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Simulation of ice shedding from rotating parts using phase-field
fracture and cohesive zone models

D. Nezzar∗ and J. Rannou†

ONERA/DMAS, Université Paris-Saclay, F-92322 Châtillon, France

P. Villedieu‡ and L. Bennani§
ONERA/DMPE - Université de Toulouse, F-31055 Toulouse, France

M. Balland¶ and C. Venuat�
Safran Aircraft Engines, F-77550, Moissy-Cramayel, France

The aim of this work is to develop a numerical methodology for the simulation of ice shedding
from rotating parts in an aircraft engine. The goal is to estimate the size of the detached ice
blocks and to assess the feasibility of such simulations for 3D industrial cases. This work relies
on mechanical properties available from recent collaborative projects on the characterization of
adhesive and cohesive properties of accreted ice of different substrates. The simulations are
performed with the finite element software Z-set using a phase-field fracture model coupled to
a cohesive zone model to capture cracks in the ice volume, at the ice/substrate interface or in
mixed modes.

I. Nomenclature

𝜺 = second order linear elastic strain tensor, MPa
𝜖 = stopping criterion of the staggered scheme
𝐸 = Young’s modulus, MPa
E = fourth order linear elastic strain tensor, MPa
𝐺𝑐 = Griffith critical energy release rate, mJ/mm2

𝑖 = iteration index of the staggered scheme
𝑙𝑐 = internal length of the phase-field model, mm
𝑛 = time step index of the Newton-Raphson algorithm iteration
𝑛0 = freezing fraction parameter
𝝈 = second order Cauchy stress tensor, MPa
𝜎𝑟𝑟 = radial component of the stress tensor 𝝈, MPa
𝜎𝑟 𝑧 = shear component of the stress tensor 𝝈, MPa
𝜙 = phase-field variable
∇𝜙 = gradient vector of the phase-field variable, mm−1

Ψ0 = strain energy density, J/m3

u = displacement vector, mm
𝑡 = simulation time, s
⟨𝑨⟩+ = denotes the positive part of a second order 𝑨 define as

∑
𝑗

〈
𝐴 𝑗

〉
𝑛 𝑗 ⊗ 𝑛 𝑗 with 𝐴 𝑗 the eigenvalues and 𝑛 𝑗 the eigenvectors

⟨𝑥⟩ = denotes the positive part of a scalar 𝑥 define as ⟨𝑥⟩ = max(0, 𝑥)
bulk = superscript related to bulk (ice) properties
int = superscript to interface properties
𝑐 = subscript to indicate critical values
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II. Introduction
Icing in aeronautics is considered as one of the most critical phenomena for an aircraft engine. Ice formation is

caused by supercooled water droplets, which will freeze at impact on certain surfaces exposed to the airflow. In the case
of an engine, ice can accrete on its rotating components and shed due to centrifugal forces. This can lead to damage
the engine as detached ice can impact other components of the turbomachine or create vibrating phenomena resulting
from an unbalanced weight distribution caused by the residual ice. However, during icing tests on rotating components,
access to informations on ice shedding mechanisms remains limited due to high rotation speeds and instrumentation
difficulties. Therefore, numerical simulation appears to be a promising solution to study ice shedding. Ice shedding
can occur following several modes of failures: adhesive failure at the interface between ice and substrate, cohesive
failure within ice bulk or following a mixed mode (Fig. 1). Therefore, in this paper the numerical approach is based on a
combination between a phase-field fracture model [1, 2] in the bulk and a cohesive zone model [3, 4] at the interface.
Phase-field fracture models have already been used in the context of electrothermal de-icing systems in [5, 6] and
electromechanical resonant de-icing system in [7].

Fig. 1 Different type of ice failure on rotating substrate (left), example of mixed failure observed during icing
test on rotating blades in the ICE GENESIS project [8] (right)

In section III, we briefly introduce the basic concepts of the phase-field fracture model (closely related to gradient-
based damage model [9]) as a variational approach of the classical Griffith theory for brittle fracture [10]. We also present
the coupled equations of the mechanical equilibrium problem and the fracture problem, with details on their numerical
resolution using an staggered scheme as introduced for phase-field fracture problems in [2]. Despite quasi-static loading,
fracture problems can induce dynamic instabilities in the structural response, characterized by abrupt force-displacement
changes during rapid crack propagation, known as snap-back or snap-through instabilities. The associtated excess of
energy is converted into kinetic energy and then cause numerical convergence difficulties with a quasi-static resolution
[11]. Hence, to address these instabilities, an implicit dynamic solver is employed with adaptive time stepping, to restore
stability and regularity of the solution thanks to inertia effect. Since the computation time can increase drastically, a
parallelization method by domain decomposition is used with a staggered scheme resolution as in [11].

In section IV, we highlight the importance of certains ice mechanical properties with regard to the phase-field
fracture model selected from the existing ones: AT1, AT2 and others listed in [12]. Indeed, their relation with the length
scale parameter 𝑙𝑐 depending on the phase-field model chosen, allows to link the initiation and propagation of a crack
respectively to a value of a critical stress 𝜎pf

𝑐 [MPa] and to the critical energy release rate 𝐺pf
𝑐 [mJ/mm2] using Eq. 10.

In section V, the case of a 3D ice block accreted on a rotating substrate is studied to assess the numerical methodology.
This configuration is shown in Fig. 2 and is inspired from the centrifugal adhesion test in [13]. The numerical model is
completed with 1D analytical formulas of the stress fields in the ice and at its interface in order to identify the location
of the crack initiation and the potential location of a crack bifurcation between the volume and the interface, as observed
experimentally (photo Fig. 1d). Finaly, we show the influence of the material parameters on the solution of the fracture
problem, at the interface and in the volume, through simulation results for three differents interface properties.

III. Fracture model
During ice shedding, cracks may nucleate and propagate within the ice bulk or at the ice/substrate interface. The

crack then possibly propagates in a mixed regime, branching from the bulk to the interface or from the interface to the
bulk (Fig. 1c).

In this work, we use concepts of quasi-brittle fracture mechanics which basically involves two sets of parameters
related to two classes of criteria. A stress criterion typically accounts for the crack nucleation while a surface energy
criterion like the Griffith one accounts for the crack propagation. We have decided here to model the bulk and the
interface cracks by the mean of two different models : phase-field fracture model for the bulk and cohesive zone models
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Fig. 2 Mechanical model with simplified geometry of ice accreted on a rotating substrate

for the interface. The first reason for this is that the fracture sets of parameters for the bulk and for the interface are a
priori independent. The interface mechanical properties depend on the ice properties but also from the substrate itself
(material, roughness, etc). In this respect, starting from section IV, superscripts bulk and int will be used to distinguish
the materials parameters that are related to the bulk and to the interface respectively. The second reason is that cohesive
zone models are dedicated to model interfaces in a very efficient way. Section III.B will show that this kind of models
naturally include both stress and toughness criteria. Their numerical implementation through interface finite elements
that are inserted within the initial mesh makes them efficient when the crack surface is a priori known. However in the
bulk the crack path is however not known a priori and one has to use an other kind of model. To this extend phase-field
fracture mechanics models are suitable. Whereas beeing expensive they can deal with both nucleation and propagation
of cracks in a bulk described is section III.A.

A. Phase-field fracture model
Phase-field fracture model, also known as the variational approach to brittle, fracture has been introduced in [1, 2]

and later popularized by [14]. It was initially thought as a new way to handle the Griffith’s linear elastic fracture
mechanics theory[10] (LEFM) of brittle materials which describes the crack propagation (not nucleation) in elastic
media. The Griffith theory consists in minimizing the following functional with respect to the displacement field 𝑢 and
the unknown cracked surface Γ :

E(𝑢, Γ) =
∫
Ω/ Γ

𝜓0 (𝜺 (𝑢)) 𝑑𝑉︸                   ︷︷                   ︸
Ψ𝑒

+𝐺𝑐

∫
Γ

𝑑𝑆︸    ︷︷    ︸
Ψ𝑐

−P (1)

where Ψ𝑒 is the elastic strain energy of the whole domain Ω, 𝜓0 = 1
2𝜺(𝑢) : E : 𝜺(𝑢) being the elastic energy density

computed from the infinitesimal strain tensor 𝜺(𝑢) and the elastic Hooke operator E. Ψ𝑐 is the energy dissipated during
the cracking process and P is the work of the prescribed external forces. In the Griffith’s theory the critical energy
release rate 𝐺𝑐 is supposed to be a material property that characterizes the resistance of a material to crack propagation.
Since Γ appears as the integration domain in Ψ𝑐, it is not possible to handle it numerically. To circumvent this difficulty,
it has then been proposed in [2] to approximate Ψ𝑐 by the following expression :

Ψ𝑐 ≈ 𝐺𝑐

∫
Ω

1
2

(
1
𝑙𝑐
𝜙2 + 𝑙𝑐 (∇𝜙)2

)
𝑑𝑉 (2)

The unknown of the functional is no more the geometry of the crack Γ but is a volume field 𝜙 (the so-called phase-field)
that can be discretized in a finite element framework. The model is built so that a value of 𝜙 = 0 stands for a pristine
material while a value of 𝜙 ∈]0, 1] stands for a degraded material following this relation :

𝝈 = (1 − 𝜙)2 E : 𝜺 (3)
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It is worth noting that a length parameter 𝑙𝑐 has been introduced. It has been proven in [2] that when 𝑙𝑐 → 0, the whole
formulation tends to the initial Griffith’s theory (Eq. 1). The phase-field principle is schematized in Fig. 3 where it can
be seen that the crack is approximated by a thin band of degraded material whose thickness is characterized by 𝑙𝑐.

Fig. 3 Representation of a discontinuous crack surface Γ (left) with a continuous damage field Γ𝑙𝑐 (right)

Alternatives to expression (Eq. 2) exist but the current model, also known as the AT2 model, is the simplest one
from a numerical points of view since it is the only one leading to a linear phase-field equation (see Eq. 5a).

Handling expressions (1) and (2) through variational calculus leads to the following strong form of the whole model:


div𝝈 + f = 𝜌 ¥u (4a)
𝝈 · n = t𝑑 on 𝜕Ω𝑡 (4b)
u = u𝑑 on 𝜕Ω𝑢 (4c)

and: 
𝐺

pf
𝑐

2

[
1
𝑙𝑐
𝜙 − 𝑙𝑐Δ𝜙

]
= (1 − 𝜙)H

(
Ψ0

+) (5a)

∇𝜙 · n = 0 on 𝜕Ω (5b)

The set of equations (4) constitutes the equilibrium problem and the set of equations (5) constitutes the phase-field
problem. Equations (4b), (4c) and (5b) are the boundary conditions where n is the outward normal of the domain. It is
worth noting that inertia forces density 𝜌 ¥𝑢 (where 𝜌 is the material density and ¥𝑢 is the acceleration) have been introduced
in the right hand side of equation (4a), it is not straightforward from (1) and (2) but the reader should refer to [15] for
further insights. Introducing inertia forces will have the advantage to simplify the handling of crack instabilities (sudden
propagation of cracks in a dynamic regime) which is typical of ice shedding on rotating configurations.

It must be noted that these two sets of equations are strongly coupled through the degraded elastic relationship (3)
and the source term of the phase-field equation that reads:

Ψ0
+ =

1
2
⟨𝜺(u)⟩+ : E : ⟨𝜺(u)⟩+ (6)

The expression ⟨𝜺(u)⟩+ means that only positive principal components of the strain tensor are considered as initially
proposed in [14] to account for the fact that crack is more likely to occur under traction that under compression. The
function H also introduced in [14] is called the history fonction. Its role is to ensure the irreversibility of the crack
(cracks cannot heal themselves). If we consider the evolution of Ψ+

0 with time, H
(
Ψ+

0
)

reads at current time 𝑡:

H
(
Ψ+

0
)
= max

𝜏∈[0,𝑡 ]

(
Ψ+

0 (𝜏)
)

(7)

Introducing a stress criteria for crack nucleation
As mentioned previously, phase-field fracture models tend to the Griffith theory when the internal parameter 𝑙𝑐

tends to 0. In such a situation the stress field tends to be singular at the crack tip (providing the finite elements size
is consistent with 𝑙𝑐). This is consistent with the brittle fracture theory which provides a surface energy propagation
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criteria, but letting 𝑙𝑐 → 0 does not allow to predict crack nucleation. However, relaxing this requirement on 𝑙𝑐 has
proven to be an efficient way to switch from brittle to quasi-brittle fracture (see [16]). Indeed, if 𝑙𝑐 has a finite value,
the maximum stress is no more singular and can be controlled to fit to some kind of stress criteria that governs crack
nucleation. It is common to quantify the maximum stress by considering an unidimensional homogeneous traction.
Equation (5a) then reads:

𝐺𝑐

2𝑙𝑐
𝜙 = (1 − 𝜙) 1

2
𝐸𝜀2 (8)

where 𝐸 is the young modulus of the material and 𝜀, which governs the loading, is the normal strain in the traction
direction. Using the solution in 𝜙 of equation (8) into (3) leads to the expression of the stress in the traction direction:

𝜎 =
©­«1 − 𝐸𝜀2

𝐺
pf
𝑐

𝑙𝑐
+ 𝐸𝜀2

ª®¬
2

𝐸𝜀 (9)

The stress–strain responses for different internal length 𝑙𝑐 are plotted in Fig. 4. It is clear that the response exhibits a
maximum stress called 𝜎𝑐 and derivation of expression (9) gives :

𝜎
pf
𝑐 =

9
16

√︄
𝐸𝐺

pf
𝑐

3𝑙𝑐
(10)

In practice, in order to control the admissible maximum stress in the bulk of ice, 𝑙𝑐 will be chosen such as to respect
relation (10). For a comprehensive description of fracture phase-field models, the reader is referred to [12].
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Fig. 4 Representation of the 1D homogeneous traction stress-strain response of the AT2 phase-field model
(𝐸 = 1500MPa, 𝐺𝑐 = 0.001mJ/mm2).

B. Cohesive zone model
Cohesive zone models are dedicated to model the behavior of a damageable interface. In the context of finite

elements simulations, they are widely used to model debonding of a large panel of interface, and especially composite
material delamination (see for instance [17]).

They basically consist in describing a non-linear relation between a "cohesive surface force" ®𝑓 at both sides of an
interface and the opening displacement [ ®𝑢] as illustrated in Fig. 5a. For a pristine interface, the relation between the
stress and the opening displacement is linear (related by the elastic interface stiffness 𝐾) (see Fig. 5b). When the stress
reaches a maximum stress 𝜎𝑐, the interface starts to degrade and the stress–opening displacement relation is (1 − 𝜆)𝐾
where 𝜆 is a damageable variable whose role is similar to the one of 𝜙 for phase-field fracture. When 𝜆 = 1 the interface
in completely degraded and stress can no more be transfered (except for compression). There exist a lot of variants to
describe the kinetics of 𝜆(𝜺), the one selected in this work corresponds to a linear softening as depicted in Fig. 5.b.
Ideally 𝐾 should tend to infinity but for numerical stability reasons 𝐾 is kept finite and is as high possible (see [18]). It
is worth noting that the area under the stress–displacement curve corresponds to a dissipated surface energy that can be
directly related to the Griffith critical energy relase rate 𝐺𝑐. This formulation also naturally handles the concept of
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maximum stress 𝜎𝑐. Cohesive zone models are therefore a very straightforward way to model both nucleation and
propagation of cracks along interfaces.

The local law depicted in Fig. 5.b is inserted at each integration points of dedicated interface finite elements as
depicted in dark gray in Fig. 5.c. Nodes are duplicated at each side of the interface, the geometrical gap can be null. The
opening displacement at each integration point is interpolated from the displacement gap at each finite element nodes.

The transition area from a pristine interface (𝜆 = 0) and a totally damaged one (𝜆 = 1) is called the "process zone"
(depicted in Fig. 5.a). Its characteristic size depends on the material properties (𝐺𝑐 and 𝜎𝑐) as well as on the surrounding
bulk stiffness. This length is a priori not known but it is important to make sure that the stress gradient in the process
zone is properly described by the finite element discretization.

Cohesive zone model can also model the three fracture modes : mode I (opening mode), mode II/III (shear mode).
[ ®𝑢] and ®𝑓 are indeed vectors. The local law depicted in Fig. 5 could actually either relate 𝜎𝑧𝑧 to [𝑢𝑧] of 𝜎𝑟 𝑧 to [𝑢𝑟 ] or a
more complex combination of each components and 𝐺𝑐 and 𝜎𝑐 could then depend on these modes as described in [19].
In this work however, for sake of simplicity and because there is currently a lack of experimental data on the different
fracture modes, mode I and modes II/III behave exactly the same way.

cohesive law integration

nodes on both 
sides of interface

elastic response

Gc
1

1

softening response

process zone

a) b) c)

Fig. 5 Cohesive zone model : principle (a), local non-linear law (b) and interface element (gray) inserted between
two volume elements (c).

C. Numerical resolution
The solution of the coupled problem (4) and (5) is performed through a staggered algorithm as initially proposed

in [2]. Fig. 6 depicts the general principle: at each loading increment, from time 𝑡𝑛 to 𝑡𝑛+1, the displacement problem
(4) and the phase-field one (5) are alternately solved. At each displacement solution step the phase-field 𝜙 is fixed while
the source term Ψ+

0 is fixed at each phase-field step. We use two instances of the finite element solver Z-set [20] jointly
developed at the École des Mines de Paris and at ONERA. The coupling is technically performed through the Python
interface to the finite element code and by exchanging the fields (𝜙 and Ψ+

0 ) through the MPI protocol.
It must be noted that because of the cohesive zone model, the displacement problem is itself non-linear. At each

displacement solution step we then benefit from the Z-set inner Newton-Raphson non-linear solver which performs
its own convergence iterations. The whole loading step is then stopped when a stagnation criterion for 𝜙 is reached:
∥𝜙𝑖+1 − 𝜙𝑖 ∥∞ < 𝜖 . In this paper, 𝜖 is set to 𝜖 = 10−2. The inertia term in the right hand side of equation 4a requires to
be handled in a dynamics formulation which is achieved through the 𝛼-method implemented in Z-set.

The detailed implementation of the whole algorithm, including highly parallel framework and the time refinement
heuristics is described in [11].
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Fig. 6 Schematic of the staggered resolution for one load increment from time 𝑡𝑛 to 𝑡𝑛+1

IV. Ice mechanical properties
In this section, we present a summary of the mechanical properties derived from recent collaborative projects,

emphasizing the data obtained from icing tunnel facility experiments on accreted ice. For confidentiality reasons projects
are referenced as Study n°1 and Study n°2 and the studied substrates are not mentioned. The purpose of this section is
twofold: firstly, to demonstrate the existence of experimental tests capable of providing the material parameters required
for the numerical models used in this study, and secondly, to highlight significant variability in these data due to their
dependence on numerous other parameters. This emphasises the need for new experimental tests aimed at reducing
these uncertainties.

In this work, we consider ice as an elastic, homogeneous isotropic material characterized by its Young’s modulus
𝐸 [MPa], its Poisson’s ratio 𝜈 and its density 𝜌 [g/cm3]. These properties depend on the ice formation conditions:
temperature, T [◦C], Liquid Water Content, LWC [g/m3], Median Volume Diameter, MVD [µm] and air velocity, V
[m/s], and thus of the type of ice: rime (porous and opaque ice), glaze (dense and transparent ice) or mixed ice.

To simplify the representation of the ice type, we use the density 𝜌 or the freezing fraction parameter denoted 𝑛0,
when the density is not available. The freezing fraction is a non-dimensional parameter that indicates the proportion of
liquid water that freezes at the impact on a surface. Values of 𝑛0 range from 0 (no freezing) to 1 (water freezes instantly)
and provide an indication of the type of ice: values near 0.4 correspond to glaze ice, values near 1 correspond to rime
ice, and intermediate values correspond to mixed ice.

Ice as a material is assumed to exhibit an elastic quasi-brittle behavior in traction, it deforms elastically before
cracking once a critical stress 𝜎c [MPa] is reached in its bulk denoted as 𝜎bulk

c . At its interface with a substrate, the ice
can reach a critical stress, denoted as 𝜎int

c , which characterizes the debonding of the ice from the interface.
The critical energy release rate 𝐺𝑐 [mJ/mm2] characterises the dissipated energy in [mJ] per unit crack growth area.

It can be characterized in a normal mode (mode I) and two shear modes (modes II/III), both within the bulk material and
at the interface, respectively denoted as 𝐺bulk

c and 𝐺 int
c . Firstly, we have synthesised the bulk material data used in the

phase-field model, particularly for the estimation of the internal length 𝑙𝑐 using Eq. 10. Secondly, we have synthesised
the interface material data used for the cohesive zone model.

A. Bulk material properties
The bulk mechanical properties have been identified according to different tests:
• The Brazilian test, originally developed for concrete, was conducted in Study n°1 to measure the volumetric

critical stress at failure of ice, 𝜎bulk
𝑐 .

• A compression test was conducted in Study n°1 to measure the Young’s modulus, 𝐸 .
• The plane-strain fracture-energy (PSFE) test was conducted in Study n°2, inspired from [21], to determine by

calculation the bulk critical energy release rate crack propagation in mode I, 𝐺bulk
c,I .

7
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Fig. 7 𝜎bulk
𝑐 vs. density 𝜌 (left) and Young’s modulus 𝐸 vs. density 𝜌 (right)

We can observe in Fig. 7 that it is difficult to determine a clear trend for these parameters as a function of density,
particularly in the limited range of densities used here.

We have compiled the mean and standard deviation values for 𝜎bulk
𝑐 from Fig. 7 into Table 1, and for 𝐸 into Table 2

with the lowest mean values highlighted in red and the highest in blue.

Table 1 𝜎bulk
𝑐 mean and standard deviation values according to 𝜌 in Study n°1

𝜌[g/cm3] 𝜎bulk
c mean [MPa] 𝜎bulk

𝑐 std [MPa]

0.853 0.58 −
0.867 0.93 0.019
0.881 1.065 0.063
0.883 1.043 0.116

Table 2 𝐸 mean and standard deviation values according to 𝜌 in Study n°1

𝜌[g/cm3] 𝐸 mean [MPa] 𝐸 std [MPa]

0.853 854.3 65.43
0.867 676.6 64.53
0.883 1475.0 277.18

To calculate 𝐺bulk
c,I , the PSFE test was conducted in Study n°2, as described in [22] for accreted ice. It is an

experimental method that involves pressurizing a circular crack situated within the ice bulk until the specimen fractures
at a critical pressure 𝑃c, measured during the test. Then, the bulk critical energy release rate 𝐺bulk

c,I has been calculated
as follow:

𝐺bulk
c,I =

𝑃2
c𝑐

𝐸 𝑓

(
ℎ
𝑐

) (11)

Where 𝑃c [MPa] is the critical pressure measured at fracture, 𝑐 [mm] is the radius of the circular crack, ℎ [mm] the
position of the circular crack within the ice bulk and 𝑓

(
ℎ
𝑐

)
is a geometrical function defined for bulk fracture in [22].

The data of 𝑃c, ℎ and 𝑓

(
ℎ
𝑐

)
have been synthesised in Table 3 for the circular crack radius 𝑐 = 3mm.
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Table 3 Measured and calculated parameters from the PSFE test for cohesive fracture in Study n°2

𝑃c [MPa] ℎ[mm] 𝑓

(
ℎ
𝑐

)
𝜌[g/cm3]

2.79 15 2.586 0.87
2.703 25 2.883 0.87
3.004 40 3.080 0.87
2.139 20 2.764 0.87
3.872 20 2.764 0.882
3.807 18 2.702 0.882
3.068 20 2.764 0.882
2.824 20 2.764 0.882
3.016 25 2.883 0.882
3.201 30 2.967 0.882
3.001 30 2.967 0.882
3.504 30 2.967 0.882
3.077 25 2.883 0.882
3.774 25 2.883 0.882
3.95 30 2.967 0.882

To calculate 𝐺bulk
c,I using Eq. 11, we also need a value for the Young’s modulus 𝐸 and because it was not calculated

in the Study n°2, we use the one measured in the Study n°1 and illustrated Fig. 7 (right). However, the Young’s modulus
obtained from Study n°1 has not been measured for the same density values as in Study n°2. Therefore, we used a linear
least squares regression on the Young’s modulus 𝐸 to estimate its values for density of Study n°2, 𝜌 ∈ {0.87, 0.882}, as
depicted in Fig. 7 (right) with the function 𝐸 (𝜌) = 19077𝜌 − 15573. Hence, we obtain the 𝐺bulk

c,I values represented on
Fig. 8 and synthesised in terms of mean value and standard deviation in Table 4.
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Fig. 8 Bulk critical energy release rate 𝐺bulk
c,I vs. density 𝜌

Table 4 𝐺bulk
c,I mean and standard deviation values according to 𝜌 in Study n°1

𝜌[g/cm3] 𝐺bulk
c,I mean [mJ/mm2] 𝐺bulk

c,I std [mJ/mm2]

0.87 0.0072 0.0017
0.882 0.0092 0.0023
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The 𝐺bulk
c,I values shown in Fig. 8 illustrate the variability in the mechanical properties of ice for identical and for

different ice formation conditions, reduced to the density parameter here.
Finally, The internal length 𝑙𝑐 of the phase-field fracture model can be related to the ice properties using Eq. 10.

Since the phase-field method is employed to describe volumetric fracture, we use the Young’s modulus 𝐸 , the volumetric
critical stress 𝜎bulk

𝑐 , and the bulk critical energy release rate 𝐺bulk
c,I , to calculate 𝑙𝑐 as illustrated Fig. 9. Therefore, to

maintain consistency of the calculated internal length in relation to the aforementioned mechanical parameters, we also
employed a linear least squares regression on the bulk critical stress 𝜎bulk

c to estimate its values for density of Study n°2,
𝜌 ∈ {0.87, 0.882}, as depicted Fig. 7 (left) with the function 𝜎bulk

c (𝜌) = 13.273𝜌 − 10.64.

0.87 0.872 0.874 0.876 0.878 0.88 0.882

0.6
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l c
,
m
m

Values

Mean values

Fig. 9 Phase-field internal length values 𝑙𝑐 for AT2 model calculated using Eq. 10

It can be observed that the variability in the mechanical properties of ice extends across the values of the internal
length. The mean values are centered around 𝑙𝑐 = 1mm as represented Fig. 9 and Table 5, which represents the "crack
thickness" in the phase-field model.

Table 5 Calculated internal length values according to Eq. 10 with mean and standard deviation values

𝜌 𝑙𝑐 mean [mm] 𝑙𝑐 std [mm]

0.87 0.804 0.197
0.882 1.122 0.284

B. Interface material properties
The interface mechanical properties have been identified according to different tests:
• The Crack Lap Shear (CLS) test was conducted in Study n°1, inspired from [23], to determine the interface critical

energy release rate for crack propagation in mode II, 𝐺 int
c,II, between ice and one substrate studied.

• A shear test was developed in Study n°2 to determine the interfacial critical stress of ice on different substrates 𝜎int
c .

The procedures for the CLS and shear tests are not detailed here. Instead, the values of 𝐺 int
c,II and 𝜎int

c are shown
respectively in Fig. 10 left and Fig. 10 right. For clarity, only the mean values of 𝐺 int

c,II are presented. Additionally, due
to a lack of density data for the shear test, the 𝜎int

c values are illustrated with respect to the freezing fraction 𝑛0.
It is observed in Fig. 10 left and Table 6, that the interface critical energy release rate values in shear mode (mode II)

are highly dispersed across a wider density range. Generally, the magnitude of 𝐺 int
c,II is significantly higher than 𝐺bulk

c,I .
This could suggests a dependence on the type of fracture, whether cohesive or adhesive, with varying surface energy due
to the difference between ice cohesion in the bulk and ice adhesion to a particular substrate. Additionally, the variation
between failure modes, traction/normal mode (mode I) and shear mode (mode II), could indicate a dependence on the
ice microstructure, as grain formation and growth can differ from one experiment to another for different ice formation
conditions and create an anisotropic behaviour.
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Fig. 10 Interface critical energy release rate 𝐺 int
c,II vs. density 𝜌 (left) and shear critical stress 𝜎int

c vs. density 𝜌

The shear stress 𝜎int
c shown in Fig. 10 (right) exhibits less, but still significant dispersion, with values nearly 10

times smaller in magnitude compared to the volumetric critical stress 𝜎bulk
c .

Similar to the interface critical energy release rate in mode II 𝐺 int
c,II, the critical shear stress appears to depend on the

ice formation conditions, represented here by the freezing fraction. However, the critical shear stress shows a ratio of 2
between its maximum and minimum values.

Table 6 𝐺 int
c,II mean and standard deviation values according to 𝜌 in Study n°1

𝜌[g/cm3] 𝐺int
c,II mean [mJ/mm2] 𝐺int

c,II std [mJ/mm2]

0.855 0.01635 −
0.858 0.01463 0.0076
0.88 0.00093 0.00051
0.884 0.00379 0.00083
0.885 0.01101 0.00624
0.886 0.02999 0.0119
0.889 0.00249 −
0.892 0.00270 0.0019
0.896 0.00113 −
0.897 0.02916 0.0039
0.898 0.01102 0.0030
0.899 0.0108 0.0086
0.9 0.01771 0.0016

0.905 0.00767 0.0061
0.907 0.01404 0.0094

To conclude this section, we have identified the different parameters required for the fracture models presented in
sections III.A and III.B. The main findings indicate that the mechanical properties of ice exhibit significant variability
due to its brittle nature and different formation conditions, simplified here to density and freezing fraction but also to the
assumptions made regarding the range of Young’s modulus for the calculation of bulk critical energy release rate in
mode I. In addition, uncertainties may arise from the different experimental procedures used in Study n°1 and Study n°2,
highlighting the need for new experimental tests aimed at reducing these uncertainties.

Given the scattered nature of the data, we have selected the model parameters, while close in magnitude to the
actual values, to understand the relationships between them in terms of "numerical behaviour" rather than to accurately
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Table 7 𝜎int
c mean and standard deviation values according to 𝑛0 in Study n°1

𝑛0 𝜎int
c mean [MPa] 𝜎int

c std [MPa]

0.2 0.073 0.0058
0.6 0.057 0.0058
0.7 0.11 0.0173
1.0 0.106 0.0153

represent the physical properties of the ice material. Therefore, in the Section V, we relate the phase-field parameter 𝐺pf
c

to 𝐺bulk
c,I , as listed in the Table 8, and the cohesive zone parameters 𝐺czm

c to 𝐺 int
c,II and 𝜎czm

c to 𝜎int
c as listed in Table 10.

V. Results
The purpose of this section is to highlight the benefits of the proposed numerical strategy as well as its current

limitations through qualitative analyses.
As explained in the previous section, the physical properties of the ice and the interface are currently difficult

to estimate. This is mainly due to the large scattering of data due to i) the intrinsic materiel dispersion, ii) the lack
of consistency of the whole test campaigns and iii) the difficulty to link the mechanical properties to the accretion
parameters. For convenience, and especially to handle reasonable internal length 𝑙𝑐 with regards to the mesh used in
this study, we may therefore use material data that are slightly different from the one exhibited in section IV (same order
of magnitude but sometime at the tail of the distrbution).

We present here two sets of results related to the test case illustrated in Fig 2. The purpose of Section V.A is to
study the way one effectively control the energy dissipated by the fracture phase-field model independently from the
cohesive zone model. In particular we are interested in testing two ice/subtrate insterface meshing strategies. Section
V.A therefore deals with a finely discretised two-dimensional (under plane strain assumption) model without cohesive
zone model. In section V.B we take into account some of the conclusions of the first study and one focuses on a
three-dimensional problem that includes both phase-field fracture and cohesive zone models as detailed in section III.
We give further insights on the origin of the multi-fracture pattern and we study the influence of the "weak" or "strong"
character of the interface.

A. Two-dimensional case with phase-field model only
We focus here on a two-dimensional version of the problem presented in Fig. 2 modeled under the plane strain

assumption (thickness is 𝑡 = 1 mm). The problem is modeled in a non-rotating reference frame and a centrifugal volume
force 𝜌𝑟Ω2 ®𝑒𝑟 is applied to the whole volume according to the angular velocity rate ¤Ω = 830rad/s2. The 𝑟 = 0mm face
of the aluminum substrate is clamped while the 𝑟 = 0mm face of the ice is free (see Fig. 2). The material properties of
the ice and alumina used in this model are given in Table 8. The differences in density and Young’s modulus tends to
generate a bending of the whole structure.

Table 8 Material properties of the 2D model

Property Ice Aluminum
𝐸 [MPa] 1500 69000
𝜈 0.31 0.325
𝜌 [g/cm3] 0.917 2.7
𝐺bulk
𝑐 [mJ/mm2] 10−3 –

𝜎bulk
𝑐 [MPa] 0.4 –
𝑙𝑐 [mm] (calculated from Eq. 10) 1.0 –

As stated in introduction and in section III.C, the calculation is performed with Z-set in implicit dynamics with
an 𝛼-method integration scheme. As explained earlier, the staggered scheme requires to solve alternately two finite
element problems. In the case where no cohesive model is used, the discretisation strategy of the mechanical problem
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necessitates the continuity of the displacement at the interface and the "attached node" strategy is used (see Fig. 11).
However one has the choice for the phase-field problem to "attach" or "detach" nodes. If the attached nodes strategy is
used, then one needs to use very high values for 𝐺pf

𝑐 and 𝜎pf
𝑐 for the aluminum to prevent damage in the substrate. In the

case of the detached nodes strategy, a fictitious interface appears in the phase-field problem and the boundary condition
(5b) naturally applies.

Fig. 11 Differents interface meshing strategies.

The phase field 𝜙 computed for the two meshing strategies are depicted in Fig. 12 at final failure. The failure
sequence is similar for the 3D case and will be discussed in section V.B, but one can notice in both cases the appearance
of a pattern of vertical (transverse) cracks linked by a horizontal bulk crack very close to the interface.

0

1

φ
rr

z

r = 30 mm
r = 25 mm r = 35 mm

Fig. 12 Result of phase-field nodal variable 𝜙 for detached nodes (top) and attached nodes (bottom)

The vertical profile of 𝜙 at 𝑟 = 30 mm for the two meshing strategies are plotted in Fig. 13 (note that the 𝑟 = 30 mm
position is identified in Fig. 12). It can be observed that the localization of cracks (when 𝜙 = 1) varies depending on the
meshing strategy. When the mesh is detached, the crack is located exactly at the interface, forming a half-cut profile,
whereas when the mesh is attached, the crack is located slightly before the interface. In this latter situation, the very
high 𝐺𝑐 on the aluminum side penalises the growth of 𝜙 at the interfacial node and the value remains very close to 0.
The crack "center" (𝜙 = 1) is therefore located slightly away from the interface. For detached nodes, the boundary
condition ®∇𝜙.®𝑛 = 0 leads to a flat spot on the curve very close to the interface. In both cases, 𝜙 > 0 at the upper surface
of the sample. This is because the AT2 model is known to exhibit damage as soon as the loading is not null (there is no
damage threshold) and also because the overall centrifugal loading constantly keeps applying traction everywhere. A
model exhibiting a threshold like the AT1 [9] one could limit this phenomena but it is out of the scope of this study.
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Fig. 13 Cross-sectional nodal damage profile 𝜙(𝑧) in the ice at 𝑟 = 30 mm (in blue) for detached mesh (left) and
attached mesh (right). The orange line represents the theorical profile of 𝜙 for a perfect crack loaded at infinity
in a one-dimensional problem (see [14]).

We now look at the energy dissipated during the fracture process for both cases. In a general way, we can use
expression of Ψ𝑐 (Eq. 2) to compute the energy dissipated during the cracking process. Because the crack pattern is
complex at the end of the simulations, one can restrict the analysis to a relatively simple zone. The area delimitated
by 𝑟 ∈ [25mm, 35mm] exhibits on both simulation a single longitudinal crack of length 𝐿crack = 10mm whithout any
branching. The numerical evaluation of Ψ𝑐 through expression (2) is therefore performed over the restricted domain
𝑟 ∈ [25mm, 35mm] × 𝑧 ∈ [6.4mm, 12.8mm]. Results are presented in Table 9. 𝐺bulk

𝑐 is the parameter set up in the
simulations and a perfect brittle crack of length 𝐿crack and thickness 𝑡 = 1 mm would have dissipated 0.01 mJ. 𝐸det.

diss and
𝐸att.

diss are the energies dissipated respectively for the "detached nodes" and the "attached nodes" strategy.
For the detached nodes strategy, the dissipated energy is about 73% of the expected one. This can be explained

invoking two reasons. The first one is that the interfacial boundary condition generates a "half-cut" profile. A perfect
crack in a infinite unidimensional media modeled with a phase-field would lead to the orange profile of Fig. 13 at both
side of the crack center (see [14] for details). According to the phase-field theory, the associated dissipation tends to 𝐺𝑐

when 𝑙𝑐 → 0. This perfect crack is far from being the one studied here, but one could expect decrease of about 50%
of the theorical dissipation because of this half-profile. On the other hand, due to structural effects and the fact that
the AT2 model does not include a damage threshold, the damage nevers drops to 0 away from the crack center which
compensate in some way the previous decrease leading to a value of dissipated energy of 0.0073 mJ. The control of the
dissipated energy is therefore not perfect. A possible way of improving this control could be the introduction of an
anisotropic toughness as proposed in [24] or [25] which would allow to dissipate more energy for cracks propagating in
the ®𝑒𝑟 direction and thus submitted to interactions with the interface. The joint use of damage threshold models such as
the AT1 [9] would also be an interesting approach.

For the attached nodes strategy, the dissipated energy is much closer to the theorical one. This similarity is however
suspicious since like in the previous case, 𝜙 does not drop to 0 far from the crack center. But the real problem with this
strategy is that due to the high aluminum 𝐺𝑐, the phase-field is close to 0 at the interface, which would lead to a cut-off
of the interactions by stress concentration with a possible cohesive zone model.

For this reason, the "detached nodes" strategy is retained to mesh the phase field problem for the following
three-dimensional case which includes a cohesive zone model.

Table 9 Results of dissipated energy for: perfect crack, "detached nodes," and "attached nodes" cases

𝐺
pf
𝑐 [mJ/mm2] 𝐺

pf
𝑐 × 𝐿crack × 𝑡 [mJ] 𝐸det.

diss [mJ] 𝐸att.
diss [mJ]

0.001 0.010 0.0073 0.0097
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B. Three-dimensional case with phase-field model coupled with cohesive zone model
This section is devoted to assess the joint phase-field / cohesive zone approach. We use the same geometry as the

one illustrated in Fig 2 with a three-dimensional finite element model. Three cases are treated for different interface
properties of the cohesive zone model (Table 10): "strong" interface where the volume and interface parameters 𝐺czm

𝑐

and 𝜎czm
𝑐 are similar, ’weak’ interface where the interface parameters 𝐺czm

𝑐 and 𝜎czm
𝑐 are respectively divided by 4 and 2

respectively and an "intermediate" case between the two previous ones. These cases are proposed to investigate how the
substrate’s properties influence its interaction with the ice at the interface and with the phase-field model in its bulk. In
all three cases, the internal length of the phase-field model is fixed to 𝑙𝑐 = 1 mm and the mesh size to ℎ = 1.7 mm.

Table 10 Different cases based on interface properties

Strong interface Intermediate interface Weak interface

𝐺czm
c mJ/mm2 0.001 0.00056 0.00025

𝜎czm
c MPa 0.4 0.3 0.2
𝐺

pf
c mJ/mm2 0.001 0.001 0.001

𝜎
pf
c MPa 0.4 0.4 0.4
𝑙c mm 1.0 1.0 1.0

In the case of an "intermediate" interface, effective interaction between the phase-field and cohesive zone models is
observed (Fig. 14). Firstly, as shown at frame 2 in Fig. 16, at 𝑡 = 0.5256s a crack initiates in the ice bulk close to the
center of rotation. This is explain by th fact that the radial stress 𝜎𝑟𝑟 , reaches the critical stress 𝜎pf

𝑐 ≈ 0.4 MPa. It is
shown in the blue curve Fig. 15 (top left) where the radial stress is extracted at 𝑧 = 12.8mm.

Then, a shear stress wave propagates in a dynamic regime near the interface resulting in a damage propagation in the
ice bulk near-interface (frame 3 to 6 in Fig. 16). At the position 𝑟 ≈ 110mm, the shear stress 𝜎𝑟 𝑧 reaches the critical
value 𝜎czm

𝑐 = 0.3MPa (red curve in Fig. 15 bottom left). This is the point at which the phase-field damage variable near
the interface ceases to evolve, and the cohesive zone elements at the interface begin to experience damage (around
frame 7 in Fig. 16).

Finally, as the shear wave propagates and reaches the end of the bar (frame 12 in Fig. 16), we observe stress waves
reflecting back in the bulk. These phenomena appear to induce additional fractures within the bulk of the ice, resulting
in a multi-fracture pattern observed from frame 13 to 20 Fig. 16.

Remarks:
• In frame 1 of Fig. 16, damage initiation is observed within the cohesive zone at 𝑟 = 0 mm due to stress concentration.

However, this damage does not propagate further.
• It can be observed that during the propagation of the shear wave, the radial stress shifts into compression, indicated

by negative values of 𝜎𝑟𝑟 (as shown by the blue curve in Fig. 15, bottom). However, the compressive stress does
not affect the fracture process since the source term Ψ+

0 in the phase-field equation exclusively addresses traction
solicitations via the positive part decomposition introduced in Eq. 6.
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Fig. 14 The "intermediate" case results for the damage variables of the phase-field model in the volume (top)
and cohesive zone model at the interface (bottom) without the displacement solution
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Fig. 15 Evolution of the radial stress 𝜎𝑟𝑟 (blue) in the ice bulk (height 𝑧 = 12.8mm) and shear stress 𝜎𝑟 𝑧 (red)
and the propagation of the shear wave at interface (height 𝑧 = 6.4mm) for different simulation times.
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Fig. 16 The complete evolution (reduced to 20 frames) of the damage variables in phase-field and cohesive zone
models for the "intermediate" case (Transparency has been introduced into the ice bulk to enhance the visibility
of the damage variable 𝜙)

In the same stress analysis, for the case involving a "strong" interface, we observe crack initiation within the bulk and
its propagation along the near-interface, driven by shear wave propagation. However, the critical stress of the cohesive
zone model, 𝜎czm

𝑐 = 0.4MPa, is never reached, preventing damage at the interface (Fig. 17 bottom).
Conversely, in the case of the "weak" interface, a crack initiates at the interface at the center of rotation due to stress

concentration at 𝑟 = 0mm. The crack then propagates along the interface via a shear wave. Upon reaching the end of
the bar, it generates a multi-fracture pattern in the bulk (refer to Fig. 17 top) as a result of wave reflections.

In all three cases, multiple fracture patterns are observed and potentially identifiable as ice debris as illustrated for
the "strong" case depicted in Fig. 18 when the damage is shown in the deformed configuration.
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Fig. 17 The "weak" case (top) and the "strong" case (bottom) with phase-field and cohesive zone variables
without the displacement solution

Fig. 18 The "strong" interface case with the phase-field solution (top) and the displacement solution (bottom)

VI. Conclusion
In this work, a methodology to model ice shedding from rotating parts is presented in a 3D finite element framework.

The mechanisms leading to ice shedding are described using a coupling between phase-field fracture and cohesive
zone models that provide insights into the mechanical behavior of ice when breaking under centrifugal loading. To
understand the possible cracks interactions between the phase-field and cohesive zone models, we investigate three cases
for different interface properties, categorizing them into "strong", "intermediate" and "weak" cases based on parameters
𝐺czm

𝑐 , 𝜎czm
𝑐 .

The simulation revealed distinct responses, under centrifugal loading, on the initiation and propagation of cracks
in both the volume and interface. In both "strong" and "intermediate" cases, we observe a crack initiation within
the volume, due to radial stresses and a transition to the near-interface, with the phase-field model, in the "strong
case" Fig. 10 down) or a transition to the near-interface and then at the interface, with the cohesive elements, in the
"intermediate" case (Fig. 8) following a shear stress wave.

Further investigations will explore crack nucleation within the bulk material both during and after propagation.
This research encompasses studying the dynamics of wave propagation, including acceleration of a crack speed with a
deceleration at the onset of new crack formation within the ice volume, a phenomenon known as branching, detailed in
[26]. Additionally, the research will focus on crack nucleation that occurs immediately after stress wave reflections,
specifically examining stress analysis under multi-axial conditions involving radial and shear stresses, as discussed in
[27]. Comparing numerical results to the real experiment of Fig 2 is also an ongoing work.

18



In addition, this study highlights the importance of the mechanical properties of ice in understanding its behaviour
under different formation conditions. Through rigorous examination of parameters such as Young’s modulus, critical
stresses and critical energy release rate at the bulk and interface, we acquire essential insights into how ice reacts to
mechanical stresses induced in particular by centrifugal loading. These properties play an important role in forecasting
phenomena such as crack initiation and propagation. Continued advancements in characterizing ice’s mechanical
behavior through consistent mechanical experiments will further enhance our understanding of its behavior.

This research contributes to the broader understanding of ice shedding phenomena in rotating systems, particularly
in the context of material mechanical properties, associated with phase-field and cohesive zone models. Future work
may delve into additional complexities, refine modeling parameters, and explore real-world applications to further
enhance the predictive capabilities of the presented methodology with 3D industrials applications of aircraft engine fan
blade.
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