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Abstract 
In pig breeding, environmental challenges can affect the welfare and productivity of animals. Resilient animals have the capacity to be minimally 
affected by these environmental challenges. Understanding the genetic basis of sensitivity to these environmental challenges is crucial for 
selecting more resilient animals, thereby enhancing welfare and productivity. The aims of this study were to 1) estimate the probability of the 
occurrence of an unrecorded environmental challenge on a given day using daily feed intake (DFI) data and 2) evaluate the genetic determinism 
of environmental sensitivity in three pig lines bred in real selection conditions. Data comprised of 100,799, 186,247, and 304,826 DFI records 
from 1,618, 2,517, and 3,788 Landrace (LA), Large White (LW), and Piétrain (PI) male pigs, respectively. The pedigree included 3,730, 5,649, and 
9,293 animals for LA, LW, and PI, respectively. The probabilities of the occurrence of an unrecorded environmental challenge on a given day 
were estimated via a mixture model. The probabilities (p ) of being “high coefficient of variation days” were then taken as reference and used 
in genetic analysis as an environmental descriptor to describe the environment. DFI records were analyzed using two linear models: a linear 
reaction norm animal model (RNAM) and the animal model. (Co)variance components were estimated using average-information restricted 
maximum likelihood (AI-REML). The means of the probabilities of the occurrence of an environmental challenge for LA, LW, and PI were 0.24, 
0.10, and 0.22, respectively, indicating that the probability of an environmental challenge was low for most of the days. The genetic correlations 
between the intercept and the slope obtained from the RNAM for LA, LW, and PI were −0.52, 0.06, and −0.36, respectively. These findings 
suggest that selecting hypothetically for decreased DFI in nonstressful conditions would result in pigs with increased DFI in stressful conditions 
in the LA and PI lines, whereas it would have a minor impact on the environmental sensitivity of LW. The proportion of resilient animals for LA, 
LW, and PI was 75.0, 74.2, and 72.2%, respectively, implying that most of the animals were resilient. The study demonstrated that the slope of 
DFI is heritable and can effectively be used as an indicator of sensitivity to environmental challenges. These results are valuable in improving the 
resilience of livestock species to environmental challenges through genetic selection.

Lay Summary 
Selecting resilient animals, those minimally affected by disturbances or able to quickly recover, is vital for improving pig welfare and productivity. 
While pigs in selection farms benefit from monitored and more stable environmental conditions, they still face potential challenges that are 
unrecorded and of unknown origin. Hence, resilience in pigs remains important. Using daily feed intake data, we estimated the probability of 
occurrence of an unrecorded environmental challenge and evaluated the genetic determinism of sensitivity to these challenges. In our study, 
the probability of being a stressful day was low for all the studied pig lines. Most animals in all the lines were less sensitive to environmental 
challenges. These results can be utilized in the genetic selection of resilient animals.
Key words: environmental sensitivity, genetic correlation, probability, reaction norm model, unrecorded challenges
Abbreviations: ACF, automatic concentrate feeder; AM, animal model; BV, breeding value; CG, contemporary groups; DFI, daily feed intake; EBV, estimated 
breeding values; LA, Landrace; LW, Large White; PI, Piétrain; p, probability; RNM, reaction norm model; RNAM, reaction norm animal model; RFID, radio 
frequency identification tag

Introduction
Growing pigs face environmental variations, such as infec-
tious diseases, management practices, and interactions with 
other animals, to which they may have to adapt (Knap, 2005; 
Nguyen-Ba et al., 2020). The impacts of these perturbations 
on an animal’s performance can be observed in real produc-
tion conditions, even though they are not always recorded, 
and their origin is unknown (Nguyen-Ba et al., 2020). They 
can significantly affect their physiological, behavioral, and 

affective states, resulting in reduced productivity, poor health, 
and reduced welfare; hence, animals must constantly acclima-
tize to the changing environments (Colditz and Hine, 2016). 
Therefore, resilience in pigs remains important. Resilience 
can be defined as the capacity of the animal to be minimally 
affected by disturbances or to rapidly return to the state that 
pertained before exposure to the disturbances (Colditz and 
Hine, 2016). Therefore, animals that are highly resilient have 
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the ability to reach their genetic production potential under 
challenging production conditions. This is because resilient 
animals are more likely to cope with any given environmen-
tal challenges, and over sufficiently long periods of time, they 
have higher chances of survival than less resilient animals 
(Friggens et al., 2022).

Measuring resilience requires longitudinal data to quan-
tify the extent to which the environmental challenge evokes a 
response from the animal and the rate at which it subsequently 
recovers (Friggens et al., 2022). The development of precision 
livestock farming technologies and their growing adoption in 
a large number of farms (Lora et al., 2020) has made it possi-
ble to continuously record longitudinal data at the individual 
level on performance and behavior, including feed consump-
tion, live weight, rumination activity levels, milk yield, body 
temperature, and body condition score (Friggens et al., 2022). 
For example, automatic feeders have recently become popular 
for collecting daily feed intake (DFI) data, making it possible 
to evaluate the day-to-day fluctuations in feed, which could 
be used as a measure of a pig’s response to disturbances or 
challenges (Putz et al., 2019; Nguyen-Ba et al., 2020; Homma 
et al., 2021; Gorssen et al., 2023).

In pig breeding, sire lines such as Piétrain (PI) are predom-
inantly selected to improve feed efficiency and meat quality 
traits, while maternal lines such as Large White (LW) and 
Landrace (LA) are primarily selected to improve reproductive 
and maternal traits (Homma et al., 2021). Differences in breed-
ing programs can lead to distinct responses to environmental 
challenges among these breeds, which might be reflected in 
differences in feeding behaviors such as DFI. For example, of 
the three pig breeds, LA has the highest DFI followed by LW, 
while PI has the lowest DFI (Labroue et al., 1997, 1999; Bau-
mung et al., 2006; Fernández et al., 2011). It is important to 
note that variations in DFI within breeds exist. Large changes 
in DFI within a restricted period of time may indicate that 
the pig is less resilient and more susceptible to environmental 
stressors than pigs with smaller fluctuations under the same 
conditions (Nguyen-Ba et al., 2020). Since animal welfare and 
resilience are becoming indispensable in modern pig breeding, 
selection methods that can improve pig resilience and welfare 
are needed (Knap, 2020; Kavlak and Uimari, 2024).

One powerful tool for studying resilience in animal popu-
lations is the reaction norm model (RNM). In an RNM, the 
breeding value (BV) of each animal is modeled as a function of 
a continuous environmental descriptor (Waters et al., 2022). 
There are two BV per animal: the intercept and the reaction 
norm slope. The BV of the intercept represents an individu-
al’s genetic merit in nonstressful environments (environment-
independent), whereas the reaction norm slope measures how 
much an individual’s phenotype fluctuates across different 
environmental conditions, indicating its environmental sen-
sitivity or plasticity (Shariati et al., 2007; Chen et al., 2021; 
Cheng et al., 2022; Waters et al., 2022; Silva Neto et al., 
2023). By quantifying the genetic variation in environmental 
sensitivity, breeders can identify animals or genetic lines that 
are more resilient to environmental fluctuations, thus facil-
itating the development of more robust and adaptable live-
stock populations.

Recently, Garcia-Baccino et al. (2021) presented a data-
driven method to estimate the probability that, on a given 
day, an unrecorded environmental challenge occurred, using 
a mixture model of phenotypic variances. These probabilities 
were then used as an environmental descriptor in an RNM to 

evaluate the genetic determinism of resilience to environmen-
tal challenges. The authors used the method in a dataset of 
Romane male lambs born on an experimental farm with DFI 
records. However, to date, the method has only been tested 
under experimental conditions. The aims of this study were 
to 1) estimate the probability of occurrence of an unrecorded 
environmental challenge on a given day using DFI data and 2) 
evaluate the genetic determinism of environmental sensitivity 
in three commercial pig lines bred in real selection conditions.

Materials and Methods
Data used in this study were provided by SAS NUCLEUS (Le 
Rheu, France). Animal care and use committee approval was 
not obtained for this study because the data were obtained 
from an existing database.

Animals and phenotypes
Data utilized in the analysis were collected from LA, LW, and PI 
male pigs. LA and LW were each raised separately on one selec-
tion farm, whereas PI pigs were raised on three different selec-
tion farms, each with 1,596 animals on average. Over a 3-yr 
period (from 2021 to 2023), for each batch (a group of animals 
of the same age and weight), a cohort of 47 (ranging from 23 to 
55), 67 (ranging from 49 to 79), and 65 (ranging from 48 to 76) 
male pigs for LA, LW, and PI, respectively, were continuously 
recorded for feed consumption. For each batch, the animals 
were kept in groups of 10 to 14 animals within each pen. Each 
pen was equipped with an automatic concentrate feeder (ACF), 
and each animal was equipped with a unique radio frequency 
identification tag. The animals were automatically identified 
by the ACF at each time they approached the feeder and the 
amount of feed consumed was recorded, defining a “visit.” A 
7-d “adaptation” period was required for animals to get used 
to the new environment and learn how to use the ACF. After 
the adaptation period, animals were recorded for an average of 
63 d (ranging from 53 to 68 d), 74 (ranging from 61 to 79 d), 
and 64 (ranging from 38 to 76 d) for LA, LW, and PI, respec-
tively, starting at approximately 30 to 100 kg body weight. All 
the pigs were fed ad libitum during the whole period. In addi-
tion, all the pigs had free access to water for the whole period. 
Records from the adaptation period and those that had tech-
nical errors (e.g., data recording and transfer problems) were 
removed from the analysis.

After quality control, the number of visits across all batches 
of each breed is presented in Table 1. For each animal and 
each day, feed intakes per visit were summed up to obtain the 
DFI (kg/day, Table 1). Since data were collected on growing 
animals, the natural logarithm of the daily coefficient of vari-
ation (CV) of DFI was used to quantify variability since DFI 
(and its variance) increases as an animal grows bigger over 
time. The CV of DFI was calculated across animals on a given 
day within each batch and breed. This resulted in a total of 
1,502, 3,944, and 4,741 d for LA, LW, and PI, respectively, 
across all the batches within each breed. For the genetic anal-
ysis, pedigrees were extracted from the collective National 
French pig programs and were tracked back for six genera-
tions for each breed (Table 1).

Estimation of probabilities of the occurrence of an 
unrecorded environmental challenge
The probabilities of the occurrence of an unrecorded environ-
mental challenge on a given day were estimated via a mixture 
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model using the method proposed by (Garcia-Baccino et al., 
2021). The analyses were performed per batch in each breed 
to avoid the variability related to the fact that there were ani-
mals of varying ages (different batches) on the same day. This 
ensured homogeneity among animals within the batch, which 
is required by the method. The normalmixEM function from 
the R package mixtools (Benaglia et al., 2009) was used to fit 
the Gaussian mixture model. For instance in PI, the Gauss-
ian mixture model was implemented to the data consisting of 
304,826 values of log(CV) of DFI registered for 4,741 d during 
the 3 yr. To confirm a mixture of two components, the emtest.
norm function from the MixtureInf R package was used.

We also calculated the posterior probabilities for each 
day (within each batch) belonging to the first or second 
component of the mixture distribution. Days with a high 
probability of belonging to the first component were “low 
CV days,” whereas days with a high probability of belong-
ing to the second component were “high CV days.” Days 
with a high probability of having high CV (stressful days) 
showed high  variability in DFI and are most likely related 
to the occurrence of an unrecorded environmental challenge  
(Garcia-Baccino et al., 2021). The probabilities ( p) of being 
“high CV days” were taken as a reference and used in genetic 
analysis as a continuous covariable.

Estimation of variance components
Phenotypes (DFI) were analyzed using univariate best linear 
unbiased prediction models for each breed. Two linear mod-
els were considered: a reaction norm animal model (RNAM), 
including the probabilities that at a given date, an unrecorded 
environmental challenge occurred, as a covariate (environmen-
tal descriptor) (Garcia-Baccino et al., 2021) and an animal 
model (AM) without reaction norm terms. The probabili-
ties ranged from a nonchallenging environment (p = 0) to a 
challenging one (p = 1). According to (Dekkers, 2021), to use 
RNM, two conditions must be met: 1) a quantitative measure of 
environmental quality and 2) a functional relationship between 
the environmental variable and the trait of interest. Both, the 
trait (DFI) and the environmental descriptor (p, the probability 
of occurrence of an environmental challenge) used in this study 
satisfy these conditions. The model was described as:

yijk = CGi + b1dayj + a0,k + a1,k ∗ pj + pe0,k + pe1,k ∗ pj + eijk,

where yijk is the observation of DFI (kg) in a given contem-
porary group i, on day j for animal k. The first term is the 
contemporary groups defined by concatenating batch and 
ACF in LA and LW with 136 and 197 levels, respectively, and 
farm, batch, and ACF in PI (434 levels). The covariate of day 
j was included to take into account the effect of the growth 
of pigs on DFI over the recording period; a0,k is the BV of the 
level (or intercept of DFI) and corresponds to the classical 

BV for an animal k, and it is environment-independent; a1,k 
is the BV for the slope of DFI for animal k and quantifies 
environmental sensitivity; pj. is the probability that on day j 
an unrecorded environmental challenge occurred; pe0,k is the 
permanent environmental effect of animal k (intercept); pe1,k 
is the permanent environmental effect for pj (Slope); and eijk, 
is the residual effect.

The covariance between a0 and a1 were 
assumed to follow a bivariate distribution with 
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, where A is the 

pedigree-based relationship matrix, I  is an identity matrix; ⊗ 
is the Kronecker product; σ2

a0, σ
2
a1, and a0,a1 are the variance 

of the intercept of the animal, the variance of the slope for the 
animal and their covariance, respectively; σ2

pe0, σ
2
pe1, and pe0,pe1 

are the variance of the permanent environmental effect of the 
intercept, the variance of the slope for the permanent environ-
mental effect and their covariance, respectively. The residual 
variances were assumed to be homogeneous and follow the 
distribution eijk ∼ N (0, Iσ2

e ), based on preliminary analysis.
(Co)variance components were estimated using average-

information restricted maximum likelihood (AI-REML) 
implemented in BLUPF90 + software (Lourenco et al., 2022) 
available at (https://nce.ads.uga.edu/wiki/doku.php?id=start). 
The RNAM and AM models were compared with Akaike’s 
information criterion (AIC; Akaike, 1974). After obtaining 
the (co)variances, heritability (h2pj) estimates that change 
across the environmental condition (i.e., from p = 0 to p = 1)  

was calculated as follows: h2pj =
σ2
apj

σ2
apj

+ σ2
pepj

+ σ2
e
, where the 

total genetic variance for a given level of the covariate pj was 
calculated as σ2

apj = σ2
a0 + 2pσa0,a1 + p2σ2

a1. The variance 
due to the permanent environment was computed in a similar 
way.

Using the (co)variances estimated from RNAM, the 
genetic correlation between the BV in a nonchalleng-
ing environment (p = 0) and the BV at a given proba-
bility of occurrence of an environmental challenge (p)  
was calculated as in (Garcia-Baccino et al., 2021): 

rg
(
a0,ap

)
=

cov(a0,ap)√
var(a0) var(ap)

=
σ2
a0+σa0,a1∗p√

σ2
a0(σ

2
a0+p2σ2

a1+2pσa0,a1)
. If the 

rg = 1, it indicates the similar ranking of animals in challeng-
ing and nonchallenging environments; if the rg drops below 
0.8, there is evidence of reordering of animal rank (Shariati 
et al., 2007; Hayes et al., 2016; Chen et al., 2021).

From reaction norm analysis, the slope was used as a measure 
of an animal’s sensitivity to environmental challenges (Shariati et 
al., 2007; Garcia-Baccino et al., 2021). When the slope a1,k = 0, 
it indicates that an animal is not sensitive to the environmental 
challenge, and when the slope of a1,k is greater or lower than 0, 

Table 1. Data structure for visit records (Vi) and DFI (kg/day) in three pig lines1

Line Animals in datasets Number of visits Mean Vi2 (SD) Number of DFI records Mean DFI (SD) Number of batches Animals in pedigree

LA 1,618 2,750,259 27.0 (20.19) 100,799 2.50 (0.68) 24 3,730

LW 2,517 9,901,187 53.2 (24.12) 186,247 2.43 (0.75) 53 5,649

PI 4,788 6,219,930 20.4 (15.23) 304,826 2.36 (0.60) 74 9,293

1Landrace (LA), Large White (LW), and Piétrain (PI).
2MeanVi = mean visit per pig per day. D
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it indicates that the animal is sensitive to environmental chal-
lenges (Garcia-Baccino et al., 2021). Therefore, we used a plas-
ticity scale based on the change in EBV from a nonchallenging 
environment (p = 0) and challenging environmental condition 
(p = 1) (expressed in terms of genetic standard deviation) to 
classify animals as less sensitive (within 1 SD) and more sen-
sitive to environmental challenges (less or greater than 1 SD).

Results
Descriptive statistics
Table 1 shows the description of the data for the three pig lines. 
As expected, LA pigs had the highest DFI, followed by LW, and 
PI had the lowest DFI. On the other hand, LW had the highest 
number of visits, followed by LA, and PI had the lowest num-
ber of visits per day. According to the study by Baumung et 
al. (2006), LW animals had the highest number of visits to the 
feeding station, combined with shorter time spent in it and a 
lower amount of feed consumed per meal. LA pigs had fewer 
visits per hour, which is compensated for by staying longer in 
the feeding station and consuming more per visit. PI animals 
had the lowest number of visits per day, which can be related to 
this breed’s characteristic intake behavior. Similar results were 
found by Fernández et al. (2011) for the same lines.

Estimation of the probabilities of the occurrence of 
an unrecorded environmental challenge in pigs
The application of the mixture model to the natural loga-
rithm of the CV of DFI data for LA, LW, and PI allowed for 
the identification of two different components, each indicat-

ing a subgroup of days (Figure 1). It can be seen on the right 
side of each histogram that there is a subgroup of days that 
appear to have values of the log(CV) of DFI that are higher 
than most of the records on the left side. We used a paramet-
ric bootstrap (based on the assumption that the original data-
set is a random sample from a specific distribution) to confirm 
the presence of at least two components in each breed. Fig-
ure 1 also shows the two density distributions in each breed: 
the red for the first component and the green for the second. 
Notably, these components exhibit heteroscedasticity and dis-
tinct means. Specifically, the first component has a mean (SD) 
of −1.67 (0.15), −1.67 (0.12), and −1.77 (0.16) for LA, LW, 
and PI, respectively. Conversely, the second component has a 
mean (SD) of −1.21 (0.23), −1.28 (0.28), and −1.38 (0.40) for 
LA, LW, and PI, respectively.

The EM approach for mixture models allows us to estimate 
the probability that each day belongs to the second component 
of the mixture (probability of being a “high CV day” or a stress-
ful day). These probabilities are presented in Figures 2–4 (for 
a random sample of nine batches) for LA, LW and PI, respec-
tively. For LA, LW, and PI, the means of these probabilities 
were 0.24, 0.10, and 0.22, respectively. These values suggest 
that for most of the days, the probability of the occurrence of 
an environmental challenge was low. In Figures 2–4, some days 
had a probability of the occurrence of an environmental chal-
lenge greater than 0.9. Across all batches within each breed, 
the proportion of days with a probability of the occurrence of 
an environmental challenge greater than 0.9 was around 10% 
for LA and PI (12.58% in LA and 8.65% in PI) but about a 
half for LW (4.16%). Most of the days had a probability of 

Figure 1. The plot of the log‐transformed CV of DFI data of the fitted two‐component normal mixture model in three pig breeds.

D
ow

nloaded from
 https://academ

ic.oup.com
/jas/article/doi/10.1093/jas/skae330/7845307 by C

N
R

S U
M

R
 5546 user on 08 January 2025



Tusingwiire et al. 5

the occurrence of an environmental challenge lower than 0.25 
(75.37% in LA, 91.84% in LW, and 77.30% in PI).

After identifying days with high probabilities of the occur-
rence of an environmental challenge (probabilities greater 
than 0.9), we conducted an in-depth follow-up analysis of 
the history of each batch. We checked whether there were 
any recorded disturbances (perturbations) on the farm cor-
responding to these days. It was established that some of the 
“high CV days” corresponded to management operations 
such as ear tagging, weighting, ACF repair, movement of ani-
mals from one pen to another, leg problems, ACF blockage, 
and animal illness. However, for some of the days with high 
probabilities of being stressful (greater than 0.9), there were 
no explanations, and we assume that these correspond to the 
occurrence of unrecorded environmental challenges.

When we look at the AIC, model RNAM fitted the data 
much better than AM (RNAM had the lowest AIC for all lines: 
136,961.10 vs. 142,235.09 in LA, 243,377.55 vs. 248,463.25 
in LW, and 355,294.19 vs. 368,447.14 in PI). These results jus-
tify the inclusion of the probability of the occurrence of an envi-
ronmental challenge (the log(CV of DFI)) in the genetic analysis.

Genetic correlations
The genetic correlations (and their SE) between the intercept 
and the slope obtained from the RNAM for all the lines are 
shown in Table 2. The genetic correlation between the inter-
cept (a0) and the slope (a1, environmental sensitivity) in LA 
and PI was of moderate magnitude and negative (−0.53 and 
−0.36, respectively), whereas the genetic correlation was of 
low magnitude and positive (0.06) in LW. These results sug-
gest that selecting hypothetically for decreased DFI in non-

stressful conditions (the most common ones) would result in 
pigs with increased DFI in stressful conditions in LA and PI 
lines. In contrast, in LW, a hypothetical selection for increased 
or decreased DFI would have a minor impact on the animal’s 
sensitivity to challenging environmental conditions. These 
results are in line with those reported in the literature. Schny-
der et al. (2001) investigated the genetic variation in feed 
intake curves of French LA and LW using a random regression 
model. In their study, they found that the genetic correlations 
between the intercept and the slope (linear term) were −0.62 
and 0.01 for LA and LW, respectively. Hermesch et al. (2006) 
found a genetic correlation of 0.07 between the intercept and 
slope of average DFI of boars from three terminal sire lines 
recorded in a commercial group-housed environment.

The genetic correlations between EBV in a nonstressful 
environment (p = 0) and EBV at a given probability of the 
occurrence of an environmental challenge for all the lines are 
shown in Figure 5. When p is lower than 0.1 (less stressful 
environments), the genetic correlations are closer to 1 for 
all the lines and start to decrease as p increases beyond 0.1, 
reaching their respective minimum values of 0.47, 0.63, 0.17 
and for LA, LW, and PI, respectively, at p = 1. The genetic 
correlation across the environmental gradient decreased fast-
est in PI, followed by LA, with LW exhibiting the slowest 
decrease. These results suggest that LW was the least sensitive 
to environmental challenges, whereas PI was the most sen-
sitive to environmental challenges. In addition, low genetic 
correlations between stressful and nonstressful environments 
(for instance, in PI) indicate changes in the ranking of ani-
mals across different environmental conditions. This implies 
that selection only under completely nonstressful conditions 

Figure 2. Probabilities of showing a high CV (for a random sample of nine batches) related to the occurrence of an environmental challenge for each day 
for Landrace.
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can be ineffective for trait expression in completely stressful 
conditions (Garcia-Baccino et al., 2021). Furthermore, among 
the lines studied, the LW had the lowest re-ranking of ani-
mals across different environmental conditions, as evidenced 
by the high genetic correlation (0.63) between EBV at p = 0 
and EBV at p = 1. It should be noted that PI is known to be 
more sensitive to stress than other lines (Foury et al., 2007; 
Malancus et al., 2022).

Variance component estimates
Table 2 presents the estimates of variance components for 
DFI obtained from the RNAM and the AM models for all the 
lines. The additive genetic variance of the intercept for DFI 
was highest in LA followed by LW and PI. Gao et al. (2021) 
found an additive genetic variance of DFI in Danish LA as 
0.10, which is higher than the value obtained in the current 
study. The additive genetic variance of DFI reported by John-
son et al. (1999) in LW was 0.02. Núñez et al. (2023) reported 
an additive genetic variance of DFI of 0.02 for PI. However, 
Do et al. (2013) reported additive genetic variance of 0.42 
and 0.44 of average DFI for LA and LW, respectively. The 
additive genetic variance of average DFI is higher than that 
of DFI because averaging DFI over the whole testing period 
reduces the noise in the data.

Figure 6 shows the estimates of the genetic variance of the 
slope for DFI for increasing probabilities of the occurrence 
of an environmental challenge for LA, LW and PI. The envi-
ronmental sensitivity variance was 0 in a nonstressful envi-
ronmental condition (p = 0) (as expected) and increases as p 
increases (more stressful environmental conditions) in all the 
lines. Its maximum value was 0.055, 0.080, and 0.097 (Table 2)  

for LA, LW and PI, respectively. A larger variance of the slope 
(sensitivity) (for instance, PI) would suggest that pigs have 
high variation in their feed intake in response to changes 
in environmental conditions. Based on the results shown in 
Table 2 and Figure 6, the proportion of the additive genetic 
variance explained by the slope was 51.4, 63.5, and 78.9% 
for LA, LW, and PI. As expected, PI showed the highest level 
of variation in DFI when there is the occurrence of environ-
mental challenges.

Heritability estimates of DFI for increasing probabilities 
of the occurrence of an environmental challenge for LA, 
LW, and PI are shown in Figure 7. Heritability estimates of 
DFI varied from a nonchallenging environment (p = 0) to a 
challenging environment (p = 1), with values ranging from 
0.119 to 0.172 for LA, 0.167 to 0.253 for LW, and 0.103 to 
0.235 for PI. In LA, due to the negative covariance between 
the intercept and the slope, the heritability of DFI decreased 
from p = 0 to p = 0.6, then remained constant until p = 0.8
, after which it slightly increased until p = 1. The heritability 
of DFI in PI also decreased from p = 0 to p = 0.2, and then 
increased for higher values of p. For LW, the heritability of 
DFI increased from low to moderate as values of p increased. 
The heritability estimates of DFI across the environmental 
gradient were highest in LW and lowest for LA especially at 
higher values of p. The behavior of heritability (heritability 
changing across the environmental gradient) in this study 
is comparable to those reported in previous studies, e.g., in  
Garcia-Baccino et al. (2021) and Waters et al. (2022) in sheep; 
Chen et al. (2021) and Madsen et al. (2018) in pigs; Shariati 
et al. (2007), Zhang et al. (2019), and Carvalho Filho et al. 
(2022) in cattle.

Figure 3. Probabilities of showing a high CV (for a random sample of nine batches) related to the occurrence of an environmental challenge for each day for LW.
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Kavlak et al. (2021) estimated heritabilities of DFI in LW 
by classifying the records into five test periods of 20 d each 
in Finnish pig lines and reported heritability estimates vary-
ing from 0.14 to 0.30 for the different periods. Wetten et al. 
(2012) investigated the heritability of DFI curves for growing 
pigs (Duroc and LA) using random regression models and 
obtained heritabilities ranging from 0.09 to 0.11. Gao et al. 
(2021) used a random regression model to estimate the her-
itability of DFI in Danish LA and found heritability ranging 
from 0.15 to 0.36 across the test period. Our results are in 
agreement with those published in the literature.

Identification of resilient animals
The change in EBV from nonchallenging environmental 
conditions (p = 0) to challenging environmental conditions 
(p = 1) expressed in genetic standard deviation is shown in 
Figure 8. This was used to identify potentially resilient and 
sensitive animals. Animals were categorized into three groups 
depending on the pattern of the change of EBV.

In the first group (shown in violet in Figure 8), the EBV 
of DFI decreased as the conditions became more stressful (as 
probability increases), while in the third group (shown in gray 
in Figure 8), the EBV of DFI increased as the environmental 

Figure 4. Probabilities of showing a high CV (for a random sample of nine batches) related to the occurrence of an environmental challenge for each day 
for Piétrain.

Table 2. Genetic parameter estimates (± SE) for DFI (kg) obtained from AM and RNAM in three pig lines

Parameters Landrace Large White Piétrain

AM RNAM AM RNAM AM RNAM

σ2
a0 0.042 ± 0.007 0.052 ± 0.008 0.046 ± 0.006 0.046 ± 0.006 0.024 ± 0.030 0.026 ± 0.003

σ2
a1 – 0.055 ± 0.014 – 0.080 ± 0.018 – 0.097 ± 0.012

σa0,a1 – −0.028 ± 0.009 – 0.003 ± 0.008 – −0.018 ± 0.005

σ2
pe0 0.032 ± 0.007 0.033 ± 0.005 0.026 ± 0.004 0.027 ± 0.004 0.024 ± 0.002 0.025 ± 0.002

σ2
pe1 – 0.140 ± 0.012 – 0.200 ± 0.016 – 0.114 ± 0.009

σpe0,pe1 – −0.018 ± 0.006 – 0.019 ± 0.006 – −0.015 ± 0.003

σ2
e 0.228 ± 0.001 0.211 ± 0.001 0.213 ± 0.001 0.203 ± 0.001 0.187 ± 0.001 0.175 ± 0.001

ra0,a1 – −0.523 ± 0.128 – 0.055 ± 0.133 – −0.359 ± 0.077

σ2
a0 = additive genetic variance for the intercept; σ2

a1 = additive genetic variance for slope; σa0,a1 = additive genetic covariance between level and slope; 
σ2
pe0 = permanent environmental variance for level; σ2

pe1 = permanent environmental variance for slope; σpe0,pe1 = permanent environmental covariance 
between level and slope; σ2

e  = residual variance; ra0,a1 = genetic correlation between intercept and slope.
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conditions became more stressful. The second group (shown 
in blue on Figure 8) consists of animals whose slopes remain 
relatively constant as p increases. This second group includes 
animals with positive or negative slopes or slopes close to 
0, but their EBV change within ± 1 SD. For LA, LW, and PI, 
75.0%, 74.2%, and 72.2% of the animals, respectively, were 
in the second group and so can be termed resilient. In other 
words, most of the animals have the ability to maintain per-
formance despite the change in environmental conditions.

Discussion
The identification of variability in animal responses to the 
presence of environmental challenges can be performed 
using artificially introduced disturbances or perturbations 
(Bai et al., 2020; Nguyen-Ba et al., 2020; Laghouaouta et 
al., 2021; Luttman et al., 2023). In contrast to phenotyping 

during experimentally imposed stressful conditions, Colditz 
and Hine (2016) proposed that phenotyping should be done 
during an animal’s exposure to a stressful event that is inher-
ent to their management environment. In this study, we used 
a data-driven approach which involves estimating the prob-
ability of the occurrence of an unrecorded environmental 
challenge on a given day (Garcia-Baccino., 2021). First, we 
used DFI data recorded in routine to estimate the probabili-
ties (environmental descriptor) in pigs reared in real selection 
conditions. Second, we evaluated the genetic determinism of 
environmental sensitivity in three pig lines (LA, LW, and PI).

Estimation of the probabilities of the occurrence of 
an unrecorded environmental challenge in pigs
The approach of Garcia-Baccino et al. (2021) is regarded as 
data-driven because the estimation of the probabilities of the 
occurrence of an environmental challenge is solely based on 

Figure 5. Genetic correlation between BVs of DFI in a nonchallenging environment (P = 0) and BVs at different probabilities of the occurrence of an 
environmental challenge (p > 0).

Figure 6. Variance estimates of the slope of the reaction norm of DFI for different probabilities of the occurrence of an environmental challenge.
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phenotypic data collected routinely, without the need for addi-
tional information (e.g., climatic variables). With this method, 
there is no need to introduce challenges or perturbations phys-
ically. It captures events that occur on the farm even if they are 
not documented. Furthermore, it does not require the estima-
tion of the target curve and deviations from the curve to detect 
the occurrence of an environmental challenge (Garcia-Baccino 
et al., 2021), unlike other methods, such as the procedure pro-

posed by Nguyen-Ba et al. (2020) to quantify the feed intake 
responses of growing pigs to perturbations. Garcia-Baccino et 
al. (2021) illustrated the method using data from DFI records 
from Romane lambs raised on a single experimental farm 
over an 8-yr period, with one cohort per year. In this study, 
we implemented the method using data from DFI recorded 
routinely in three lines (PI, LW, and LA) reared in five different 
selection farms (three farms for PI one for LW, and one for LA) 

Figure 7. Heritability estimates of DFI for different probabilities of the occurrence of the environmental challenge.

Figure 8. Change in EBV between a nonchallenging environmental condition (p = 0) and an extremely challenging condition (p = 1) expressed in terms 
of genetic standard deviation. Three groups were identified according to the pattern of reaction to environmentally challenging conditions (Decrease: 
animals with EBV that decrease for higher values of p; Constant: animals with EBV that tend to remain relatively constant for higher values of p within 
a range of ±1 genetic standard deviations; Increase: animals with EBV that increase for higher values of p). The reaction norms of DFI are shown for 20 
randomly selected animals from each of the three groups for each breed.
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during a 3-yr period, with overlapping batches each. Since the 
method requires homogeneity among animals within groups, 
the analysis was performed on each batch within each breed. 
The method was able to capture the differences between the 
lines in their response to environmental challenges. These envi-
ronmental challenges and their sources are unknown. How-
ever, Martínez-Miró et al. (2016) categorized animal stressors 
into social, environmental, metabolic, immunological, and 
human interactions. When a posterior investigation was done 
on days that had a high probability of the occurrence of a chal-
lenge, it was confirmed that some of the days corresponded to 
the days with documented disturbances on the farm that were 
associated with animal illness, change in management, envi-
ronmental conditions like storm, animal handling operations 
such as ear tagging, weighing of animals, and other human 
interventions such as ACF repair and animal movement of ani-
mals from one pen to another. However, for some other days 
with a high probability of the occurrence of an environmen-
tal challenge, no disturbances were documented on the farms, 
and no explanation could be given; thus, they are assumed to 
correspond to days with unrecorded environmental challenges 
(Garcia-Baccino et al., 2021). Stressors like pathogens, heat 
stress, mycotoxins, social interaction, dust, and problems in 
access to feed and water events have been reported to cause 
stress to pigs (Patience and Ramirez, 2022), though not all are 
recorded on the farm.

Genetic correlation
The genetic correlation between the intercept and the slope 
can be interpreted as the genetic correlation between the 
overall performance (genetic potential) and environmental 
sensitivity. A high genetic correlation (positive or negative) 
between the intercept and the slope of the reaction norms 
suggests that selection for the preferred (high or low) trait 
level in nonchallenging environments would lead to increased 
environmental sensitivity in challenging environments (Knap, 
2005; Garcia-Baccino et al., 2021). The correlation indicates 
the trade-off between “baseline” ability of growth and “envi-
ronmental coping” ability of the pig.

In the current study, we observed a low positive genetic cor-
relation between the intercept and slope for LW but moderate 
negative genetic correlations between the intercept and slope 
for LA and PI. This shows that the three lines exhibit different 
patterns of environmental sensitivity. The low genetic correla-
tion between the intercept and the slope observed in LW sug-
gests that selecting for decreased DFI would have a minimal 
effect on the animal’s sensitivity to challenging environmental 
conditions. This means that it is possible to hypothetically 
select for both decreased DFI and resilience. In other words, 
the EBV for the intercept (EBV for the genetic potential of the 
animal) will not affect the EBV of the slope (EBV for environ-
mental sensitivity) or vice versa (Madsen et al., 2018). The 
negative and moderate genetic correlation between the slope 
and intercept for LA and PI suggests that a hypothetical selec-
tion for decreased DFI in nonchallenging environments would 
result in pigs with increased DFI in challenging environmen-
tal conditions or vice versa. Similar results were reported by  
Garcia-Baccino et al. (2021) in Romane sheep.

In our study, we observed a decrease in genetic correlation 
between EBVs in a nonchallenging environment and EBV at a 
given probability of the occurrence of an environmental chal-
lenge as the probability of the occurrence of an environmen-
tal challenge increased. Genetic correlations between different 

environments that are lower than 0.8 have been suggested as 
evidence of G × E interaction (Robertson, 1959; Shariati et 
al., 2007; Hayes et al., 2016; Chen et al., 2021). In our study, 
we uncovered GxE for DFI in pigs, although the magnitude 
of GxE was lower in LW than in PI and LA. In addition, low 
genetic correlations between stressful and nonstressful envi-
ronments indicate the re-ranking of animals in different envi-
ronmental conditions, implying that selection solely under 
completely nonstressful conditions can be ineffective for trait 
expression in completely stressful conditions. Thus, selection 
in nonstressful conditions should also consider performance 
under stressful conditions to avoid or reduce negative effects 
due to environmental changes.

While our results revealed differences in terms of environ-
mental sensitivity among LA, LW, and PI pig lines, note that 
LA and LW were each raised separately on one selection farm. 
Thus, a potential confounding effect of farm-specific condi-
tions could exist in these lines, and the results should be inter-
preted with caution.

Heritability estimates
In this study, heritability estimates of DFI for both lines varied 
across the environmental gradient (from p = 0 to p = 1). This 
is attributed to variation in additive genetic variance across 
the environmental gradient (Carvalho Filho et al., 2022). 
Heritability estimates that vary across the environmental gra-
dient were also observed by Garcia-Baccino et al. (2021) for 
DFI in Romane sheep; Waters et al. (2022) for body weight in 
Australian sheep; Chen et al. (2021) for reproduction, body 
composition, and growth traits in LW pigs; Madsen et al. 
(2018) for growth rate in Danish Duroc pigs; Shariati et al. 
(2007) for milk production traits in early lactation in Danish 
Holstein cattle; Zhang et al. (2019) for fertility traits in Dan-
ish Holstein cattle; Oliveira et al. (2018) for yearling weight 
in Nellore cattle; Silva Neto et al. (2023) for efficiency traits 
in Nellore cattle; and Carvalho Filho et al. (2022) for growth, 
reproductive, and visual score traits in Nellore cattle.

Variance components
We estimated variance components for increasing the prob-
ability of the occurrence of an environmental challenge. Our 
study revealed an increase in additive genetic variance for 
environmental sensitivity across the environmental gradient 
(attributed to the increase of p related to increasing stressful 
environmental conditions). The change in additive genetic 
variance along the environmental gradient is evidence of the 
presence of re-ranking pigs from nonchallenging conditions 
to challenging conditions. These results are similar to those 
reported by Garcia-Baccino et al. (2021) for DFI in Romane 
sheep. Ravagnolo and Misztal (2000) estimated variances of 
level, environmental sensitivity (heat tolerance) and total addi-
tive genetic variance for milk yield, fat, and protein in Holstein 
cows using temperature-humidity index (THI) as an environ-
mental descriptor and reported similar results. In their study, 
when there was no heat stress, the additive genetic variance 
for heat tolerance was 0 but increased as the THI increased. 
Madsen et al. (2018) studied the genetic variation of macro-
environmental sensitivity for average daily gain in Danish 
Duroc pigs and found increased additive genetic variance 
when environments became extreme. According to Mulder 
(2017), the genetic variance across different environments is 
due to G × E and can be exploited to select for resilience. In 
the current study, the maximum genetic variability of the slope 
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of DFI was highest in highly challenging environments. There-
fore, the highly environmentally sensitive pigs will suffer most 
(less efficient) from challenging environmental conditions than 
the less sensitive pigs (Madsen et al., 2018).

Selecting for resilience
In our study, we categorized animals into three groups, i.e., ani-
mals whose EBV decreased as the probability of the occurrence 
of an environmental challenge increased, animals whose EBV 
remained almost constant as the probability of the occurrence of 
an environmental challenge increased, and animals whose EBV 
increased as the probability of the occurrence on an environmen-
tal challenge increased. The animals whose EBV increased or 
decreased as the probability of the occurrence of an environmen-
tal challenge increased were less resilient, while animals whose 
EBV remained almost constant were more resilient. Most of the 
animals for all the lines were in the second group, which sug-
gests that they can maintain production despite the occurrence 
of environmental challenges. Moreover, the second-group ani-
mals have lower CV of DFI, meaning that they have higher levels 
of within-individual uniformity (less deviations) in the presence 
of environmental challenges. It is believed that animals can learn 
from experiences to anticipate their impact through predictive 
adaptive behavioral and physiological responses (Colditz and 
Hine, 2016).

Resilient animals will reach their genetic potential under 
commercial conditions and ensure efficient production (Kavlak 
and Uimari, 2024). However, even resilient animals have vary-
ing rates of response to environmental disturbances, indicated 
by differences in their slopes of DFI. Less resilient animals will 
have either a substantial decrease or high day-to-day fluctua-
tions in DFI compared to more resilient animals in the same 
environment. In this study, it is indicated by the high CV of DFI.

Depending on the circumstances, resistance and flexibility 
may be involved in different manners in resilience. Resilience 
is not only about being resistant to stressors but also about 
how well an animal can sense and adjust to changes depend-
ing on the stressor. Therefore, environmental sensitivity can 
be an adaptive response to manage stress under challenging 
environments. For example, in more extensive systems where 
ambient temperatures rise beyond upper critical temperature, 
animals significantly reduce their internal heat production by 
decreasing their feed intake, helping them better manage heat 
stress (Rauw et al., 2017). Therefore, resilient animals can be 
those that experience a significant drop in production when 
exposed to stress but quickly recover and return to their pre-
stress condition more effectively than less resilient animals 
(Berghof et al., 2019).

Conclusion
In all the lines, this data-driven method (so far only used in 
data from an experimental farm) was able to identify unre-
corded environmental challenge events in real conditions. As 
expected, most of the days had a low probability of the occur-
rence of an environmental challenge. The productive data col-
lected routinely, such as DFI or other measures from automatic 
devices (e.g., milking robots), can be used to describe environ-
mental challenges and help in selection of resilient animals.

The genetic correlation between the intercept and the slope 
of the reaction norm of DFI suggests that selecting hypothet-
ically for decreased DFI in nonstressful conditions may lead 
to increased DFI in challenging environments in LA and PI. 

Conversely, the impact of such selection on LW pigs appears 
marginal, suggesting a breed-specific response to environmen-
tal challenges. These results highlight the complex interplay 
between genetic factors and environmental stressors. A sub-
stantial proportion of less environmentally sensitive animals 
was identified within each breed, emphasizing the feasibility 
of genetic selection for resilience.
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