
HAL Id: hal-04783379
https://hal.science/hal-04783379v1

Submitted on 14 Nov 2024 (v1), last revised 15 Nov 2024 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Adding topology and memory awareness in data
aggregation algorithms

François Tessier, Venkatram Vishwanath, Emmanuel Jeannot

To cite this version:
François Tessier, Venkatram Vishwanath, Emmanuel Jeannot. Adding topology and memory aware-
ness in data aggregation algorithms. Future Generation Computer Systems, 2024, 159, pp.188-203.
�10.1016/j.future.2024.05.016�. �hal-04783379v1�

https://hal.science/hal-04783379v1
https://hal.archives-ouvertes.fr

Adding Topology and Memory Awareness in Data Aggregation Algorithms

François Tessiera, Venkatram Vishwanathb, Emmanuel Jeannotc

aInria, University of Rennes, CNRS, IRISA Rennes, Rennes, France
bArgonne National Laboratory, Lemont, IL, USA

cInria, LaBRI, Univ. Bordeaux, CNRS, Bordeaux-INP, Bordeaux, France

Abstract

With the growing gap between computing power and the ability of large-scale systems to ingest data, I/O is becoming the bottleneck
for many scientific applications. Improving read and write performance thus becomes decisive, and requires consideration of the
complexity of architectures. In this paper, we introduce TAPIOCA, an architecture-aware data aggregation library. TAPIOCA
offers an optimized implementation of the two-phase I/O scheme for collective I/O operations, taking advantage of the many
levels of memory and storage that populate modern HPC systems, and leveraging network topology. We show that TAPIOCA
can significantly improve the I/O bandwidth of synthetic benchmarks and I/O kernels of scientific applications running on leading
supercomputers. For example, on HACC-IO, a cosmology code, TAPIOCA improves data writing by a factor of 13 on nearly a
third of the target supercomputer.

Keywords: Data movement, I/O, data aggregation, deep memory and storage hierarchy, architecture-aware placement
2000 MSC: 68W15, 68W10

1. Introduction

In the domain of large-scale simulations, driven by the de-
mand for reliability and precision, the generation of tera- or
petabytes of data has become increasingly prevalent. However,
a growing disparity between compute power and I/O perfor-
mance on supercomputers has emerged. Over the past decade,
the ratio of I/O bandwidth to computing power for the first three
systems on the top500 1 list has decreased by a factor of ten, as
illustrated in Figure 1. In that context, efficiently moving data
between the applications and the storage system within high-
performance computing (HPC) machines is crucial.

Date

G
B

ps
/T

Fl
op

s

0.00

0.05

0.10

0.15

0.20

0.25

01/2010
01/2012

01/2014
01/2016

01/2018
01/2020

01/2022

GBps / TFlops Trend

Figure 1: Ratio of I/O bandwidth (GBps) to computing power (TFlops) of the
top 3 supercomputers of the Top500 over the past 10 years

1https://www.top500.org/

On the application side, managing I/O is complicated by
the diverse data structures employed. For instance, particle-
based applications often require writing multiple variables in
multidimensional arrays distributed among processing entities,
while adaptive mesh refinement (AMR) applications must han-
dle varying I/O sizes depending on input parameters. The pop-
ularity of deep learning algorithms has introduced new work-
loads demanding vast quantities of input data. Additionally,
complex workflows like in-situ visualization and analysis fur-
ther exacerbate this complexity. Consequently, optimizing data
movement is of paramount importance for the foreseeable fu-
ture for scaling science.

From a hardware perspective, there has been a growing dis-
parity between the amount of data that needs to be transferred
and the memory or storage capabilities in terms of both ca-
pacity and performance. To address this issue, hardware ven-
dors have introduced intermediate tiers of memory and stor-
age, which must be utilized effectively to alleviate the I/O bot-
tleneck. However, these memory hierarchy levels come with
unique characteristics and sometimes require a dedicated soft-
ware stack, making efficient use challenging. In addition, the
process of moving data necessitates traversing intricate network
topologies that must be considered, such as an all-to-all, 5D-
torus or dragonfly.

In this landscape, harnessing these architecture and appli-
cation characteristics are key to making optimized decisions.
Among these techniques, data aggregation plays a central role
for mitigating data movement bottlenecks. It involves aggre-
gating data at various points in the architecture to optimize ex-
pensive data access operations. In collective I/O operations, for
instance, data aggregation accumulates contiguous data chunks

Preprint submitted to Future Generation Computer Systems November 14, 2024

in memory before writing them to the storage system. This ap-
proach is called ”two-phase I/O”. However, the current imple-
mentations of the two-phase I/O scheme suffer several limita-
tions, especially with regard to the complexity of modern archi-
tectures. A reevaluation of this algorithm that fully leverages
the potential of new technologies such as RDMA (Remote Di-
rect Memory Access) and asynchronous operations can highly
improve I/O performance. Furthermore, an approach that is ag-
nostic to the network topology and the memory is necessary
to effectively handle the deepening complexity of memory and
topology hierarchies.

In this paper, we introduce TAPIOCA, an I/O library de-
signed to perform architecture-aware data aggregation at scale.
TAPIOCA targets applications using collective I/O operations
and can be extended to intricate workflows such as in-situ or
in-transit analysis that may require temporarily persistent data.
With an abstraction layer for the network interconnect and deep
memory hierarchy, this library can execute data aggregation
on any memory or storage system in current and forthcoming
large-scale systems, offering seamless portability across vari-
ous supercomputers. To determine the most suitable location
for data aggregation, we also provide a detailed cost model min-
imizing data movement. To validate our approach, we demon-
strate how TAPIOCA outperforms traditional I/O calls on a syn-
thetic benchmark and the I/O kernels of two real applications.
We run our experiments on two leadership-class supercomput-
ers and a visualization cluster at Argonne National Laboratory,
USA, all featuring characteristics we are seeing on emerging
exascale architectures.

2. Context and Motivation

2.1. Large-Scale Simulations

Large-scale simulations can be categorized into various groups,
and among them, certain applications are heavily reliant on
I/O operations, resulting in substantial time spent accessing the
storage system. There are several factors contributing to this be-
havior. For instance, some applications involve extensive read-
ing of input data that must be processed during the simulation.
Conversely, other applications generate significant amounts of
data that require subsequent processing after generation. Ad-
ditionally, certain applications frequently access the file system
for checkpointing purposes. It is worth noting that these cat-
egories are not mutually exclusive, and an application can fall
into multiple categories. Therefore, optimizing the I/O access
of such applications holds paramount significance, as it directly
impacts the overall execution time.

2.2. Accessing Data at Scale

In recent years, the ratio between compute and I/O perfor-
mance of supercomputers has been constantly degrading. Nowa-
days, in many applications, the I/O is becoming a bottleneck,
requiring to improve data movement. In order to reduce this
gap, effort has been carried out at the hardware level and es-
pecially for the topology of the machine. Indeed, the networks

topologies, despite being more complex, tend to reduce the dis-
tance between the data and the storage. Many supercomput-
ers features I/O nodes that are embedded within racks to serve
as a proxy to the parallel file-system. This architecture helps
to avoid I/O interference by decoupling the compute network
and the I/O network. On the IBM BG/Q, for example, a 5D-
torus network offers a limited number of hops between com-
pute nodes and storage while providing different routes to dis-
tribute the load [1]. In addition, a node’s partitioning in blocks
of 512 nodes linked to four I/O nodes reduces as much as pos-
sible the impact of I/O interference between jobs and ensure a
good performance reproducibility. On Cray XC40, a dragon-
fly network topology is deployed. Thus, the minimal distance
from one node to another is at most three hops (although the
routing strategy can transmit packets through more links). On
this platform, a subset of nodes, called LNET routers, plays the
role of a proxy to the storage system. Another network is then
dedicated to send data to disk.

A complementary approach consists in using on-node mem-
ory and storage to reduce the I/O pressure of each application
on the parallel file-system. This allows several optimizations.
For example, SSD-based burst buffers (as the ones used on the
Cray Cori infrastructure [2]) are intermediate nodes between
compute nodes and storage system that can supply a smaller
storage capacity but a higher I/O bandwidth. These storage tiers
are designed to absorb the burst and accelerate the I/O phase
of applications. While writing data out for future analysis is
costly, another technique involves storing data in memory for
in situ analysis. Although bandwidth-efficient, this approach is
limited by the amount of memory available.

An Ad-Hoc file systems [3, 4] is an application-level file
systems, deployed at launch-time that intercept I/O accesses to
store data locally, on-nodes, hiding and abstracting the local
memory or burst buffers present in the machine. With such sys-
tem, the question if staging data at some point (when the SSD
are full) or at the end of the application remains a key problem.

At the same time, parallel file systems have been improved
to support an increasing I/O load in terms of both throughput
and available storage capacity. This software stack is accompa-
nied by strong algorithms to balance the I/O load.

Despite these upgrades, however, room remains for improve-
ment in parallel I/O and more generally in data movements. In
particular, an abstraction layer is necessary for taking network
topologies, local memory and disks into account. The goal is to
use in a simple way the hardware features of the supercomputer
at their full potential to optimize I/O operations.

2.3. MPI I/O and the Two-Phase I/O Scheme
MPI [5] is widely utilized for the development of large-

scale distributed-memory applications on high-performance clus-
ters. Within MPI, the MPI I/O component plays a critical role in
facilitating input and output operations. One significant aspect
of MPI I/O is the collective I/O mechanism, which enables effi-
cient reading and writing of data at scale. In collective I/O, all
MPI tasks involved in the communication invoke the I/O rou-
tine in a synchronized manner, allowing the MPI runtime sys-
tem to optimize data movement based on various application

2

parameters, including data size, memory layout, and storage ar-
rangement.

The two-phase I/O algorithm, present in MPI I/O imple-
mentations like ROMIO [6], is a well-established and efficient
optimization technique. It involves selecting a subset of pro-
cesses to aggregate contiguous data segments (aggregation phase)
before writing them to the storage system (I/O phase). The
primary objective of this approach is to minimize latency and
enhance parallel file-system accesses by aggregating data in a
manner that aligns with the layout of the parallel file-system.
Figure 2 provides an illustrative example of this technique, fea-
turing four processes with two selected as aggregators. By
minimizing network contention around the storage system and
maximizing the I/O bandwidth through the writing of large con-
tiguous data chunks, substantial performance improvements are
achieved. However, the current implementation of this approach
exhibits several limitations. Firstly, despite offering improved
I/O performance compared to direct access, it often falls short
of achieving the peak I/O bandwidth. Secondly, there is an ob-
served inefficiency in the placement policy for aggregators, de-
spite the potential impact on performance through smart map-
ping. Lastly, existing implementations fail to leverage the data
model, data layout, and memory and system hierarchy effec-
tively.

X Y Z X Y Z X Y Z X Y Z

Processes

Data

AggregatorsX X X X Y Y

Y Y Z Z Z Z FileX X X X Y Y

Y Y Z Z Z Z

I/O Phase

Aggr. phase

3210

0 2

Figure 2: Example of the two-phase I/O mechanism

This work focuses on addressing these limitations within
the context of the two-phase I/O scheme. Specifically, we present
TAPIOCA, an I/O library built on top of MPI I/O, designed to
optimize the two-phase I/O scheme for large-scale supercom-
puters with a keen awareness of system topology. TAPIOCA
encompasses three primary directions: an efficient implemen-
tation of the two-phase I/O algorithm, an enhanced aggregator
placement strategy that accounts for system characteristics, and
a versatile interface to query system topology information.

3. Related work

Parallel I/O [7] is an active research topic, primarily devel-
oped in the context of intensive parallel I/O. While I/O tuning
is a crucial step to increase I/O bandwidth, improvements at
various layers of the I/O software stack are necessary. Paral-
lel file systems like GPFS [8] and Lustre are widely used [9],
and parallel I/O libraries such as MPI I/O and its ROMIO [6]

implementation, part of the MPI-2 [5] standard, are common
for performing reads and writes. Collective I/O techniques, like
Chaarawi et al.’s evaluation of various write algorithms [10],
have been deployed to enhance performance. The two-phase
I/O algorithm [11], which aggregates data on a subset of pro-
cesses before writing it to the storage system, is a de facto col-
lective I/O approach. Various efforts have been made to op-
timize this algorithm [12, 13, 14, 15, 16, 17], but they usu-
ally lack awareness of the available tiers of memory and stor-
age, limiting their ability to leverage these resources effectively.
Other research has investigated multithreading to overlap ag-
gregation and I/O phases using double buffering [15, 18]. How-
ever, the optimal number of aggregators and buffer size in col-
lective I/O remains an open question. In general, other I/O li-
braries offer aggregation techniques, but these are generally not
very advanced or scalable [19].

Data movement optimizations based on data aggregation
has also been explored beyond low-level I/O libraries. At an
ephemeral file-system level for instance, UnifyFS has imple-
mented aggregation as a unique namespace on node-local stor-
age resources [20]. Other work, for example in the field of
checkpointing [21, 22], has developed aggregation techniques
to accelerate write phases, notably via asynchronous operations.
However, these approaches are limited to a specific tool or frame-
work and are architecture-agnostic, whereas TAPIOCA proposes
to take advantage of MPI, which is widely used in the com-
munity, while also leveraging the machine’s topology. From
a workflow point of view, some authors have investigated us-
ing available SSDs to overcome DRAM shortages in specific
workflows [23], while others have focused on finely describing
workflow data movements [24, 25]. However, these techniques
often require users to possess in-depth knowledge of their ap-
plications.

In contrast, some research has been conducted from a run-
time perspective. For example, authors have proposed transpar-
ently moving data from applications to storage systems through
an intermediate fast storage layer [26]. Another approach ex-
plored the use of fast storage layers (e.g., burst buffers) as a
distributed file system [4], and a driver for MPI-IO was devel-
oped to take advantage of network-attached memory tiers [27].
However, these approaches are tailored to specific architectures
and memory tiers, limiting portability.

To ensure code portability and accommodate the emerging
exascale machines with new memory and storage tiers, an ar-
chitecture abstraction is essential. Hwloc [28] offers a common
hardware abstraction, although it provides qualitative informa-
tion and does not account for the interconnect network. At a
higher level, SharP [29] provides an abstraction layer for allo-
cating memory on any available tier, but it is dependent on the
data model to handle. Our approach stands out by adopting a
data aggregation method that considers the underlying archi-
tecture through memory and network interconnect abstractions.
TAPIOCA can perform aggregation on any available memory
and storage tier, offering a model that minimizes the cost of
data movement, while being independent of the application’s
data model.

Our current approach differs from existing solutions by com-

3

bining an optimized buffering system with an architecture-aware
quantitative aggregator mapping strategy. It targets various sys-
tems, such as IBM BG/Q and Cray XC40, along with both
GPFS and Lustre. Furthermore, it is extensible to accommo-
date new storage tiers and takes into account the application’s
I/O pattern.

4. Our Approach

In this paper, we introduce TAPIOCA (standing for Topology-
Aware Parallel I/O: Collective Algorithm), a MPI-based library
for collective I/O operations using an optimized architecture-
aware two-phase I/O algorithm. By relying on an architecture
abstraction layer, TAPIOCA enables the placement of aggrega-
tors taking into account the network topology and the available
memory and storage spaces. Our library also optimizes data
aggregation by taking the data layout into account through a
description of the I/O phases in the application’s code. Finally,
we focused on an efficient implementation leveraging one-sided
communication (Remote Memory Access) and multi-buffering.

In the rest of this section, we present these different aspects
of TAPIOCA. We begin by detailing our hardware abstraction
layer, then we introduce our architecture-aware cost model for
data aggregation. We conclude this section by presenting our
aggregation algorithms for both read and write collective oper-
ations. For the remainder of this paper, we will use the term
buffer to refer to the memory space dedicated to aggregation on
the ”aggregator” processes, and target to designate the destina-
tion of the data (typically, a parallel file system).

4.1. Architecture Abstraction

A key feature of our approach is to achieve code and per-
formance portability across a broad variety of architectures, in-
cluding emerging and future network interconnects and tiers of
memory and storage. To do so, we have developed two abstrac-
tion layers with which our library interacts for both efficient
aggregators placement and management of reads and writes on
different levels of memory and storage. Figure 3 depicts how
those components fit into TAPIOCA while Listings 1 and 2
show some of the API functions of those two abstractions.

Memory API

Memory abstraction

D
R

A
M

H
B

M

N
V

R
A

M

P
FS

Application

TAPIOCA

I/O Calls

Destination

Aggr. placement

Topology abstraction

BG/QXC40 ...

...

Figure 3: High-level view of TAPIOCA and the two abstraction layers

Listing 1: Function prototypes for memory/storage data movements

b u f f t * memAlloc (mem t mem, i n t b u f f S i z e ,
boo l masterRank , char * f i leName ,
MPI Comm comm) ;

void memFree (b u f f t * b u f f) ;
i n t memWrite (b u f f t * bu f f , void * s r c B u f f e r ,

i n t s r c S i z e , i n t o f f s e t ,
i n t des tRank) ;

i n t memRead (b u f f t * bu f f , void * s r c B u f f e r ,
i n t s r c S i z e , i n t o f f s e t ,
i n t s rcRank) ;

void memFlush (b u f f t * b u f f) ;
i n t memLatency (mem t mem) ;
i n t memBandwidth (mem t mem) ;
i n t memCapacity (mem t mem) ;
i n t memPers i s t ency (mem t mem) ;

Our memory abstraction (Listing 1) allows to allocate and
free buffers on any kind of memory or storage. memRead() and
memWrite() functions are in charge of data movements from/to
an allocated buffer. As some operations are either asynchronous
or need a process involved to be completed, a memFlush() func-
tion has been implemented to ensure that all the initiated oper-
ations on the buffer are finished. Functions giving vendors or
experimental performance values for the memory tiers are also
available. The memPersistency() function returns the persis-
tency capability of a memory tier. The cost model we describe
in 4.2 queries those values.

Technically, this memory abstraction internally calls the ap-
propriate functions according to the type of memory managed.
For instance, if data is aggregated on the high-bandwidth mem-
ory (HBM), the memkind2 library will be used for allocation
and deallocation. Depending on the scope of the memory bank,
the memory management technique may vary. An on-node
SSD, for example, is locally accessible with regular I/O calls
(POSIX, MPI, ...) but has to be exposed to remote nodes in
case of aggregation from multiple compute nodes. In this case,
we implemented this feature by mapping a file on SSD into the
main memory through a mmap system call then by exposing
this buffer to remote nodes with a MPI Window (RMA).

The network abstraction provides the relative location of
compute nodes as well as performance information. In order
to tackle various topologies making our approach work on a
diverse set of supercomputers, we developed a generic C++ in-
terface to implement our data aggregation method for use on
any system. Listing 2 presents the main function prototypes
to implement to take advantage of a topology-aware aggregator
placement. Some of these values can be computed dynamically
during the execution, while others, depending on the platform,
need a one-time preliminary run of vendor tools to gather topol-
ogy information. For example, on BG/Q+GPFS a hardware-
specific MPI extension (MPIX library [30]) offers a set of func-
tions providing information such as the distance to the I/O node
(MPIX IO distance) while on a Cray XC40 machine associ-
ated with a Lustre filesystem, more work is needed to gather
the I/O nodes placement. Overall, the effort required to sup-
port a new architecture is quite low and is independent of the

2http://memkind.github.io/memkind/

4

Listing 2: Function prototypes for network interconnect

i n t ne tworkBandwid th (i n t l e v e l) ;
i n t n e t w o r k L a t e n c y () ;
i n t networkDis tanceToIONode (i n t rank , i n t IONode) ;
i n t ne tworkDis t anceBe tweenRanks (i n t srcRank , i n t des tRank) ;

application.

4.2. Architecture-Aware Aggregators Placement

The second main contribution of this work on data aggre-
gation concerns the aggregators placement policy. The various
implementations of the MPI standard propose a set of aggrega-
tors mapping strategies for the two-phase I/O scheme. For ex-
ample, in MPICH [31] a strategy consists in selecting the bridge
node (i.e. the node directly linked to the I/O node) as a first
aggregator and the other aggregators following a rank order.
This strategy takes into account neither the distance between the
compute nodes and the storage system nor the amount of data
exchanged. Moreover, the process mapping may severely im-
pact the performance by selecting aggregators on neighboring
nodes inevitably creating contention. We propose in TAPIOCA
a topology-aware approach for aggregators placement. Also,
while existing methods select a subset of nodes to gather chunks
of data, we consider a set of available memory banks on nodes
and chose among those tiers the ones fulfilling the persistency
and performance requirements. For instance, if the number of
aggregators is equal to the number of nodes (i.e. one aggregator
per node), we can locally aggregate data on the fastest avail-
able memory tier. In case we have more than one node sending
data to an aggregator, the I/O bandwidth and the latency will be
probably bounded by the performance of the network intercon-
nect. Thus, a memory tier with enough capacity is sufficient.
Another criteria we include in our model concerns data persis-
tency. A workflow including in-situ analysis, for example, may
need temporary persistent local data.

Therefore, our strategy involves considering the topology
of the target system and the memory/storage requirements in
an objective function in order to determine a near-optimal ag-
gregator placement minimizing data movements. For the rest
of this paper, we call ”partition” a subset of nodes hosting pro-
cesses sharing a contiguous piece of data in file. The number
of aggregators defines the partition size, each partition electing
one aggregator among the processes.

Given, for each partition:

• VM: The set of heterogeneous memory banks present in
the partition and fulfilling the persistency requirements;

• A ∈ VM: A memory tier able to aggregate data, chosen
among the available memory banks;

• CapA: The capacity of a memory tier A

• T : The target memory, usually a file system;

• Nbu f f : The number of aggregation buffers;

• S bu f f : The aggregation buffer size;

• ω(u, v): The amount of data to move from one memory
bank u to another v with u, v ∈ VM;

• d(u, v): The distance between memory banks u and v
(hops or bus) with u, v ∈ VM;

• l: The latency such as l = max (lnetwork, lv) with v ∈ VM;

• Bu→v: The bandwidth from memory bank u to v with
u, v ∈ VM , such as Bu→v = min (Bnetwork, Bu, Bv).

4.2.1. Memory Requirements
First, the selected aggregator has to fulfill a memory capac-

ity condition. The memory bank chosen to aggregate data has
to have a capacity greater or equal than the size needed for the
aggregation buffers. We consider two cases: with and without
a need of persistency. If the aggregated data needs to be persis-
tent in memory, the memory capacity has to be at least the sum
of the data produced for an aggregator.

CapA ≥
∑

u∈VM ,u,A
ω(u, A)

However, if persistency is not necessary, the memory ca-
pacity must be able to contain the number of buffers required
for aggregation. More formally, the memory capacity has to be
such as:

CapA ≥ Nbu f f × S bu f f

Once this prerequisite has been met, we obtain a subset
Vm ⊆ VM containing the aggregators candidates from the set
of the memory banks. The next step consists of selecting the
most appropriate memory tier providing the best I/O bandwidth
among the candidates.

4.2.2. Objective function
To do so, we define two costs C1 and C2 as depicted in Fig-

ure 4. C1 corresponds to the cost of aggregating data onto the
aggregator. To compute this cost, we sum up the cost of each
data producer i of sending an amount of data ω(i, A) to a mem-
ory bank A used for aggregation. This cost takes into account
the slowest bandwidth involved as well as the worst latency.

C1 =
∑

i∈VM ,i,A

(
l × d(i, A) +

ω(i, A)
Bi→A

)
C2 is the cost of sending the aggregated data to the destina-

tion (typically, the storage system).

C2 = l × d(A,T) +
ω(A,T)
BA→T

5

C1

C2 Compute node

VM : Source memory

T : Target memory

A : Aggregating memory

Figure 4: Objective function minimizing the communication costs to and from
an aggregator.

Every node is in charge of computing the cost, for each of its
local memory bank, of being an aggregator. Let’s take as an ex-
ample a node hosting three different types of memory comply-
ing with the persistency and capacity requirements mentioned
previously. Three pairs of {C1,C2} will be computed, one for
each tier.

To determine the near-optimal location for data aggregation,
we find out the minimal value of the sum of these two costs
among the elements of Vm. More formally, our objective func-
tion is:

ArchAware(A) = min (C1 +C2)

A call to MPI Allreduce across a partition with the MPI MINLOC

parameter enables our algorithm to choose as an aggregator the
process with the minimal cost. Hence, for each partition an ag-
gregator is elected.

4.2.3. Toy Example
Figure 5 illustrates our model with four processes that need

to collectively write data on a parallel file system (PFS). We
consider that each process is located on a different node. Two
memory banks within a node are separated by one hop while
the distance between nodes is noted on the links (white cir-
cles). Each node hosts two types of memory in addition to the
main memory (DRAM): a high-bandwidth memory (HBM) and
a HDD-based non-volatile memory (NVR). The source of the
data is the DRAM (blue boxes) while the destination is a Lus-
tre file system (green box). There is no need for intermediate
persistency. Processes P0, P1, P2 and P3 respectively produce
10MB, 50MB, 20MB and 5MB. Based on vendors values, we
set in Table 1 the latency, bandwidth, capacity and level of per-
sistency of the available tiers of memory and the interconnect
network for this toy example.

Table 2 shows, for each process, the cost of aggregating
data on its local available tiers of memory. Our model shows

HBM

DRAM

P1 - 50MB

DRAM

NVR

HBM

P3 - 5MB

DRAMNVR HBM

P2 - 20MB

DRAMNVR HBM

P0 - 10MBLustre FS

NVR

1

1 4 4

3

5

1

2

1

2

41

1

Figure 5: Toy examples of four processes collectively writing data on a Lustre
file system through a data aggregation process.

Value# HBM DRAM NVR Network
Latency (ms) 10 20 100 30

Bandwidth (GBps) 180 90 0.15 12.5
Capacity (GB) 16 192 128 N/A

Persistency No No job lifetime N/A

Table 1: Memory and network capabilities based on vendors information

that the most advantageous location for aggregation is the high-
bandwidth memory available on the node hosting process P1.
We can notice that the difference between aggregation on HBM
and DRAM is negligible. We observed this result with real
experiments on a supercomputer equipped with those types of
memory. Likewise, this behavior has also been observed in a
related work [32]. Finally, Figure 6 depicts the decision taken
by TAPIOCA for the aggregator selection.

P# ω(i, A) HBM DRAM NVR
0 10 0.593 0.603 2.350
1 50 0.470 0.480 2.020
2 20 0.742 0.752 2.710
3 5 0.503 0.513 2.120

Table 2: For each process, according to the amount of data produced (ω) and
the network and memory information, sum of the aggregation cost CostA and
the I/O cost CostT .

It has to be noted that the aggregation memory can be also
defined by the user through an environment variable (TAPI-
OCA AGGRTIER). When using this method, the environment
variable can be set to any memory tier implemented in our
memory abstraction. The aggregators location is then computed
according to the only topology information.

4.3. Advanced Data Aggregation Algorithms

In this section we show how to use TAPIOCA in applica-
tions to perform collective I/O operations. Then we detail our
architecture-aware implementation of read and write calls tak-
ing advantage of advanced techniques such as one-sided com-
munication and multi-buffering.

6

HBM

DRAM

P1 - 50MB

DRAM

NVR

HBM

P3 - 5MB

DRAMNVR HBM

P2 - 20MB

DRAMNVR HBM

P0 - 10MBLustre FS

NVR

1

4

1

2

1

Figure 6: Decision taken by TAPIOCA for selecting the most appropriate ag-
gregator given the initial state described in Figure 5.

4.3.1. Data Pattern Awareness
Compared with the MPI standard, our approach requires the

description of the upcoming I/O operations before performing
read or write calls. We extract from this information the data
model (multidimensional arrays) and the data layout (array of
structures, structure of arrays). The identification of these data
patterns is the key to better scheduling I/O and to reduce the
idle time for all the MPI tasks. As an example, Algorithm 1
describes the collective MPI I/O calls needed for a set of MPI
processes writing three arrays in a file, each one describing a
dimension of coordinates in (x,y,z), following an array of struc-
tures data layout. Each call to MPI File write at all is a
collective operation independent of the next calls.

Algorithm 1: Collective MPI I/O writes.

1 n← 5;
2 x[n], y[n], z[n];
3 o f f set ← rank × 3 × n;
55

6 MPI File write at all (f , o f f set, x, n, type, status);
7 o f f set ← o f f set + n ;
99

10 MPI File write at all (f , o f f set, y, n, type, status);
11 o f f set ← o f f set + n;
1313

14 MPI File write at all (f , o f f set, z, n, type, status);

With TAPIOCA, application developers have to describe
the upcoming writes. This description contains nothing more
than what is already known and requires less than a dozen lines
of code. Algorithm 2 is the TAPIOCA version of Algorithm 1.
Since we have three variables to write, we declare arrays of size
3 describing the number of elements, the size of the data type,
and the offset in file (for loop starting line 6). Then, TAPI-
OCA is initialized with this information. This phase enabled
our library to schedule the aggregation phase in order to com-
pletely fill an aggregator buffer before flushing it to the target.
Figure 7 gives another perspective of what happens when per-
forming this write phase with MPI I/O and TAPIOCA. In our

example, MPI I/O has to flush three almost empty buffers in file
while TAPIOCA can aggregate all the data. Moreover, TAPI-
OCA also takes advantage of buffers pipelining to further opti-
mize the aggregation and I/O phases.

Algorithm 2: Collective TAPIOCA writes.

1 n← 5;
2 x[n], y[n], z[n];
3 o f f set ← rank × 3 × n;
55

6 for i← 0, i < 3, i← i + 1 do
7 count[i]← n;
8 type[i]← sizeof (type);
9 o f st[i]← o f f set + i × n;

1111

12 TAPIOCA Init (count, type, o f st, 3);
1414

15 TAPIOCA Write (f , o f f set, x, n, type, status);
16 o f f set ← o f f set + n ;
1818

19 TAPIOCA Write (f , o f f set, y, n, type, status);
20 o f f set ← o f f set + n;
2222

23 TAPIOCA Write (f , o f f set, z, n, type, status);

X Y Z X Y Z

Processes

Data

Aggregator

X X

File

X Y Z X Y Z

P0 P1

Y Y

Z Z

X Y Z X Y Z

P0 P1

X Y Z X Y Z X Y Z X Y Z

MPI I/O TAPIOCA

Figure 7: Calling three collective writes for an array of structure data layout
with MPI I/O and TAPIOCA.

4.3.2. Buffers Pipelining
In order to optimize both the aggregation phase and the I/O

phase, each aggregator manages at least two buffers. There-
fore, while data is aggregated into a buffer, another one can be
flushed into the target. In our implementation, as the aggrega-
tion phase is performed with RMA operations (one-sided com-
munication), no synchronization is needed between the pro-
cesses sending data to the aggregators and the aggregators them-
selves. Moreover, the aggregators perform non-blocking inde-
pendent writes to the target (usually a storage system) making
themselves available for other operations. In this way the ag-
gregators are able to flush a full buffer while receiving data into
another one. This loop is performed as many times as necessary

7

to process the data. The buffers used by the aggregators to stage
data are allocated as a multiple of the target file-system block
size to avoid lock penalties during the I/O phase. As depicted
in Figure 8, a series of experiments in which we ran a sim-
ple benchmark from 2048 BG/Q nodes on a GPFS file-system
(each process writes the same chunk size to different offsets of
a single shared file) helped motivate this choice, although this
behavior is known.

 0

 5000

 10000

 15000

 20000

 1 2 4 8 16 32 64 128

A
ve

ra
g
e
 b

a
n
d
w

id
th

 (
M

B
p
s)

Data size per rank (in MB)

Impact of the file system block size on I/O
2048 Mire-nodes - 1 rank/node - Indep. MPI I/O

Multiple of BS
Multiple of BS + 1 KB

Figure 8: Benchmark measuring the impact of the file-system block size for
write operations.

Each instance of a buffer filling and flushing itself is called
a round. A global round is equivalent to a round performed by
the same buffer on all the aggregators.

4.3.3. TAPIOCA’s Collective Write and Read Algorithms
Using the contributions of the previous sections, we present

here our write and read algorithms implemented in TAPIOCA
and executed by the aggregation processes selected thanks to
our cost model presented in Section 4.2.

Algorithm 3 details the write method implemented in our
library. For each call to TAPIOCA Write, we retrieve informa-
tion computed during the initialization phase such as the num-
ber of aggergation buffers, the round number, the target aggre-
gator, the amount of data to write during this round and the
aggregator buffer to put data in (lines 6 to 10). Then, the while
loop starting from line 13 blocks the processes whose current
round is different from the global round in a fence (barrier in
the context of MPI one-sided communication). Only the pro-
cesses with the matching round can lift the barrier. If a process
passing this fence is an aggregator, it flushes the appropriate
buffer into the file (I/O phase). Line 21 just puts the data into
the target buffer by way of a one-sided operation (Aggregation
phase). If the process has written all its data, it enters a portion
of code similar to the one starting from line 13. Else, we recur-
sively call this TAPIOCA Write function again while updating
the function parameters.

We present in Algorithm 4 our read procedure. We can
mainly distinguish four blocks in this algorithm. From line 15
to 21, we perform a first synchronization of the processes in-
volved in the read operation. During this phase, the processes
chosen to act as aggregators read from the input file a chunk of
data whose size is the size of an aggregation buffer (I/O phase).

Algorithm 3: TAPIOCA Write Algorithm

1 GlobalRound ← 0;
2 TotalRound ← ComputeNumberOfRounds (datasize);
44

5 Function TAPIOCA Write
(f , o f f set, data, size, type, status)

6 round ← GetRound();
7 aggr ← GetAggregatorRank();
8 chunkS ize← GetRoundSize(round);
9 bu f fCount ← GetBuffCount();

10 bu f f Id ← globalRound % bu f fCount;
1212

13 while round , globalRound do
14 Fence ();
15 if I am an aggregator then
16 iFlush Buffer (bu f f Id);

17 globalRound ← globalRound + 1;
18 bu f f Id ← globalRound % bu f fCount;

2020

21 RMA Put (data, chunkS ize, o f f set, aggr,
bu f f Id);

2323

24 if chunkS ize = size then
25 while globalRound , TotalRounds do
26 Fence ();
27 if I am an aggregator then
28 iFlush Buffer (bu f f Id);

29 globalRound ← globalRound + 1;
30 bu f f Id ← globalRound % bu f fCount;

31 else
32 TAPIOCA Write

(f , o f f set + chunkS ize, data +
roundS ize, size − chunkS ize, type, status);

8

From line 24 to 31, this data is distributed from the aggregators
to the other processes. The processes passing this conditional
block carry out a RMA operation to get data from the appro-
priate aggregation buffer (aggregation phase, line 34). The last
block, from line 37 to the end, is quite similar to the second
block. The processes whose data has been fully retrieved, get
stuck in a waiting loop, while the others recursively call the read
function.

5. Evaluation

To validate our approach, we ran a large series of experi-
ments on Mira and Theta, two leadership-class supercomputers
at Argonne National Laboratorywhich have been decommis-
sioned respectively in 2019 and 2023. We also used Cooley,
a mid-scale visualisation cluster, to highlight the portability of
our method. TAPIOCA was assessed on I/O benchmarks and
on two I/O kernels of large-scale applications: a cosmological
simulation and a computational fluid dynamics (CFD) code.

In this section, we first describe the three testbeds we car-
ried out our experiments on. Then, we demonstrate in 5.2 the
impact of user-defined parameters on collective I/O operations.
This step calibrates TAPIOCA and MPI I/O for a fair compari-
son. Finally, starting from Section 5.3 we present a comparative
study of TAPIOCA and MPI I/O on diverse use-cases.

Table 3 summarizes the experimental setup used to evaluate
our architecture-aware data aggregation technique.

5.1. Testbeds

5.1.1. Mira
Mira is a 10 PetaFLOPS IBM BG/Q supercomputer ranked

in the top ten of the Top500 ranking for years, until June 2017
(see Figure 9). Mira contains 48K nodes interconnected with
a 5D-torus high-speed network providing a theoretical band-
width of 1.8 GBps per link. Each node hosts 16 hyperthreaded
PowerPC A2 cores (1600 MHz) and 16 GB of main memory.
Following the BG/Q architecture rules, Mira splits the nodes
into Psets. A Pset is a subset of 128 nodes sharing the same I/O
node. Two compute nodes of a Pset offer a 1.8 GBps link to the
I/O node. These nodes are called the bridge nodes. GPFS [8]
manages the 27 PB of storage. In terms of software, we com-
piled the test applications and our library with the IBM XL
compiler, v12.1, and used the default MPI installation on Mira
based on MPICH2 v1.5 (MPI-2 standard).

5.1.2. Theta
Theta is a 11.7 PetaFLOPS Cray XC40 supercomputer. This

architecture (see Figure 10) consists of more than 3600 nodes
and 864 Aries routers interconnected with a dragonfly network.
The routers are distributed in groups of 96 internally intercon-
nected with 14 GBps electrical links, while 12.5 GBps optical
links connect groups together. Each router hosts four Intel KNL
7250 nodes. A KNL node offers 68 1.60 GHz cores, 192 GB of
main memory, a 128 GB SSD, and 16 GB of MCDRAM. The
MCDRAM, also called high-bandwidth memory (HBM), can
be used as an additional cache or as a high-speed allocatable

Algorithm 4: TAPIOCA Read Algorithm

1 GlobalRound ← 0;
2 ReadRound ← 0;
3 TotalRound ← ComputeNumberOfRounds (datasize);
55

6 Function TAPIOCA Read
(f , o f f set, data, size, type, status)

7 round ← GetRound();
8 aggr ← GetAggregatorRank();
9 chunkS ize← GetRoundSize(round);

10 bu f fCount ← GetBuffCount();
11 bu f f Id ← globalRound % bu f fCount;
12 readId ← readRound % bu f fCount;
1414

15 if firstRead then
16 if I am an aggregator then
17 Pull Buffer (readId);
18 readRound ← readRound + 1;
19 readId ← readRound % bu f fCount;

2121 Fence ();

2323

24 while round , globalRound do
25 if I am an aggregator AND

readRound < TotalRounds then
26 Pull Buffer (readId);
27 readRound ← readRound + 1;
28 readId ← readRound % bu f fCount;

29 Fence ();
30 globalRound ← globalRound + 1;
31 bu f f Id ← globalRound % bu f fCount;

3333

34 RMA Get (data, chunkS ize, o f f set, aggr,
bu f f Id);

3636

37 if chunkS ize = size then
38 while globalRound , TotalRounds do
39 if I am an aggregator AND

readRound < TotalRounds then
40 Pull Buffer (readId);
41 readRound ← readRound + 1;
42 readId ← readRound % bu f fCount;

43 Fence ();
44 globalRound ← globalRound + 1;
45 bu f f Id ← globalRound % bu f fCount;

46 else
47 TAPIOCA Read (f , o f f set+ chunkS ize, data+

roundS ize, size − chunkS ize, type, status);

9

Table 3: Experimental Setup

HPC Systems Cray XC40, IBM BG/Q, Haswell-based cluster

Comparison TAPIOCA, MPI-IO

Workloads

IOR
Synthetic I/O benchmarks
IO kernel of a cosmological application (HACC)
IO kernel of a direct numerical simulation (S3D)

Operations Write and read with various subfiling techniques

Memory, Storage

DDR: Main Memory
HBM: High-bandwidth memory
NVR: NVRAM, either a on-node SSD or HDD
PFS: Parallel file-system (Lustre or GPFS)

Compute nodes I/O nodes

Storage

Q
D

R
 In

fin
ib

an
d

sw
itc

h

Bridge nodes

5D Torus network
2 GBps per link 2 GBps per link 4 GBps per link

PowerPC A2, 16 cores
 16 GB of DDR3

GPFS filesystem

IO forwarding daemon
 GPFS client

 Pset
128 nodes

 2 per I/O node

Figure 9: IBM BG/Q architecture.

memory (up to 400 GBps). On this platform, we compiled the
test applications and TAPIOCA with the Cray wrapper invoking
the Intel compiler (v17.0) optimized for this architecture. We
used the default Cray MPI implementation based on MPICH
and implementing the MPI-3 standard.

The storage system on Theta provides 9.2 PB of usable
space managed by the Lustre file system [33, 9]. Figure 11
shows a simple example of Lustre on this supercomputer. Disks
are hosted on OST (object storage target) and accessible through
OSS (object storage server). Theta has 56 OST and OSS nodes
(ratio 1:1). From an application point of view, each OSS is ac-
cessible through 7 LNET nodes allocated among the compute
nodes. Unfortunately, the vendor does not provide a way to
know how the data is distributed on LNET nodes. It explains
why aggregators placement on this platform do not take the I/O
phase into account.

5.1.3. Cooley
Cooley, is a Haswell-based analysis and visualization clus-

ter featuring 126 Intel Haswell E5-2620 nodes, each with 12
cores, 384GB of memory and a local hard-disk drive (HDD).
The 27 PB of shared storage are managed with a GPFS file-
system. The interconnect is a 56Gbps FDR Infiniband CLOS
network. We limited our experiments on this cluster to evaluat-
ing the portability of our library and abstraction layer.

 Compute node

Storage

 Aries router
Knights Landing proc.
 4 per router

Lustre filesystem

 2D all-to-all structure
 96 routers per group

36 tiles (2 cores, L2)
16 GB MCDRAM
192 GB DDR4
128 GB SSD

 Intel KNL 7250
Dragonfly network

 Elec. links 14 GBps

6
(le

ve
l 2

)

16 (level 1)

Dragonfly network
Opt. links 12.5 GBps

 Compute node

2-cabinet group
 9 groups - 18 cabinets
 16 x 6 routers hosted
 All-to-all

(le
ve

l 3
)

IB FDR
 56 GBps

Service node
 LNET, gateway, …
 Irregular mapping

Figure 10: Cray XC40 architecture.

IB0 IB1 IB0 IB1

OSS

OST

OSS

OST

OSS

OST

OSS

OST

Aries Router (4 KNL)Service node (LNET)

Group of 7 LNET nodes

2 IB/LNET

File

B
ot

to
m

-u
p

de
si

gn

Figure 11: Storage system on Theta managed by Lustre.

5.2. Calibration of Collective I/O Operations with User-Defined
Parameters

To achieve good performance on large-scale supercomput-
ers with collective I/O operations, users often have to tune their
environment to take advantage of certain optimizations. We
listed the most common parameters that may have an impact on
I/O performance and compared on Mira and Theta a baseline
I/O bandwidth with the default parameters and an optimized
run with I/O tuning. This first study allows to present a fair
comparison between TAPIOCA and MPI I/O in the rest of this
paper.

To evaluate I/O performance, we ran IOR, a popular I/O
benchmark [34]. We varied the data size read and written per
process from 200 KB to 4 MB. All the I/O calls were MPI I/O
collective operations. A run was repeated 20 times, and the
mean and the standard deviation were calculated. It has to be
noted that we used a recommended subfiling technique on Mira

10

(one file per Pset) for our experiments on this architecture while
MPI processes managed a single shared file on Theta.

On Mira (Figure 12), runs with the default parameters gave
up to 7.3 GBps for read and around 2 GBps for write with a
large variability. To increase this I/O bandwidth, we mainly set
environment variables optimizing collective calls and reducing
lock contention by sharing files locks. We note that the default
number of aggregators and the aggregator buffer size set to their
default values (i.e., 16 aggregators per Pset and 16 MB) offered
the best performance. These settings were able to increase the
read bandwidth by 13% on the best case, and the optimized
write bandwidth outperformed three times the baseline case on
4 MB.

 0

 2

 4

 6

 8

 10

 0 1 2 3 4 5

I/
O

 B
a
n
d

w
id

th
 (

G
B

p
s)

Data size per rank (MB)

Optimized - Read
Optimized - Write

Baseline - Read
Baseline - Write

Figure 12: I/O bandwidth achieved with IOR benchmark on 512 Mira nodes,
16 ranks per node, with and without user-defined optimizations.

Figure 13 depicts the same experiment on Theta. On this
platform, IOR with the default parameters revealed a read band-
width of approximately 800 MBps while up to 36 GBps were
reached with optimized parameters. The write bandwidth was
increased from nearly 200 MBps to 10 GBps in the best case.
The gap was substantial between these two scenarios. Indeed,
by default on Theta’s Lustre file-system, the number of OSTs
(disks) is set to 1 and the stripe size (size of the chunks of data
distributed among the OSTs) to 1 MB. Using 48 OSTs and a
stripe size of 8 MB highly increased the I/O bandwidth. As
on Mira, two locking modes are available. Lock sharing set
for collective operations reduced the lock contention and took
part in the performance improvement. Another parameter is the
number of aggregators per OST in MPI I/O. Our experiments
showed that two aggregators per OST per set of 512 compute
nodes (if 48 OSTs are used) gives a good increase. We also
identified a routing algorithm (IN ORDER) that provided bet-
ter I/O bandwidth.

This preliminary study also allowed to highlight a decisive
correlation between aggregator buffer size set in TAPIOCA and
stripe size of the Lustre file system. Table 4 shows the average
I/O bandwidth achieved on 512 nodes and 16 ranks per node

 0.1

 1

 10

 100

 0 1 2 3 4 5

I/
O

 B
a
n
d

w
id

th
 (

G
B

p
s)

Data size per rank (MB)

Optimized - Read
Optimized - Write

Baseline - Read
Baseline - Write

Figure 13: I/O bandwidth achieved with IOR benchmark on 512 nodes on
Theta, 16 ranks per node, with and without user-defined optimizations. Log
scale on y-axis.

with various aggregator buffer sizes and stripe sizes on a simple
use-case: each MPI process writes 1MB of data into a single
shared file. Specifically, we set the buffer size in TAPIOCA
to 4 MB, 8 MB, and 16 MB. For each case, we changed the
stripe size in such a way that we could maintain a certain ratio.
We observed that a 1:1 ratio—that is, an aggregator buffer size
equal to the stripe size—gives the best performance.

Table 4: Ratio ”Aggregator buffer size : Stripe size”
Ratio 1 : 8 1 : 4 1 : 2 1 : 1 2 : 1 4 : 1

I/O Bw (GBps) 0.36 0.64 0.91 1.57 1.08 1.14

For the rest of our experiments, and to ensure a fair compar-
ison between TAPIOCA and MPI-IO, we configured each envi-
ronment with the optimal parameters determined in this section.

5.3. 1D-Array

We first ran a series of experiments with a micro-benchmark
called 1D-Array. In this code, every MPI process writes a con-
tiguous piece of data in one or multiple shared files (subfiling)
during a collective call. We used this benchmark to provide
an initial assessment of TAPIOCA’s full range of capabilities,
namely architecture-aware aggregator placement, I/O schedul-
ing, and the means to use any type of memory and storage level
for aggregation. As Theta is our most recent architecture fea-
turing multiple memory and storage tiers, we focused on this
platform for this first analysis. We compared TAPIOCA with
the MPI I/O implementation installed on Theta while varying
the data distribution among the processes, the number of nodes
involved in files read and written, and the aggregation memory
tiers.

This micro-benchmark allocates one buffer per process filled
with random values and collectively write/read it to/from the
storage system. We tried out three different configurations for

11

the buffer size: every process allocates the same buffer or a ran-
dom buffer size is chosen or the buffer sizes follow a normal
distribution. To have a fair comparison, the data distributions
were preserved between experiments with MPI-IO and TAPI-
OCA.

Figure 14 shows experiments on 128 Cray XC40 nodes while
writing and reading data to a single shared file on the Lustre file
system. We selected 48 aggregators (DRAM) for both MPI-IO
and TAPIOCA. We carried out three use-cases: the first one
with an array of 25K integers per process (100KB), the second
one with a random distribution of the data among the processes
(a value between 0KB and 100KB) and the last one with a nor-
mal distribution among the processes. Our approach outper-
formed MPI-IO on the three types of distributions. However,
the performance gap was particularly significant with a random
and a normal distribution seeing as the write bandwidth was re-
spectively approximately 6 and 29 times higher while we read
data 3 times faster.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

Fixed Random Normal

I/O
 B

an
dw

id
th

 (G
Bp

s)

Data distribution

MPI-IO Write
TAPIOCA Write

MPI-IO Read
TAPIOCA Read

Figure 14: I/O bandwidth achieved with 1D-array from 128 Cray XC40 nodes
while varying the data distribution. Data read/written into a single shared file
on Lustre.

Performing I/O operations on a single shared file is known
to often provide poor performance. Subfiling is usually pre-
ferred. Figure 15 presents the results we obtained on the same
platform while performing subfiling, from one file per node
(1:1) to one file per 8 nodes (1:8). In such a use-case, one ag-
gregator was selected per group of nodes writing or reading the
same file. Data aggregation was performed on DRAM while
the destination of the data was the Lustre file system. Unlike
MPI-IO, TAPIOCA allows to set the local SSD as a shared des-
tination tier. The storage space is mapped into a memory space
exposed to one-sided communication. We also ran experiments
showing this feature. It has to be noted that the file created on
each local SSD was temporary (allocation lifetime). We can
conclude from these results that one file per node is the con-
figuration offering the best I/O bandwidth for MPI-IO and our
library. We also observe that setting the SSD as a destination
provides better performance. However, this must be moderated
by the fact that the volume of data read and written is small and

that a cache effect undoubtedly comes into play. The ”1:1” case
was also evaluated with a random data distribution as shown in
Table 5. Again, the best I/O performance was achieved with
TAPIOCA except on the read case from the Lustre file system.
We are still investigating the poor read bandwidth obtained in
some of our experiments.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

1:1 1:2 1:4 1:8

I/O
 B

an
dw

id
th

 (G
Bp

s)

Ratio File:Nodes

MPI-IO Write
TAPIOCA Write

TAPIOCA on SSD Write
MPI-IO Read

TAPIOCA Read
TAPIOCA on SSD Read

Figure 15: I/O bandwidth achieved with 1D-array from 128 Cray XC40 nodes
while varying the number of nodes per file. The node-local SSD was also con-
sidered as a target.

Table 5: MPI-IO vs TAPIOCA, one file per node on Lustre and SSD (TAPIOCA
only) with random data distribution

I/O Operation MPI-IO TAPIOCA
Lustre SSD

Read Bw (GBps) 0.99 0.80 4.47
Write Bw (GBps) 2.46 5.89 4.32

Last, Table 6 gives the read and write I/O bandwidth achieved
on the Lustre file system when performing data aggregation on
the three tiers of memory available on the Cray system. In or-
der to highlight the differences, we increased the data size per
process to 1 MB. We first observed that the difference in perfor-
mance was not significant between aggregation on DRAM and
HBM. This experiment corroborates the cost model evaluation
presented in Section 4.2. We can also notice the overhead due
to the file mapping in memory (mmap) when aggregating data
on the local SSD.

Table 6: Reading and writing one file per node on Lustre with TAPIOCA while
aggregating on the three tiers of memory and storage available on nodes. 1MB
read/written per process.

I/O Operation DRAM HBM SSD
Read Bw (GBps) 8.96 8.24 7.80
Write Bw (GBps) 19.15 19.36 10.70

5.4. HACC-IO
HACC-IO is the I/O kernel of HACC (Hardware Acceler-

ated Cosmology Code). This large-scale cosmological appli-
cation requires the massive compute power of supercomputers

12

to simulate the mass evolution of the universe with particle-
mesh techniques. In terms of I/O, every process of a HACC
simulation manages a number of particles. Each particle is de-
fined by nine variables—XX, YY , ZZ, VX, VY , VZ, phi, pid,
and mask—corresponding to the coordinates, the velocity vec-
tor, and relevant physics properties. The size of a particle is
38 bytes. A useful base value of 25,000 particles requires ap-
proximately 1 MB. In the following, we first present our results
on Mira with 1,024 and 4,096 nodes and 16 ranks per node
(resp. 16K and 64K processes) while only writing data, the
reading phase providing similar results for both methods. Then
we show the results on Theta with 1,024 and 2,048 nodes and
16 ranks per node (resp. 16K and 32K processes) for both read
and write.

5.4.1. Mira
Figure 16 shows the results on 1,024 Mira nodes, with 16

ranks per node and one file per Pset as output. We compared
our approach to MPI I/O on this platform with two data lay-
outs: array of structures (AoS) and structure of arrays (SoA).
For these experiments, we varied the data size per rank from
5K to 100K particles. We first note from the results that subfil-
ing is an efficient technique to improve I/O performance on the
BG/Q since up to 90% of the peak I/O bandwidth was achieved
by our topology-aware strategy. We also note that we outper-
formed the default implementation even on large messages.

 0

 5

 10

 15

 20

 25

 0 0.5 1 1.5 2 2.5 3 3.5 4

B
a
n
d

w
id

th
 (

G
B

p
s)

Data size per rank (MB)

TAPIOCA AoS
MPI I/O AoS

TAPIOCA SoA
MPI I/O SoA

Figure 16: Write bandwidth achieved with HACC-IO on Mira by writing one
file per Pset from 1,024 nodes (16 ranks/node). TAPIOCA: 16 aggregators per
Pset, 16 MB for the aggregator buffer size.

Figure 17 presents experiments with the same configuration
as the previous one except that we ran it on 4,096 Mira nodes.
The behavior was similar, with the peak write bandwidth almost
reached with TAPIOCA (the peak is estimated to 89.6 GBps on
this node count). As with experiments on 1,024 nodes, the gap
with MPI I/O decreased as the data size increased. In any case,
the I/O performance was substantially improved for both AoS
and SoA layouts.

 0

 20

 40

 60

 80

 100

 0 0.5 1 1.5 2 2.5 3 3.5 4

B
a
n
d

w
id

th
 (

G
B

p
s)

Data size per rank (MB)

TAPIOCA AoS
MPI I/O AoS

TAPIOCA SoA
MPI I/O SoA

Figure 17: Write bandwidth achieved with HACC-IO on Mira by writing one
file per Pset from 4,096 nodes (16 ranks/node). TAPIOCA: 16 aggregators per
Pset, 16 MB aggregator buffer size.

5.4.2. Theta
Our experiments on Theta showed a good I/O performance

gain as well. Figure 18 depicts the read and write bandwidth
achieved on 1024 nodes on the Cray XC40 supercomputer while
sharing a single file as output and varying the data size per
process. This result highlights the performance improvement
TAPIOCA can achieve on a standard workflow, from the ap-
plication to a parallel file system. Data aggregation was per-
formed on the DRAM in this set of experiments. On both read
and write, TAPIOCA outperformed MPI-IO respectively by a
factor of 5.4 and 13.8 with a 1 MB data size per process.

 0

 5

 10

 15

 20

 25

 0 0.5 1 1.5 2 2.5 3 3.5 4

Ba
nd

w
id

th
 (G

Bp
s)

Data size per rank (MB)

MPI-IO Write on Lustre
MPI-IO Read on Lustre

TAPIOCA Write on Lustre
TAPIOCA Read on Lustre

Figure 18: Read and write bandwidth achieved with HACC-IO from 1024 Cray
XC40 nodes while writing into a single shared file on the Lustre file-system

As demonstrated in 5.3 and 5.4.1, subfiling is a key method
to improve I/O bandwidth and reduce the proportion of the wall
time spent in I/O. As shown in Figure 19, writing one file per

13

node on the parallel file system improved the performance up
to 40 times with a large amount of data per process. On this
case, MPI-IO and TAPIOCA offered I/O performance in the
same confidence interval. As mentioned previously, whatever
the subfiling granularity chosen, TAPIOCA is able to use the
local SSD as a file destination (as well as an aggregation layer).
Therefore, we included the results when writing and reading
data to/from this storage layer. In this case, the I/O bandwidth
was boosted in the range of 4 and 9 times when writing data and
in the range of 6 and 8 when reading compared to the parallel
file system.

 10

 100

 0 0.5 1 1.5 2 2.5 3 3.5 4

Ba
nd

w
id

th
 (G

Bp
s)

Data size per rank (MB)

MPI-IO Write on Lustre
MPI-IO Read on Lustre

TAPIOCA Write on Lustre (Agg: DDR)
TAPIOCA Read on Lustre (Agg: DDR)

TAPIOCA Write on SSD (Agg: DDR)
TAPIOCA Read on SSD (Agg: DDR)

Figure 19: Read and write bandwidth achieved with HACC-IO from 1024 Cray
XC40 nodes while writing one file per node on the Lustre file-system and on
the local SSD (TAPIOCA only). Log-scale on y-axis.

To extend the analysis of this use-case, we ran a weak scal-
ing study of the previous experiment as depicted in Figure 20.
Here, every process managed 1MB of data. The aggregation
was performed on the DRAM of each aggregator and the target
for output data was set to the Lustre parallel file system and the
on-node SSD. This last method revealed a very strong scalabil-
ity as the I/O performance attained increased by more or less
50% every time we doubled the number of compute nodes.

Eventually, thanks to the memory abstraction we have pro-
posed (see Section 4.1), we carried out experiments with data
aggregation on the high-bandwidth memory available on the
compute nodes. For the purposes of this experiment, we chose
to take the case with the best performance so far, i.e. one file
written to the local SSD per node. This choice was motivated
by the fact that in other configurations (writing to the Lustre
file system, for example), our model shows that performance is
limited by the network, regardless of the aggregation layer used.
Thereby, Figure 21 compares an execution with aggregation on
DRAM and on HBM while writing and reading one file per
node on the node-local SSD. Even so, the performance gap be-

 0

 50

 100

 150

 200

 250

 300

256 512 1024

I/O
 B

an
dw

id
th

 (G
Bp

s)

Number of nodes

MPI-IO Write
TAPIOCA Write

TAPIOCA on SSD Write
MPI-IO Read

TAPIOCA Read
TAPIOCA on SSD Read

Figure 20: HACC-IO, one file per Cray XC40 node on Lustre and local SSD.
1MB per process, varying the number of nodes.

tween the two memory banks and the SSDs remains wide. The
two-phase I/O operations is still bounded by the SSD’s band-
width as expected, showing no difference between data agrega-
tion on the DRAM or on the HBM.

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

5000 15000 25000 35000 50000 100000

I/
O

 B
a
n
d

w
id

th
 (

G
B

p
s)

Particles per rank (38 bytes/particle)

Write - Aggregation on DDR
Write - Aggregation on HBM
Read - Aggregation on DDR
Read - Aggregation on HBM

Figure 21: HACC-IO on 1024 Cray XC40 nodes, one file per node on local
SSD. Comparison of the aggregation on DDR and on HBM.

Workflow. HACC is a very large-scale simulation code gener-
ating data that can be analyzed or visualized, in real time if
possible. We propose here a situation of this application in
a workflow as described in Figure 22 that can be seamlessly
implemented with TAPIOCA. The workflow might be either a
single application performing write (simulation) and read (anal-
ysis) operations consecutively like an in-situ analysis with co-
located processes or two different applications running during
the same allocation as the data is persistent on SSD for the al-
location lifetime. As described in section 4, TAPIOCA allows
to use on-node local SSD as an aggregation layer. This task is
done by mapping a file created for the occasion on the SSD to

14

the DRAM of the node. A MPI window then exhibits this buffer
to local and remote nodes.

A
pp

lic
at

io
n

D
R

A
M

D
R

A
M

Parallel
file

system

Aggregation I/O

Write

Read

SSD

mmap

Figure 22: Write/Read workflow using TAPIOCA and SSDs as both an aggre-
gation buffer (write) and a target (read).

Table 7 shows the best I/O bandwidth achieved for write and
read as well as the best time to solution for the whole workflow.
The performance variation is based on the MPI-IO case and the
TAPIOCA case using SSD. The first result row is for informa-
tion purpose. We can see that the overhead due to the mmap
system call is widely counterbalanced by the performance at-
tained with the read operation. The total time to solution is
reduced by 26.82%.

Table 7: Max. Write and Read bandwidth (GBps) and total I/O time achieved
with and without aggregation on SSD

Agg. Tier Write Read I/O time
TAPIOCA DDR 47.50 38.92 693.88 ms

MPI-IO DDR 32.95 37.74 843.73 ms
TAPIOCA SSD 26.88 227.22 617.46 ms
Variation -36.10% +446.94% -26.82%

5.4.3. Cooley
To assess the portability of our architecture-aware data ag-

gregation algorithm, we ran experiments with HACC-IO on
Cooley, a 64-node Haswell-based visualization cluster. To take
advantage of the features we proposed in our data aggregation
library on another platform, there is no need to modify the ap-
plication. Only the compilation process and an implementation
of the memory and network abstraction are necessary.

The testbed we targeted is not designed for intensive I/O.
In addition, the on-node disks are hard disk drives with poor
performance. However, this machine is suitable for workflows
combining simulation and visualization as presented is Figure 22.
Beyond the I/O performance, these experiments are more a proof
of concept.

We show in Table 8 the results obtained with the workflow
described in Figure 22. To control the impact of GPFS caching,
we interleaved random I/O with HACC-IO write and read runs.
We can notice that the overhead caused by local aggregation on
HDD is very low. Again, the read bandwidth is significantly

increased while the overall I/O time is reduced by more than
12% on this cluster.

Table 8: Max. Write and Read bandwidth (GBps) and total I/O time achieved
with and without aggregation on local HDD

Agg. Tier Write Read I/O Time
TAPIOCA DDR 6.60 38.80 123.41 ms

MPI-IO DDR 6.02 17.46 155.40 ms
TAPIOCA HDD 5.97 35.86 135.86 ms
Variation -0.83% +105.38% -12.57%

5.5. S3D-IO

S3D [35] is a state-of-the-art direct numerical simulation
(DNS) code written in Fortan and MPI, in the field of com-
putational fluid dynamics (CFD). S3D focuses on turbulence-
chemistry interactions in combustion. The DNS approach aims
to address small domain problems to calibrate physical models
for macro-scale CFD simulations. S3D is based on a 3D do-
main decomposition distributed across the MPI processes. In
terms of I/O, a new single shared file is collectively written ev-
ery n timesteps. The state of each element of the studied do-
main is stored following an array of structure data layout. The
file as output is used both as a checkpoint in case of failure and
for data analysis. S3D-IO is a version of the S3D production
code whose physics modules have been removed. The memory
arrangement as well as the I/O routines have been kept though.

We implemented a module in S3D-IO using TAPIOCA for
managing I/O operations. For these experiments, we let our
architecture-aware algorithm described in Section 4.2 automat-
ically decide the most appropriate tiers of memory for data ag-
gregation among the compute nodes.

We first present in Table 9 a typical use-case of S3D with
134 and 537 millions grid points respectively distributed on 256
and 1024 nodes on the Cray XC40 system (16 ranks per node).
We set the number of aggregators to 96 on 256 nodes and 384
on 1024 nodes for both MPI-IO and TAPIOCA. For this use-
case, our aggregator placement algorithm selected the HBM as
an aggregation layer for all the 96 aggregating nodes. We can
see that on the two problem sizes, TAPIOCA significantly out-
performs MPI-IO. When running on 1024 nodes, the I/O band-
width is multiplied by 3.

Table 9: Maximum write bandwidth (GBps) achieved with aggregation per-
formed on HBM using the TAPIOCA library.

Points Size 256 nodes 1024 nodes
MPI-IO 134M 160 GB 3.02 GBps 4.42 GBps

TAPIOCA 537M 640 GB 4.86 GBps 13.75 GBps
Variation N/A N/A +60.93% +210.91%

In order to emphasize the adaptability of our approach, we
ran another series of experiments on 256 nodes with 134 mil-
lions grid points while artificially decreasing the capacity of the
high-bandwidth memory then the DRAM to 32MB. At the same
time, we set the number of aggregation buffers to 3 and their
size to 16 MB (so 48MB total, above the memory capacity(.
The goal was to show the behavior of TAPIOCA in case of the

15

fastest tier of memory available does not have enough space for
aggregated data. Table 10 presents the results. The capacity re-
quirement described in Section 4.2 not being fulfilled, the sec-
ond then the third fastest memory tier are selected. In the third
scenario, data is aggregated on the node-local SSD, offering
poor I/O bandwidth compared to HBM or DRAM. However,
the application can still be carried out.

Table 10: Maximum write bandwidth (GBps) while artificially reducing the
memory capacity of the HBM then the DRAM. For each run, the grey box
corresponds to the memory tier selected for aggregation by TAPIOCA.

Run HBM DDR NVR Bandwidth Std dev.
1 16 GB 192 GB 128 GB 4.86 GBps 0.39 GBps
2 ↓ 32 MB 192 GB 128 GB 4.90 GBps 0.43 GBps
3 ↓ 32 MB ↓ 32 MB 128 GB 2.98 GBps 0.15 GBps

6. Discussion

In this section, we discuss several challenges, including those
faced while pursuing this research. These highlight the need for
better co-design between hardware and software stacks, as well
as the need for domain-driven research for I/O data manage-
ment.

6.1. Impact of network interference

While carrying out experiments with our I/O library, we
observed a certain variability in the I/O bandwidth measure-
ments. This instability was due to I/O interference from other
conncurently running jobs. On Mira, a set of I/O nodes is iso-
lated only as part of a 512-nodes allocation.

To emphasize this behavior, we ran controlled benchmark
tests using one Pset (128 nodes compute nodes, two bridge
nodes and one I/O node). Our tests were run to highlight the
impact of I/O interference. In one case, we ran a single I/O in-
tensive HACC-IO job on 64 of the 128 nodes, while leaving the
other 64 nodes idle. This case eliminated interference on the
bridge and I/O nodes. In the other case, we ran the same I/O in-
tense job on 64 of the 128 nodes, while simultaneously running
jobs of varying I/O intensity on the other 64 nodes. Node allo-
cation was distributed such that each 64 node job used 32 nodes
per bridge node. This configuration corresponded to the default
distribution on BG/Q. Figure 23 depicts a 5D Torus flattened
on 2 dimensions and the aforementioned jobs partitioning.

Table 11 shows the mean I/O bandwidth achieved with HACC-
IO with and without interference. A single I/O intensive HACC-
IO job running on 64 nodes sharing two bridge nodes can reach
more than 60% of the peak I/O bandwidth. However, the per-
formance is decreased by 13% when a concurrent job is running
on the same Pset. We can also notice a rise in variability (stan-
dard deviation) of 37.5%. This result demonstrates the need
for a good understanding of the underlying topology and better
ways to leverage this knowledge by conducting more research
in the domain of topology-aware resource allocation or I/O con-
tention management (I/O scheduling or I/O priority). On BG/Q
for instance, we have learnt that the minimal unit to consider for
a node allocation is a block of four Psets (512 nodes) to reduce

Compute nodes I/O nodes

Storage

S
w

itc
h

Bridge nodes

Bridge node group
 64 nodes

PowerPC A2, 16 cores
 16 GB of DDR3

 GPFS

IO forwarding daemon
 GPFS client

 2 per I/O node

 Pset
 128 nodes

 Job
 64 nodes

Figure 23: Job partitioning on a Pset on Mira to demonstrate the impact of I/O
interference on performance.

as much as possible the impact of I/O interference and ensure a
good reproducibility.

Table 11: Mean I/O bandwidth achieved with HACC-IO (2 MB per rank)
through our I/O library with and without interference. Concurrent jobs have
variable I/O intensity (0.2 MB to 4 MB per rank).

HACC-IO Other
Average Std dev Average Std dev

no-interference 2.20 GBps 0.10 GBps N/A N/A
interference 1.92 GBps 0.16 GBps 1.15 GBps 0.35 GBps

6.2. Architecture-Aware Limitations

This work has highlighted some of the limitations of the
”architecture-aware” approach. For example, on Theta, the lack
of information on the placement of LNET nodes (the nodes
through which I/O transits to the Lustre file system) makes it
challenging to take advantage of the topology for the I/O phase.
Similarly, the packet routing algorithms on the network may not
be known or may be ”adaptive” as is the case on the Cray ma-
chine in comparison to systems with static routing such as on
BG/Q. To fully making these approaches, we need to deal with
the uncertainties in the routing algorithms and require capabili-
ties for system introspection.

Given the increasing adoption of heterogenous memory and
storage on HPC systems, at a node-level, rack-level and system-
level, architecture-aware methods such as the one implemented
in TAPIOCA will be needed to fully realize the performance po-
tentials. Similarly, the emergence of disaggregation technolo-
gies such as CXL (Compute Express Link) [36] should make
architecture-aware placement even more important.

More generally, to address such issues, we advocate for bet-
ter co-design between the hardware and software stack to pro-
vide feedback from the underlying architecture with accurate
tools and libraries.

6.3. Potential Applications

The two-phase I/O algorithm is just one use-case among
others to illustrate our contribution of coupling data between

16

computation and storage. Our approaches are widely applica-
ble to data coupling between various stages of a scientific work-
flow and will enable the efficient movement of data between
the stages. This is a critical component for science workflows
combining simulations, analysis, AI, among others. As we are
witnessing these workflows being executed on heterogeneous
systems with diverse memory, storage, compute and network-
ing characteristics, approaches such as TAPIOCA, can provide
a holistic data-movement acceleration.

7. Conclusion

In this paper, we have introduced TAPIOCA, a data aggre-
gation algorithm designed to leverage supercomputer’s archi-
tecture effectively. Specifically, we have demonstrated how an
architectural abstraction, coupled with an aggregator’s place-
ment model, can alleviate the I/O bottleneck across present and
future large-scale systems. Our library has exhibited significant
performance improvements across typical I/O workloads and
more intricate workflows that express diverse I/O requirements.
Our assessment on benchmarks and on two real applications
narrowed down to the I/O phases, have demonstrated our ability
to outperform MPI-IO while offering extended flexibility. We
conducted experiments with up to 16K processes on three sys-
tems at Argonne National Laboratory including Theta, a 11.69
PetaFLOPS Cray XC40 system and Mira, a 10 PetaFLOPS
IBM BG/Q supercomputer. In particular, on an example of
a typical ”simulation + analysis” workflow configuration, we
have demonstrated an execution time saving of the order of
26%, while transparently taking advantage of local storage re-
sources.

In future endeavors, we aim to strengthen this approach,
beginning with an in-depth exploration of the influence of in-
put parameters on the cost of data movement. Analyzing the
data access pattern, for instance, could allow a better character-
ization of applications and deliver performance improvements.
Another future direction concerns the number of aggregators.
As mentioned in Section 5, the way we determine the appro-
priate number of aggregators is empirical or based on the sys-
tem’s default value. Therefore, we plan to implement a con-
tention model determining the number of aggregators given the
bandwidth degradation due to concurrent accesses on the ag-
gregators, and the number of streams required to achieve high
I/O performance on the parallel file-system. In the longer term,
we will extend this result from the ”n to 1” paradigm, i.e. a
fixed set of processes sending data to a single aggregator, to ”n
to m” models where processes can supply data to several ag-
gregators. A contention model in this case will be all the more
decisive. Finally, from an evaluation perspective, we will study
how TAPIOCA performs on AI workloads. The read-intensive
access pattern of these applications is a relevant use case for our
library.

More than just optimizing TAPIOCA, we also plan to delve
into multi-level data aggregation. While our library currently
allows the identification or explicit specification of a single ag-
gregation layer, adopting a multi-level approach could undoubt-
edly benefit various workloads, particularly in scenarios such

as checkpointing. In that context, we also plan to extend our
model beyond the two-phase I/O algorithm. In hybrid HPC/-
Cloud systems, for example, data aggregation as a preamble
to data movements between geo-distributed infrastructures is a
key element for which our placement model can provide a so-
lution.

Acknowledgment

This research has been funded in part by the NCSA-Inria-
ANL-BSC-JSC-Riken-UTK Joint-Laboratory on Extreme Scale
Computing (JLESC).

This research used resources of the Argonne Leadership
Computing Facility, a U.S. Department of Energy (DOE) Of-
fice of Science user facility at Argonne National Laboratory
and is based on research supported by the U.S. DOE Office
of Science-Advanced Scientific Computing Research Program,
under Contract No. DE-AC02-06CH11357.

References

[1] D. Chen, N. A. Eisley, P. Heidelberger, R. M. Senger, Y. Sugawara,
S. Kumar, V. Salapura, D. L. Satterfield, B. Steinmacher-Burow, J. J.
Parker, The IBM Blue Gene/Q interconnection network and message unit,
in: Proceedings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’11, ACM, New York,
NY, USA, 2011, pp. 26:1–26:10. doi:10.1145/2063384.2063419.
URL http://doi.acm.org/10.1145/2063384.2063419

[2] W. Bhimji, D. Bard, M. Romanus, D. Paul, A. Ovsyannikov, B. Friesen,
M. Bryson, J. Correa, G. K. Lockwood, V. Tsulaia, S. Byna, S. Farrell,
D. Gursoy, C. Daley, V. Beckner, B. Van Straalen, D. Trebotich, C. Tull,
G. H. Weber, N. J. Wright, K. Antypas, Prabhat, Accelerating science
with the NERSC burst buffer early user program, in: CUG2016 Proceed-
ings, 2016, best paper award, in press.

[3] M.-A. Vef, N. Moti, T. Süß, M. Tacke, T. Tocci, R. Nou, A. Miranda,
T. Cortes, A. Brinkmann, Gekkofs—a temporary burst buffer file system
for hpc applications, Journal of Computer Science and Technology 35 (1)
(2020) 72–91. doi:10.1007/s11390-020-9797-6.
URL https://jcst.ict.ac.cn/en/article/doi/10.1007/

s11390-020-9797-6

[4] T. Wang, K. Mohror, A. Moody, K. Sato, W. Yu, An ephemeral burst-
buffer file system for scientific applications, in: SC16: International
Conference for High Performance Computing, Networking, Storage and
Analysis, 2016, pp. 807–818. doi:10.1109/SC.2016.68.

[5] M. P. I. Forum, MPI-2: Extensions to the Message-Passing Interface,
http://www.mpi-forum.org/docs/docs.html (July 1997).

[6] R. Thakur, W. Gropp, E. Lusk, A case for using MPI’s derived datatypes
to improve I/O performance, in: Proceedings of SC98: High Performance
Networking and Computing, ACM Press, 1998.
URL http://www.mcs.anl.gov/~thakur/dtype/

[7] H. Luu, M. Winslett, W. Gropp, R. Ross, P. Carns, K. Harms,
M. Prabhat, S. Byna, Y. Yao, A multiplatform study of I/O behav-
ior on petascale supercomputers, in: Proceedings of the 24th Interna-
tional Symposium on High-Performance Parallel and Distributed Com-
puting, HPDC ’15, ACM, New York, NY, USA, 2015, pp. 33–44.
doi:10.1145/2749246.2749269.
URL http://doi.acm.org/10.1145/2749246.2749269

[8] F. Schmuck, R. Haskin, GPFS: A shared-disk file system for large com-
puting clusters, in: Proceedings of the 1st USENIX Conference on File
and Storage Technologies, FAST ’02, USENIX Association, Berkeley,
CA, USA, 2002.
URL http://dl.acm.org/citation.cfm?id=1083323.1083349

[9] Lustre filesystem website, http://lustre.org/.
[10] M. Chaarawi, S. Chandok, E. Gabriel, Performance Evaluation of Col-

lective Write Algorithms in MPI I/O, Springer Berlin Heidelberg, Berlin,
Heidelberg, 2009, pp. 185–194.

17

[11] J. M. del Rosario, R. Bordawekar, A. Choudhary, Improved parallel I/O
via a two-phase run-time access strategy, SIGARCH Comput. Archit.
News 21 (5) (1993) 31–38. doi:10.1145/165660.165667.
URL http://doi.acm.org/10.1145/165660.165667

[12] R. Thakur, W. Gropp, E. Lusk, Optimizing noncontiguous accesses in
MPI I/O, Parallel Comput. 28 (1) (2002) 83–105. doi:10.1016/S0167-
8191(01)00129-6.
URL http://dx.doi.org/10.1016/S0167-8191(01)00129-6

[13] R. Thakur, W. Gropp, E. Lusk, Data sieving and collective I/O in ROMIO,
in: Proceedings of the The 7th Symposium on the Frontiers of Massively
Parallel Computation, FRONTIERS ’99, IEEE Computer Society, Wash-
ington, DC, USA, 1999, pp. 182–.
URL http://dl.acm.org/citation.cfm?id=795668.796733

[14] R. Thakur, W. Gropp, E. Lusk, On implementing MPI-IO portably and
with high performance, in: Proceedings of the Sixth Workshop on I/O
in Parallel and Distributed Systems, IOPADS ’99, ACM, New York, NY,
USA, 1999, pp. 23–32. doi:10.1145/301816.301826.
URL http://doi.acm.org/10.1145/301816.301826

[15] Y. Tsujita, H. Muguruma, K. Yoshinaga, A. Hori, M. Namiki, Y. Ishikawa,
Improving collective I/O performance using pipelined two-phase I/O, in:
Proceedings of the 2012 Symposium on High Performance Computing,
HPC ’12, Society for Computer Simulation International, San Diego, CA,
USA, 2012, pp. 7:1–7:8.
URL http://dl.acm.org/citation.cfm?id=2338816.2338823

[16] F. Tessier, V. Vishwanath, E. Jeannot, Tapioca: An i/o library for opti-
mized topology-aware data aggregation on large-scale supercomputers,
in: 2017 IEEE International Conference on Cluster Computing (CLUS-
TER), 2017, pp. 70–80. doi:10.1109/CLUSTER.2017.80.

[17] P. Malakar, V. Vishwanath, Hierarchical read–write optimizations for
scientific applications with multi-variable structured datasets, Inter-
national Journal of Parallel Programming 45 (1) (2017) 94–108.
doi:10.1007/s10766-015-0388-z.
URL https://doi.org/10.1007/s10766-015-0388-z

[18] Y. Tsujita, K. Yoshinaga, A. Hori, M. Sato, M. Namiki, Y. Ishikawa, Mul-
tithreaded two-phase I/O: Improving collective MPI-IO performance on a
Lustre file system, in: 2014 22nd Euromicro International Conference on
Parallel, Distributed, and Network-Based Processing, 2014, pp. 232–235.
doi:10.1109/PDP.2014.46.

[19] J. F. Lofstead, S. Klasky, K. Schwan, N. Podhorszki, C. Jin, Flexible
io and integration for scientific codes through the adaptable io system
(adios), in: Proceedings of the 6th International Workshop on Challenges
of Large Applications in Distributed Environments, CLADE ’08, Asso-
ciation for Computing Machinery, New York, NY, USA, 2008, p. 15–24.
doi:10.1145/1383529.1383533.
URL https://doi.org/10.1145/1383529.1383533

[20] M. J. Brim, A. T. Moody, S.-H. Lim, R. Miller, S. Boehm, C. Stanav-
ige, K. M. Mohror, S. Oral, Unifyfs: A user-level shared file system for
unified access to distributed local storage, in: 2023 IEEE International
Parallel and Distributed Processing Symposium (IPDPS), 2023, pp. 290–
300. doi:10.1109/IPDPS54959.2023.00037.

[21] M. Gossman, B. Nicolae, J. Calhoun, Modeling Multi-Threaded Aggre-
gated I/O for Asynchronous Checkpointing on HPC Systems, in: IS-
PDC 2023: The 22nd International Symposium on Parallel and Dis-
tributed Computing, IEEE, Bucharest, Romania, 2023, pp. 101–105.
doi:10.1109/ISPDC59212.2023.00021.
URL https://hal.science/hal-04343661

[22] B. Nicolae, A. Moody, E. Gonsiorowski, K. Mohror, F. Cappello,
Veloc: Towards high performance adaptive asynchronous check-
pointing at large scale, in: 2019 IEEE International Parallel and
Distributed Processing Symposium (IPDPS), 2019, pp. 911–920.
doi:10.1109/IPDPS.2019.00099.

[23] T. Jin, F. Zhang, Q. Sun, H. Bui, M. Romanus, N. Podhorszki,
S. Klasky, H. Kolla, J. Chen, R. Hager, C. S. Chang, M. Parashar,
Exploring data staging across deep memory hierarchies for coupled
data intensive simulation workflows, in: 2015 IEEE International Par-
allel and Distributed Processing Symposium, 2015, pp. 1033–1042.
doi:10.1109/IPDPS.2015.50.

[24] M. Dreher, T. Peterka, Decaf: Decoupled Dataflows for In Situ High-
Performance Workflows, 2017. doi:10.2172/1372113.
URL http://www.osti.gov/scitech/servlets/purl/1372113

[25] M. Dreher, K. Sasikumar, S. Sankaranarayanan, T. Peterka, Manala: A

flexible flow control library for asynchronous task communication, in:
2017 IEEE International Conference on Cluster Computing (CLUSTER),
2017, pp. 509–519. doi:10.1109/CLUSTER.2017.31.

[26] B. Dong, S. Byna, K. Wu, Prabhat, H. Johansen, J. N. Johnson, N. Keen,
Data elevator: Low-contention data movement in hierarchical storage sys-
tem, in: 2016 IEEE 23rd International Conference on High Performance
Computing (HiPC), 2016, pp. 152–161. doi:10.1109/HiPC.2016.026.

[27] J. Kunkel, E. Betke, An mpi-io in-memory driver for non-volatile pooled
memory of the kove xpd, in: J. M. Kunkel, R. Yokota, M. Taufer, J. Shalf
(Eds.), High Performance Computing, Springer International Publishing,
Cham, 2017, pp. 679–690.

[28] F. Broquedis, J. Clet-Ortega, S. Moreaud, N. Furmento, B. Goglin,
G. Mercier, S. Thibault, R. Namyst, Hwloc: a Generic Framework for
Managing Hardware Affinities in HPC Applications, in: Proceedings of
the 18th Euromicro International Conference on Parallel, Distributed and
Network-Based Processing (PDP2010), IEEE Computer Society Press,
Pisa, Italia, 2010.
URL http://hal.inria.fr/inria-00429889

[29] M. G. Venkata, F. Aderholdt, Z. Parchman, Sharp: Towards program-
ming extreme-scale systems with hierarchical heterogeneous memory, in:
2017 46th International Conference on Parallel Processing Workshops
(ICPPW), 2017, pp. 145–154. doi:10.1109/ICPPW.2017.32.

[30] M. Gilge, et al., IBM system blue gene solution - blue gene/Q application
development, IBM Redbooks, 2014.

[31] W. Gropp, MPICH2: A new start for MPI implementations, in: Proceed-
ings of the 9th European PVM/MPI Users’ Group Meeting on Recent
Advances in Parallel Virtual Machine and Message Passing Interface,
Springer-Verlag, London, UK, UK, 2002, pp. 7–.
URL http://dl.acm.org/citation.cfm?id=648139.749473

[32] J. Liu, Q. Koziol, H. Tang, F. Tessier, W. Bhimji, B. . Cook, B. Austin,
S. Byna, B. Thakur, G. Lockwood, et al., Understanding the io perfor-
mance gap between cori knl and haswell, in: Cray User Group Meeting,
2017.

[33] P. Schwan, Lustre: Building a file system for 1,000-node clusters, in:
PROCEEDINGS OF THE LINUX SYMPOSIUM, 2003, p. 9.

[34] IOR: Parallel filesystem I/O benchmark, https://github.com/LLNL/
ior.

[35] E. R. Hawkes, R. Sankaran, J. C. Sutherland, J. H. Chen, Direct numerical
simulation of turbulent combustion: fundamental insights towards predic-
tive models, Journal of Physics: Conference Series 16 (1) (2005) 65.
URL http://stacks.iop.org/1742-6596/16/i=1/a=009

[36] D. D. Sharma, Compute express link®: An open industry-standard inter-
connect enabling heterogeneous data-centric computing, in: 2022 IEEE
Symposium on High-Performance Interconnects (HOTI), 2022, pp. 5–12.
doi:10.1109/HOTI55740.2022.00017.

18

