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RESEARCH ARTICLE Open Access

A functional endosomal pathway is
necessary for lysosome biogenesis in
Drosophila
Anne-Claire Jacomin1,2,3,4, Marie-Odile Fauvarque1,2,3* and Emmanuel Taillebourg1,2,3*

Abstract

Background: Lysosomes are the major catabolic compartment within eukaryotic cells, and their biogenesis requires
the integration of the biosynthetic and endosomal pathways. Endocytosis and autophagy are the primary inputs of
the lysosomal degradation pathway. Endocytosis is specifically needed for the degradation of membrane proteins
whereas autophagy is responsible for the degradation of cytoplasmic components. We previously identified the
deubiquitinating enzyme UBPY/USP8 as being necessary for lysosomal biogenesis and productive autophagy in
Drosophila. Because UBPY/USP8 has been widely described for its function in the endosomal system, we
hypothesized that disrupting the endosomal pathway itself may affect the biogenesis of the lysosomes.

Results: In the present study, we blocked the progression of the endosomal pathway at different levels of
maturation of the endosomes by expressing in fat body cells either dsRNAs or dominant negative mutants
targeting components of the endosomal machinery: Shibire, Rab4, Rab5, Chmp1 and Rab7. We observed that
inhibition of endosomal trafficking at different steps in vivo is systematically associated with defects in lysosome
biogenesis, resulting in autophagy flux blockade.

Conclusion: Our results show that the integrity of the endosomal system is required for lysosome biogenesis and
productive autophagy in vivo.
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Background
Lysosomes are the primary degradative organelles of the
cell. They are found in virtually all eukaryotic cells and
were initially described in the 1950s by the Nobel
laureate Christian de Duve [1]. Their substrates include
all kinds of macromolecules delivered either by endo-
cytosis, phagocytosis or autophagy. Lysosomal biogenesis
is orchestrated by the transcription factor EB (TFEB)
which activates the transcription of ~500 target genes
involved in lysosomal biogenesis and autophagy [2, 3].
On the other hand, lysosomal biogenesis also requires
the integration of the endosomal and biosynthetic
pathways: newly synthesized lysosomal proteins are de-
livered to lysosomes either directly from the trans-Golgi
network to the endosomal system using the mannose-6-

phosphate receptor (MPR) or the Vps41/VAMP7 pathway
or indirectly via alternative receptors such as LIMP-2
[4–7]. In Drosophila, defects in the biogenesis of lyso-
somes and lysosomes related organelles such as eye
pigment granules result in defective eye pigmentation
which has led to the identification of the “granule
group” proteins including Deep-orange, homologue of
Vps18p, Carnation, homologue of Vps33A and Light,
homologue of Vps41 [8–11].
The endosomal system constitutes a network of

progressively maturing vesicles that is required, among
other physiological functions, for the degradation of
membrane proteins such as receptors and ionic
channels. These proteins enter the endosomal system
through clathrin or caveolin-coated vesicles and are then
delivered to early endosomes. From here, membrane
proteins can either be recycled to the plasma membrane
or directed for degradation via the multivesicular bodies
(MVB) to late endosomes that eventually fuse with
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lysosomes [12]. Sorting to the MVB requires the ESCRT
(Endosomal Sorting Complex Required for Transport)
machinery composed of four distinct complexes called
ESCRT-0 to –III. Apart from ESCRT machinery, pro-
gression along the endosomal pathway requires the
activity of Rab GTPases: Rab5 is located to the clathrin
coated vesicles and early endosomes and contributes to
endocytic internalization and early endosome fusion [13,
14]; Rab4 is located at the early and recycling endosomes,
and is involved in the recycling to plasma membrane [15];
Rab7 is involved in the transport from early to late endo-
somes and is an essential component of the lysosomes
biogenesis and maintenance [5, 16, 17]. Rab GTPases
notably recruit tethering and docking machinery to bring
membranes closer, after which the SNARE proteins
complete the fusion process [12].
We have previously observed that the deubiquitinating

enzyme UBPY is required for lysosomal biogenesis in
Drosophila [18]. However, UBPY is mainly known for
playing an important role in the sorting of many mem-
brane receptors in Drosophila [19, 20] and mammalian
cells [21–26]. Given the integration of lysosomal biogen-
esis and the endosomal system, we hypothesize that the
lysosomal defects observed in UBPY mutant cells might
be a consequence of UBPY function in the endosomal
system and seek to further test the requirement of
ongoing endosomal trafficking for lysosomal biogenesis
in vivo. In the present report, we show that inhibition of
endosomal trafficking at different steps is associated with
defects in lysosomal biogenesis and blockade of autopha-
gic degradation indicating that a functional endosomal
system is required for lysosome biogenesis in vivo.

Results
Endosomal trafficking is required for lysosomal
biogenesis
In order to evaluate the effect of the disruption of the
endosomal trafficking on the formation of the lysosome,
we affected the function of key players of the endosomal
system by expressing dsRNAs or dominant-negative
mutants targeting them. To circumvent any potential
detrimental effects at the tissue or organism levels, the
FLPout method [27] was used to express transgenes in a
few fat body cells surrounded by wild-type cells (see
Methods and Additional file 1: Figure S1). The trans-
genes used were: a dominant negative form of Shibire –
the Drosophila homologue of the Dynamin GTPase that
is required for the scission of the newly formed endo-
somes from the plasma membrane – (ShiK44A) which
blocks the budding of endocytic vesicles from the
plasma membrane [28], a dsRNA targeting Rab5 [14]
that efficiently inhibits the early endosomal Rab5 protein
(Additional file 2: Figure S2), a dominant negative
mutant of Rab4 (Rab4SN) which blocks the endosomal

recycling pathway [15] and a dsRNA against Chmp1 – a
component of the ESCRT machinery – which impairs
the formation of intraluminal vesicles in the MVB [29–31].
Lastly, a dominant negative mutant of Rab7 (Rab7TN) was
added as a control because Rab7 is essential for lysosomes
biogenesis and maintenance of the perinuclear lysosome
compartment [17, 32, 33]. The ability of these transgenes to
efficiently affect the endosomal process was assessed by
monitoring the endocytic uptake of the fluid phase marker
Texas Red-avidin (Additional file 3: Figure S3).
To visualize the lysosomes, we first used one of the

most abundant lysosomal membrane protein as a
marker: the lysosomal-associated membrane protein 1
(LAMP1). The GFP-LAMP1 transgene used in these
experiments consists in the fusion between eGFP and
the transmembrane domain and cytoplasmic tail derived
from human LAMP1 [34]. In wild-type cells, the GFP-
LAMP1 fusion protein identified large perinuclear vesicles
corresponding to lysosomes as well as smaller vesicles
evenly distributed in the cytoplasm (Fig. 1a). As expected,
in cells expressing the Rab7 dominant-negative protein
(Rab7TN), the large perinuclear lysosomes were missing
whereas smaller dots were still present (Fig. 1f). This
observation is in agreement with previous reports
showing that Rab7 is essential for lysosomes biogenesis
and maintenance of the perinuclear lysosome compart-
ment [17, 32, 33]. Interestingly, whenever endosomal
trafficking has been affected using either dsRNAs target-
ing Rab5 and Chmp1 or dominant negative mutants inter-
fering with Shibire and Rab4 the size of the GFP-LAMP1
vesicles was significantly reduced (Fig. 1b-e, g). These re-
sults thus show that inhibition of endosomal trafficking
results in a reduction of the size of lysosomes.
Lysosomes contain many acid hydrolases, including

cathepsins that are responsible for their catabolic ability.
Most of these enzymes are synthesized in the endoplas-
mic reticulum, sorted in the Golgi apparatus using the
mannose-6-phosphate receptor (MPR) and delivered to
late endosomes [5]. Yet, MPR-independent routes have
also been described for their delivery to the lysosomes
[4, 7]. In order to evaluate the lysosomal activity, we
have compared the distribution of the lysosomal hydro-
lase Cathepsin L between control cells and cells where the
endosomal flux is disrupted. In wild-type cells, sizeable
lysosomes were readily identified and the overall Cathep-
sin L staining intensity was similar between cells express-
ing an RNAi transgene targeting Luciferase as no-target
control and wild-type neighboring cells (Fig. 2a, g).
On the other hand, as expected, cells expressing the
Rab7 dominant-negative protein showed a drastic change
in Cathepsin L distribution: the lysosomes were missing,
and the overall Cathepsin L staining intensity was de-
creased (Fig. 2f, g). Strikingly, the same observations were
made in cells where endosomal trafficking is inhibited
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using either dsRNAs targeting Rab5 and Chmp1 or dom-
inant negative mutants interfering with Shibire and Rab4
(Fig. 2b-e, g). These results, combined with the previous
data obtained with the GFP-LAMP1 protein, thus indicate
that inhibition of endosomal trafficking in vivo affects
lysosomal biogenesis.

Endosomal trafficking is required for productive
autophagy
Autophagy is another conserved catabolic process allow-
ing for the degradation of cytoplasmic constituents by
the lysosomes. To be degraded, autophagosomes have to
deliver their contents to lysosomes. Lysosomes are thus
key players in this process, and any disturbance of their
function or biogenesis potentially affects autophagy [35].
To investigate autophagy, we first used the GFP-

tagged Atg8a marker. In fed condition, Atg8a is distrib-
uted throughout the cytoplasm and accumulates in
the nucleus (Fig. 3a), whereas upon autophagy induc-
tion by starvation, Atg8a is exported from the nucleus
and resides in the cytoplasm where it is recruited to
the autophagosomes [36] (data not shown). We ob-
served that, even in fed condition, cells expressing
transgenes resulting in inhibition of endosomal traf-
ficking displayed numerous GFP-Atg8a positive autop-
hagosomes (Fig. 3b-g).

Accumulation of autophagosomes can either be a
consequence of de novo autophagosomes formation due
to autophagy induction or of autophagosomal degrad-
ation defects inducing a blockade of the autophagy flux.
To distinguish between these possibilities, we first made
use of a transgene expressing the GFP-mCherry-Atg8a
fusion protein [37]. The merged signal between GFP
and mCherry (yellow) fluorescence is representative of
autophagosomes while only red fluorescence is charac-
teristic of autolysosomes due to quenching of the GFP
fluorescence in these acidic structures. As expected,
wild-type fat body cells in which autophagy was acti-
vated by starving the larvae for 4 h in a solution of 20%
sucrose, showed yellow and red vesicles (Fig. 4a) corre-
sponding to autophagosomes and autolysosomes, re-
spectively. In contrast, in fat bodies from fed larvae,
cells expressing transgenes affecting endosomal traffick-
ing displayed mainly yellow vesicles (Fig. 4b-g) indicat-
ing the presence of autophagosomes but a lack of
autolysosomes in basal condition. These results indicate
that the accumulation of autophagosome in these cells
results from a blockade of the autophagy flux. To fur-
ther investigate this, we used the membrane-permeable
vital dye Lysotracker-Red that stains acidic vesicles and
whose staining intensity is drastically increased in wild-
type starved larvae due to the accumulation of large

Fig. 1 Defects in the endosomal pathway affect the size of LAMP1-positive lysosomes. a-f Confocal sections of larval fat bodies clonally expressing the
lysosomal marker GFP-LAMP1 (green) alone (a) or in combination with the dominant negative or silencing transgenes for Shibire (b), Rab5 (c), Rab4
(d), Chmp1 (e) or Rab7 (f). Fixed fat bodies were stained with Hoechst (blue). Scale bar: 10 μm. g Quantification of GFP-LAMP1 dots size. Bars denote
mean ± s.d. Statistical significance was determined using one-way ANOVA: *p < 0.05, **p < 0.005, ***p < 0.0005, ****p < 0.0001. Genotypes: a y w
hs-FLP/+; UAS-GFP-LAMP1/+; Ac > CD2 > Gal4/+, b y w hs-FLP/UAS-ShiK44A; UAS-GFP- LAMP1/+; Ac > CD2 > Gal4/ UAS-ShiK44A, c y w hs-FLP/+;
UAS-GFP-LAMP1/+; Ac > CD2 > Gal4/UAS-Rab5-IR, d y w hs-FLP/+; UAS-GFP-LAMP1/+; Ac > CD2 > Gal4/UAS-Rab4SN, e y w hs-FLP/+; UAS-GFP-LAMP1/+;
Ac > CD2 > Gal4/UAS-Chmp1-IR, f y w hs-FLP/+; UAS-GFP-LAMP1/UAS-Rab7TN; Ac > CD2 > Gal4/+
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autolysosomes. The staining of fat bodies from starved
larvae demonstrated a reduction in the intensity of the
Lysotracker-Red staining in the cells expressing the trans-
genes affecting endosomal trafficking compared to the
wild-type neighboring cells (Additional file 4: Figure S4).
Altogether, these observations suggest that not only basal
autophagy flux (fed condition) but also starvation-induced
autophagy is impaired in these cells.
Monitoring the autophagy flux can also be done by

assessing the degradation of known autophagic sub-
strates which accumulate when the autophagy flux is
blocked [38, 39]. We observed the accumulation of
Ref(2)P, the Drosophila homolog of the autophagy recep-
tor p62 [38, 40], in cells expressing the transgenes af-
fecting endosomal trafficking compared to wild-type
neighboring cells (Fig. 5). Altogether these results thus
show that inhibition of endosomal trafficking results in
autophagy flux blockade indicating that the lysosomal
function is affected.

Discussion
We previously identified UBPY as a new deubiquitinat-
ing enzyme affecting lysosomal biogenesis in Drosophila
[18]. Earlier studies extensively showed the implication

of UBPY in the endosomal pathway in both Drosophila
and mammalian cultured cell models [19–26, 41, 42].
We hypothesized that the autophagy flux blockade and
impaired lysosomes formation induced by Ubpy loss-
of-function might be related to its function in the
endosomal pathway, suggesting that the overall endosomal
process is crucial for lysosomal biogenesis. In the present
report, we have investigated this hypothesis by inhibiting
endosomal trafficking at different steps – from the plasma
membrane to the endo-lysosomal compartment. Using
lysosomal markers such as the lysosomal membrane pro-
tein LAMP1 and the lysosomal hydrolase Cathepsin L, we
observed that inhibition of endosomal trafficking con-
sistently resulted in severe lysosomal biogenesis defects.
Besides, the autophagic process in the cells presenting a
defective endosomal trafficking was constitutively im-
paired, as revealed by the use of the GFP- and tandem
GFP-mCherry-tagged Atg8a transgenes, and the accumu-
lation of the autophagy substrate Ref(2)P/p62. Altogether,
our results show that a functional endosomal pathway is
required for lysosomal biogenesis and, as a consequence,
for productive autophagy.
To date, two alternative models for lysosome biogen-

esis have been proposed [43]. In the maturation model,

Fig. 2 Defects in the endosomal pathway affect the distribution of the lysosomal hydrolase Cathepsin L. a-f Confocal sections of larval fat bodies
with control clonal cells (a) or clonally expressing the dominant negative or silencing transgenes for Shibire (b), Rab5 (c), Rab4 (d), Chmp1 (e) or
Rab7 (f). Fixed fat bodies were stained for the endogenous lysosomal hydrolase Cathepsin L. Clonal cells are outlined with a dotted line using the
GFP-LAMP1 reporter also expressed by these cells as shown in the inset. Scale bar: 10 μm. g Quantification of the mean relative intensity of the
Cathepsin L staining in transgene expressing cells compared to the staining intensity of the adjacent wild-type neighboring cells. Bars denote
mean ± s.d. Statistical significance was determined using one-way ANOVA: *p < 0.05, **p < 0.005, ***p < 0.0005, ****p < 0.0001. Genotypes: a y w
hs-FLP/UAS-ShiK44A; UAS-GFP-LAMP1/+; Ac > CD2 > Gal4/UAS-lucIR, b y w hs-FLP/UAS-ShiK44A; UAS-GFP- LAMP1/+; Ac > CD2 > Gal4/ UAS-ShiK44A,
c y w hs-FLP/+; UAS-GFP-LAMP1/+; Ac > CD2 > Gal4/UAS-Rab5-IR, d y w hs-FLP/+; UAS-GFP-LAMP1/+; Ac > CD2 > Gal4/UAS-Rab4SN, e y w hs-FLP/+;
UAS-GFP-LAMP1/+; Ac > CD2 > Gal4/UAS-Chmp1-IR, f y w hs-FLP/+; UAS-GFP-LAMP1/UAS-Rab7TN; Ac > CD2 > Gal4/+
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endosomes are gradually transformed into lysosomes by
the addition (delivery of lysosomal enzymes and mem-
brane proteins from the Golgi apparatus) and removal
(by recycling vesicles) of molecules. According to this
model, lysosomes would not form without endosomal
trafficking. A second model, the vesicular transport
model, postulates that endosomes, late endosomes,
and lysosomes are stable pre-existing compartments
that communicate by continuous rounds of fusion and
fission. Although studies in cultured cells are numer-
ous and sometimes contradictory, in vivo evidence
supporting any of these models are surprisingly scarce.
To our knowledge, Rab5 is the only known endocytic
protein whose inactivation has been shown to impair
the biogenesis of the endo-lysosomal system in vivo
[44]. Our results thus confirm the crucial role of Rab5
but also extend this property to other components of
the endosomal process, actively supporting the matur-
ation model: fully functional lysosomes are not pre-
existing compartments, but instead result from the
gradual maturation of endosomes to which lysosomal
enzymes are delivered.
Furthermore, it has been shown that the endosomal

and autophagy pathways share several components [45, 46].
In particular, the endosomal Rab5 protein has also been

proposed to act at an early stage of autophagy since
inhibition of Rab5 activity by overexpression of a dom-
inant negative mutant decreases the number of auto-
phagosomes in cultured mammalian cells [47]. This
observation does not fit with ours indicating that
autophagosomes accumulate in fat body cells silenced
for Rab5. It is possible that the role of Rab5 in autoph-
agy may be unique to mammals and not conserved in
Drosophila. Alternatively, differences in the experimen-
tal systems (transient overexpression of a dominant
negative form of Rab5 in cultured cells versus clonal im-
pairment in a wild-type organ during larval development)
may be at stake. A careful comparison of the autophagic
phenotype induced by Rab5 inhibition or silencing in
the same experimental model should resolve this point.
It is worth noting that the scientific literature is quite
contradictory on the requirement of endosomal path-
way members for autophagy. Autophagosomes and ubi-
quitinated protein aggregates have been observed in
ESCRT mutant cells [46, 48], indicating a blockade of
autophagic degradation after autophagosomes forma-
tion in agreement with our results. In contrast, other
studies have shown that perturbations of the endosomal
pathway impair autophagosome formation in cultured
cells [49–51].

Fig. 3 Blocking the endosomal pathway induces the accumulation of autophagosomes. a-f Confocal sections of larval fat bodies clonally
expressing the autophagy marker GFP-Atg8a (green) alone (a) or in combination with the dominant negative or silencing transgenes for Shibire
(b), Rab5 (c), Rab4 (d), Chmp1 (e) or Rab7 (f). Fixed fat bodies were stained with Hoechst (blue). Scale bar: 10 μm. g Quantification of the number
of GFP-Atg8a dots per cells. Bars denote mean ± s.d. Statistical significance was determined using one-way ANOVA: *p < 0.05, **p < 0.005, ***p < 0.0005,
****p < 0.0001. Genotypes: a y w hs-FLP/+; UAS-GFP-Atg8a/+; Ac > CD2 > Gal4/+, b y w hs-FLP/UAS-ShiK44A; UAS-GFP- Atg8a/UAS-LucIR; Ac >
CD2 > Gal4/ UAS-ShiK44A, c y w hs-FLP/+; UAS-GFP- Atg8a/+; Ac > CD2 > Gal4/UAS-Rab5-IR, d y w hs-FLP/+; UAS-GFP- Atg8a/+; Ac > CD2 > Gal4/
UAS-Rab4SN, e y w hs-FLP/+; UAS-GFP- Atg8a/+; Ac > CD2 > Gal4/UAS-Chmp1-IR, f y w hs-FLP/+; UAS-GFP- Atg8a/UAS-Rab7TN; Ac > CD2 > Gal4/+
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Conclusion
Our results demonstrated that genetic impairment of
endosomal trafficking induces lysosomal defects in the
widely used Drosophila fat body model. We further show
that endosomal trafficking – because of its requirement
for lysosomal biogenesis – is also required for efficient
autophagic degradation. Indeed, these last years, the
connection between lysosome biogenesis or function
and autophagy has been extensively described, and an
increasing body of evidence implicates defective autoph-
agy in the ethology of lysosomal storage disorders, a
group of approximately 50 rare inherited metabolic dis-
orders that result from defects in lysosomal function.
For example, stalled or blocked autophagy has been ob-
served in the lipid storage disorder Niemann-Pick type
C1 (NPC1) disease [52] and in the Gaucher disease, the
most prevalent lysosomal storage disorder [53]. More-
over, regulation of these two processes is coordinated
by the transcription factor EB (TFEB) which drives
expression of autophagy and lysosomal genes [3]. By
suggesting that these disorders can originate from de-
fects in the endosomal system, our results thus open
new avenues in the understanding of lysosomal storage
diseases and of the numerous pathologies linked to
autophagy deficiencies.

Methods
Drosophila stocks and clonal analysis
Flies were reared at 25 °C on standard cornmeal–
yeast medium. The UAS-Rab4SN, UAS-Rab5SN and
UAS-Rab7TN flies were provided by Dr Emery [54].
The UAS-ShiK44A (#5811), UAS-Chmp1-IR (#28906),
UAS-GFP-LAMP1 (#42714) [34] and UAS-GFP-mCherry-
Atg8a (#37749) strains were obtained from the Bloomington
Drosophila Stock Center and the UAS-Rab5-IR (#103945)
strain from the Vienna Drosophila Resource Center.
The UAS-GFP-Atg8a strain has been provided by Dr T.
Neufeld. The UAS-lucIR line (#31603) was obtained from the
Bloomington Drosophila Stock Center and corresponds to an
RNAi targeting the Luciferase gene used as no target control.
For the FLPout GAL4/UAS method (Additional file 1:

Figure S1), a FRT-flanked cassette blocking expression of the
GAL4 gene is excised upon heat-shock induced expression of
the FLP recombinase. This mitotic recombination event leads
to the expression of the GAL4 gene and is transmitted across
mitosis, generating clones of cells in which GAL4 expression
is activated. These cells are identified by the expression of the
fluorescent tagged-transgenes GFP-LAMP1, GFP-Atg8a or
GFP-mCherry-Atg8a. Spontaneous activation of the Gal4
transcription factor has been reported and allows for the
induction of Gal4 expressing cells without heat shock [55].

Fig. 4 Defects in the endosomal pathway result in a blockade of the autophagy flux. a-f Confocal sections of larval fat bodies clonally expressing
the autophagy flux marker GFP-mCherry-Atg8a (green) alone (a) or in combination with the dominant negative or silencing transgenes for Shibire
(b), Rab5 (c), Rab4 (d), Chmp1 (e) or Rab7 (f). Fixed fat bodies were stained with Hoechst (blue). Scale bar: 10 μm. g Quantification of the colocalization
of mCherry and GFP signals using the Pearson’s correlation coefficient (PCC). Bars denote mean ± s.d. Statistical significance was determined using
one-way ANOVA: *p < 0.05, **p < 0.005, ***p < 0.0005, ****p < 0.0001. Genotypes: a y w hs-FLP/+; UAS-GFP-mCherry-Atg8a/+; Ac > CD2 > Gal4/UAS-lucIR,
b y w hs-FLP/UAS-ShiK44A; UAS-GFP-mCherry-Atg8a/+; Ac > CD2 > Gal4/ UAS-ShiK44A, c y w hs-FLP/+; UAS-GFP-mCherry-Atg8a/+; Ac > CD2 > Gal4/
UAS-Rab5-IR, d y w hs-FLP/+; UAS-GFP-mCherry-Atg8a/+; Ac > CD2 > Gal4/UAS-Rab4SN, e y w hs-FLP/+; UAS-GFP-mCherry-Atg8a/+; Ac > CD2 > Gal4/
UAS-Chmp1-IR, f y w hs-FLP/+; UAS-GFP-mCherry-Atg8a/UAS-Rab7TN; Ac > CD2 > Gal4/+
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Immunocytochemistry and microscopy
For the starvation experiments, young third instar larvae
were washed twice in deionized water and placed for 4 h
either on a regular diet medium (fed condition) or in a fil-
tered solution of 20% sucrose in PBS to induce autophagy
(starved condition) [56]. Antibody and phalloidin staining
were performed as described previously [57]. The samples
were imaged with a 63x magnification (oil immersion)
using a Leica TCS-SP2 confocal microscope and the LCS
software. The primary antibodies used in this study were
the following: rabbit polyclonal against D. melanogaster
Ref(2)P protein [58], and rabbit monoclonal anti-Cathepsin
L (ab133641, Abcam). The appropriate Cy3-conjugated
secondary antibodies were purchased from Jackson Immu-
noresearch Laboratories.
Lysotracker-Red staining on fat bodies was performed

as in ref. [56]. Images were obtained with a fluorescence
microscope (Nikon Eclipse 90i) controlled by Nikon
Software (Universal Imaging Corp.) using a 60x Plan-
Neofluor oil objective.

Image analysis and processing
Image analysis was done with the Fiji/ImageJ software
(National Institute of Health) [59]. The number of GFP-
Atg8a dots and the size of the GFP-LAMP1 dots were
determined using a semi-automated macro that allows

for the identification, numbering and measuring of the
dots whilst excluding the potential nuclear staining [60].
The quantitative analysis of the colocalization between
the green and red dots using the GFP-mCherry-Atg8a
construct was done with the JACoP plugin and repre-
sented by the Pearson’s correlation coefficient (PCC)
[61]. Image processing was done with Photoshop CC
2014 (Adobe). All the pictures shown are representative
of the whole tissue and of the observations made from
different animals.

Statistical analysis
Statistical analyses were performed using Prism 6 (Graph-
Pad). one-way ANOVA with the Dunnett’s test for multiple
comparisons has been used for the comparison of three or
more groups.

Additional files

Additional file 1: Figure S1. The FLPout system in Drosophila. (A-B)
The recombination between FRT sites by the FLP recombinase under
the control of a heat shock promoter (A) results in excision of the CD2-
STOP cassette and expression of GAL4 (B) which in turn activates the
expression of the transgenes downstream the UAS promoter, including
a fluorescent reporter (GFP, or GFP-tagged protein). No recombination
between the FRT leaves the CD2-STOP cassette in place, thus preventing
GAL4 expression (C). (TIF 676 kb)

Fig. 5 Defects in the endosomal pathway affect the degradation of the autophagy substrate Ref(2)P/p62. a-e Confocal sections of larval fat
bodies clonally expressing the dominant negative or silencing transgenes for Shibire (a), Rab5 (b), Rab4 (c), Chmp1 (d) or Rab7 (e). Fixed fat bodies
were stained for the endogenous Ref(2)P/p62 protein. Clonal cells are outlined with a dotted line using the GFP-Atg8a reporter also expressed
by these cells as shown in the inset. Scale bar: 10 μm. f Quantification of the size of the Ref(2)P/p62 aggregates in transgene expressing cells
compared to the adjacent wild-type neighboring cells. Bars denote mean ± s.d. Statistical significance was determined using one-way ANOVA:
*p < 0.05, **p < 0.005, ***p < 0.0005, ****p < 0.0001. Genotypes: a y w hs-FLP/UAS-ShiK44A; UAS-GFP-Atg8a/+; Ac > CD2 > Gal4/ UAS-ShiK44A, b y w
hs-FLP/+; UAS-GFP- Atg8a/+; Ac > CD2 > Gal4/UAS-Rab5-IR, c y w hs-FLP/+; UAS-GFP- Atg8a/+; Ac > CD2 > Gal4/UAS-Rab4SN, d y w hs-FLP/+;
UAS-GFP- Atg8a/+; Ac > CD2 > Gal4/UAS-Chmp1-IR, e y w hs-FLP/+; UAS-GFP- Atg8a/UAS-Rab7TN; Ac > CD2 > Gal4/+
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Additional file 2: Figure S2. Validation of the Rab5-IR transgene by
immunofluorescence. Confocal sections of larval fat bodies clonally
expressing the RNAi against Rab5 stained for Rab5 (red). Fixed fat bodies
were additionally stained with Hoechst (blue). The silenced cells were
identified by the expression of the GFP-Atg8a transgene (green). Genotype:
y w hs-FLP/+; UAS-GFP- Atg8a/+; Ac > CD2 > Gal4/UAS-Rab5-IR. (TIF 1509 kb)

Additional file 3: Figure S3. Validation of defects in the endosomal
pathway by Texas Red-Avidin uptake. (A-B) The endocytic tracer TR-avidin
fails to be internalized in clonal cells expressing either ShiK44A (A) or
Rab5-IR (B). Clones were detected by the co-expression of the autophagy
marker GFP-Atg8a. (C-G) Internalized TR-avidin fails to be transported to
the lysosomes when late stages of the endocytic process are defective.
Clonal cells were detected by the expression of the lysosomal marker
GFP-LAMP1. Occasional colocalization between the endocytic tracer
TR-avidin and the lysosomes are observed in control cells (D) but not in
cells expressing Rab4SN (E), Chmp1-IR (F) or Rab7TN (G). Quantification of
the colocalization between the TR-avidin and GFP-LAMP1 using the Pear-
son’s Correlation Coefficient (PCC) is shown in C. Bars denote mean ± s.d.
Statistical significance was determined using one-way ANOVA: *p < 0.05,
**p < 0.005, ***p < 0.0005, ****p < 0.0001. Genotypes: (A) y w hs-FLP/UAS-
ShiK44A; UAS-GFP-Atg8a/+; Ac > CD2 > Gal4/ UAS-ShiK44A, (B) y w
hs-FLP/+; UAS-GFP-Atg8a/+; Ac > CD2 > Gal4/UAS-Rab5-IR, (C) y w hs-FLP/+;
UAS-GFP-LAMP1/+; Ac > CD2 > Gal4/+, (D) y w hs-FLP/+; UAS-GFP-LAMP1/+;
Ac > CD2 > Gal4/UAS-Rab4SN, (E) y w hs-FLP/+; UAS-GFP-LAMP1/+;
Ac > CD2 > Gal4/UAS-Chmp1-IR, (F) y w hs-FLP/+; UAS-GFP-LAMP1/UAS-
Rab7TN; Ac > CD2 > Gal4/+. (TIF 1831 kb)

Additional file 4: Figure S4. The endosomal pathway is required for
the starvation-induced acidification of the lysosomes. Larvae clonally
expressing the dominant negative or silencing transgenes for Shibire
(A), Rab5 (B), Rab4 (C), Chmp1 (D) or Rab7 (E) were starved to induce
autophagy and the acidification of the lysosomes. Alive fat bodies
were stained with Lysotracker-Red. Clonal cells were identified by the
expression of the GFP-Atg8a transgene. Genotypes: (A) y w hs-FLP/UAS-
ShiK44A; UAS-GFP-Atg8a/+; Ac > CD2 > Gal4/ UAS-ShiK44A, (B) y w hs-FLP/
+; UAS-GFP- Atg8a/+; Ac > CD2 > Gal4/UAS-Rab5-IR, (C) y w hs-FLP/+;
UAS-GFP- Atg8a/+; Ac > CD2 > Gal4/UAS-Rab4SN, (D) y w hs-FLP/+; UAS-
GFP- Atg8a/+; Ac > CD2 > Gal4/UAS-Chmp1-IR, (E) y w hs-FLP/+; UAS-GFP-
Atg8a/UAS-Rab7TN; Ac > CD2 > Gal4/+. (TIF 791 kb)
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