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Abstract

Colvars is an open-source C++ library that provides a modular toolkit for collective-

variable-based molecular simulations. It allows practitioners to easily create and im-

plement descriptors that best fit a process of interest, and to apply a wide range of

biasing algorithms in collective variable space. This paper reviews several features

and improvements to Colvars that were added since its original introduction. Special

attention is given to contributions that significantly expanded the capabilities of this

software or its distribution with major MD simulation packages. Collective variables

can now be optimized either manually or by machine-learning methods, and the space

of descriptors can be explored interactively using the graphical interface included in

VMD. Beyond the spatial coordinates of individual molecules, Colvars can now apply

biasing forces to mesoscale structures and alchemical degrees of freedom, and per-

form simulations guided by experimental data within ensemble averages or probability

distributions. It also features advanced computational schemes to boost the accuracy,

robustness, and general applicability of simulation methods, including extended-system

and multiple-walker Adaptive Biasing Force, boundary conditions for metadynamics,

replica exchange with biasing potentials, and Adiabatic Bias Molecular Dynamics. The

library is made available directly within the main distributions of the academic software

GROMACS, LAMMPS, NAMD, Tinker-HP, and VMD. The robustness of the software

and the reliability of the results are ensured through the use of continuous integration,

with a test suite within the source repository.

Introduction

In the field of molecular simulations, projecting high-dimensional configurations into a low-

dimension space of collective variables (CVs) is a common way to perform enhanced sam-

pling,1 and a nearly universal tool for analyzing simulation data to extract physical, chemical,

and biological insight.

Computational techniques, including CV-based ones, are generally useful insofar as a
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reliable and efficient software implementation exists for them. Accordingly, the most com-

monly used simulation methods in molecular simulation (interatomic potentials, thermostats,

barostats, multiple time-stepping) have gained wide distribution via software applications

that could be installed directly by their intended users. However, methods for CV-based

enhanced sampling come in a broader variety compared to those for conventional MD simu-

lations, a fact that hinders their bottom-up re-implementation in each software package. To

address this issue, we have previously introduced the collective variables module (Colvars),

a software library designed for distribution with multiple simulation and analysis software

packages.2

The close integration between Colvars and each package has greatly simplified many

computational protocols, to the extent that Colvars has been perceived in a few cases to be

an exclusive feature of NAMD,3 the package to which Colvars was first added. It is more

accurate instead to consider Colvars as distinct from the CV implementations specific to

each MD package, such as the pull code of GROMACS4 or the CustomCVForce feature of

OpenMM,5 as well as from independently distributed plugins such as PLUMED.6

Further customization is available through a scripting interface, or a graphical user in-

terface (GUI)7 within VMD.8 Additionally, the Colvars library is under continuous develop-

ment, with many of its features being introduced over multiple major releases of the packages

with which it is distributed. Therefore, it is useful to review the main extensions and new

features brought to the library since the original publication.2

Following a brief summary of the underlying theoretical concepts, this manuscript reviews

new or improved collective variables to reconstruct the energy landscape of multiple macro-

molecules in contact with each other as well as their own conformational changes. Also

reviewed are the improvements to established sampling schemes such as adaptive biasing

force (ABF) and metadynamics, and the introduction of new schemes to bias the simulated

ensemble towards experimental data. Lastly, the enhanced interfaces to the NAMD and

LAMMPS9 packages, as well as the interfaces to VMD, Tinker-HP and GROMACS are also
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discussed.

General architecture of Colvars

A collective variable, often abbreviated as ‘colvar’ or CV, can be any function ξ(X,u) of the

Cartesian coordinates of multiple atoms X and the periodic cell parameters u, such that the

values of ξ map physically relevant regions of configurational space. To enhance the sampling

of rare states in MD simulations, external forces are added in colvar space and propagated

to the equations of motion of the individual atoms in Cartesian space. Owing to generality

of this scheme, any mathematical function can define of a CV, as long as it i continuous and

differentiable in all its arguments.

The most common use of Colvars is a continuous simulation of a single copy of the

model system, under the effect of external forces whose effects are measured and included

in the estimate of a-free energy profile for the system at equilibrium. It is, however, also

straightforward to use Colvars with methods that introduce artificial discontinuities in the

atomic trajectory10 or rely on selecting simulation snapshots without applying external bi-

asing forces,11–14 or other multi-copy simulations.15

As with conventional MD simulations, computation using methods implemented by Colvars

requires the user to define two entities:

• At least one collective variable, by selecting atoms and a function of those atoms’

coordinates: this is a generalization of interatomic variables such as bonds, angles, and

dihedrals.

• A scheme to govern the dynamics of the colvar just defined: this is a generalization

of the interatomic potentials; however, because the typical use is to achieve biased

sampling, this scheme is called a ‘bias ’.

Multiple variables and biases can be simultaneously defined. The Colvars library offers many

choices of definition for each, ranging from massively parallel, compiled code to scripted
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functions defined by the user at run time; both are described below. This fully modular

architecture gives practitioners access to a broad space of possible collective variables and

types of biased dynamics.

Notable or new coordinates

Euler and polar angles

To facilitate the description of the spatial arrangement of a ligand and a protein as one-

dimensional variables in binding free-energy calculations,16 the Colvars library has intro-

duced (i) the polar (θ) and azimuthal (φ) angles that describe the position of an atom group

in spherical coordinates,17 and (ii) the “roll” (Φ), “pitch” (Θ) and “yaw” (Ψ) angles that

depict the rotation of an atom group with respect to a reference frame.18 These angles are

calculated as 

θ = arccos (z)

φ = arctan2 (y, x)

Φ = arctan2
(
2 (q0q1 − q3q2) , 1− 2

(
q2

1 + q2
2

))
Θ = arcsin (2(q0q2 − q3q1))

Ψ = arctan2
(
2(q0q3 + q1q2), 1− 2

(
q2

2 + q2
3

))
where (x, y, z) is the unit vector from the origin to the center-of-mass of the molecule,

and (q0, q1, q2, q3) is the quaternion describing the rotation that minimizes the root-mean-

square-deviation (RMSD) of the molecule with respect to the reference.2,19 A schematic

representation of these angles is shown in Figure 1. The radial distance r, the angles θ and

φ form a complete set of polar coordinates, which is defined in Colvars using the distance,

polarTheta, and polarPhi keywords. Conversely, the angles Φ, Θ and Ψ are defined using

the eulerPhi, eulerPsi and eulerTheta keywords, which define internally the computation

of a quaternion q from which the relevant projection is carried out. The set of functions
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described above is extensively used by the Binding Free Energy Estimator.20,21 Like any

other collective variable, these angles can be computed in a moving frame of reference tied

to a specified group of atoms (see section below).

Figure 1: Schematic representation of the polar angles (φ, θ) and the Euler angles (Φ,Θ,Ψ)
in protein-ligand binding. The polar angles (φ, θ) describe how the ligand revolves around
the protein. The Euler angles (Φ,Θ,Ψ) depict the rotation of the ligand around its origin.

Path collective variables

When considering a pathway that connects two metastable states, A and B, of the free-energy

landscape underlying a geometric transformation—e.g., the conformational transition of a

protein—it becomes advantageous to associate a progress variable22,23 to this pathway, which

can be supplied, for instance, by path-optimization strategies like the string method and

its variants,24–26 or, more recently, by machine-learning strategies aimed at discovering the

committor, i.e., the probability that, starting from a given configuration, the target state, B,

will be reached before returning to the reference state, A.27–29 Such an approach facilitates

the calculation of the free-energy change between the reference and the target states. The
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concept of a progress variable also offers a robust framework for reducing dimensionality,30–32

while providing a concise description of potentially complex geometric transformations by

means of a one-dimensional free-energy profile, or “potential of mean force”. The latter

ideally captures the dynamics of the molecular processes at play in the transition between

the two end-states.

Computing a progress variable necessitates the projection of the collective variable, or

alternatively, the Cartesian-coordinate space onto the path representing the average tran-

sition, resulting in differentiable expressions. These expressions characterize a continuous

pathway along which a free-energy change can be precisely determined. An example of

such expressions is furnished by the so-called path-collective variables (PCVs), which are

introduced here in a variant of their original arithmetic formulation,33



s(z) =
1

N − 1

N−1∑
i=0

i exp

(
−λ

M∑
j=1

cj

(
zj − z(i)

j

)2
)

N−1∑
i=0

exp

(
−λ

M∑
j=1

cj

(
zj − z(i)

j

)2
)

ζ(z) = −1

λ
ln

(
N−1∑
i=0

exp

(
−λ

M∑
j=1

cj

(
zj − z(i)

j

)2
)) (1)

where cj is the weight of the j–th CV, z(i)
j , the value of this CV for the i–th reference frame,

or node of the pathway, and zj, the value of j–th CV for the current frame. M and N are the

number of CVs and the number of reference frames, respectively. λ serves as a smoothing

parameter that relates to the inverse of the mean-squared displacement between consecutive

images. Variable s(z) acts as a progress parameter along the pathway, ranging from 0 (state

A) to 1 (state B), while the ancillary variable ζ(z) can be interpreted as the radius of

a tube enveloping the pathway, confining the sampling within its vicinity. This conceptual

framework aids in determining the underlying free energy profile, most notably from a coarse

approximation of the pathway, by mapping the free energy in the two dimensions, s(z) and

ζ(z), denoted aspathCV and azpathCV in the Colvars library. The one-dimensional free-
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energy profile is then derived from the marginal distribution of s(z).

An alternative to the previously stated definition of the PCV is provided by the original

arithmetic expression of Branduardi et al,33 resting on mean-squared displacements between

the current position in Cartesian-coordinate space and that of the images of the string. These

PCV are called aspath and azpath in the Colvars library, and have proven useful when it is

not possible to infer, primarily from human intuition, the subspace of CV needed to optimize

the pathway.

While the free energy should ideally remain immune to changes in λ for straightforward

linear abscissas, the complexity of the CV or Cartesian space, along with the non-linearity

of the string, complicates its choice and is prone to induce instabilities in the trajectory due

to the singularity of the mean-squared displacement as it approaches zero. This ailment can

be alleviated by means of a normalized exponential function (Softmax). Still, even minor

deviations from the optimal value of λ may result not only in sampling inefficiencies but also

in discernible artifacts that compromise the physical accuracy of sampling. These limitations

have led to the development of alternative geometric expressions that are more robust to

parameter selection. For example, path-metadynamics variables (PMVs) generate unique

values for s(z) and ζ(z), unlike the original arithmetic PCV formulation, and are defined as

follows,34


s(z) =

n

N
± 1

2N

{
[(v1 · v3)2 − |v3|2(|v1|2 − |v2|2)]

1/2 − (v1 · v3)

|v3|2
− 1

}

ζ(z) =

∣∣∣∣∣v1 +
1

2

{
[(v1 · v3)2 − |v3|2(|v1|2 − |v2|2)]

1/2 − (v1 · v3)

|v3|2
− 1

}
v4

∣∣∣∣∣
(2)

Here, v1 = sn − z is a vector pointing from the current position to the nearest image,

v2 = z− sn−1, a vector pointing fro the second nearest image to the current position, v3 =

sn+1− sn, a vector pointing from the nearest to the third nearest image, and v4 = sn− sn−1,

8



a vector pointing from the second nearest to the nearest image. Here, n is the index of the

nearest image, and N is the total number of images. If the current position is to the left

of the nearest reference image, the sign in the expression of s(z) is positive—otherwise, it

is negative. The above PMV, s(z) and ζ(z), are denoted gspathCV and gzpathCV in the

Colvars library, and, just like the PCV, possess a related definition in Cartesian-coordinate

space, referred to as gspath and gzpath.

Moving frame of reference

Many applications of Colvars are focused on studying changes in structure within one macro-

molecule, or the interactions between multiple macromolecules. However, in some of these

cases, the CVs employed are sensitive to translations or rotations of those macromolecules,

making the associated free-energy landscape unnecessarily complex. To address this issue,

Colvars allows for any CVs to be defined in an invariant frame of reference, whose axes and

point of origin follow the motion of a chosen group of atoms. The same methodology19 and

implementation2 used in the computation of optimal RMSDs also underlie the definition of

such a frame of reference.

A typical example of this feature is a protein/ligand complex, where the protein defines

the moving frame of reference, and the ligand’s movements are parameterized by specific CVs

expressed in that frame. These CVs may include, for example, the translations and Euler

angles used in the Binding Free-Energy Estimator (BFEE) protocol,18,35 or the RMSD from

a reference structure in the Distance from Bound Configuration (DBC) coordinate used in

the SAFEP approach.36,37 Notably, the implementation places no restrictions on the number

of frames of reference that may be defined concurrently and is sufficiently modular to support

arbitrary types of CVs. For example, a moving frame of reference may be combined with a

symmetry-invariant RMSD coordinate for efficient restraining of symmetric ligands.38

A moving frame of reference is defined by the fittingGroup keyword, which selects the

set of atoms whose frame of reference a CV may be defined on. The set of fitting atoms
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is defined separately from the atoms explicitly used in defining a CV, and the coordinates

of the latter set of atoms are transformed into the moving frame whenever the CV is being

recomputed. In mathematical terms any function ζ(X) may be defined in a moving frame

as:

ζ(fitted)(X; X(fit)) = ζ(R(X− x̄) + x̄(fit)) (3)

where x̄ is the center of geometry of X, R is the optimal rotation matrix, X(fit) are the

Cartesian coordinates of the fitting atoms, x̄(fit) their center of the geometry. Because R

is a function of X(fit), any biasing force applied to ζ(fitted) is also propagated to the fitting

atoms by implicitly calculating the gradients of ζ(fitted) with respect to X(fit) as detailed in

the Supporting Information.

While this treatment allows to consistently bias all degrees of freedom associated to

ζ(fitted), the additional computation requires nested loops over both X and X(fit), which may

be computationally costly. Such consideration applies to all moving frames of reference, with

the exception of the special case when X and X(fit) are the same coordinates and ζ is the

RMSD function, for which the fitting gradients are zero by definition and are therefore not

computed. In all other cases, it is good practice to define a CV and a moving frame of

reference such that the atoms X selected for the CV are significantly fewer than the fitting

atoms X(fit).

DEER CVs

A primary objective of molecular dynamics simulations is to provide a molecular interpre-

tation of complex experimental signals, particularly those highlighting large-scale confor-

mational changes in biomolecules, like double electron-electron resonance (DEER) measure-

ments. This technique measures long distances (up to 16 nm43) between spin labels on a

biomolecule (Fig. 2). To compute the DEER signal of a biomolecule with two attached spin
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Figure 2: Example of experimental and calculated DEER time-domain signals. Below the
DEER traces is a schematic of the protein with attached spin labels. The experimental signal
(orange circles) is from DEER measurements on spin-labeled T4 Lysozyme at positions 62
and 10939 40.41 DEER traces calculated using conventional MD and the restrained average
dynamics (RAD) technique42 are shown as green and black lines, respectively, representing
the time average of the deer CV (see Eq. 4). The blue dashed line represents the fit of the
background function, (1− Λ1) exp− (Λ2|td|), at large times when oscillations are minimal.
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labels, we implemented a vector-valued CV in Colvars, named deer. This CV assesses the

contribution of an individual biomolecular configuration to the signal.

The implementation of the deer CV is based on the standard approximation of nearly

isolated spin pairs in a dilute solution,44,45 enabling the deer CV to be expressed as a function

of the spin labels’ distance, r (the distance between nitroxide groups in MTSSL spin labels):

Ftd (r) = [(1− Λ1) + Λ1k (td, r)] exp− (Λ2|td|)D/3 (4)

where td denotes the time of the DEER signal, spanning an interval with length provided as

an input parameter. Each td value corresponds to a specific vector component of the deer

CV. The experimental parameters Λ1 and Λ2 characterize the signal modulation depth and

the background contribution from spin-spin interactions between different biomolecules in

the solution, respectively (Fig. 2). The parameter D describes the system dimensionality

(3 for a solvated biomolecule in a homogeneous sample and 2 for a membrane-embedded

biomolecular system). The function k (td, r) (DEER kernel) represents the intramolecular

spin-spin contribution to the signal and is the only term in Eq. 4 that depends on the

molecular configuration via the spin labels’ distance, r. The analytical expression for this

term, based on the same approximations and assuming ideal pulses, is given by:46–48

k (td, r) =

√
π
[
C (z)2 + S (z)2]

6ωdtd
cos

[
ωdtd − arctan

S (z)

C (z)

]
(5)

where ωd = g2µ2
Bµ0/4π~r3 denotes the dipolar frequency. C (z) =

∫ z
0

cos
(
π
2
x2
)
dx and

S (z) =
∫ z

0
sin
(
π
2
x2
)
dx are the cosine and sine Fresnel integrals (z =

√
6ωdtd/π).

Once the deer CV is evaluated along the MD trajectory, the predicted DEER signal can

be calculated as the time average of the CV: 〈Ftd (r)〉 = [(1− Λ1) + Λ1〈k (td, r)〉] exp− (Λ2|td|)D/3

(where 〈...〉 denotes ensemble average). This can be computed, for example, using the run-

ning average functionality in Colvars or a custom script. The experimental parameters, Λ1

and Λ2, can be provided in input if they are known a priori (e.g. through background fitting
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as shown in Fig. 2). Alternatively, we also implemented routines in Colvars to evaluate

them automatically by best fitting predicted and experimental signals.42 The current imple-

mentation also supports the use of only the DEER kernel function in Eq. 5, referred to as

the deerkernel CV. This can provide a prediction of the background-corrected and shifted

DEER signal (〈k (td, r)〉), which can be inferred from the measured signal if Λ1 and Λ2 are

known.

Overall, the deer and deerKernel CVs enable comparison of predicted and experimental

DEER signals for rigorous molecular interpretation. They can also be used in combination

with refinement methods like Restrained Average Dynamics (RAD)42 to align simulation

ensembles with experimental data (see the section on biasing methods below). At the time

of writing, these feature are available in a Colvars development branch and are slated for

integration into the standard release.

Machine-learned CVs

Figure 3: Schematic representation of a dense neural network. Each circle represents a node,
and nodes within the input, hidden, and output layers are marked in purple, blue, and yellow,
respectively.

In principle, according to the universal approximation theorem,49 a neural network (NN)
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with hidden layers can be used to approximate any continuous function. Thanks to this

advantage, machine learning using NNs has become a widely used strategy for dimensionality

reduction and discovering CVs.50–60 To make use of these CVs in molecular simulations, we

have implemented in Colvars the machine-learned CV (MLCV) component,58 referred to

as neuralNetwork. This function can use any of the available CVs available in Colvars as

inputs, and forwards them into a user-defined dense neural network (NN): the output of the

network’s last layer provides the value for the CV. In a dense NN, the output of the j-th

node at the k-th layer that has Nk nodes is computed as

xk,j = fk

(
Nk−1∑
i=1

w(k,j),(k−1,i)xk−1,i + bk,j

)
(6)

where fk is the activation function of the k-th layer, w(k,j),(k−1,i) is the weight of the j-th

node at the k-th layer with respect to the i-th node at the (k− 1)-th layer, bk,j is the bias of

the j-th node at the k-th layer, and Nk−1 is the number of nodes at the (k−1)-th layer. The

computation can be also written in the vector form xk = fk(Wk,k−1xk−1 +bk), where fk is an

Nk-dimension activation function, Wk,k−1 is an Nk×Nk−1 weight matrix, xk−1 is the output

of the previous layer, and bk is an Nk-dimension bias vector. A schematic representation of

the structure of a neural network can be found in Figure 3. To make MLCV agnostic of the

underlying deep-learning frameworks, the weights and biases of the dense NN are provided

in plain text files, and the activation functions can be defined using the Lepton library.61

The MLCV component has been used, for instance, to implement the CVs discovered by

autoencoders for describing the folding of proteins.62

In addition to the neuralNetwork feature, which is available directly within the Colvars

library, more general NN coordinates can be computed through an interface to the PyTorch

library. This functionality, available through the torchANN keyword, allows for computing

colvars as functions of existing variables defined by a NN in PyTorch format. The ability to

use the torchANN feature is conditional upon the presence of a Torch library linked to the
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MD engine, or dynamically loaded at runtime.

Volumetric map-based CVs

Traditionally, biased MD simulations approaches have often been used to simulate changes

in conformation of few individual molecules, such as proteins or nucleic acids. However,

supra-molecular aggregates such as water clusters, surfactant micelles and lipid membranes,

are more accurately described by the spatial distribution of their constituent molecules.

Therefore, suitable CVs for these systems could be defined using that distribution directly,

for example in the form of a density map evaluated on a dense grid over a given volume.

Collective variables based on volumetric maps were recently introduced in two variants63

1. as variables based on a single map, φ(X) (mapTotal keyword), to bias the number of

water molecules in a given region of space; among the applications of this approach is,

for instance, the dewetting of ion channel pores;64

2. as multiple maps combined together,
∑

i ξiφi(X), to define a continuous pathway that

connects different morphological states of a lipid membrane.

The latter approach, referred to asMulti-Map, has been applied to computing the free-energy

cost of membrane deformation by embedded transporter proteins,65 obtain coarse models of

protein conformational changes from density maps,66 and to describe the mechanism of

curvature generation in cholesterol-rich membranes.67

The current implementation is specific to NAMD and VMD, because it leverages their

implementations of volumetric maps8,68 as well as the functionality of the Colvars Dash-

board VMD plugin.7 Extension to other engines and future improvements will be described

elsewhere.
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Alchemical variable and lambda-dynamics

Colvars now implements an alchemical collective variable alchLambda, which is communi-

cated to compatible back-ends – currently, Tinker-HP or NAMD – if their alchemical simula-

tion mode is active.69 When the extended-Lagrangian feature is enabled for such a variable,

the alchemical simulation becomes driven by Colvars, resulting in a λ-dynamics trajectory.

λ-dynamics has existed for several decades70,71 but has only been practically accessible to a

small fraction of the community so far, thus the Colvars implementation aims at expanding

its reach. This feature benefits from improvements in the extended-Lagrangian implemen-

tation, especially a new Langevin integrator (BAOA72), and reflecting boundary conditions

for the extended variable, which is therefore strictly contained within the physically relevant

interval [0, 1].

The alchemical variable can then be used in biasing and free energy calculation methods

such as ABF. This combination gives rise to lambda-ABF, a general and simple method for

alchemical free energy estimation.69 Stochastic diffusion in the alchemical space was found to

enhance relaxation in configuration space compared to traditional, fixed-lambda simulations.

Lambda-ABF is particularly useful when run over multiple walkers in the mwABF scheme.

The alchemical coordinate is another tool in the Colvars toolbox and can be freely combined

with other coordinates to create multidimensional biases and other custom methods. As an

illustration, the decoupling free energy of the anti-inflammatory drug ketoprofen in TIP3P

water was estimated efficiently using short simulations (4 replicas, 1 ns per replica) using

Colvars in NAMD. Simulation details can be found in Supporting Information. The results

are presented in Figure 4, and discussed in the ABF section below.

The Tinker-HP version of the alchemical variable is compatible with the CPU and GPU

implementations. The NAMD implementation is compatible with both the GPU offloading

and GPU-resident alchemical simulations73 of NAMD 3,3 although it does not yet support

multiple time-stepping.
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Figure 4: Analysis of an alchemical, multiple-walker lambda-ABF simulation of ketoprofen
performed using Colvars and NAMD. a) Time trajectory of the alchemical parameter λ
for the four replicas (“walkers”). b) Free-energy gradient as a function of the alchemical
parameter λ, estimated based on the combined data of four replicas (black) and from each
individual replica. The shaded interval is plus or minus the standard deviation between the
replicas, weighted by the local sampling of each replica, and multiplied by a factor of 5 for
visibility. Replica 1 does not affect the common estimate due to a lack of samples for λ
close to 1. The discontinuous change at λ = 0.5 reflects the transition from electrostatic to
Lennard-Jones decoupling. c) Convergence of the estimated free energy of hydration as a
function of total sampling time combining the 4 replicas. Inset: vertical zoom on the final
segment of the simulation. The shaded area denotes the average plus or minus the error
estimate based on the dispersion of the gradient, represented in panel b).
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New and improved biasing methods

Data-Driven Biasing Methods

In addition to the adaptive biasing techniques described in the previous Colvars article,2 a

range of sophisticated techniques have emerged for integrating experimental measurements

and other types of data into simulations. These methods aim to produce structural en-

sembles consistent with target data while minimizing bias, following the maximum-entropy

principle.74 They require a forward model to predict target data from the MD ensemble and

use a bias potential to align predictions with targets. Here, we describe methods in Colvars

based on these concepts, categorizing them into techniques that focus on matching the mean

value of an observable and those that target the probability distributions of CVs (which can

be viewed as a continuous set of mean values).

Methods to restrain ensemble averages

The methods described in this section assume that the experimental data (or other data

source) reflects an average of an observable, ξi (X,Λi) (forward model), over an ensemble

of molecular configurations, X, with Λi denoting model parameters. To align the simulated

mean of ξi (X,Λi) with the target value, these methods employ a machine-learning bias

potential, Vt (ξi) (where t denotes time), during molecular dynamics simulations. The general

expression of Vt (ξi) follows the principle of maximum entropy:74

Vt (ξi) = −kBT
∑
i

λi (t) ξi (X,Λi) (7)

where the parameter λi controls the mean value of ξi (X,Λi). To align the latter mean

value with the desired target, the parameter λi is adjusted over time according to a gradient
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descent optimization:

λi (t+ dt) = λi (t)−
ξi (X [t] ,Λi)− ξtari

c (t)
dt (8)

where ξtari is the target mean value and c (t) controls the learning rate. The latter rate

depends on the observable and can be tailored to ensure efficient convergence.42,75

Colvars offers two formulations of these methods: Adaptive Linear Bias (ALB, called alb

in Colvars)75 and Restrained-Average Dynamics (RAD, called rad in Colvars).42 The key

distinction is that RAD explicitly accounts for experimental and model uncertainty, thereby

reducing the risk of over-fitting when handling multiple experimental datasets. In ALB, the

target mean value is set precisely to the input experimental value (ξtari = ξexpi in eq. 8). In

contrast, RAD optimizes ξtari to minimize bias while ensuring it remains within acceptable

error limits. For Gaussian errors the time evolution of ξtari is given by:

ξtari [t] = ξexpi − η2
i

γi [t]
λi (t) (9)

where ηi is the estimated experimental error and γi is evolved to set an overall level of

agreement between predicted and experimental data (e.g.
∑

i |ξtari − ξ
esp
i |/Nηi ≈ 1, where N

is the size of the dataset). Inputting both experimental errors and desired agreement levels

helps prevent over-fitting and excessive bias. Besides uncertainties, RAD explicitly accounts

for the model parameters, Λi, which, if unknown, can be optimized to reduce bias. However,

the current implementation in Colvars only supports observables that are linear functions

of the parameters Λi, such as the deer CV in the previous section on new coordinates. An

example of RAD applied to DEER data is shown in Fig. 2. RAD is presently available in a

separate branch of Colvars and is in the process of being integrated into the main branch.
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Methods targeting CVs probability distributions

Probability distributions of molecular observables, such as label distances from DEER or

Förster resonance energy transfer (FRET), and pair distances from radiation scattering, are

alternative key targets for simulations. Focusing on these derived distributions rather than

raw experimental signals (via methods described above) provides a unified framework for

integrating these experiments (albeit an indirect one), avoiding the need for experiment-

specific formulations.

Probability distributions of CVs can be represented as the ensemble average of density

kernel functions hi [ξ (X)] (e.g. rectangular or Gaussian), centered on a specific CV value

ξi, and covering the relevant CV range.40,76 Thus, these distributions can be enforced in

MD simulations using methods similar to those described above. Roux and coworkers39,76

used this formulation to target the spin labels’ distance distributions derived from DEER

measurements. In this method, the mean values of the kernel functions are targeted using the

restrained-ensemble technique. Namely, N simulation replicas are carried out and harmonic

potentials, Vi, are applied on the mean value of the kernel functions across replicas:

Vi (X1, ...XN) =
1

2
K

(
1

N

N∑
j=1

hi [ξ (Xj)]− h̄i

)2

(10)

where Xi denotes the molecular coordinates of replica i, K is the force constant and h̄i is

the target mean value. For large K and many replicas, the restrained-ensemble technique

becomes statistically equivalent to the maximum entropy methods discussed in the previous

section.77 In practice, Roux et al.’s approach76 employs a multiple-copy algorithm with repli-

cas of spin-label moieties only, maintaining a single replica for the protein. Additionally, it

applies a mean field approximation to scale the replica average statistics by N2. This method

is available in Colvars via the keyword histogramRestraint and is currently applicable only

to one-dimensional probability distributions.

Besides representing kernel function mean values, probability distributions of CVs are
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also linked to free energies via logarithmic scaling. This connection has been exploited by

Marinelli,40 White,78 and coworkers to adapt free energy methods, such as metadynamics,79

for targeting CVs distributions with an efficient single replica approach. Multiple replicas

can be used to speed up convergence as in the multiple-walker metadynamics method,80 but

are not strictly required. Colvars provides an implementation of this methodology, called

ensemble-biased metadynamics (EBMetaD) or ebMeta in Colvars, which can be applied to

distributions of arbitrary dimensions. This approach is based on scaling the Gaussian func-

tions in the metadynamics bias potential by the inverse of the target distribution function,

referred to as ρexp (provided in input as a grid function):

VEBMetaD (ξ, t) =
t′<t∑

t′=δt,2δt,...

W

exp (Sρ) ρexp(ξ(t′))

Ncv∏
i=1

exp

(
−(ξi − ξi(t′))2

2σ2
ξi

)
, (11)

where Sρ represents the target distribution differential entropy (W and σξi are Gaussians’

height and width respectively). At convergence, the EBMetaD bias potential is related to

the free energy, A(ξ), via:

A(ξ) ' −VEBMetaD(ξ)− κBT log ρexp(ξ) (12)

Namely, EBMetaD is statistically equivalent to the maximum entropy approaches discussed

in the previous section when the observables are kernel density functions.40 Like the afore-

mentioned methods, EBMetaD has been extended to account for experimental errors41

(which are also input as a grid function), using the same formulation as RAD. The ex-

tended version of EBMetaD is available in a development version of Colvars and is currently

being implemented into the main branch.
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Improvements to the ABF implementation

The Adaptive Biasing Force method (ABF) is a modified dynamics that enhances the sam-

pling of a low-dimension space of collective variables based on an on-the-fly estimate of the

free-energy gradient in that space.81–83 Colvars has always included an implementation of

ABF.84 Since the time of the previous report,2 the Colvars/ABF implementation was en-

riched with extended-system ABF method (eABF),85 which can be coupled to an umbrella-

integration free-energy estimator.86 The eABF implementation in Colvars has formed the

basis for developing methods that combine eABF and metadynamics87,88 or well-tempered

metadynamics,88 as well as Gaussian-accelerated MD.89 A Poisson integration algorithm

has been added, enabling the code to directly produce integrated free-energy surfaces in

dimensions 2 and 3.90

Here we report recent improvements to the multiple-walker, “shared ABF” variant, or

mwABF.15,91 In shared ABF, different copies of an ABF simulation run in parallel and share

their free energy derivative data at finite time intervals, so that they apply nearly the same

biasing force, and asymptotically so at long times. In the reworked implementation, each

walker keeps a separate copy of its own samples and writes it to a separate set of output files,

whereas only the first walker writes the collective free energy and gradient estimates. This

lets users analyze the data from individual walkers, and the dispersion between them can

be used as a convergence metric. This is illustrated in Figure 4, describing the alchemical

decoupling of ketoprofen from water. Figure 4 displays the time dependence of λ. The λ

values for the four replicas, all initialized at 0, cover most of the [0, 1] range. Of note, replica

1 never reaches the value of 1 in this short simulation: this does not affect the reliability of

the overall estimate, which combines data from all replicas.

The free energy estimate converges rapidly over time, with fluctuations of 0.1 kcal/mol

in the second half of the simulations. The dispersion between the data collected by all the

replicas can now easily be analyzed to yield an error estimator.

The free-energy gradient estimated based on each replica’s data is now output separately,
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enabling the dispersion analysis of panel b. As visible in Figure 4a, the replicas’ dynamics in λ

space decorrelate rapidly. The benefit of mwABF is that the enhanced diffusion along the CV

increases the rate at which replicas become decorrelated in the orthogonal (here, Cartesian)

space.69 Each replica visits each λ point several times, with a different history. Assuming

that this decorrelation has happened, the errors in different replicas are independent, and the

error in the common gradient estimate can be computed as the weighted standard deviation

between the replicas. The error on the integrated free energy difference is estimated by

assuming independence between the errors in different bins.92 In this case, the decoupling

free energy is estimated as -8.9±0.2 kcal/mol.

The compatibility of mwABF with eABF has been made complete, with improved han-

dling of the data needed by the CZAR free energy estimator85 across replicas.

Finally, the mwABF selection mechanism whereby walkers could be deleted and spawned

in regions of lower sampling density has been extended to two-dimensional collective variable

spaces. Note that this selection mechanism is implemented as a NAMD-specific Tcl script,

whereas the general mwABF implementation is compatible with LAMMPS, NAMD, and

Tinker-HP. This is not a major drawback because in our experience, the selection mechanism

is not critical in ensuring diversity in the orthogonal space, which is the main benefit of

multiple-walker sampling.69

Improvements in metadynamics-based methods

The metadynamics implementation initially detailed in ref.2 included both the original

method,79 which aims to achieve uniform exploration of CV space, and its well-tempered

variant,93 which achieves Boltzmann sampling of the free energy in the CV space at a

higher, specified temperature. Since then, the metadynamics approach has been extended

to target any specified distribution in the CV space via the ensemble-biased metadynamics

method,40,41 detailed above. Additional improvements to metadynamics have focused on

enhancing numerical accuracy and ease of use, which we discuss further here.
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Boundary correction for metadynamics
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Figure 5: CVs boundary correction for metadynamics and its variants. (A) 2D schematic of
the boundary correction method in Colvars. (B) Comparison of metadynamics simulations
with (right) and without (left) boundary correction for ammonia coordinated by two water
molecules in vacuum. Metadynamics simulations used two CVs (D1 and D2) representing
distances between water oxygen atoms and ammonia nitrogen, with steep confining potentials
outside [2.8Å, 8Å] and Gaussians added every ps (of height 0.006 kcal/mol and sigma 0.2Å).
The panel compares free energy errors (−kBT ln ρ(D1, D2), where ρ is the 2D histogram from
the metadynamics sampling) from the last 250 ns of simulation (300K, 1 fs timestep). The
boundary correction effectively removes errors from steep walls, as shown in the plot.

Regardless of the metadynamics variant employed, the finite spatial resolution of the

Gaussian bias leads to systematic errors near steep walls or mathematical boundaries of

CVs. These errors accumulate over the course of the simulation, hindering correct sampling

in these regions, which can also cause simulation instabilities during extended runs. As a

result, the accuracy of the calculated free energy in these areas can be compromised94,95

(Fig. 5B; left plot). To address this issue, we implemented a boundary correction in Colvars

across arbitrary dimensions, based on concepts from previous research.94,96,97 The approach

consists in applying reflecting conditions at the boundaries94,97 and removing biasing force

components along CVs, when they exceed their specified boundary limits96 (i.e. when they

are not mathematical limits). This boundary condition can be enabled in Colvars with the

keyword useHillsReflection. When activated, additional Gaussians are placed outside

the boundaries at locations reflected relative to the original ones and with the same height
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and width of the original Gaussians (Fig. 5A). To improve efficiency, this condition is applied

only to Gaussians that are within a cutoff distance from the boundary (by default 6 times

the Gaussians sigma, but can be modified with the keyword reflectionRange).

To prevent artifacts when CVs cross boundaries, this also includes Gaussians that are

simultaneously reflected across multiple CVs, considering all possible combinations of single,

double, or multiple concurrent reflections (Fig. 5A). This approach produces a smooth distri-

bution of additional Gaussians on a shell surrounding the exterior of the CV space enclosed

by the boundaries. Although the reflected Gaussians are placed outside the boundaries,

potentially beyond the mathematically valid region of the CV space, their tails still affect

the bias potential and forces within the boundaries. This effect helps reaching stationary

conditions and prevents the accumulation of systematic errors. Due to the symmetry of

the reflecting condition, biasing force components vanish at the boundaries that are per-

pendicular to them. Therefore, the aforementioned force components can be safely set to

zero outside these boundaries (Fig. 5A) if they are not strict mathematical limits (and may

be exceeded during the simulation). This avoids discontinuities when crossing boundaries

and further reduces systematic errors. Consistently, outside the boundaries we maintain a

constant bias potential in the direction of the removed force components, matching the value

at the nearest exceeded boundary (Fig. 5A).

In summary, the boundary correction method implemented is effective and accurate as

illustrated here on a model system (Fig. 5B). It is compatible with any metadynamics variant

in Colvars and requires no additional parameters or significant computational overhead.

Additionally, it can be used with both intrinsically limited CVs and those confined by flat-

bottom potentials.

When the metadynamics bias is introduced by projecting Gaussians onto a grid (enabled

by default), but the boundary correction above is not employed, it is recommended to either:

• extend the grid boundaries to enclose all wall restraints, as detailed in the Colvars

documentation, or
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• place the grid boundaries at the true mathematical boundaries of each CV whenever

possible.

Alternatively, to derive the free energy using reweighting approachs98–100 or a force-based

method.101 These methods can effectively employ free-energy estimators other than the bi-

asing potential itself, and thus may also be useful for assessing the quality of sampling.

Usability improvements in metadynamics

One of the usability improvements in metadynamics is the ability to specify the width of

Gaussian hills along each dimension, in units of the corresponding CVs, using the gaussianSigmas

keyword; this option is mutually exclusive with the pre-existing hillWidth option, which

specifies the width along all dimensions as a single number of grid points. Lastly, when run-

ning multiple-walker metadynamics80 it is now possible to use the same Colvars configuration

file for all walkers, provided that the MD engine is launched in a multiple-replicas configura-

tion. This is achieved by setting automatically the default value for the replicaID keyword

whenever the -multidir option is used in GROMACS, or -partition flag in LAMMPS,

the +replicas flag in NAMD, or the replicas keyword in Tinker-HP.

On-the-fly Probability Enhanced Sampling (OPES)

An implementation of On-the-fly Probability Enhanced Sampling (OPES),102 a generaliza-

tion of metadynamics, is being included into Colvars at the time of writing this report.

The implementation is based on the implementation of OPES already distributed with

PLUMED,6 and therefore retains many of its features save for some changes for the new

platform. For example, checkpointing an OPES simulation does not rely on accessory files,

but rather on the state file written by Colvars (NAMD and Tinker-HP) or on the MD engine’s

own checkpoint file (GROMACS and LAMMPS).
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Bias-exchange schemes

Colvars implicitly supports the temperature-exchange method,10 by communicating the value

of its current biasing potential to the MD engine, which uses it to compute the probability of

exchanges between replicas. Additionally, Colvars provides a direct implementation for other

replica-exchange schemes, where the property being exchanged is an umbrella-sampling re-

straint103 or a metadynamics bias.104 Both schemes are currently supported using the Colvars

scripting interface described below, using scripts available from the NAMD website (replica-

exchange umbrella sampling) or from the Colvars website (bias-exchange metadynamics).

As is common with most implementations of replica-exchange schemes, synchronicity and

fast communication between replicas are also required. Therefore, this feature is currently

limited to NAMD, where script-driven communication between replicas105 is available in

most typical cluster installations of NAMD.

A noteworthy aspect of the aforementioned implementation of bias-exchange metady-

namics is the use of a single configuration file to define the CVs and their metadynamics

biases on all replicas simultaneously. During a simulation, only one metadynamics bias is

kept active by each replica, with no forces being applied to the CVs that are not involved

in that bias. When an exchange is attempted between two replicas, the information accu-

mulated by the two biases is mutually communicated between the respective replicas. If the

exchange is successful, the two biases will be swapped and their permutation will persist until

the next exchange attempt and be restored when continuing a simulation from a checkpoint.

This approach has two advantages:

• by performing all exchanges internally within Colvars, all other features of the MD

engine remain compatible with the sampling scheme;

• because all CVs are always recorded, regardless of whether forces are applied to them,

analyzing the simulated trajectories does not require recomputing from Cartesian co-

ordinates, potentially saving significant storage space.
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Lastly, the bias-exchange implementation is easily generalizable to sampling schemes other

than the two mentioned above,103,104 providing a basis for developing new methods.

Adiabatic Bias MD

Adiabatic Bias MD (ABMD) is a time-dependent, non-equilibrium biasing method that

produces reactive trajectories for rare events by enhancing the forward motion of a progress

coordinate ξt.106 Forward fluctuations of the coordinate are selected by applying a history-

dependent harmonic potential Vt(ξt) centered on the highest value reached by ξt over the

past trajectory (high-water mark).

Vt(ξt) =


1

2
k
(
ξt − ξref

t

)2 if ξt < ξref
t

0 otherwise
(13)

where ξref
t is the high-water mark at time t, bounded by a user-defined stopping value ξstop:

ξref
t = min

(
t

max
s=0

ξs, ξ
stop
)
. (14)

ABMD (also called ratchet-and-pawl MD) has been successfully applied in particular to

protein folding processes.106–108 Recently, it has proved efficient at producing diverse binding

pathways and poses for a nucleotide ligand inside the cavity of Uncoupling Protein 1, a

proton transporter from the mitochondrial inner membrane.109

Previously, ABMD had been implemented as a simple scripted bias, showcasing the

efficiency of the scripting interface for rapidly implementing new methods. Because the

biases work in low-dimension colvar space, the overhead associated with a scripting language

is negligible and prototype implementations are efficient enough to be used for production.

However, the new, native C++ implementation of ABMD in Colvars makes it more flexible,

and portable to all MD back-ends, including GROMACS and LAMMPS.

The C++ implementation adds the abmd bias keyword, with the following options: the
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name of the collective variable undergoing the bias, the harmonic force constant k, the

stopping value ξstop, and an optional boolean value indicating that the values should decrease

over time rather than increase.

Custom-defined collective variables and biases

Extending the functionality of the Colvars library without changing its source code is sup-

ported through multiple mechanisms, which are presented here. This section discusses the

goal of defining a collective variable ξ(X) such as:

ξ(X) = f (ζ1(X), ζ2(X), . . .) (15)

where ζ1(X), ζ2(X), . . . are functions implemented by Colvars, and f(. . .) is a function

defined at runtime by the user. The following sections describe three different approaches

to implement f(. . .).

Linear and polynomial superposition

Since its first release, Colvars allows defining the function f(. . .) as a weighted sum of powers

of ζi(X):

f (ζ1(X), ζ2(X), . . .) = c1ζ1(X)p1 + c2ζ2(X)p2 + . . . (16)

where ci are coefficients and pi integer exponents, defined by the keywords componentCoeff

and componentExp, respectively. Typical use cases of this feature range from sums of the

same quantity computed over multiple individual molecules (e.g. the total dipole moment),

to variables describing multiple states of a whole system.63

29



Custom mathematical functions

In all official releases of NAMD and LAMMPS, as well as patched releases of GROMACS,

VMD and Tinker-HP, Colvars allows defining f(. . .) as a closed-form mathematical expres-

sion. This functionality is provided by the Lepton library,61 originally developed within the

OpenMM package;5 the same library is also responsible for the automatic calculation of the

derivatives of f(. . .) with respect to its arguments, ∂f/∂ζ. For example, the residual dipolar

coupling (RDC) of a pair of bonded atoms may be defined, save for a multiplicative constant,

as:

f (dz, d) = 1.5 * (dz/d)^2 - 0.5 (17)

where the right-hand side of eq. 17 is the expression directly usable as the argument of the

customFunction keyword and dz and d are, respectively, the labels of a distanceZ and a

distance component defined on the pair of atoms.

Defining variables and biases by scripted code

In addition to controlling the flow of a simulation (see below), scripting languages may also

be used to define additional code at runtime to implement existing collective variables and

biases. Two distinct keywords are available:

• scriptedFunction, which defines the root name of two related functions that imple-

ment, respectively, f(ζ1, ζ2, . . .) and its derivatives ∂ζ1f(ζ1, ζ2, . . .), ∂ζ2f(ζ1, ζ2, . . .), . . .;

during runtime, ζ1, ζ2, . . . are evaluated and their values passed as arguments to the

scripted functions;

• scriptedColvarForces, which provides the name of a function that can compute and

apply biasing forces on multiple CVs, thus allowing implementation of a new type of

bias; at runtime, no arguments are provided to this function, which will obtain current

values of the CVs and apply forces to them through the Colvars scripting API detailed

below.
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Currently, this feature supports only the Tcl scripting language, which is available in all

installations of NAMD and VMD. Additionally, Colvars in Tinker-HP is also built with an

embedded Tcl interpreter that supports callbacks, as used in.69 A typical use case of scripted

functions has been the prototyping of path CVs (see New coordinates above) and Euler-

angle CVs,18 which were later implemented in the library itself. Similarly, Adiabatic Bias

MD (ABMD)106 was initially implemented as a scripted bias and used in production,109 but

has since been reimplemented to be available in GROMACS and LAMMPS, which do not

support Tcl scripting. Support for Python-scripted CVs and biases is under development: its

implementation details will be tuned to comply with the packaging systems adopted by each

MD engine as their support for Python improves. At the time of writing, among the MD

engines supported by Colvars only LAMMPS offers a precompiled package that supports

Python callbacks, albeit from a third-party package.

New or improved interfaces

GROMACS interface

The Colvars library is now part of the official GROMACS package,110 starting with the

GROMACS 2024 release. Previous releases (from 2020 to 2023) were also supported through

patched versions of the GROMACS code base, or by applying patches manually.

Starting with the 2024 release, a copy of the Colvars library is included in the upstream

version of GROMACS and is built by default during the compilation. The library is com-

patible with most of the GROMACS integrators, GPU offload, thread MPI and the Multiple

Time Step feature; starting from version 2025, Colvars can also leverage the multi-simulation

framework in GROMACS. A few Colvars features such as custom functions and protein sec-

ondary structure CVS are not yet included in the standard GROMACS releases, but are

available as Colvars development branches.

To develop the Colvars-GROMACS interface, the C++ proxy class of Colvars was ex-
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tended to match the “MDModules” framework of GROMACS, which simplifies adding ex-

ternal modules without modifying core GROMACS files. Other changes, of a more visible

nature ti the user, were introduced to conform to the GROMACS workflow. For exam-

ple, all input files (including the GROMACS MD parameters file, the Colvars configuration

file and their dependencies) are embedded into the portable binary run input file of GRO-

MACS (.tpr) during the ’pre-processing ’ step. This ensures the validity of the input files

and promotes reproducibility. Furthermore, all Colvars information is stored in the GRO-

MACS checkpoint file (.cpt) during the simulation, allowing users to restart or continue a

Colvars-GROMACS simulation transparently. Complete documentation is available in the

GROMACS manual.111
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Figure 6: Simulation results, obtained using Colvars and GROMACS, of rhodopsin in a
coarse-grained lipid bilayer as a function of the tilt angle θ (A) from the protein’s initial
orientation. Shown are simulation snapshots at high tilt (B), at the free-energy minimum
(C), and at the initial orientation (D). Each heat map shows the deflection of the bilayer
midplane around the protein (in nm) at the corresponding tilt angle. Panel E shows the
free energy profile as a function of cos(θ) computed using conventional MD (blue) or meta-
dynamics (red).

Figure 6 illustrates the combined use of Colvars in a typical GROMACS simulation, i.e.

a membrane-protein system simulated in coarse-grained representation with the MARTINI
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force field.112 See the Supporting Information for computational details. Lateral diffusion

of the protein parallel to the bilayer and rotations around axes perpendicular to it were

prevented by restraints applied onto distanceXY and spinAngle variables, respectively. The

orientation of the protein during a simulation was quantified by a tilt variable, using as

reference the initial coordinates. A 20 µs conventional MD simulation without any biasing

forces on the tilt variable shows that the most favorable configuration has a ≈ 10◦ angle

(cos(θ) ≈ 0.985) with respect to the initial orientation (Fig. 6E). Enhanced sampling with

metadynamics, also for 20 µs, allows to explore much higher tilt angles (cos(θ) < 0.9).

Comparison of the membrane’s midplane deflection maps between the relevant states reveals

that the minimum-energy orientation (Fig. 6C) minimizes the distortion of the membrane

observed in other states (Fig. 6B,D).

Improved LAMMPS and NAMD interfaces

The Colvars-LAMMPS interface was recently improved by adding support for scripted work-

flows (see below) through the LAMMPS fix_modify command to send command-line in-

structions to Colvars. Syntactical differences notwithstanding, this functionality is similar to

how Tcl scripting is used in NAMD and VMD. Typical use cases include the ability to cus-

tomize a run’s input based on the results of prior simulation steps, or controlling when and

which output files are written. It is worth clarifying that the latter functionality is available

alongside the standard LAMMPS checkpointing mechanism, without replacing it. In fact,

using the LAMMPS restart file to checkpoint the Colvars has also become more efficient

in recent versions, by supporting an unformatted (i.e. binary) representation of the Colvars

state data, consistent with the LAMMPS state data such as atomic coordinates, velocities,

etc.

The first MD engine that officially supported Colvars is NAMD, owing to the “Glob-

alMaster ” infrastructure introduced to support biasing schemes such as steered molecular

dynamics, which preceded the introduction of Colvars. The GlobalMaster-based interface
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between Colvars and NAMD has been extended since its introduction through the following

improvements:

• the computation of centers of mass of atom groups and their forces is distributed across

parallel tasks;

• when multiple colvar components or biases are defined, their computation can be dis-

tributed over multiple threads of the first task;

• the values of volumetric maps63 and of the alchemical λ variables69 are communicated

and processed by Colvars in the same way as atoms and groups centers of mass.

Lastly, although GlobalMaster has traditionally been limited to CPU-based or GPU-offload

simulations, it has recently been extended by the NAMD developers to support CPU-based

features like Colvars in a GPU-resident run,3 an improvement that will be discussed in more

detail in a different manuscript.

Tinker-HP

Colvars is now interfaced with the Tinker-HP package,113 which features high-performance

implementations of polarizable force fields and machine-learned potentials on CPUs and

GPUs. The Colvars library is included in both the CPU and GPU versions of Tinker-

HP 1.2.69 To build this interface, the C++ proxy class of Colvars was extended with a C

layer, which is linked to the Fortran core of Tinker-HP. This provides a template for C and

Fortran-based interfaces, further increasing the portability of Colvars. A highlight of the

Colvars/Tinker-HP interface is the lambda-dynamics feature (detailed in the section on new

coordinates above), which is the core of the lambda-ABF method for alchemical free energy

estimation.69

Contrary to VMD and NAMD, Tinker-HP does not natively contain a Tcl interpreter.

Colvars has been extended with the possibility of building a dedicated, embedded Tcl in-

terpreter. This is enabled in standard Tinker-HP builds, bringing the flexibility of scripted
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variables and biases implemented as Tcl callbacks. Since Tinker-HP offers no built-in user in-

terface for executing Tcl scripts, we have implemented the Colvars keyword sourceTclFile,

which runs a specified script at startup in the Tcl interpreter that is either linked into the

back-end or directly embedded in Colvars.

The VMD interface and the Colvars Dashboard

The Colvars library is linked into executable builds of VMD and can be controlled via a

command-line scripting interface based on the Tcl language and the cv command which con-

trols the scripting API detailed below. This interface offers the same functionality to access

the molecular topology information available in MD engines. Although no MD integration

schemes are available in VMD, the energy and atomic forces produced by Colvars can be

analyzed for any configuration loaded in VMD. This feature may be used either to analyze

the output of a previous simulation or to assess the feasibility of adding or modifying a

biasing scheme to an existing simulation.

In the typical scenario where VMD is used interactively, the above command-line interface

provides the basis for a graphical user interface: the Colvars Dashboard.7 The Dashboard

serves two roles: facilitate the analysis of datasets of molecular configurations to interpret

them in terms of colvars, and provide helpers for setting up biased simulations. The configu-

ration of variables and biases can be saved to a file that is directly readable by the supported

MD simulation programs (GROMACS, LAMMPS, NAMD, and Tinker-HP).

The interactive display features of the Dashboard include a timeline display to explore the

time dependency of the colvars, and pairwise scatterplots to analyze pairwise correlations.

Displaying the atoms involved in a variable is useful for troubleshooting atom selections.

Colvar gradients with respect to atomic coordinates can be shown as arrows, helping scientists

understand the sensitivity of colvars to individual atom coordinates.

New features were added to the Dashboard since the reference publication, in addition

to many small stability and usability improvements. Notably, interactive histograms can
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now be computed and displayed. Clicking within the histogram changes the displayed frame

to that with the closest value of the colvar. Arrow keys navigate the trajectory sorted

by colvar values, which is particularly useful for exploring individual modes in multimodal

distributions of colvars. The gradient display feature has been extended to all coordinates,

including vector ones.

A pre-computed colvars trajectory can now be imported from a .colvars.traj file,

typically output by a Colvars-enabled simulation. These values are cached and associated

with loaded molecular configurations in VMD. This enables the visualization of parameters

that cannot be computed in VMD, such as the dynamic alchemical parameter within a

lambda-ABF trajectory.69 It is also useful for troubleshooting any discrepancy between colvar

values computed in VMD and in Colvars linked to MD engines. Lastly, the set of templates

for collective variables and biasing algorithms has been extended and improved to cover a

much larger set of the Colvars features.

Code design and functionality improvements

Scripting interface: workflow control

The range of scientific problems where molecular dynamics (MD) simulations are used and

the amount of computational power available to each project are both increasing steadily.

Therefore, many simulation packages also offer the ability to customize the flow of an MD

simulation via scripting languages. The two languages most often used in MD simulations,

Tcl and Python, support this goal in distinct ways, such as allowing easy integration with

simulation software (Tcl) or leveraging a rich set of features and knowledge base (Python).

Furthermore, certain MD simulation packages, such as LAMMPS, provide control instruc-

tions that provide, in essence, a specialized scripting language for that application. Colvars

supports each of the three above languages: currently, the most mature and feature-rich

interface is with the Tcl language (specifically, via the cv command), available in all deploy-
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ments of NAMD and VMD, where it also forms the basis of the Colvars Dashboard graphical

user interface described previously.

Through scripted code, individual collective variables and their biases may be added, re-

moved, or modified midway through a simulation, which allows for fine-tuning performance

or dynamically redefining the enhanced sampling scheme. Notable examples of this feature

are the bias-exchange metadynamics method (see the section on metadynamics improve-

ments above), or the implementation of path-learning methods such as milestoning using

the ScMiles2 software,114 both of which are implemented in Tcl.

Continuous integration (CI) testing

Integration and testing of all new code are performed via the public GitHub repository

https://github.com/Colvars/colvars. To ensure the reliability of the library in any

new release of each supported package, the Colvars library receives continuous updates and

improvements and is deployed following a rolling-release model. To support this model,

integration of any source code revisions is performed conditionally on the outcome of auto-

mated tests of the stand-alone library and the back-end engines. This measure guarantees

that changes maintain the correctness of the computations across supported packages and

platforms.

Conclusion

Colvars has been enhanced in many respects over the past decade, making it more broadly

available and more useful to the community. Nonetheless, progress is not as immediately

reflected in the numbering scheme of its versions: Colvars does not have major releases,

because it is made available as part of the standard distribution of mainstream molecular

simulation and analysis packages. Beyond that distribution method, advanced users may

obtain the Colvars source code directly from its repository, accessing a continuous stream
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of well-tested new features and improvements. Experimental features are also available in

development branches, as they are discussed with the associated issues or pull requests,

following modern software development practices. This manuscript surveyed improvements

made since the Colvars reference paper was published,2 with particular emphasis on novel

features and increased portability. Enhancements in performance and scalability, including

those currently under development, will be covered in separate publications.

In their early days, MD simulations were primarily used to illustrate models previously set

forth by experimental measurements. However, dramatic improvement in the performance of

MD simulations now allows for prediction of the outcome of experiments yet to be performed.

Therefore, MD is especially effective at addressing problems that are otherwise challenging

for methods such as experimental structure detection and machine-learning models trained

on those structures. The applications shown here demonstrate, for example, that collective

variable-based methods are effective at estimating the strength of binding between proteins

and their ligands, or the mechanism of interaction between proteins and their surrounding

lipid membrane. Importantly, by close integration of, and co-distribution with, Colvars and

the packages it supports, we minimize the barriers to access such enhanced-sampling ap-

proaches, allowing widespread adoption of state-of-the-art methodologies to address critical

challenges remaining in molecular science.

Supporting Information Available

Computational details for simulations and mathematical expression for biasing forces in a

moving frame of reference.
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