older males but not females having increasingly
strong relationships. Additionally, we demonstrated that direct
measures of social interaction (strength centrality), as well as
eigenvector centrality, had the highest predictive power in
disease dynamics in this chimpanzee network (Table 2, Sup-
porting Information S1: Tables S6 and S7). Key to our study
aims, we found that individual traits (i.e., age and sex) were less

FIGURE 4 | Probability of complete transmission and outbreak duration depending on outbreak size over all simulations disregarding the R0 and

the infectious period.
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efficient than individual centrality in predicting disease out-
comes. Finally, our results suggest that the predictive power of
the network is modulated by a given pathogen's R0 and infec-
tious period, with stronger predictive power for the most
transmissible and longest‐lasting infections.

With regard to our first hypothesis, we tested whether indi-
vidual traits might be a good proxy of individual centrality.
This idea came from a longitudinal study of wild chimpan-
zees, which showed that females with large family sizes
ranging in the core of their territory, as well as high‐ranking
males, are likely to be the most central in a party network
(Rushmore et al. 2013). We did not assess female ranging
behavior or family size, but consistent with the fact that male
chimpanzees are more gregarious than females (Gilby and
Wrangham 2008), we found that males were generally more
central than females. We also found that their centrality
increased with age, unlike females. In fact, when aging, male
chimpanzees tend to develop numerous, strong, and mutual

rather than one‐sided friendships (Rosati et al. 2020). Even
though males generally seem more central than females in
Figure 1, the effect of sex depends on the interaction with age.
This is explained by the fact that the effect of sex is driven by
older males being more central, while younger males are not
more central than any female. Because age and sex are easy
individual traits to identify in field studies, an open question is
whether an intervention based on these attributes would be
efficient. It is also important to investigate whether the pre-
dictive power of these traits differ between groups, since
chimpanzees do exhibit intergroup variability in terms of social
style and tolerance (Cronin et al. 2014; van Leeuwen
et al. 2021). Thus, generalizations in using individual traits as
predictors for individual centrality should be done carefully,
and using centrality metrics directly to study their effects on
disease dynamics should be preferred, when possible.

Our results show that individual centrality impacts disease
dynamics, such as estimated through the probability of an

FIGURE 5 | Individual probability of being infected depending on individual's centrality (strength, betweenness, and eigenvector, from top to

bottom), for four values of R0 (0.7, 1.5, 3, and 10), and three values of infectious period (3, 7, and 20 days, from left to right).
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individual being infected, the outbreak size, and its duration.
Although transmission of pathogens cannot always be ex-
plained by social networks (Morrison et al. 2021), direct con-
nections between individuals, such as their strength or
number of partners (degree) have generally been shown to be
good predictors of disease dynamics and pathogen exposure,
both in simulation (Christley et al. 2005; Rushmore et al. 2014;
Romano et al. 2016; Rozins et al. 2018) and observational
studies (Patrono et al. 2020; Sandel et al. 2020; Myall
et al. 2022). Our simulations support this finding as strength
predicted the probability of an individual being infected irre-
spective of the R0 and infectious period of the pathogen
(Table 2). Indirect connections such as betweenness, however,
remained the least efficient predictors for all our measures of
disease dynamics, even if it still proved a significant factor in
many cases. This is partially divergent from a previous study
showing that indirect metrics were good predictors of the
latency to complete transmission in grooming networks of
Japanese macaques (i.e., outbreak duration here; Romano
et al. 2016). An explanation may be that different social styles
across species, and the consequent variation in connectivity
due to varying social tolerance rates (Sapolsky 2006; Sueur,
Petit et al. 2011; Call, Amici, and Aureli 2012), may produce
different network topologies. This, combined with the type of
data (e.g., party network versus grooming network), may in
turn produce different network structures, which may mediate
the predictive power and relative importance of each centrality
metric in disease dynamics.

In sum, although these studies found divergent results, it may
shed light on the importance of network types in predicting
pathogen transmission. In the case of our study, we used a party
network that can be depicted as loose aggregations within
acoustic range and moving in the same general direction (Itoh
and Nishida 2007). This means that our chimpanzee network
exhibits the maximum density and a very low modularity. In
such a network, betweenness is expected to be of less impor-
tance than in a more modular network (Rozins et al. 2018),
where individuals with high betweenness centrality may play a
key role in the diffusion of pathogens between different regions
of the network.

When evaluating the importance of individual traits to the
relationship between centrality and disease dynamics we
observed that these contributed to less than half of the observed
effect. This contrasts with previous studies where individual
traits could effectively predict disease outcomes (Rushmore
et al. 2014), and targeting them could lead to efficient control of
the epidemic even when not accurately representing centrality
(Evans et al. 2023). Without having the same kind of data as
these studies at our disposal (social: family size, and social rank,
but also on ecological factors), it remains difficult to assess what
drives this difference. We can note, however, that individual
traits seem to have a proportionally higher contribution to the
predictive power of betweenness on an individual's probability
of getting infected (Table 2). Yet, betweenness remains our least
influential predictor, as stated above. Generalizing thus seems
difficult and using network data, when possible, should be
preferred. Considering the relative ease with which data on age
and sex can be collected—or indeed other sociodemographic
characteristics—compared to network data, and its relativeT
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efficacy at predicting disease outcomes, we encourage further
research assessing proxies of centrality for epidemic control.

Regarding our third question, we investigated whether char-
acteristics of infectious agents, such as their basic reproduction
number (R0) and infectious period, influence the predictive
power of network centrality measures. As expected, longer
infectious periods increased the probability of getting infected
as well as the outbreak size and duration. With a stable R0, and
by increasing the infectious period, Cross et al. (2005) found
that more individuals were infected and that the outbreak lasted
longer in structured populations. In accordance with previous
simulation studies, increasing R0 increased the probability of
getting infected (Christley et al. 2005) as well as the outbreak
size (Hamede et al. 2012; Griffin and Nunn 2012; Rushmore
et al. 2014). Increasing R0 also enhanced the predictive power of
centrality metrics on the probability of getting infected
(Christley et al. 2005). However, we showed that R0 had a
bimodal effect on outbreak duration, which seems related to
infectious period (Figure 3B). Increasing R0 with an infectious
period too short to allow complete transmission increased the
outbreak duration. This happened because of an increase in the
proportion of infected individuals. When there was whole‐
group transmission, increasing R0 reduced the time to achieve it
and the predictive power of centrality on the outbreak size and
probability of getting infected greatly decreased. Interestingly,
in our study, a long infectious period tended to alleviate the
importance of centrality to predict the outbreak size, and
eventually produced results not different from what is expected
under a random network, even when complete transmission
was not consistently achieved. Nevertheless, it emphasizes its
importance to predict the outbreak duration. In short, our work
highlighted the interplay between R0, the infectious period and
the individual centralities, all acting on the outbreak—which, to
our knowledge, has not yet been considered on animal epide-
miology and conservation.

In this study, we tested an array of theoretical values of R0 and
infectious periods that may not necessarily represent reality.
However, our results can still provide valuable information, as
recent outbreaks in humans and other great apes have been
shown to have a R0 (from 1.27 to 9.42) and an infectious period—
the duration during which an infected individual is infectious—
(from 0.38 to 20 days, with an outlier at 40.84 days) similar to the
ones tested in this study (Chowell et al. 2004, 2006; Legrand
et al. 2007; Tuite et al. 2010; Ndanguza, Tchuenche, and
Haario 2013; Scully et al. 2018; Negrey et al. 2019; Byrne
et al. 2020; Morrison et al. 2021). In most of these outbreaks, the
R0 was less than 3 and the infectious period less than 7 days. For
such pathogens, our model indicates that centrality is a good
predictor of the individual probability to get infected and, to a
lesser extent, of the outbreak size. Regarding outbreak duration,
our model anticipates a relationship with centrality that ranges
from positive to negative depending on how often complete
transmission occurs.

Taken together, our results illustrate that understanding the
impact of sociality on pathogen transmission is important for
developing conservation strategies for primates and other
species. For the previously described pathogens, because
centrality is a predictor of individual probability to get

infected, one may consider adopting a network‐based strategy.
For example, targeted health monitoring of males, in
particular—as they are more central—could allow an earlier
detection of outbreaks and a consequently faster intervention.
Alternatively, wildlife vaccination is increasingly being dis-
cussed as a viable option to avoid disease outbreaks in the wild
(Warfield et al. 2014; Capps and Lederman 2015; Leendertz
et al. 2017). We are aware that wildlife vaccination is time‐
consuming and costly (Plumb et al. 2007; Barnett and
Civitello 2020), and immunity may be short‐lived, but target-
ing individuals as well as developing new vaccines with rele-
vant, cost‐effective administration strategies may be
advantageous for wildlife protection when the disease could
cause the species' extinction and as long as benefits outweigh
the risks (Capps and Lederman 2016). The model presented
here could help explore the effects of various pathogens and
test various transmission mitigation scenarios in disease‐
threatened populations.

We recognize there are limitations to our study, including the
simplification of a real process. For example, we did not con-
sider that individuals may have varied immune responses that
depend on their genetics, social rank, or previous exposure to
the pathogen. These are difficult data to gather, even in humans
(Il'Yasova and Kinev 2019). Nonetheless, such data would
improve the accuracy of these epidemiological models and
contribute to unraveling the complexity behind individual traits
and disease dynamics. For instance, high‐ranking male chim-
panzees seem to have higher levels of immunosuppressing
testosterone (Muller and Wrangham 2004), which could result
in greater susceptibility to infection, and consequently, proba-
bility of infecting others. This, combined with their moderate to
high centrality (Rushmore et al. 2013; Watts 2018; Sandel
et al. 2020), could accentuate male impacts in the transmission
chain. Furthermore, we built our network with only 2 months
of observations. Even though every possible dyad exists in our
network, it represents just a fraction of all the variability in
associations that may exist in the group throughout a longer
time scale (Rushmore et al. 2013). Additionally, our network
was based on “loose party associations,” which may not be ideal
given the characteristics of socially transmissible disease agents
(different nuances of interactions, and transmission according
to a given proximity and behavior) but this method does esti-
mate the “probability of interaction” among party members, at
least relative to nonparty members. Another aspect for
improvement is the potential for pathogen transmission
between parties, as estimated in other studies with Great Apes.
For example, in the highly modular network of a gorilla pop-
ulation, respiratory diseases spread quickly within a group but
not to the other groups because of the rarity of interactions
between them (Morrison et al. 2021). In the case of our study,
chimpanzees' fusion–fission social structure implies regular
interactions between parties that are not accounted for by the
party‐level AI (like the nocturnal fusion periods), and which
may have critical impacts on disease dynamics at the commu-
nity scale. Finally, our model also assumes that networks are
static throughout the outbreak, without considering behavioral
changes, such as lethargy, that can decrease social interactions
during epidemics (Rushmore, Bisanzio, and Gillespie 2017;
Patrono et al. 2020). This could be implemented in future
studies.
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In conclusion, by studying the social behavior of wild chim-
panzees, we showed that males and especially older males are
more central than females in the group, as expected, and that
individual centrality is a strong determinant of the probability
of being infected during an outbreak (especially in terms of
strength and eigenvector centrality). Our results demonstrate
that individual centrality is a good predictor of disease
dynamics regardless of the value of R0 used in the model. In the
context of targeted intervention, because centrality can be
challenging to measure in the field, a previous study proposed to
instead use proxies of centrality which they found were family
size and social rank (Rushmore et al. 2013). In our study, age
only predicted individual centrality among males. The ability of
these individual traits (in our case, age and sex) to predict
disease dynamics was therefore limited, highlighting the need
for caution when exploring the potential for trait‐based inter-
ventions. This study highlights the importance of using animal
social networks in wildlife epidemiology, encompassing how
different centrality metrics predict simulated disease dynamics.
We hope this stimulates further discussion into the roles of
individuals in pathogen transmission, and their consequences
for wildlife conservation.
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