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About Wess-Zumino-Witten equation

and Harder-Narasimhan potentials

Siarhei Finski

Abstract. For a polarized family of complex projective manifolds, we identify the algebraic

obstructions that govern the existence of approximate solutions to the Wess-Zumino-Witten equa-

tion. When this is specialized to the fibration associated with a projectivization of a vector bundle,

we recover a version of Kobayashi-Hitchin correspondence.

More broadly, we demonstrate that a certain auxiliary Monge-Ampère type equation, gener-

alizing the Wess-Zumino-Witten equation by taking into account the weighted Bergman kernel

associated with the Harder-Narasimhan filtrations of direct image sheaves, admits approximate so-

lutions over any polarized family. These approximate solutions are shown to be the closest coun-

terparts to true solutions of the Wess-Zumino-Witten equation whenever the latter do not exist, as

they minimize the associated Yang-Mills functional.

As an application, in a fibered setting, we prove an asymptotic converse to the Andreotti-

Grauert theorem conjectured by Demailly.
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1 Introduction

Consider a holomorphic submersion π : X → B between compact Kähler manifolds X and B
of dimensions n + m and m respectively. We fix a Kähler form ωB on B. We say that a smooth

closed relatively Kähler (1, 1)-form α on X satisfies the Wess-Zumino-Witten equation if

αn+1 ∧ π∗ωm−1
B = 0. (1.1)
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This terminology was introduced by Donaldson in [30] for the case where B is an annulus in

C, due to its resemblance to certain equations from mathematical physics [84]. This particular

instance of (1.1) is significant in Kähler geometry, as its solutions correspond to the Mabuchi

geodesics [62], [72], [30], [17], which are essential in the study of constant scalar curvature metrics.

The main focus of this paper, however, is the case where B has no boundary, leading to a

markedly different theory. Specifically, we address the following two questions:

A) What are the algebraic obstructions for the existence of approximate solutions to (1.1)?

B) When approximate solutions to (1.1) do not exist, what are the “best” alternatives to them?

To clarify both questions, we define the Wess-Zumino-Witten functional as follows

WZW(α, ωB) :=

∫

X

∣

∣αn+1 ∧ π∗ωm−1
B

∣

∣, WZW([α], ωB) = inf WZW(α, ωB), (1.2)

where the infimum is taken over all smooth closed relatively Kähler (1, 1)-forms α in the class

[α], and | · | is the absolute value of a volume form, evaluated with respect to the orientation

given by the complex structure. By Question A) we mean that we would like to give an algebraic

description of classes [α], verifying WZW([α], ωB) = 0. By Question B) we mean that we would

like to have an explicit construction of a sequence of the forms αǫ ∈ [α], for any ǫ > 0, verifying

WZW(αǫ, ωB) ≤ WZW([α], ωB) + ǫ. We answer both of these questions for [α] ∈ H2(X,Z), i.e.

such that there is a relatively ample line bundle L over X , verifying [α] = c1(L).
Our motivation for studying (1.1) comes from the fact that it generalizes the Hermite-Einstein

equation on vector bundles. Indeed, let F be a holomorphic vector bundle over B. Let L := O(1)
be the hyperplane bundle over X := P(F ∗), and let π : P(F ∗) → B be the natural projection. For a

coherent sheaf E over B, we define its degree by deg(E ) :=
∫

B
c1(det(E )) · [ωB]

m−1, where det E

is Knudsen-Mumford determinant of E , see [51]. We assume for simplicity that F is normalized

in the sense that deg(F ) = 0. A Hermitian metric hF on F solves the Hermite-Einstein equation

if the curvature RhF
of its Chern connection satisfies

√
−1
2π

RhF ∧ ωm−1
B = 0.

It is then a classical calculation, originally due to Kobayashi [52], which says that hF solves

the Hermite-Einstein equation if and only if for the associated metric hL on L, the relatively Kähler

(1, 1)-form ω := c1(L, h
L) solves (1.1). Moreover, following a question raised by Kobayashi [52],

it was established by Feng-Liu-Wan in [34, Proposition 3.5] that if there is a relatively positive

metric hL on L such that ω := c1(L, h
L) solves (1.1) over P(F ∗), then one can cook up from it a

Hermitian metric on F , solving the Hermite-Einstein equation.

Hence the Kobayashi-Hitchin correspondence (or Donaldson-Uhlenbeck-Yau theorem), see

[29], [82], [53, Theorems 6.10.13], which relates the existence of solutions to the Hermite-Einstein

equation on F with slope-stability, can be formulated purely in terms of solvability of (1.1) over

P(F ∗). Questions A) and B) serve to generalize this correspondence for fibrations not necessarily

associated with vector bundles.

In order to state our results, recall that a slope (or [ωB]-slope) of a coherent sheaf E over

B is defined as µ(E ) := deg(E )/(rk(E ) ·
∫

B
[ωB]

m). A torsion-free coherent sheaf E is called

semistable (or [ωB]-semistable) if for every coherent subsheaf F of E , verifying rk(F) > 0, we

have µ(F) ≤ µ(E ). Remark the unusual normalization of the slope by
∫

B
[ωB]

m.

Recall that any vector bundle E on (B, [ωB]) admits a unique filtration by subsheaves

E = FHN
λ1

⊃ FHN
λ2

⊃ · · · ⊃ FHN
λq

⊃ {0} =: FHN
λq+1

, (1.3)
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also called the Harder-Narasimhan filtration and defined so that for any 1 ≤ i ≤ q, the quo-

tient sheaf FHN
λi

/FHN
λi+1

is the maximal semistable (torsion-free) subsheaf of E/FHN
λi+1

, i.e. for

any subsheaf of F of a (torsion-free) sheaf E/FHN
λi+1

, we have µ(F) ≤ µ(FHN
λi

/FHN
λi+1

) and

rk(F) ≤ rk(FHN
λi

/FHN
λi+1

) if µ(F) = µ(FHN
λi

/FHN
λi+1

), and λi = µ(FHN
λi

/FHN
λi+1

).
We define the Harder-Narasimhan slopes, µ1, . . . , µrk(E), of E, so that λi appears among

µ1, . . . , µrk(E) exactly rk(FHN
λi

/FHN
λi+1

) times, and the sequence µ1, . . . , µrk(E) is non-decreasing.

We call µmin := µ1 and µmax := µrk(E), the minimal and the maximal slopes respectively.

Now, in our fibered setting, for a relatively ample line bundle L on X and k ∈ N∗, we denote

the direct image sheaves by Ek := R0π∗L
⊗k. For k big enough, a standard argument shows that Ek

are locally free. We let Nk := rk(Ek), and denote by µk
1, . . . , µ

k
Nk

the Harder-Narasimhan slopes

of Ek. Define the probability measure ηHN
k on R as

ηHN
k :=

1

Nk

Nk
∑

i=1

δ
[µk

i

k

]

, (1.4)

where δ[x] is the Dirac mass at x ∈ R.

It was established by Chen in [14, Theorem 4.3.6] (for Riemann surfaces B) and by the author

[39, Theorem 1.5] (for general Kähler manifolds B) that the sequence of probability measures

ηHN
k converges weakly, as k → ∞, to a probability measure of compact support ηHN on R.

Moreover, the support of ηHN equals [ess inf ηHN , ess sup ηHN ], and ηHN is absolutely continuous

with respect to the Lebesgue measure, except probably for a point mass at ess sup ηHN .

We can now state the first result of this article.

Theorem 1.1. For any t ∈ R, we have

WZW(c1(L)− tπ∗[ωB], ωB) =

∫

x∈R
|x− t|dηHN(x) ·

∫

X

c1(L)
nπ∗[ωB]

m · (n+ 1). (1.5)

Remark 1.2. a) Remark that while the left-hand side of (1.5) is a differential-geometric quantity,

the right-hand side is purely an algebraic one. Also, as ηHN depends only on the cohomological

class [ωB], the quantity WZW(c1(L)− tπ∗[ωB], ωB) ultimately also depends only on [ωB].
b) It is easy to check, cf. [16, Proposition 5.1], that if

∫

x∈R |x− t|dη1(x) =
∫

x∈R |x− t|dη2(x),
for any t ∈ R and some Radon measures η1, η2 of compact support on R, then η1 = η2. In

particular, Theorem 1.1 gives a differential-geometric characterization of ηHN .

c) Theorem 1.1 establishes for p = 1 the conjecture of the author from [39] about the optimality

of the lower bound on the Fibered Yang-Mills functional.

As an application of Theorem 1.1, we obtain the following result, which precisely character-

izes the link between the existence of approximate solutions to (1.1) and the associated algebraic

obstructions. This result provides a comprehensive answer to Question A) stated above.

Corollary 1.3. The following statements are equivalent:

a) The measure ηHN is the Dirac mass at t.
b) We have µ(Ek) ∼ t · k, as k → ∞, and for any ǫ > 0, there is k0 ∈ N, such that for any

k ≥ k0 and any coherent subsheaf Fk ⊂ Ek, rk(Fk) > 0, we have µ(Fk) ≤ µ(Ek) + ǫk.

c) For any ǫ > 0, there is a relatively positive smooth closed (1, 1)-form ωǫ in c1(L), verifying
∫

X

∣

∣ωn+1
ǫ ∧ π∗ωm−1

B − t · ωn
ǫ ∧ π∗ωm

B · (n+ 1)
∣

∣ < ǫ. (1.6)
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ess supηHNess infηHN
t

WZW(c1(L)− tπ∗[ωB], ωB)

|
∫

X
(c1(L)− tπ∗[ωB])

n+1π∗[ωB]
m−1|

Figure 1: Sharp and trivial lower bounds on the Wess-Zumino-Witten functional.

d) If dimB = 1, the above conditions are equivalent to the following: for any irreducible

complex analytic subspace Y ⊂ X of dimension k + 1, k ∈ N, we have
∫

Y
c1(L)

k+1 ≥ t ·
∫

Y
c1(L)

kπ∗[ωB] · (k + 1), with an equality if Y = X .

Remark 1.4. As we explain in Section 14, when Corollary 1.3 is specialized to π : P(F ∗) → B,

L := O(1), for a holomorphic vector bundle F over B, it gives a version of Kobayashi-Hitchin

correspondence, as the semistability of F is equivalent to the condition that ηHN is the Dirac mass.

Let us now explain an application of Theorem 1.1 towards asymptotic cohomology. Recall that

on a compact complex manifold Y of dimension n with a holomorphic line bundle F , the q-th

asymptotic cohomology is defined as

ĥq(Y, F ) := lim sup
k→∞

n!

kn
dimHq(Y, F⊗k). (1.7)

Refer to [54] and [22] for the proof of some fundamental properties of ĥq(Y, F ). Holomorphic

Morse inequalities of Demailly [21] give the following upper bounds

ĥq(Y, F ) ≤
∫

Y (α,q)

(−1)qαn, (1.8)

where α is an arbitrary smooth form in the class c1(F ), and Y (α, q) is the open set of points x ∈ Y ,

so that α(x) has signature (n− q, q).

Conjecture 1. (Demailly [22, Question 1.13]) Do we have ĥq(Y, F ) = inf
∫

Y (α,q)
(−1)qαn, where

the infimum is taken over all smooth closed (1, 1)-forms α in the class c1(F )?

As explained in [23, p. 3], cf. also the end of Section 13, the conjecture above is related to the

Andreotti-Grauert vanishing theorem [2], and in a way it should be seen as an asymptotic converse

of it. Besides the cases q = 0 and n ≤ 2, proved in [23, Theorems 1.3, 1.4], the conjecture remains

largely open. The major difficulty is, of course, to construct a differential form from the algebraic

datum of asymptotic cohomology. As an application of Theorem 1.1, we have the following result.
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Corollary 1.5. For a holomorphic submersion p : Y → C between a complex projective manifold

Y and a compact Riemann surface C, Conjecture 1 holds for any holomorphic line bundle F on Y
which is relatively ample with respect to p.

We will in fact show that in the setting of Corollary 1.5, the sequence of (1, 1)-forms, minimiz-

ing the Wess-Zumino-Witten functional, saturates the lower bound (1.8).

A natural question arises as to whether one can construct forms that attain the lower bound

for WZW(c1(L) − tπ∗[ωB], ωB) as solutions to a specific auxiliary equation. This brings us to

the main contribution of this article, where we show that a certain auxiliary Monge-Ampère type

equation, generalizing the Wess-Zumino-Witten equation, always admits approximate solutions on

arbitrary fibrations, and that these solutions saturate the lower bound.

The auxiliary Monge-Ampère equation is based on the weighted Bergman kernel associated

with the Harder-Narasimhan filtrations of direct image sheaves. In order to define it, for a relatively

positive Hermitian metric hL on L, we denote ω := c1(L, h
L), and associate a Hermitian metric

Hilbπ
k(h

L) on Ek, k ∈ N, defined for f, f ′ ∈ Ek,b, b ∈ B, as follows

〈f, f ′〉Hilbπk (h
L)b

:=
1

n!

∫

Xb

〈f(x), f ′(x)〉
hL⊗k · ωn(x). (1.9)

Consider the Harder-Narasimhan filtration

Ek = FHN,k
λ1,k

⊃ FHN,k
λ2,k

⊃ · · · ⊃ FHN,k
λqk,k

⊃ {0} =: FHN,k
λqk+1,k

. (1.10)

Now, the restriction of the above filtration to b ∈ B provides a filtration of Ek,b. We denote

ni,k := dimFHN,k
λi,k,b

, i = 1, . . . , qk + 1, and consider the orhonormal basis s1,k, . . . , sNk,k ∈ Ek,b, of

(Ek,b,Hilb
π
k(h

L)b) adapted to (1.10) in the sense that s1,k, . . . , snqk,k,k, form an orthonormal basis

of FHN,k
λqk,k,b

, the elements s1,k, . . . , snqk−1,k ,k, form an orthonormal basis of FHN,k
λqk−1,k

, etc. We define

the Harder-Narasimhan potential, HNk(ω) : X → R of ω := c1(L, h
L) as

HNk(ω)(x) =

qk
∑

i=1

λi,k ·
n1−ni+1
∑

j=n1−ni+1

∣

∣si,k(x)
∣

∣

2

hL⊗k . (1.11)

The reader will verify that for connected manifolds X , HNk(ω) depends only on ω and not on

hL, as the notation suggests. It is also independent of the choice of the basis s1,k, . . . , sNk,k. The

definition in (1.11) closely resembles the Bergman kernel, cf. [80], [58], with the only difference

being that we use a weighted version of it, where the weights are prompted by (1.10).

Relying on our previous work [43], we shall establish in Corollary 2.4 that the sequence of

functions x 7→ 1
kn+1HNk(ω)(x), x ∈ X , converges almost everywhere, as k → ∞, to a bounded

function, which we denote by HN(ω) ∈ L∞(X), and call the Harder-Narasimhan potential of ω.

Moreover, HN(ω) coincides almost everywhere with the speed of the geodesic ray associated with

the Harder-Narasimhan filtration, cf. Section 2 for details.

Let us consider the following auxiliary Monge-Ampère type equation

ωn+1 ∧ π∗ωm−1
B = HN(ω) · ωn ∧ π∗ωm

B · (n+ 1). (1.12)

We draw the attention of the reader to the fact that (1.12) is not a PDE, as the dependence of

HN(ω) on ω is quite complicated. While it is still quite premature to inquire whether (1.12) has
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explicit solutions (it seems not even clear if there is a relatively Kähler (1, 1)-form ω, so that HN(ω)
coincides almost everywhere with a continuous function), the main contribution of this article says

that the existence of approximate solutions to (1.12) is – quite surprisingly – unobstructed.

Theorem 1.6. For any ǫ > 0, there is a relatively Kähler (1, 1)-form ωǫ ∈ c1(L) over X , verifying

∫

X

∣

∣

∣
ωn+1
ǫ ∧ π∗ωm−1

B − HN(ωǫ) · ωn
ǫ ∧ π∗ωm

B · (n + 1)
∣

∣

∣
≤ ǫ. (1.13)

We now outline the relationship between Theorems 1.1 and 1.6. The proof of (1.5) proceeds

by establishing both lower and upper bounds on WZW(c1(L) − tπ∗[ωB], ωB). The lower bound,

which is significantly simpler to establish, follows directly from our previous work [39]. To obtain

the upper bound, we need to construct some explicit relatively Kähler (1, 1)-forms in the class

c1(L) − tπ∗[ωB] saturating the established lower bound. Let us demonstrate that, for any ǫ > 0,

t ∈ R, the forms ωǫ from Theorem 1.6, verify

WZW(ωǫ − tπ∗ωB, ωB) ≤
∫

x∈R
|x− t|dηHN(x) ·

∫

X

c1(L)
nπ∗[ωB]

m · (n+ 1) + ǫ. (1.14)

Once we establish (1.14), we will obtain the upper bound on WZW(c1(L)− tπ∗[ωB], ωB) from

Theorem 1.1. The verification of (1.14) follows straightforwardly from a result we establish in

Proposition 2.4, related with previous works [14], [10], [83], [48] and [43]. This result states that

for any continuous function g : R → R and any relatively Kähler (1, 1)-form ω ∈ c1(L), we have

∫

g(HN(ω)) · ωn ∧ π∗ωm
B =

∫

x∈R
g(x)dηHN(x) ·

∫

X

c1(L)
nπ∗[ωB]

m. (1.15)

The reader will immediately check that (1.14) is a direct consequence of Theorem 1.6 and (1.15),

applied for the continuous function g(x) := |x− t|, x ∈ R.

We further assert that Theorem 1.6 provides a generalization of a part of Corollary 1.3. Specif-

ically, by setting g(x) := |x − t|, x ∈ R, in (1.15), it becomes apparent that ηHN is a Dirac mass

at t if and only if HN(ω) coincides with t almost everywhere. Consequently, (1.13) specializes to

(1.6). These observations collectively suggest that the forms in Theorem 1.6 serve as the closest

analogs to actual solutions of the Wess-Zumino-Witten equation in cases where true solutions are

absent. Thus, Theorem 1.6 offers a resolution to Question B).

To conclude, we briefly outline our approach to proving Theorem 1.6 and situate it within the

context of earlier research. We construct the forms ωǫ, ǫ > 0, from Theorem 1.6 by geometric

quantization, i.e. from certain Hermitian metrics on Ek, for k ∈ N big enough.

The use of geometric quantization for investigating PDEs was introduced by Donaldson [31],

but our approach diverges from his in a significant way. Here, we establish the existence of a

solution through geometric quantization, whereas in [31], the existence of a solution was assumed

to obtain convergence in the quantization procedure. Donaldson notes in [31, p. 482], “In principle

one might be able to prove the existence of constant scalar curvature metrics by showing directly

that the ωk converge – avoiding PDE theory – but it is hard to see how one might go about this”.

The geometry of our problem is also quite distinct from that of [31]. We intend to explore the

potential application of our method in future studies of constant scalar curvature metrics.

Our approach builds upon several results. First, we make extensive use of the fact initially

established by Chen [14] and further developed by the author [40], saying that Harder-Narasimhan
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filtrations constitute a bounded, submultiplicative filtration on ⊕+∞
k=0Ek away from a negligible

subset of B. This result allows us to integrate the developments concerning submultiplicative

filtrations from Boucksom-Chen [10], Witt Nyström [83], Hisamoto [48], and the author [38], [43]

into the study of the Wess-Zumino-Witten equation.

Second, our approach is deeply rooted on the result due to Atiyah-Bott [3], Daskalopoulos-

Wentworth, [19] and Sibley [73], establishing the existence of L1-approximate critical Hermitian

structures on holomorphic vector bundles, cf. (3.12). These metrics serve us to construct the Her-

mitian metrics on Ek leading to ωǫ. Indeed, our main technical contribution consists in establishing

that these L1-approximate critical Hermitian structures can be constructed on Ek, k ∈ N, while

respecting the algebraic structure of the ring bundle ⊕+∞
k=0Ek in a certain sense. This hinges on the

well-known fact that ⊕+∞
k=0Ek is a finitely generated ring bundle, and on the already mentioned re-

sult concerning submultiplicativity of Harder-Narasimhan filtrations. Our forms ωǫ arise from the

dequantization of geodesic rays associated with Harder-Narasimhan filtrations and emanating from

L1-approximate critical Hermitian structures, and submultiplicativity of Harder-Narasimhan filtra-

tions is crucial here because it enables the application of certain estimates on these geodesic rays

from [38], which are essential for showing the compatibility with algebraic structure of ⊕+∞
k=0Ek.

The importance of this compatibility of L1-approximate critical Hermitian structures with the

algebraic structure of the ring bundle ⊕+∞
k=0Ek in our analysis stems from our previous work [36],

where we show that such compatible metrics are necessarily given as the L2-metrics of some

positive Hermitian metric on the polarization. This connection with L2-metrics allows us to draw

on several results from geometric quantization, which form the technical backbone of this article.

In addition to the now-classical result of Tian [80] and its family version by Dai-Liu-Ma [18], we

rely significantly on the asymptotic formula for the curvature of direct images by Ma-Zhang [61],

as well as on the semiclassical Ohsawa-Takegoshi extension theorem established by the author

in [41], [42] refining previous results due to Zhang [89] and Bost [8].

Let us briefly now explain the structure of this paper. In Section 2, we review the submul-

tiplicativity property of Harder-Narasimhan filtrations and establish the convergence of Harder-

Narasimhan potentials from (1.11). In Section 3, we establish the lower bound from (1.5) on the

Wess-Zumino-Witten functional. We do so by studying asymptotically, as k → ∞, the lower

bound on the Hermitian Yang-Mills functionals of Ek. We describe a precise relation between the

minimization of the Wess-Zumino-Witten functional and Hermitian Yang-Mills functionals. We

describe a construction of the sequence of (1, 1)-forms ωǫ, which provide solutions to Theorem

1.6. We prove that this sequence solves Theorem 1.6 in Section 4, modulo a number of technical

results which are treated in Sections 5-11. In Section 12, we describe an application of Theorem

1.1 which gives a Mehta-Ramanathan type formula for the Wess-Zumino-Witten functional. In

Section 13, we establish Corollary 1.5. Finally, in Section 14, we describe a connection between

Corollary 1.3, Kobayashi-Hitchin correspondence and Hessian quotient equations.

Notations. We use the notation Nk := rk(Ek) throughout the text. For b ∈ B, we denote

by Xb, Ek,b, etc., the fibers of X,Ek, etc., at b. For a Hermitian vector bundle (E, hE) on B, a

bounded section A of End(E) and a positive volume form η on B, we define

‖A · η‖L1(B,hE) =

∫

b∈B
‖A(b)‖ · η(b), ‖A · η‖trL1(B,hE) =

∫

b∈B
Tr

[

|A(b)|
]

· η(b), (1.16)

where ‖ · ‖ is the subordinate operator norm, calculated with respect to hE , and |A| is the absolute

value of an operator, defined as
√
AA∗. Clearly, ‖ · ‖L1(B,hE) is a norm. In fact, ‖ · ‖trL1(B,hE) is also
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a norm; the triangle inequality is satisfied by Ky Fan inequalities, cf. [7, Exercise II.1.15].

Let (V,H) be a Hermitian vector space. For Hermitian A0, A1 ∈ End(V ), we note A0 ≥ A1 if

the difference A0 −A1 is positive semi-definite. When the choice of the Hermitian structure is not

clear from the context, we use notation A0 ≥H A1.

We endow SymlV with a Hermitian metric SymlH induced by the induced metric on V ⊗l and

the inclusion SymlV → V ⊗l, defined as

v1 ⊙ . . .⊙ vl 7→
1

l!

∑

vσ(1) ⊗ . . .⊗ vσ(l), (1.17)

where the sum runs over all permutations σ on l indices. Clearly, if v1, · · · , vr form an orthonormal

basis of V , then
√

l!/α! · v⊙α, α ∈ Nl, |α| = l, forms an orthonormal basis of SymlV with respect

to SymlH . Similarly, for an arbitrary filtration F of V , we define the filtration SymlF on SymlV .

For any A ∈ End(V ), we define SymlA ∈ End(SymlV ) as the symmetrization of the map

l · A ⊗ IdV ⊗ · · · ⊗ IdV . In other words, if A is self-adjoint and (v1, · · · , vr) form a basis of V ,

consisting of eigenvectors of A corresponding to the eigenvalues λ := (λ1, · · · , λr), then v⊙α,

α = (α1, . . . , αr) ∈ Nl, |α| = l, forms a basis of eigenvectors of SymlA corresponding to the

eigenvalues α · λ := α1λ1 + · · ·+ αrλr.

Consider now a surjection p : V → Q between two complex vector bundles. Once we fix a

Hermitian metric H on V , one can naturally identify V with Q ⊕ ker p using the dual to p map

p∗ : Q → V . Using this identification, for any A ∈ End(V ), we then can define the operator

A|Q ∈ End(Q) by A|Q(q) = p(A(p∗(q))).
A filtration F on V is a map from R to vector subspaces of V , t 7→ FtV , verifying FtV ⊂ FsV

for t > s, and such that FtV = V for sufficiently small t and FtV = {0} for sufficiently big t. We

always assume that it left-continuous, i.e. for any t ∈ R, there is ǫ0 > 0, such that FtV = Ft−ǫV
for any 0 < ǫ < ǫ0. Sometimes, we define filtrations by prescribing their jumping numbers and

respective vector subbundles. In this way, the corresponding map from R is defined as the only

left-continuous map, which is constant between the jumping numbers.

A norm NV = ‖ · ‖V on V naturally induces the quotient norm ‖ · ‖Q := [NV ] on Q as follows

‖f‖Q := inf
{

‖g‖V : g ∈ V, p(g) = f
}

, f ∈ Q. (1.18)

Similarly, for any filtration F on V , we can form a quotient filtration [F ] on Q. More precisely,

recall that a filtration F on V defines the norm and weigh functions χF : V → [0,+∞[, χF : V →
]−∞,+∞], as follows

wF(s) := sup{λ ∈ R : s ∈ FλV }, χF(s) := exp(−wF(s)). (1.19)

Clearly, χF is a non-Archimedean norm on V with respect to the trivial absolute value on C, i.e.

it satisfies the following axioms: a) χF(f) = 0 if and only if f = 0, b) χF(λf) = χF (f), for

any λ ∈ C∗, k ∈ N∗, f ∈ V , c) χF(f + g) ≤ max{χF(f), χF(g)}, for any k ∈ N∗, f, g ∈ V .

Moreover, any function verifying the above properties is associated with a filtration. If we now use

the definition (1.18) to define the quotient norm [χF ] from χF , it will satisfy the same properties

of a non-Archimedean norm and, hence, defines a filtration, which we denote by [F ].
For a coherent sheaf E on B, we denote by Sat(E ) the saturation of E , defined as the minimal

subsheaf containing E with torsion free quotient. A sheaf E is saturated if Sat(E ) = E .
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2 Harder-Narasimhan potentials and submultiplicativity

The primary aim of this section is to review the submultiplicativity property of Harder-Narasimhan

filtrations, which plays a central role in this article, and to establish, based on this property, the

convergence of Harder-Narasimhan potentials from (1.11).

We fix some definitions first. Consider a graded filtration F := ⊕∞
k=0Fk on the section ring

R(Y, F ) := ⊕∞
k=0H

0(Y, F⊗k) of a complex projective manifold Y polarized by an ample line

bundle F . We say that F is submultiplicative if for any t, s ∈ R, k, l ∈ N, we have

Fk
t H

0(Y, F⊗k) · F l
sH

0(Y, F⊗l) ⊂ Fk+l
t+sH

0(Y, F⊗(k+l)). (2.1)

We say that F is bounded if there is C > 0, such that for any k ∈ N∗, Fk
CkH

0(Y, F⊗k) = {0}.

It is an immediate consequence of the submultiplicativity and the fact that R(Y, F ) is a finitely

generated ring, cf. [56, Example 2.1.30], that there is C > 0, such that Fk
−CkH

0(Y, F⊗k) =
H0(Y, F⊗k). For a bounded submultiplicative filtration F , we denote by ‖F‖ the minimal constant

C > 0, such that Fk
−CkH

0(Y, F⊗k) = H0(Y, F⊗k) and Fk
CkH

0(Y, F⊗k) = {0} for any k ∈ N∗.
We fix a positive Hermitian metric hF on F , and denote by Hilbk(h

F ) the L2-metric on

H0(Y, F⊗k) induced by hF , see (1.9). For a continuous function g : R → R, we consider the

weighted Bergman kernel, BF ,g
k (x) ∈ R, k ∈ N, x ∈ Y , defined as

BF ,g
k (x) =

Nk
∑

i=1

g
(wFk(si,k)

k

)

·
∣

∣si,k(x)
∣

∣

2

hL⊗k (2.2)

where Nk := dimH0(Y, F⊗k) and si,k, i = 1, . . . , Nk, is an orthonormal basis of

(H0(Y, F⊗k),Hilbk(h
F )) adapted to Fk.

This definition is modeled after the Bergman kernel, Bk(x), defined as Bk(x) =
∑Nk

i=1 |si,k(x)|2hF⊗k . Recall that a well-known result of Tian, [80], says that

1

kn
Bk(x) converges uniformly to 1, as k → ∞, (2.3)

see also [88], [12], [9], [58] for more refined convergence statements. One of the main results of

[43] generalizes (2.3) in realms of weighted Bergman kernels, (2.2). To state it, recall that Phong-

Sturm [68, Theorem 3] and Ross-Witt Nyström [70] constructed a geodesic ray hF
t , t ∈ [0,+∞[,

of Hermitian metrics on F , emanating from hF . The term geodesic here stands for the fact that the

resulting ray of metrics is a metric geodesic in the space of positive metrics on F , endowed with

the so-called Mabuchi distance, [62].

To recall the definition of the geodesic ray, we first recall a much simpler construction of

geodesic rays on a complex vector space V , dimV = r. We fix a filtration F and say that the

Hermitian products Hs, s ∈ [0,+∞[, on V form a geodesic ray departing from H associated with

F , if ei · exp(swF(ei)/2), i = 1, . . . , r, form an orthonormal basis for Hs, where e1, . . . , er is an

orthonormal basis on (V,H) adapted to the filtration F in the sense as described in (1.11).
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The construction of the geodesic rays also makes sense in the family setting: when a vector

space is replaced by a vector bundle over a manifold, a Hermitian product is replaced by a Hermi-

tian metric, and the filtration is replaced by filtrations by subsheaves over the manifold. When the

filtration is given by subbundles (and not by subsheaves), and the Hermitian metric is smooth, it is

immediate to see that the the resulting ray is a ray of smooth metrics.

The terminology “geodesic ray” comes from the fact that the above rays are metric geodesics in

the space of all Hermitian products on V for the invariant metric coming from the SL(V )/SU(V )-
homogeneous structure. Finite segments of these rays will be called geodesics.

Now, recall that an arbitrary Hermitian norm Hk on H0(Y, F⊗k), for k ∈ N so that F⊗k

is very ample, induces a positive metric FS(Hk) on F⊗k, constructed as follows. Consider the

Kodaira embedding Kodk : Y →֒ P(H0(Y, F⊗k)∗). We denote by O(1) the hyperplane bundle on

P(H0(Y, F⊗k)∗), and define the metric FS(Hk) onF⊗k as the pull-back of the Fubini-Study metric

on O(1) induced by Hk through the isomorphism Kod∗kO(1) → F⊗k. Alternatively, FS(Hk)
is the only metric on F⊗k, which for any x ∈ Y , and for an orthonormal basis s1, . . . , sNk

of

(H0(Y, F⊗k), Hk) satisfies the following equation

Nk
∑

i=1

∣

∣si(x)
∣

∣

2

FS(Hk)
= 1. (2.4)

Now, for any t ∈ [0,+∞[, k ∈ N, we define, following Phong-Sturm [68] and Ross-Witt

Nyström [70], HF
t,k as the (geodesic) ray of Hermitian norms on H0(Y, F⊗k) emanating from

Hilbk(h
F ) and associated with the restriction Fk of F to H0(Y, F⊗k). We denote by hF

t , t ∈
[0,+∞[, the ray of metrics on L, constructed as follows

hF
t :=

(

lim
k→∞

inf
l≥k

(

FS(HF
t,l)

1
l

)

)

∗
. (2.5)

In general hF
t is not smooth. But it is bounded for any t ∈ [0,+∞[, and one can always define

its derivative at t = 0, ḣF
0 := (hF

0 )
−1 d

dt
hF
t |t=0 : X → R, which is also bounded. More specifically,

in [5, §2.2], [70, Theorem 9.2], authors established that hF
t converges to hF

0 , as t → 0, uniformly

on Y . Due to convexity in t-variable of the potential of these metrics, cf. [24, Theorem I.5.13], the

one-sided derivative at t := 0 is well-defined. We denote φ(hL,F) = −ḣF
0 for brevity. It is easy

to establish, cf. [38, Lemma 2.4], that the following bound holds

sup
x∈X

∣

∣φ(hL,F)(x)
∣

∣ ≤ ‖F‖. (2.6)

Theorem 2.1 ( [43, Theorem 1.1]). For a bounded submultiplicative filtration F on R(Y, F ), the

sequence of functions x 7→ 1
kn
BF ,g

k (x), x ∈ Y , k ∈ N, is uniformly bounded and converges

pointwise to a function which equals g(φ(hL,F)) almost everywhere.

Let us explain the relation between Theorem 2.1 and the respective convergence for jumping

measures. Remark the following basic identity

1

n!

∫

BF ,g
k (x)c1(L, h

L)n = Tr
[

g
(A(Hilbk(h

L),Fk)

k

)]

. (2.7)

We define the jumping measures, µF ,k, on R associated with Fk as

µF ,k :=
1

Nk

Nk
∑

j=1

δ
[eF(j, k)

k

]

, (2.8)
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where δ[x] is the Dirac mass at x ∈ R and eF(j, k) are the jumping numbers, defined as follows

eF (j, k) := sup
{

t ∈ R : dimFtH
0(X,L⊗k) ≥ j

}

. (2.9)

Directly from Theorem 2.1, Lebesgue dominated convergence theorem and the asymptotic

Riemann-Roch-Hirzebruch theorem saying that Nk ∼ kn ·
∫

c1(F )n/n!, we see that the sequence

of measures µF ,k converge weakly, as k → ∞, to a measure µF on R, which satisfies

∫

R

g(x)dµF(x) =

∫

Y
g(φ(hL,F))c1(F, h

F )n
∫

Y
c1(F )n

. (2.10)

Weak convergence of jumping measures was first established by Chen [14] and Boucksom-Chen

[10]. Subsequently, Witt Nyström [83] proved (2.10) for filtrations associated with a C∗-action,

Hisamoto extended it in [48] for finitely generated filtrations, and the author [36, Theorem 5.4]

further extended it for bounded submultiplicative filtrations, as stated above.

We need to consider the family version of Theorem 2.1. Consider a holomorphic submersion

π : X → B between compact Kähler manifolds X and B of dimensions n+m and m respectively.

For a relatively ample line bundle L over X , we denote by Ek := R0π∗L
⊗k. For k ∈ N, we

consider a filtration

Ek = Fk
λ1,k

⊃ Fk
λ2,k

⊃ · · · ⊃ Fk
λqk,k

⊃ {0} =: Fk
λqk+1,k

, (2.11)

by coherent subsheaves. We assume that there is a subset S ⊂ B, negligible with respect to

Lebesgue measure on B, such that for any b /∈ S, the restriction of (2.11) to b induces a bounded

submultiplicative filtration of ⊕+∞
k=0Ek,b = R(Xb, L|Xb

). Later on, to simplify the notations, we

simply call the induced filtration on ⊕∞
k=0Ek bounded and submultiplicative away from S.

To make a connection between the theory of submultiplicative filtrations and the Harder-

Narasimhan filtrations, we need the following result, which for dimB = 1 is due to Chen [14], and

for dimB ≥ 2 is due to the author, see [39], cf. also [40] for the projective setting. Below, we use

the notations from (1.10) for the Harder-Narasimhan filtration of Ek. We introduce the following

proper analytic subsets of B:

S0
k := ∪qk

i=1Singsupp(FHN,k
λi

). (2.12)

Remark that when dimB = 1, the sets S0
k are empty.

Theorem 2.2. The Harder-Narasimhan filtrations (1.10) on Ek, k ∈ N, induce on ⊕∞
k=0Ek the

filtration which is bounded and submultiplicative away from ∪+∞
k=0S

0
k .

Remark that the jumping numbers of the restriction of the filtration (2.11) at a generic point

over the base B do not depend on the choice of the point. Due to this, we can define the jumping

measures, µF ,k, just as in (2.8), and by (2.10), they will converge weakly, as k → ∞, to a measure

on R that we denote by µF .

Directly from this and Theorem 2.2, we deduce the weak convergence of the probability mea-

sures ηHN
k from (1.4). To discuss the convergence of the Harder-Narasimhan potentials, we fix a

relatively positive Hermitian metric hL on L, ω := c1(L, h
L), a continuous function g : R → R,

and define the fiberwise weighted Bergman kernel, BF ,g,π
k (x) ∈ R, k ∈ N, x ∈ X , by gluing (2.2).

We denote by φπ(hL,F) the fiberwise geodesic ray associated with the restriction of (2.11) to

the fibers. Remark that φπ(hL,F) is only well defined for x ∈ X , so that π(x) /∈ S, but since S is

a negligible set, and the bound (2.6) holds, φπ(hL,F) makes sense as an element of L∞(X).
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Proposition 2.3. The sequence of functions x 7→ 1
kn
BF ,g,π

k (x), x ∈ X , k ∈ N, is uniformly

bounded over X , and converges almost everywhere to g(φπ(hL,F)). Moreover, for any relatively

Kähler (1, 1)-form ω ∈ c1(L), we have

∫

g(φπ(hL,F)) · ωn ∧ π∗ωm
B =

∫

x∈R
g(x)dµF(x) ·

∫

X

c1(L)
nπ∗[ωB]

m. (2.13)

Proof. Directly from the definition of BF ,g,π
k (x), we deduce that

|BF ,g,π
k (x)| ≤ Bπ

k (x) · sup
|x|≤‖F‖

|g(x)|, (2.14)

where Bπ
k (x) is the fiberwise Bergman kernel. Recall the following family version of (2.3):

1

kn
Bπ

k (x) converges uniformly to 1, as k → ∞, (2.15)

which follows directly from the proof [18], cf. also [61]. The boundness statement now follows

directly from (2.14) and (2.15).

By applying Theorem 2.1 to each fiber away from S, we deduce that for any b /∈ S, the function

BF ,g,π
k converges pointwise over Xb, as k → ∞. Moreover, the limit coincides almost everywhere

with g(φπ(hL,F)). Since the set S is negligible, we deduce by Fubini’s theorem that the sequence

of functions x 7→ 1
kn
BF ,g,π

k (x), x ∈ X , k ∈ N, converges almost everywhere to g(φπ(hL,F)).
The identity (2.13) is then established exactly as (2.10), the only difference is that we add the

integration along B as well.

Directly from Theorems 2.1, 2.2 and Proposition 2.3, we conclude the following.

Corollary 2.4. The sequence of functions x 7→ 1
kn+1HNk(ω)(x), x ∈ X , k ∈ N, is uniformly

bounded over X , and converges almost everywhere to HN(ω). Moreover, the identity (1.15) holds.

3 A minimizing sequence for the Wess-Zumino-Witten functional

The main goal of this section is to give an outline of the proofs of Theorems 1.1, 1.6. More pre-

cisely, we first show that the lower bound on the Wess-Zumino-Witten functional follows directly

from the previous work [39] of the author. We then describe a relation between the fact that this

lower bound is sharp and the fact that, asymptotically, the infimum of the Hermitian Yang-Mills

functional on direct images is saturated by the L2-metrics. Finally, we describe how to construct

the forms ωǫ from Theorem 1.6.

We follow the notations introduced before Theorem 1.1. Fix an arbitrary smooth closed rela-

tively positive (1, 1)-form α in the class c1(L)− tπ∗[ωB], t ∈ R.

Proposition 3.1. For any α as above, we have

WZW(α, ωB) ≥
∫

x∈R
|x− t|dηHN(x) ·

∫

X

c1(L)
nπ∗[ωB]

m · (n + 1). (3.1)

Let us introduce some notations which will be useful in the proof of Proposition 3.1 and later

on. We define the (1, 1)-form ω := α + tπ∗ωB. As ω is positive along the fibers, it provides a
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(smooth) decomposition of the tangent space TX of X into the vertical component T VX , cor-

responding to the tangent space of the fibers, and the horizontal component THX , correspond-

ing to the orthogonal complement of T VX with respect to ω. The form ω then decomposes as

ω = ωV + ωH , ωV ∈ C ∞(X,∧1,1T V ∗X), ωH ∈ C ∞(X,∧1,1TH∗X). Upon the natural identifi-

cation of THX with π∗TB, we may view ωH as an element from C ∞(X,∧1,1π∗T ∗B). We define

∧ωB
ωH ∈ C ∞(X), as ∧ωB

ωH := ωH ∧ ωm−1
B /ωm

B . We also fix a relatively positive Hermitian

metric hL on L verifying c1(L, h
L) = ω.

Recall now that for a Hermitian metric hE on a holomorphic vector bundle E over B, for any

t ∈ R, the Hermitian Yang-Mills functional is defined as

HYMt(E, hE, ωB) :=
∥

∥

∥

√
−1

2π
RhE ∧ ωm−1

B − tIdE · ωm
B

∥

∥

∥

tr

L1(B,hE)
, (3.2)

where here and after RhE
is the curvature of the Chern connection of (E, hE). Remark that our

terminology is slightly different from the generally accepted one, where the Hermitian Yang-Mills

functional is related to the L2-norm instead of the L1-norm.

Proof of Proposition 3.1. We will show that Proposition 3.1 is an easy consequence of a more gen-

eral result giving lower bounds on the Fibered Yang-Mills functionals introduced in [39, Theorem

1.7]. Directly from the definition of ∧ωB
ωH , we have

αn+1 = (∧ωB
ωH − t) · ωn ∧ π∗ωm

B · (n+ 1). (3.3)

Hence, by the relative positivity of ω, we have

WZW(α, ωB) =

∫

X

| ∧ωB
ωH − t| · ωn ∧ π∗ωm

B · (n+ 1). (3.4)

But for a Hermitian metric hL on L, such that ω coincides with the first Chern form, c1(L, h
L), of

L, the right-hand side of (3.4) corresponds (up to a multiplication by (n+1)) to the Fibered Yang-

Mills functional, FYM1,t(π, h
L), introduced by the author in [39, (1.5)]. The result now follows

directly from (3.4) and [39, Theorem 1.7]. For further purposes, let us recall the crucial steps from

the argument. First, by [39, (2.15)] and (3.4), we obtain

lim
k→∞

1

kNk

HYMtk(Ek,Hilb
π
k(h

L), ωB) =
1

π∗c1(L)n · (n + 1)
WZW(α, ωB), (3.5)

where the L2-norm Hilbπ
k(h

L) was defined in (1.9). From the lower bounds on the Hermitian Yang-

Mills functional due to Atiyah-Bott [3, Proposition 8.20] (for dimB = 1) and Daskalopoulos-

Wentworth [19, Lemma 2.17, Corollary 2.22, Proposition 2.25] (for general Kähler B), applied for

Ek for k big enough, so that Ek is locally free, for any Hermitian metric Hk on Ek, we have

1

kNk

HYMtk(Ek, Hk, ωB) ≥
∫

x∈R
|x− t|dηHN

k (x) ·
∫

B

[ωB]
m. (3.6)

From the weak convergence, as k → ∞, of the measures ηHN
k , (1.4), established by Chen in [14,

Theorem 4.3.6] (in the case dimB = 1) and then by the author [39, Theorem 1.5] (for general

Kähler B), we conclude that

lim
k→∞

∫

x∈R
|x− t|dηHN

k (x) =

∫

x∈R
|x− t|dηHN(x). (3.7)

The proof now follows from (3.5) and (3.6), (3.7).
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Now, Theorem 1.1 claims that the lower bound established in Proposition 3.1 is sharp. As

described after Theorem 1.6, it suffices to establish Theorem 1.6 to show this. We will concentrate

on this from now on, but before this, let us explain a connection between Theorem 1.1 and the

asymptotic minimization of the Hermitian Yang-Mills functionals.

Theorem 3.2. For any ǫ > 0, there is a relatively positive Hermitian metric hL
ǫ on L, and k0 ∈ N,

such that for any k ≥ k0, t ∈ R, we have

HYMtk(Ek,Hilb
π
k(h

L
ǫ ), ωB) ≤ inf

Hk

HYMtk(Ek, Hk, ωB) + ǫkNk, (3.8)

where the infimum is taken over all Hermitian metrics Hk on Ek.

Remark 3.3. a) By (3.6) and (3.7), infHk
HYMtk(Ek, Hk, ωB) is comparable with kNk.

b) Not every Hermitian metric on Ek is the L2-metric of some metric on the line bundle,

cf. [77]. Hence, even the existence of hL
ǫ , verifying (3.8) for one fixed k ∈ N∗ seems to be non

trivial. Theorem 3.2, claims much more: such L2-metrics can be chosen in a related manner.

Proof of Theorem 3.2 assuming Theorem 1.1. First of all, for any ǫ > 0, Theorem 1.1 assures the

existence of a relatively positive metric hL
ǫ on L, verifying

WZW(c1(L, h
L
ǫ )− tπ∗ωB, ωB) ≤

∫

x∈R
|x− t|dηHN(x) ·

∫

X

c1(L)
nπ∗[ωB]

m · (n+ 1) +
ǫ

2
. (3.9)

It then follows by (3.5), (3.6) and (3.7) that (3.8) holds for hL
ǫ as in (3.9).

To explain our construction of ωǫ from Theorem 1.6, remark that the Fubini-Study operator

from (2.4) can be considered in the relative setting, meaning that for any k sufficiently large so

that L⊗k is relatively very ample, we can associate for any Hermitian metric Hk on Ek a relatively

positive Hermitian metric FS(Hk) on L⊗k using the relative Kodaira embedding Kodk : X →֒
P(E∗

k), which can be put into the following commutative diagram

X P(E∗
k)

B.

Kodk

π
p (3.10)

and the isomorphism Kod∗kO(1) → L⊗k, where O(1) is the relative hyperplane bundle on P(E∗
k).

Now, our construction of ωǫ from Theorem 1.6 will be done by dequantization (i.e. an appli-

cation of the Fubini-Study operator) to some sequence of metrics on Ek, which saturate the lower

bound on the respective Hermitian Yang-Mills functionals. One of the main difficulties in our

analysis lies in the fact that these Hermitian metrics on Ek have a priori nothing to do with the

Hermitian metrics constructed by the quantization (the L2-metrics), which were used in (3.5) to

get the lower bounds for the Wess-Zumino-Witten functional.

We will now describe a specific choice of the minimizing sequence of metrics for the Hermitian

Yang-Mills functional on Ek one has to choose. For this, let us recall a definition of approximate

critical Hermitian structures. Roughly, an approximate critical Hermitian structure on a vector

bundle E over B is a Hermitian metric on E, which is in some sense well-adapted to the Harder-

Narasimhan filtration, FHN , of E.
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In order to state the definition precisely, we first define the weight operator of a filtration, which

is another object playing a fundamental role in this paper. Remark that any (decreasing) filtration

F on the Hermitian vector space (V,H) induces the weight operator A(H,F) ∈ End(V ), as

A(H,F)ei = wF(ei) · ei, (3.11)

where e1, . . . , er, r := dimV , is an orthonormal basis of (V,H) adapted to the filtration F in the

same sense as described after (1.10).

The definition (3.11) also makes sense in the family setting: when a vector space is replaced

by a vector bundle over a manifold, a Hermitian product is replaced by a Hermitian metric, and the

filtration is replaced by filtrations by subsheaves over the manifold. When the filtration is given

by subbundles (and not by subsheaves), and the Hermitian metric is smooth, it is immediate to see

that the weight operator becomes a smooth section of the respective endomorphism bundle.

Following Kobayashi [53], we say that a Hermitian metric hE on a holomorphic vector bundle

E over B is a critical Hermitian structure on E if the curvature of it satisfies
√
−1
2π

RhE ∧ ωm−1
B =

A(hE ,FHN) · ωm
B , where b 7→ A(hE,FHN)(b) ∈ End(Eb) is the weight operator associated with

the Harder-Narasimhan filtration. Critical Hermitian structures correspond to the minimizers of

the Hermitian-Yang-Mills functional. Unfortunately, these do not exist on arbitrary vector bundles,

see [82], [29] and [53, Theorem 4.3.27], and so cannot be used for our purposes.

To circumvent this, following Daskalopoulos-Wentworth, [19], we say that hE is an L1 δ-

approximate critical Hermitian structure on E if

∥

∥

∥

√
−1

2π
RhE ∧ ωm−1

B − A(hE ,FHN) · ωm
B

∥

∥

∥

L1(B,hE)
≤ δ. (3.12)

A result of Atiyah-Bott [3, proof of Proposition 8.20] (for dimB = 1), Daskalopoulos-Wentworth,

[19, Theorem 3.11] (for dimB = 2) and Sibley [73, Theorem 1.3] (for any dimension), says

that, unlike critical Hermitian structures, L1 δ-approximate critical Hermitian structures exist on

arbitrary holomorphic vector bundles over compact manifolds for any δ > 0. It is then an easy

verification that, as δ → 0, these metrics saturate the sharp lower bounds (as in (3.6)) on the

Hermitian Yang-Mills functional. Later, for brevity, we omit L1 from the above notation.

We establish in Theorem 7.3 that the construction of geodesic rays associated with the Harder-

Narasimhan filtration and δ-approximate critical Hermitian structures are in certain sense compat-

ible. Motivated by this, our construction of ωǫ from Theorem 1.6 is given by the dequantization of

these geodesic rays. However, as the Harder-Narasimhan filtrations are given by subsheaves and

not by subbundles (unless dimB = 1), the resulting sequence of metrics would not be smooth in

general. To overcome this issue, we need to resolve the singularities of the filtration first.

Using the resolution of indeterminacy of meromorphic maps, see Hironaka [46], [47], it is

classical, cf. [73, Proposition 4.3], that for any filtration of a holomorphic vector bundle E over B
by saturated subsheaves E = Fλ1 ⊃ Fλ2 ⊃ · · · ⊃ Fλq , there is a modification µ0 : B0 → B of B
such that µ̃∗

0Fλi
:= Sat(µ∗

0Fλi
), i = 1, . . . , q, are locally free, and form a filtration

µ∗
0E = µ̃∗

0Fλ1 ⊃ µ̃∗
0Fλ2 ⊃ · · · ⊃ µ̃∗

0Fλq , (3.13)

which we denote by µ̃∗
0F .

We denote by µk : Bk → B a modification of B, corresponding to the resolution of the Harder-

Narasimhan filtration, (1.10), (given by the saturated subsheaves, see [53, Lemma 5.7.5])

µ∗
kEk = µ̃∗

kFHN,k
λ1

⊃ µ̃∗
kFHN,k

λ2
⊃ · · · ⊃ µ̃∗

kFHN,k
λqk

, (3.14)
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constructed as in (3.13), i.e. µ̃∗
kFHN,k

λi
= Sat(µ∗

kFHN,k
λi

). Denote by Xk the pull-back of µk and

π, and by πk : Xk → Bk, pk : Xk → X be the corresponding projection maps, i.e. such that the

following diagram is commutative

Xk X

Bk B.

pk

πk π

µk

(3.15)

For further purposes, we introduce the following subsets

Sk := ∪qk
i=1supp(µ̃

∗
kFHN,k

λi
/µ∗

kFHN,k
λi

). (3.16)

Clearly, Sk are proper analytic subsets of Bk and µk(Sk) ⊂ S0
k , where S0

k were defined in (2.12).

Now, remark that for a smooth relatively Kähler (1, 1)-form ω in the class c1(L), the value of

the Harder-Narasimhan potential HNk(ω), from (1.11), along a fixed fiber depends only on the

restriction of ω to this fiber. In particular, if ω is now a smooth relatively Kähler form in the class

p∗kc1(L), one can still make sense of its Harder-Narasimhan potential as a function defined away

from π−1
k (µ−1

k (∪+∞
k=0S

0
k)). We denote the resulting function by p∗kHNk(ω), and the uniform bound

from (2.6) says that it is an element of L∞(Xk). The remainder of the article, up to Section 12, is

devoted to proving the following result.

Theorem 3.4. For any ǫ > 0, there are δ > 0, k ∈ N, such that for any δ-approximate critical

Hermitian structure Hδ,k on Ek, there is s ∈ [0,+∞[, such that for the geodesic ray of Hermitian

metrics Hδ,k,s on µ∗
kEk, departing from µ∗

kHδ,k and associated with the resolution of the Harder-

Narasimhan filtration (3.14), the (1, 1)-form ωδ,k,s := c1(p
∗
kL, FS(Hδ,k,s)

1
k ) verifies

∫

Xk

∣

∣

∣
ωn+1
δ,k,s ∧ π∗

kµ
∗
kω

m−1
B − p∗kHN(ωδ,k,s) · ωn

δ,k,s ∧ π∗
kµ

∗
kω

m
B · (n+ 1)

∣

∣

∣
≤ ǫ. (3.17)

Let us explain why Theorem 3.4 implies Theorem 1.6. For this, we need to show that the value

of the Wess-Zumino-Witten functional is not affected by the birational modifications of the base.

More precisely, let µ0 : B0 → B be a modification. We define X0 through the pull-back of µ and

π, and let π0 : X0 → B0, p0 : X0 → X be the corresponding projection maps, i.e. for k := 0, the

diagram (3.15) is commutative.

Proposition 3.5. For any ǫ > 0, and a relatively Kähler (1, 1)-form ω0 on X0 in the class p∗0c1(L),
there is a compact subset K ⊂ B \Crit(µ0), such that for any compact subset K ′ ⊂ B \Crit(µ0),
verifying K ⊂ K ′, there is a relatively Kähler (1, 1)-form ω on X in the class c1(L), so that over

π−1
0 (µ−1

0 (K ′)), the forms ω0 and p∗0ω coincide, and

∫

X0\π−1
0 (µ−1

0 (K ′))

∣

∣ωn+1
0 ∧ π∗

0µ
∗
0ω

m−1
B

∣

∣ < ǫ,

∫

X\π−1(K ′)

∣

∣ωn+1 ∧ π∗ωm−1
B

∣

∣ < ǫ. (3.18)

Remark 3.6. The result is inspired by [23, Proposition 2.1].

Proof. We fix ǫ > 0 and choose a compact subset K ⊂ B \ Crit(µ0) in such a way that the first

bound from (3.18) is satisfied for K ′ := K with ǫ := ǫ
2
. This is clearly always possible since

π−1
0 (µ−1

0 (Crit(µ0))) has Lebesgue measure zero.
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We take an arbitrary compact subset K ′ ⊂ B \Crit(µ0), verifying K ⊂ K ′. We fix an arbitrary

relatively Kähler (1, 1)-form ω′ on X in the class c1(L), and write ω0 = p∗0ω
′ +

√
−1∂∂φ, for a

smooth function φ : X0 → R. Since Crit(µ0) is a complex-analytic subset of B of codimension

at least 2, it has Hausdorff codimension at least 4. From [1, Theorem 5.1.9], it implies that the

Sobolev (2, 2m
m+2

)-capacity of Crit(µ0) is zero, cf. [1, Definition 2.2.1] for the definition of the

Sobolev capacity. By [1, Definition 2.7.1, Corollary 3.3.4 and p. 208], this means that there

is a sequence of smooth functions ρk : B → R, k ∈ N, taking value 1 in a neighborhood of

Crit(µ0) (with neighborhoods varying for different k) and with support away from K ′, such that

their (2, 2m
m+2

)-Sobolev norms tend to zero. As a consequence, we have
∫

B
|∆ωB

ρk|ωm
B → 0, as

k → ∞, and by Sobolev embedding theorem, we also have
∫

B
|dρk|2ωm

B → 0, as k → ∞.

We now consider the form ωk := ω′+
√
−1∂∂((1−π∗ρk) ·φ). Remark that since ρk takes value

1 in a neighborhood of Crit(µ0), ωk coincides with ω′ in a neighborhood of Crit(µ0), and hence

makes sense as a (1, 1)-form on X . Moreover, as ρk has support away from K ′, over π−1
0 (µ−1

0 (K ′)),
the forms ω0 and p∗0ωk coincide. Directly from the above bounds on the derivatives of ρk, we deduce

lim
k→∞

∫

X0

∣

∣

∣
ωn+1
0 ∧ π∗

0µ
∗
0ω

m−1
B − p∗

(

ωn+1
k ∧ π∗ωm−1

B

)

∣

∣

∣
= 0, (3.19)

which easily implies that for k ∈ N big enough, ω := ωk will satisfy the second bound (3.18).

Proof of Theorem 1.6. We fix ǫ > 0 and consider ωδ,k,s given by Theorem 3.4. We fix a compact

subset K ⊂ B \Crit(µk), given by Proposition 3.5. We take a compact subset K ′ ⊂ B \Crit(µ0),
K ⊂ K ′, which we specify later. Using Proposition 3.5, we find a relatively Kähler (1, 1)-form ωǫ

on X in the class c1(L), so that over π−1
k (µ−1

k (K ′)), the forms ωδ,k,s and p∗kωǫ coincide, and

∫

Xk\π−1
k (µ−1

k (K ′))

∣

∣ωn+1
δ,k,s ∧ π∗

kµ
∗
kω

m−1
B

∣

∣ < ǫ,

∫

X\π−1(K ′)

∣

∣ωn+1
ǫ ∧ π∗ωm−1

B

∣

∣ < ǫ. (3.20)

Remark that due to coincidence of ωδ,k,s with p∗kωǫ over π−1
k (µ−1

k (K ′)), we have p∗kHN(ωδ,k,s) =
p∗k(HN(ωǫ)) over π−1

k (µ−1
k (K ′)). From this and (3.17), the following bound is then immediate

∫

X

∣

∣

∣
ωn+1
ǫ ∧ π∗ωm−1

B − HN(ωǫ) · ωn
ǫ ∧ π∗ωm

B · (n+ 1)
∣

∣

∣

≤
∫

Xk\π−1
k (µ−1

k (K ′))

∣

∣ωn+1
δ,k,s ∧ π∗

kµ
∗
kω

m−1
B

∣

∣+

∫

X\π−1(K ′)

∣

∣ωn+1
ǫ ∧ π∗ωm−1

B

∣

∣

+ (n+ 1) ·
∫

Xk\π−1
k (µ−1

k (K ′))

∣

∣

∣
p∗kHN(ωδ,k,s) · ωn

δ,k,s ∧ π∗
kµ

∗
kω

m
B

∣

∣

∣

+ (n+ 1) ·
∫

X\π−1(K ′)

∣

∣

∣
HN(ωǫ) · ωn

ǫ ∧ π∗ωm
B

∣

∣

∣
+ ǫ.

(3.21)

Remark, however, that by (2.6), there is C > 0, such that |HN(ωδ,k,s)| < C, |HN(ωǫ)| < C. From

this, (3.20) and (3.21), we conclude that

∫

X

∣

∣

∣
ωn+1
ǫ ∧ π∗ωm−1

B −HN(ωǫ) · ωn
ǫ ∧ π∗ωm

B · (n+ 1)
∣

∣

∣

≤ 2C · (n + 1) · π∗(c1(L)
n) ·

∫

B\K ′

ωm
B + 3ǫ. (3.22)
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The right-hand side of (3.22) can be made smaller than 4ǫ by taking bigger K ′. In particular, the

forms ωǫ satisfy Theorem 1.6, for ǫ := 4ǫ. But as ǫ > 0 was chosen in an arbitrary way, this

finishes the proof.

Proof of Theorem 1.1. By Propositions 3.1, it suffices to establish the upper bound on

WZW(c1(L)− tπ∗[ωB], ωB). As explained in Introduction, it follows from Theorem 1.6.

4 Dequantization of approximate critical Hermitian structures

The main goal of this section is to prove Theorem 3.4 modulo a number of technical results which

will be treated later in this article. We will conserve the notations from Introduction and Section 3.

Our proof of Theorem 3.4 is based on the well-known fact that section rings of polarized

projective manifolds are finitely generated. More precisely, the following family version of this

result is used: there is k0 ∈ N∗, such that for any k ∈ N∗, k0|k, l ∈ N∗, the multiplication map

Multk,l : Sym
lEk → Ekl, (4.1)

is surjective, see [56, Example 2.1.30] or [36, Proposition 3.1], for a proof of a non-family ver-

sion of this result, which easily adapts to the family setting considered here. To simplify further

presentation, we shall assume that k0 = 1.

The surjectivity of (4.1) allows us to apply the constructions of the quotient norms from (1.18)

for the map (4.1). For an arbitrary Hermitian metric Hk on Ek (resp. µ∗
kEk), it would yield the

induced quotient metric on Ekl (resp. µ∗
kEkl), which we denote by [SymlHk]. Similar notations

are used for the induced filtrations. Our proof of Theorem 3.4 is based on a detailed study of the

metric [SymlHδ,k,s] on Ekl, as l → ∞, where Hδ,k,s was defined in Theorem 3.4.

To explain our proof, we need to recall the definition of a Toeplitz operator. We recall first

a non-family version of it, and for this, we fix a complex projective manifold Y polarized by an

ample line bundle F endowed with a positive Hermitian metric hF on F . Recall that for any

f ∈ L∞(Y ), the Toeplitz operator, T hF

k (f) ∈ End(H0(Y, F⊗k)), is defined as follows

T hF

k (f) := Bk ◦Mf,k, (4.2)

where Bk : L∞(Y, F⊗k) → H0(Y, F⊗k) is the orthogonal (with respect to the associated L2-norm

Hilbk(h
F )) projection to H0(Y, F⊗k), and Mf,k : H

0(Y, F⊗k) → L∞(Y, F⊗k) is the multiplication

map by f , acting as s 7→ f · s. We call f ∈ L∞(Y ) the symbol of the Toeplitz operator.

For a smooth vector bundle G on B, and f ∈ L∞(X, π∗G), we define the family version of

Toeplitz operator, T π,hL

k (f) ∈ L∞(B,End(Ek)⊗G), by gluing (4.2) fiberwise.

The proof of Theorem 3.4 then decomposes into several parts, which we roughly summarize

as follows. First, we show that for any Hermitian metric Hk on Ek, the metric [SymlHk] is very

close to the one provided by the quantization, Hilbπ
kl(FS(Hk)

1/k). Most importantly, we show that

the curvatures of these two Hermitian metrics are close enough. Second, we roughly show that

for carefully chosen parameters l, δ, k, s, the Hermitian metric [SymlHδ,k,s] on µ∗
kEkl is very close

to being an approximate critical Hermitian structure in the sense that its curvature is very close to

the weight operator associated with Harder-Narasimhan filtration. Third, we show that the weight

operator associated with the Harder-Narasimhan filtration is very close to the Toeplitz operator

with the symbol given by the Harder-Narasimhan potential of the metric, defined in (1.11).

A combination of the second and the third arguments above show that the curvature of

[SymlHδ,k,s] is close to the Toeplitz operator with the symbol given by the Harder-Narasimhan
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potential. On another hand, a result of Ma-Zhang [61] says that for a relatively positive Hermitian

metric hL on L, the curvature of L2-metric Hilbπ
k(h

L) is also a Toeplitz operator, and the symbol

is given by the horizontal component of c1(L, h
L). However, since the curvatures of [SymlHδ,k,s]

and Hilbπ
kl(FS(Hδ,k,s)

1/k) are very close by the first argument, the two expressions above should

essentially coincide. As both expressions are given by Toeplitz operators, this means that the re-

spective symbols should be close. But this means precisely that the Harder-Narasimhan potential

of ωδ,k,s essentially coincides with the horizontal curvature of ωδ,k,s. A simple manipulation shows

that this is just a reformulation of Theorem 3.4, which finishes its proof.

We now provide a detailed description, starting with a more precise discussion of the key com-

ponents involved in the proof. First, in Section 5, relying on the semiclassical Ohsawa-Takegoshi

extension theorem from [41] and on subsequent works [36], [35], we establish the following result.

Theorem 4.1. For any k ∈ N and a Hermitian metric Hk on Ek, there are l0 ∈ N, C > 0, such

that for any l ≥ l0, we have

∥

∥

∥

√
−1

2π
R[SymlHk] −

√
−1

2π
RHilbπkl(FS(Hk)

1/k)
∥

∥

∥
≤ C

√
l, (4.3)

where the norm ‖ · ‖ is for a norm induced by a fixed metric on TB, and the subordinate norm on

End(Ek) associated with Hilbπ
kl(FS(Hk)

1/k).

We will also need to compare the metrics themselves. In this direction, the following easy

consequence of [35], [42], will be explained in details in Section 5.

Proposition 4.2. For any k ∈ N and a Hermitian metric Hk on Ek, there are l0 ∈ N, C > 0, such

that for any l ≥ l0, we have

1− C√
l
≤ [SymlHk]

Hilbπ
kl(FS(Hk)1/k)

· 1

kmln
≤ 1 +

C√
l
. (4.4)

We now fix a relatively positive Hermitian metric hL on L, and denote ω := c1(L, h
L). We

denote by ωH ∈ C ∞(X,∧1,1π∗T ∗B) the horizontal part of the curvature, ω, defined as before

Proposition 3.1. The following result, which was already used in our proof of (3.5) from [39], will

continue to play a crucial role in our work.

Theorem 4.3 ( Ma-Zhang [61, Theorem 0.4] ). There are C > 0, l0 ∈ N, such that for any l ≥ l0,

∥

∥

∥

√
−1

2π
RHilbπl (h

L) − l · T π,hL

l (ωH)
∥

∥

∥
≤ C, (4.5)

where the norm ‖ · ‖ here is as in (4.3), with Hilbπ
l (h

F ) instead of Hilbπ
kl(FS(Hk)

1/k).

The following result is technically the most difficult part of this paper. Roughly, it shows that

approximate critical Hermitian structures can be constructed inductively. It is the only statement

of the paper which depends truly on the fact that we are dealing with the Harder-Narasimhan

filtrations on ⊕+∞
k=0Ek, and not with arbitrary bounded submultiplicative filtrations.

To state it, for any δ > 0, k ∈ N, we denote by Hδ,k a δ-approximate critical Hermitian structure

on Ek. We use the notation µ̃∗
kFHN,k for the resolution of the Harder-Narasimhan filtration as in

(3.14). For any s ∈ [0,+∞[, we denote by Hδ,k,s the geodesic ray of Hermitian metrics on µ∗
kEk

departing from µ∗
kHδ,k and associated with µ̃∗

kFHN,k. We also use the notation for the weight

operator from (3.11).
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Theorem 4.4. For any ǫ > 0, there is k0 ∈ N, such that for any k ≥ k0, there are l0 ∈ N, C > 0,

δ > 0, such that for any l ≥ l0, s ≥ 1, we have

∥

∥

∥

√
−1

2π
R[SymlHδ,k,s] ∧ µ∗

kω
m−1
B − A([SymlHδ,k,s], [Sym

lµ̃∗
kFHN,k]) · µ∗

kω
m
B

∥

∥

∥

tr

L1(Bk,[Sym
lHδ,k,s])

≤
(Cl

s
+ C + ǫl

)

·Nkl. (4.6)

Remark 4.5. This result highlights the importance of considering geodesic rays in our construction

from Theorem 3.4. Indeed, the right-hand side of (4.6) becomes small only for s large enough.

The most crucial part of the proof of Theorem 4.4 is based on the precise study of the weight

operators along geodesic rays. The full proof occupies Sections 7-11.

The next result shows that number operators behave well with respect to the change of the

metric. The proof will be based on the analysis from [43], and is postponed until Section 6.

Theorem 4.6. For any k ∈ N, a Hermitian metric Hk on Ek and a filtration Fk on Ek, there are

l0 ∈ N, C > 0, such that for any l ≥ l0, we have

∥

∥

∥
A([SymlHk], [Sym

lFk])− A(Hilbπ
kl(FS(Hk)

1/k), [SymlFk])
∥

∥

∥
≤ C

√
l log(l), (4.7)

where the norm ‖ · ‖ here is as in (4.3).

The final essential step is to compare the weight operator to the Toeplitz operator. The follow-

ing result, based on our recent work [43], will be crucial for this.

Theorem 4.7. For any bounded submultiplicative filtration F := ⊕+∞
k=0Fk on ⊕+∞

k=0Ek, a relatively

positive Hermitian metric hL on L and ǫ > 0, there is k1 ∈ N, such that for any k ≥ k1, there is

l0 ∈ N, such that for any l ≥ l0, we have

∥

∥

∥
A(Hilbπ

kl(h
L), [SymlFk]) · ωm

B − kl · T π,hL

kl (φπ(hL,F)) · ωm
B

∥

∥

∥

tr

L1(B,Hilbπkl(h
L))

≤ ǫ · kl ·Nkl, (4.8)

where φπ(hL,F) is the fiberwise geodesic ray, defined in Proposition 2.3.

We will also need the following basic statement.

Proposition 4.8. For any relatively positive Hermitian metric hL on L, ω := c1(L, h
L), f ∈

L∞(X), we have

lim
k→∞

‖T π,hL

k (f) · ωm
B ‖trL1(B,Hilbπk (h

L))

Nk ·
∫

B
[ωB]m

=

∫

X
|f(x)|ωn ∧ π∗ωm

B
∫

X
c1(L)n · π∗[ωB]m

. (4.9)

Proof. Let us describe first the analogous statement in the non-family setting. Recall that in [43,

Theorem 5.4], we established that for non-smooth symbols, the asymptotic spectral theory of

Boutet de Monvel-Guillemin [55, Theorem 13.13] continues to hold. In particular, following the

notations from (4.2), for any g ∈ L∞(Y ), we have

lim
k→∞

Tr[|T hF

k (g)|]
Nk

=

∫

Y
|g(x)|c1(F, hF )n
∫

Y
c1(F )n

. (4.10)
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Recall also, cf. [43, Lemma 5.7], that for the operator norm the following trivial bound holds

‖T hF

k (g)‖ ≤ esssupx∈Y |g(x)|. (4.11)

Directly from (4.11), we deduce that the sequence of functions b 7→ 1
Nk

Tr[|T π,hL

k (f)(b)|], b ∈ B,

is uniformly bounded in k ∈ N. From (4.10), we also have the pointwise convergence. Proposition

4.8 then follows by the Lebesgue dominated convergence theorem.

Proof of Theorem 3.4. We fix an arbitrary ǫ > 0. For simplicity of the notation, we let hL
δ,k,s :=

FS(Hδ,k,s)
1/k. Remark that a combination of Theorems 4.1, 4.3, 4.4 and Proposition 4.2, yield

that for the horizontal part, ωδ,k,s,H, defined as in Theorem 4.3, of the form ωδ,k,s from Theorem

3.4, the following holds. There is k1 ∈ N, such that for any k ≥ k1, there are C1 > 0, δ > 0, such

that for any s ≥ 1, there are l1 ∈ N, C ′
1 > 0, so that for any l ≥ l1, we have

∥

∥

∥
klT

π,hL
δ,k,s

l (ωδ,k,s,H) ∧ µ∗
kω

m−1
B − A([SymlHδ,k,s], [Sym

lµ̃∗
kFHN,k]) · µ∗

kω
m
B

∥

∥

∥

tr

L1(Bk,Hilbπkl(h
L
δ,k,s))

≤
(C1l

s
+ C ′

1

√
l + ǫl

)

·Nkl. (4.12)

A combination of Theorems 2.2, 4.6 and 4.7 yields that there is k2 ∈ N, such that for any

k ∈ N, k ≥ k2, δ > 0, s > 0, there are l2 ∈ N, C2 > 0, such that for any l ≥ l2, we have

∥

∥

∥
A([SymlHδ,k,s], [Sym

lµ̃∗
kFHN,k]) · µ∗

kω
m
B

− kl · T π,hL
δ,k,s

kl (p∗kHN(ωδ3,k3,s3)) ∧ µ∗
kω

m−1
B

∥

∥

∥

tr

L1(Bk ,Hilbπkl(h
L
δ,k,s))

≤ C2

√
l log(l)Nkl + ǫlNkl. (4.13)

We now fix k3 := max{k1, k2}. Let δ3 > 0 be such that (4.12) holds, and let s3 := C1

ǫ
. If we

combine (4.12) with (4.13), we obtain that there is l3 ∈ N, such that for any l ≥ l3, we have

∥

∥

∥
T

π,hL
δ3,k3,s3

k3l
(ωδ3,k3,s3,H) ∧ µ∗

k3
ωm−1
B

− T
π,hL

δ3,k3,s3
k3l

(p∗k3HN(ωδ3,k3,s3)) ∧ µ∗
k3ω

m−1
B

∥

∥

∥

tr

L1(Bk3
,Hilbπk3l

(hL
δ3,k3,s3

))

≤ 4ǫNk3l. (4.14)

Directly from Proposition 4.8, by dividing both sides of (4.14) by Nk3l and taking l → ∞, we get

∫

Xk3

∣

∣

∣
ωδ3,k3,s3,H − p∗k3HN(ωδ3,k3,s3)

∣

∣

∣
· ωn

δ3,k3,s3 ∧ π∗
k3µ

∗
k3ω

m
B ≤ 4ǫ ·

∫

B
[ωB]

m

∫

X
c1(L)n · π∗[ωB]m

. (4.15)

Remark, however, that by the definition of ωδ3,k3,s3,H , (4.15) yields

∫

Xk3

∣

∣

∣
ωn+1
δ3,k3,s3

∧ π∗
k3
µ∗
k3
ωm−1
B − p∗kHN(ωδ3,k3,s3) · ωn

δ3,k3,s3
∧ π∗

k3
µ∗
k3
ωm
B · (n+ 1)

∣

∣

∣

≤ 4ǫ · (n + 1) ·
∫

B
[ωB]

m

∫

X
c1(L)n · π∗[ωB]m

. (4.16)

Since ǫ > 0 is arbitrary, this establishes Theorem 3.4.
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5 Curvature of direct images and semiclassical extension theorem

The main goal of this section is to prove Theorem 4.1. The proof primarily relies on the semi-

classical version of the Ohsawa-Takegoshi extension theorem developed in [41]. Recall that the

classical version of the extension theorem [65] states that under certain positivity conditions on

a vector bundle, any holomorphic section defined on a submanifold can be extended to the entire

ambient manifold, with a specific control on the L2-norm of the extension. In the semiclassical

version, we consider not just a single vector bundle but a sequence of vector bundles given by high

tensor powers of a fixed ample line bundle, and we examine not only the control of the L2-norm

but also an asymptotic formula for the optimal extension itself. Previous results by Bost [8] and

Zhang [89] provided some results concerning subexponential bounds on the optimal constant in

this semiclassical setting, but the version required here is from [41] (see also [42] for an alternative

proof), which not only determines the optimal constant in the semiclassical setting but also the

asymptotics of the optimal extension itself.

To put Theorem 4.1 in the framework of this theorem, consider a holomorphic submersion

π : X → B between compact Kähler manifolds X and B of dimensions n+m and m respectively.

We fix a compact complex manifoldP of dimensions n′+m, n′ > n, with a submersion p : P → B
and a complex embedding ι : X → P , so that we have the following commutative diagram

X P

B

ι

π p (5.1)

Consider a relatively positive Hermitian line bundle (F, hF ) over P . For any l ∈ N, we define

Gl := R0π∗(ι
∗F⊗l) and Kl := R0p∗F

⊗l. It is a classical consequence of Serre’s vanishing theorem

that for l ∈ N big enough, the restriction map

Resl : Kl → Gl (5.2)

is surjective. From now on, we only work with l ∈ N verifying this, and such that both Gl and Kl

are locally free.

We denote by Hilbπ
l (ι

∗hF ) (resp. Hilbp
l (h

F )) the L2-product on Gl (resp. Kl) induced by hF as

in (1.9). Recall that in [35], [42], we compared the Hermitian metrics [Hilbp
l (h

F )] and Hilbπ
l (ι

∗hF )
on Gl. Let us recall this statement.

Theorem 5.1. There are C > 0, l0 ∈ N, such that for any l ≥ l0, we have

1− C√
l
≤ [Hilbp

l (h
F )]

Hilbπ
l (ι

∗hF )
· ln′−n ≤ 1 +

C√
l
. (5.3)

Remark 5.2. In [35], [42], Theorem 5.1 appeared in the non-family version, i.e. for B equal to a

point. However, as the proof ultimately depends only on the off-diagonal asymptotic expansion of

the Bergman kernel, which holds in families, it adapts to the version we need here. For details,

consult the proof of Theorem 5.4, which establishes a stronger version of Theorem 5.1.

The main result of this section goes further and compares the curvatures of these metrics.
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Theorem 5.3. There are l0 ∈ N, C > 0, such that we have

∥

∥

∥

√
−1

2π
R[Hilbpl (h

F )] −
√
−1

2π
RHilbπl (ι

∗hF )
∥

∥

∥
≤ C

√
l, (5.4)

where the norm ‖ · ‖ is for a norm induced by a fixed metric on TB, and the subordinate norm on

End(Gl) associated with Hilbπ
l (ι

∗hF ).

Before providing the details of the proofs of these statements, let us show how they can be

adapted to the setting required for Theorem 4.1.

Proof of Theorem 4.1. Proof of Theorem 4.1 will be based on the application of Theorem 5.3 to

the relative Kodaira embedding defined in (3.10). In other words, we take P := P(E∗
k), ι := Kodk,

p : P(E∗
k) → B the usual projection, F := O(1) and hF the Fubini-Study metric induced by

Hk. Then, by the definition of the Fubini-Study metric, cf. (3.10), the Hermitian vector bun-

dle (ι∗F, ι∗hF ) is isomorphic with (Lk, FS(Hk)). Also, Gl is isomorphic with Ekl, and by the

well-known calculation of the twisted structure sheaf cohomology on the projective space, Kl is

isomorphic with SymlEk.

A direct calculation, cf. [38, Lemma 4.15], shows the following relation

Hilbp
l (h

F ) =
l!

(l +Nk − 1)!
· Syml(Hk). (5.5)

Remark that in [38, Lemma 4.15], there was a square root in front of Syml(Hk) since we worked

on the level of norms and not Hermitian products, as we do here. In particular, the identity (5.5)

shows that the norm Syml(Hk) in the statement can be replaced by Hilbp
l (h

F ).
We denote by Resk,l : Kl → Gl the restriction operator associated with the Kodaira embedding.

Recall that the multiplication map Multk,l was defined in (4.1). Then it is an easy verification,

cf. [36, (4.62)], that the following diagram is commutative

Syml(Ek) Kl

Ekl Gl.

Multk,l Resk,l
(5.6)

Hence, the quotient of a norm with respect to Multk,l is identified with the quotient with respect to

Resk,l. With these identifications, Theorem 4.1 then becomes a restatement of Theorem 5.3.

Proof of Proposition 4.2. We use the same notations as in the proof of Theorem 4.1. Directly from

Theorem 5.1 and (5.6), we obtain

1− C√
l
≤ [Hilbp

l (h
F )]

Hilbπ
l (FS(Hk))

· lNk−n−1 ≤ 1 +
C√
l
. (5.7)

Remark now that Hilbπ
l (FS(Hk)) = km ·Hilbπ

kl(FS(Hk)
1/k), and that lNk−1 · l! ∼ (l +Nk − 1)!,

as l → ∞. The result now follows from this, (5.5) and (5.7).

To prove Theorem 5.3, we define the Hermitian section Dl ∈ C ∞(B,End(Gl)), as follows

〈s0, s1〉[Hilbpl (h
F )] = 〈Dls0, s1〉Hilbπl (ι

∗hF ), (5.8)

for any s0, s1 ∈ C ∞(B,Gl). The main technical result of this section goes as follows.
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Theorem 5.4. For any r ∈ N, there are C > 0, l0 ∈ N, such that for any l ≥ l0, we have

∥

∥

∥
Dl −

1

ln′−n
IdGl

∥

∥

∥

C r(B)
≤ Clr/2

ln′−n+1/2
, (5.9)

where the norm ‖ · ‖C r(B) is defined for s ∈ C ∞(B,End(Gl)), as follows

‖s‖C l(B) := sup sup
b∈B

‖∇End(Gl)
U1

· · ·∇End(Gl)
Ur

s(b)‖, (5.10)

where the first supremum is taken over all possible vector fields U1, . . . , Ur over B of unit C r-

norm (with respect to some fixed metric on B), ∇End(Gl)
· is the Chern connection associated with

the norm Hilbπ
l (ι

∗hF ), and ‖ · ‖ is the operator norm subordinate to Hilbπ
l (ι

∗hF ).

Remark 5.5. In particular, we see that there are C > 0, l0 ∈ N, such that for any l ≥ l0, we have

‖Dl‖ ≤ ln−n′

(1 + C/
√
l), ‖D−1

l ‖ ≤ ln
′−n(1 + C/

√
l), which refines Theorem 5.1 due to (5.8).

In order to prove Theorem 5.4, we define the extension operator

Extl : Gl → Kl, (5.11)

so that for g ∈ Gl,b, b ∈ B, we put Extl(g) = f , f ∈ Kl,b, where Resl(f) = g, and f has the

minimal norm with respect to Hilbp
l (h

F ) among all f̃ , f̃ ∈ Kl,b, verifying Resl(f̃) = g. It is

immediate that Extl is a linear map. We shall establish in the proof of Theorem 5.4 that Extl is

smooth, i.e. Extl ∈ C ∞(B,Hom(Gl, Kl)).
We will also need a technical lemma which makes a connection between the operator norm and

the Schwartz kernel. We fix Rl ∈ C ∞(B,End(Gl)) and for any x1, x2 ∈ X , verifying π(x1) =
π(x2) = b, we denote its fiberwise Schwartz kernel by Rl(x1, x2) ∈ F⊗l

x1
⊗ (F⊗l

x2
)∗. By the

definition, for any s ∈ C ∞(B,Gl), we have

(Rls)(x1) =

∫

x2∈Xb

Rl(x1, x2) · s(x2)dvXb
(x2), (5.12)

where dvXb
is the volume form on the fiber Xb induced by the Kähler form ι∗c1(F, h

F )|Xb
. We

assume that there are c, C > 0, r ∈ N, such that for any l ∈ N∗, the following bound holds

∥

∥Rl(x1, x2)
∥

∥

C r(X×BX)
≤ Cln+r/2 exp(−c

√
ldist(x1, x2)), (5.13)

where dist(x1, x2) is the distance induced by ι∗c1(F, h
F )|Xb

(in Pb) between ι(x1) and ι(x2).

Lemma 5.6. Under the above assumptions, there is C > 0, such that ‖Rl‖C r(B) ≤ Clr/2, where

‖ · ‖C r(B) is defined as in Theorem 5.4.

Proof. Directly from (5.13), there is C > 0, such that for any x ∈ X , b := π(x), l ∈ N∗, we have
∫

z∈Xb

|∇rRl(x, z)|(hF )⊗ldvXb
(z) ≤ Clr/2,

∫

z∈Xb

|∇rRl(z, x)|(hF )⊗ldvXb
(z) ≤ Clr/2.

(5.14)

The result is then a direct consequence of Young’s inequality for integral operators, cf. [35, Propo-

sition 2.9 and Corollary 2.10].
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Proof of Theorem 5.4. By the definition of the quotient metric and Extl, we have

Ext∗l ◦ Extl = Dl. (5.15)

Let us recall that the multiplicative defect, Al, is a section of End(Gl), defined in [35, Theorem

4.3], as the only operator verifying

Res∗l = Extl ◦ Al. (5.16)

As it is explained in [35, Theorem 4.3], the existence of Al is a consequence of the surjectivity of

(5.2). Let us now establish that there are l0 ∈ N, C > 0, so that for any l ≥ l0, r ∈ N, we have

∥

∥Al − ln
′−nIdGl

∥

∥

C r(B)
≤ Cln

′−n+(r−1)/2. (5.17)

Remark that (5.17) appeared in [35, Theorem 4.3] in the non-family version (i.e. for B equal to a

point). As we explain below, the proof generalizes to our setting here.

Directly from (5.16), we see that

Al = Resl ◦ Res∗l . (5.18)

Now, for any y1, y2 ∈ P , verifying p(y1) = p(y2) = b, we denote by Bp,hF

l (y1, y2) ∈ F⊗l
y1

⊗ (F⊗l
y2
)∗

the fiberwise Bergman kernel, i.e. the section such that in the notations of (2.14), for any s ∈
C ∞(B, p∗F

⊗l), the following identity is satisfied

(Bp,hF

l s)(y1) =

∫

y2∈Pb

Bp,hF

l (y1, y2) · s(y2)dvPb
(y2), (5.19)

where dvPb
is the volume form on the fiber Pb induced by the Kähler form c1(F, h

F )|Pb
. Similarly,

for any x1, x2 ∈ X , verifying π(x1) = π(x2) = b, we define Bπ,ι∗hF

l (x1, x2) ∈ F⊗l
x1

⊗ (F⊗l
x2
)∗.

From (5.18), we see that the Schwartz kernel, Al(x1, x2) ∈ F⊗l
x1

⊗ (F⊗l
x2
)∗, of Al, is given by

Al(x1, x2) = Bp,hF

l (ι(x1), ι(x2)). (5.20)

Now, as the Bergman kernel in smooth families is smooth, see [18] and [61], we conclude that the

section Al(x1, x2) is also smooth. As a consequence, we get Al ∈ C ∞(B,End(Gl)).

As Bπ,ι∗hF

l acts as identity on Kl, the estimate (5.17) follows directly from Lemma 5.6 and the

following bound: there are c, C > 0, such that for any l ∈ N, we have

∣

∣

∣
Bp,hF

l (ι(x1), ι(x2))− ln
′−n · Bπ,ι∗hF

l (x1, x2)
∣

∣

∣

C r(X×BX)

≤ Cln
′+(r−1)/2 exp(−c

√
ldist(x1, x2)). (5.21)

The estimate (5.21) for r = 0 was deduced in [35, proof of Theorem 4.3] from the off-diagonal

expansion of the Bergman kernel due to Dai-Liu-Ma [18, Theorem 4.18] and the exponential decay

of the Bergman kernel of Ma-Marinescu [60, Theorem 1]. Both of the latter bounds are established

for C r-norm, cf. [61, Theorem 1.6], and so the estimate (5.21) is valid for an arbitrary r ∈ N.

In particular, by (5.17), we see that there is l1 ∈ N, so that for l ≥ l1, the section Al has

an inverse A−1
l , defined using the infinite sum. Using the fact that the space of operators with

exponential decay as in (5.21), is an algebra, see [41, §3], cf. also [59], we deduce, following
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the lines of [36, §5.4], that the Schwartz kernel of A−1
l is smooth, which implies that A−1

l ∈
C ∞(B,End(Gl)). Then it is a direct consequence of (5.15) and (5.16), cf. [35, (5.6)], that the

following relation holds

Dl = (A∗
l )

−1. (5.22)

The statement (5.9) now follows directly from (5.17) and (5.22).

Remark also that from (5.16), we have

Extl = Res∗l ◦ A−1
l . (5.23)

From the smoothness of the Schwartz kernel of A−1
l and of the Bergman kernel, we deduce that

the Schwartz kernel of Extl is smooth, which implies that Extl ∈ C ∞(B,Hom(Gl, Kl)).

Proof of Theorem 5.3. From the definition (5.8) of Dl, we conclude, cf. [75, (1.9.1)], that we have

R[Hilbpl (h
F )] − RHilbπl (ι

∗hF ) = ∂((∇End(Gl),(1,0)Dl)D
−1
l ). (5.24)

The result now follows directly from Theorem 5.4 and (5.24).

6 Weight operators of submultiplicative filtrations

This section aims to study the weight operators associated with submultiplicative filtrations and

to prove Theorems 4.6 and 4.7. The proofs of these theorems will build on the analysis recently

developed by the author in [43].

We fix a complex projective manifold Y polarized by an ample line bundle F endowed with

a positive Hermitian metric hF . Let F be a bounded submultiplicative filtration on R(Y, F ), and

φ(hF ,F) ∈ L∞(Y ) be the speed of the associated geodesic ray, defined in (2.6). Recall that

Toeplitz operators were defined in (4.2) and weight operators in (3.11). The following result says

that asymptotically weight operators of bounded submultiplicative filtrations are Toeplitz.

Theorem 6.1 ( [43, Theorem 1.6]). As k → ∞, we have

1

Nk

Tr
[
∣

∣

∣

1

k
A(Hilbk(h

F ),Fk)− T hF

k (φ(hF ,F))
∣

∣

∣

]

→ 0. (6.1)

Later on, we will approximate arbitrary filtrations by the finitely-generated filtrations induced

by the truncations of the original filtration. To understand this process, originally suggested in

[78], in detail, let k ∈ N be such that the multiplication maps SymlH0(Y, F⊗k) → H0(Y, F⊗kl)
are surjective for any l ∈ N. We denote by [SymlFk] the filtration on H0(Y, F⊗kl) induced by

a filtration Fk on H0(Y, F⊗k) and the above map. Clearly, the induced filtration [SymFk] :=
⊕∞

l=0[Sym
lFk] on R(Y, F⊗k) is submultiplicative. We denote by φ(hL⊗k

, [SymFk]) the speed of

the induced geodesic ray emanating from hL⊗k
, as constructed in (2.6).

Proposition 6.2 ( [43, (3.6)]). As k → ∞, the sequence of functions x 7→ 1
k
φ(hL⊗k

, [SymFk]),
x ∈ Y , increases almost everywhere towards φ(hL,F), when we restrict over a multiplicative

sequence in k (as for example k = 2q, q ∈ N).

Remark 6.3. In [43], we deal with slightly different approximations: instead of considering filtra-

tions induced by Fk, we consider those induced by ⊕k
l=0F l. But our methods carry over in an

identical manner. Indeed, as it is explained in [43, (3.14)], it suffices to establish the convergence

of the respective geodesic rays. This was done in [37, Theorem 5.10].
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To establish Theorem 4.7, we need family versions of the above results. Consider a holomor-

phic submersion π : X → B between compact Kähler manifolds X and B of dimensions n +m
and m respectively. For a relatively ample line bundle L over X , we denote by Ek := R0π∗L

⊗k.

For k ∈ N, we consider a filtration F := ⊕+∞
k=0Fk of ⊕+∞

k=0Ek as in (2.11), which is bounded and

submultiplicative away from a negligible set S ⊂ B. We fix a relatively positive Hermitian metric

hL on L, ω := c1(L, h
L), and use the notations from Proposition 2.3.

Proposition 6.4. As k → ∞, we have

1

Nk

∥

∥

∥

1

k
Aπ(Fk,Hilbπ

k(h
L)) · ωm

B − T π,hL

k (φπ(hL,F)) · ωm
B

∥

∥

∥

tr

L1(B,Hilbπk (h
L))

→ 0. (6.2)

Proof. By (2.6) and (4.11), we have ‖T π,hL

k (φπ(hL,F))(b)‖ ≤ ‖F‖, where ‖ · ‖ is

the operator norm associated with Hilbπ
k(h

L). Moreover, directly from the definitions,

‖Aπ(Fk,Hilbπ
k(h

L))(b)‖ ≤ k‖F‖, for any k ∈ N. In particular, the function b 7→
1
Nk

Tr[| 1
k
Aπ(Fk,Hilbπ

k(h
L))(b) − T π,hL

k (φπ(hL,F))(b)|] is uniformly bounded. It also converges

pointwise to 0 away from S by Theorem 6.1. Proposition 6.4 follows directly from this, Lebesgue

dominated convergence theorem and the fact that S is negligible.

We also need to know the relation between convergence of functions and convergence of

Toeplitz operators.

Proposition 6.5. Let fi ∈ L∞(X) be a uniformly bounded sequence of functions, converging in

L1(X) towards f ∈ L∞(X). Then for any ǫ > 0, there is k0, l0 ∈ N, such that for any k ≥ k0,
l ≥ l0, we have

∥

∥

∥
T π,hL

l (fk) · ωm
B − T π,hL

l (f) · ωm
B

∥

∥

∥

tr

L1(B,Hilbπl (h
L))

≤ ǫNl. (6.3)

Proof. By linearity, it suffices to establish the above statement for f := 0. Remark that for any

f ∈ L∞(X), we have ‖T π,hL

k (f) · ωm
B ‖trL1(B,Hilbπk (h

L)) ≤ 1
n!

∫

X
|T π,hL

k (f)(x)|c1(L, hL)n ∧ π∗ωm
B .

Indeed, it is immediate if f is positive, and for general f the result is obtained by a decomposition

into the positive and negative components.

Directly from [43, (5.14)], we have

∫

X

|T π,hL

l (fk)(x)|c1(L, hL)n ∧ π∗ωm
B ≤

∫

X

|fk(x)|Bπ
l (x)c1(L, h

L)n ∧ π∗ωm
B , (6.4)

where Bπ
l (x) is the fiberwise Bergman kernel, see (2.15). The result now follows directly from

this, (2.15) and the asymptotic Riemann-Roch-Hirzebruch theorem.

Let k ∈ N be such that the multiplication maps (4.1) are surjective for any l ∈ N. We denote by

[SymlFk] the filtration on Ekl induced by Fk and (4.1). Clearly, the induced filtration [SymFk] :=
⊕∞

l=0[Sym
lFk] on ⊕∞

k=0Ekl is bounded and submultiplicative. We denote by φπ(hL⊗k
, [SymFk])

the speed of the induced geodesic ray emanating from hL, defined as in (2.6).

Proposition 6.6. As k → ∞, 1
k
φπ(hL⊗k

, [SymFk]), increases almost everywhere to φπ(hL,F).

Proof. It follows from Proposition 6.2 in the same way as Proposition 6.4 follows from Theorem

6.1. The details are left to the reader.
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Proof of Theorem 4.7. It follows directly from Theorem 2.2 and Propositions 6.4, 6.5, 6.6.

Now, in order to establish Theorem 4.6, we need to recall the stability estimates which estimate

how much the weight operators vary if one varies the Hermitian metric. To state it, we fix a complex

vector bundle V , dimV = r, two Hermitian products H0, H1 and a filtration F on V .

Theorem 6.7 ( [43, Theorem 6.5]). Assume that for C > 0, we have

1− C ≤ H1

H0
≤ 1 + C, (6.5)

where (1 + 2⌈log2 r⌉)2C < 1. Then the following bound is satisfied

∥

∥

∥
A(H0,F)− A(H1,F)

∥

∥

∥
≤ 16C(1 + 2⌈log2 r⌉)‖F‖, (6.6)

where ‖ · ‖ is the operator norm subordinate with H0, and ‖F‖ := supv∈V \{0} |wF(v)|.

Proof of Theorem 4.6. Follows directly from Theorems 2.2, 6.7 and Proposition 4.2.

7 Inductive construction of approximate critical Hermitian structures

The primary objective of this section is to establish Theorem 4.4, which, in essence, asserts that

approximate critical Hermitian structures can be constructed through an inductive process. The

core of our proof focuses on analyzing the behavior of the weight operator along a geodesic ray.

To describe this, we consider a holomorphic submersion π : X → B between compact Kähler

manifolds X and B of dimensions n+m and m respectively. Consider a relatively very ample line

bundle L over X . For any l ∈ N, we define El := R0π∗(L
⊗l). For simplicity, assume that for any

l ∈ N∗, the multiplication map SymlE1 → El is surjective. By (4.1), this can always be achieved

by replacing L by its sufficiently big power.

Consider a filtration of E1 by vector subbundles (it is important in this section that the filtration

is given by vector subbundles and not by subsheaves)

E1 = Fλ1 ⊃ Fλ2 ⊃ · · · ⊃ Fλq . (7.1)

We fix a Hermitian metric H on E1, and denote by Hs the geodesic ray departing from H and

associated with the filtration (7.1). We denote by [SymlHs] the quotient norm on El, induced by

Hs. We denote by [SymlF ] the quotient filtration on El, defined as before Proposition 6.2 (note

that the latter filtration is defined by subsheaves and not subbundles in general). The following

theorem, which we establish in Section 8, says that the restriction of weight operators along a

geodesic ray is very close to the weight operator.

Theorem 7.1. For any ǫ > 0, there are l0 ∈ N, C > 0, such that for any l ≥ l0, s ≥ 1, we have

Tr
[
∣

∣

∣
SymlA(Hs,F)|Gl

−A([SymlHs], [Sym
lF ])

∣

∣

∣

]

≤
(Cl

s
+ C + ǫl

)

· rk(El). (7.2)

Our proof will also draw on certain general results about finitely generated approximations of

filtrations. For this, let us recall the concept of the volume of a filtration. For a complex vector
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space V , dimV = r, endowed with a filtration F with the jumping numbers µ1, . . . , µr ∈ R, we

define the volume, vol(F), of F as

vol(F) := µ1 + · · ·+ µr. (7.3)

This concept extends naturally to a family setting. In this context, rather than a filtration by vector

subspaces of a single vector space, we consider a filtration of a vector bundle by subsheaves. The

volume is then defined as the volume of the induced filtration on the generic fiber – specifically,

away from the singular set of the subsheaves.

We fix a complex projective manifold Y polarized by an ample line bundle F endowed with a

positive Hermitian metric hF . Let F be a bounded submultiplicative filtration on R(Y, F ). Recall

that the filtration [SymlFk], l ∈ N, was defined before Proposition 6.2. Recall the following result

of Boucksom-Jonsson [11, Theorem 3.18], cf. [38, Proposition 2.8] for a proof relying on complex

pluripotential theory.

Theorem 7.2. For any bounded submultiplicative filtration F on R(Y, F ) and any ǫ > 0, there is

k0 ∈ N, such that for any k ≥ k0, l ∈ N, we have

vol([SymlFk]) ≥ vol(Fkl)− ǫl dimH0(Y, F⊗kl). (7.4)

Finally, we will need an additional result regarding the compatibility between the construction

of geodesic rays and approximate critical Hermitian structures. We fix a holomorphic vector bundle

E over B. We denote by µ0 : B0 → B a modification which resolves the Harder-Narasimhan

filtration of E in the sense as described in (3.13). We denote by µ̃∗
0FHN the resolution of the

Harder-Narasimhan filtration of E. We establish the following result in Section 11.

Theorem 7.3. For any δ-approximate critical Hermitian structure H on E, the geodesic ray, Hs,

s ∈ [0,+∞[, of Hermitian metrics on µ∗
0E, departing from µ∗

0H associated with the resolution of

the Harder-Narasimhan filtration, µ̃∗
0FHN , of E, satisfies

∥

∥

∥

√
−1

2π
RHs ∧ µ∗

0ω
m−1
B − A(Hs, µ̃

∗
0FHN) · µ∗

0ω
m
B

∥

∥

∥

L1(B0,Hs)
≤ δrk(E)38rk(E)+4. (7.5)

Remark 7.4. In particular, if the Harder-Narasimhan filtration of E is given by the vector sub-

bundles (and not by subsheaves), then the geodesic ray associated with the Harder-Narasimhan

filtration departing from an δ-approximate critical Hermitian structure consists of δrk(E)38rk(E)+4-

approximate critical Hermitian structures on E.

Proof of Theorem 4.4. Remark first that the curvature of a Hermitian vector bundle only increases

under taking quotients, cf. [24, Theorem V.14.5], so we have

√
−1

2π
R[SymlHδ,k,s] ∧ µ∗

kω
m−1
B ≥[SymlHδ,k,s]

√
−1

2π
RSymlHδ,k,s|Ekl

∧ µ∗
kω

m−1
B , (7.6)

where we used the notation for the restriction endomorphism from Introduction.

By Theorem 7.3 and the formula for the curvature of symmetric powers, for any l ∈ N∗, we

conclude that the curvature of the Hermitian metric SymlHδ,k,s on SymlEk satisfies
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∥

∥

∥

√
−1

2π
RSymlHδ,k,s ∧ µ∗

kω
m−1
B

− SymlA(Hδ,k,s, µ̃
∗
kFHN,k) · µ∗

kω
m
B

∥

∥

∥

L1(Bk,Sym
lHδ,k,s)

≤ δlN3
k8

Nk+4. (7.7)

Since the operator’s norm only decreases under restriction, by (7.7), we conclude that

∥

∥

∥

√
−1

2π
RSymlHδ,k,s |Ekl

∧ µ∗
kω

m−1
B

− SymlA(Hδ,k,s, µ̃
∗
kFHN,k)|Ekl

· µ∗
kω

m
B

∥

∥

∥

L1(Bk ,[Sym
lHδ,k,s])

≤ δlN3
k8

Nk+4. (7.8)

However, directly from Theorem 7.1, we conclude that for any δ, ǫ > 0, k ∈ N∗, there are l0 ∈
N, C > 0, such that for any l ≥ l0, s ≥ 1, we have

∥

∥

∥

(

SymlA(Hδ,k,s, µ̃
∗
kFHN,k)|Ekl

−A([SymlHδ,k,s], [Sym
lµ̃∗

kFHN,k])
)

· µ∗
kω

m
B

∥

∥

∥

tr

L1(Bk,Sym
lHδ,k,s)

≤
(Cl

s
+ C + ǫl

)

·Nkl. (7.9)

Then from (7.6), (7.8), and (7.9), we see that for

gδ,k,l,s :=

√
−1

2π
RSymlHδ,k,s|Ekl

− A([SymlHδ,k,s], [Sym
lµ̃∗

kFHN,k])
)

, (7.10)

the following two bounds are satisfied

∥

∥gδ,k,l,s · µ∗
kω

m
B

∥

∥

tr

L1(Bk ,[Sym
lHδ,k,s])

≤ δlN3
k8

Nk+4 ·Nkl +
(Cl

s
+ C + ǫl

)

·Nkl, (7.11)
√
−1

2π
R[SymlHδ,k,s] ∧ µ∗

kω
m−1
B

≥[SymlHδ,k,s]

(

A([SymlHδ,k,s], [Sym
lµ̃∗

kFHN,k]) + gδ,k,s

)

· µ∗
kω

m
B . (7.12)

We claim that for any ǫ > 0, there are k, l0 ∈ N, such that for any s > 1, δ > 0, l ≥ l0, we have

∫

B

Tr
[

√
−1

2π
R[SymlHδ,k,s] ∧ µ∗

kω
m−1
B

]

≤
∫

B

Tr
[

A([SymlHδ,k,s], [Sym
lµ̃∗

kFHN,k])
]

· µ∗
kω

m
B + ǫlNkl. (7.13)

Remark that once (7.13) is established, Theorem 4.4 follows immediately from (7.12).

To establish (7.13), remark that by Chern-Weil theory, we have

∫

Bk

Tr
[

√
−1

2π
R[SymlHδ,k,s] ∧ µ∗

kω
m−1
B

]

=

∫

B

c1(Ekl) · [ωB]
m−1. (7.14)

By the definition of the Harder-Narasimhan slopes and the fact that the first Chern class is additive,

we conclude that
∫

B

c1(Ekl) · ωm−1
B = vol(FHN,kl) ·

∫

B

[ωB]
m. (7.15)
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However, directly from the definition of the weight operator, we have

∫

B

Tr
[

A([SymlHδ,k,s], [Sym
lµ̃∗

kFHN,k])
]

· µ∗
kω

m
B = vol([Symlµ̃∗

kFHN,k]) ·
∫

B

[ωB]
m. (7.16)

We now see that (7.13) is just a consequence of Theorem 7.2, (7.14), (7.15) and (7.16). This

finishes the proof.

8 Restriction of the weight operator over the geodesic ray

The main objective of this section is to analyze the behavior of the weight operator along a geodesic

ray and to establish Theorem 7.1. This will be achieved by studying how the construction of

geodesic rays relates to the construction of quotient metrics and filtrations. The proof will be based

on the following assertion, which, setting aside some technical statements, will be established at

the end of this section. We retain the notation from Theorem 7.1.

Theorem 8.1. For any ǫ > 0, there are l0 ∈ N, C > 0, such that for any l ≥ l0, s ≥ 1, there is

Bl,s ∈ C ∞(B,End(El)), which is Hermitian with respect to both [SymlHs] and [SymlH0], so that

SymlA(Hs,F)|El
≥[SymlHs]

Bl,s,

Bl,s ≥[SymlH0]
A([SymlH0], [Sym

lF ])−
(Cl

s
+ C + ǫl

)

IdEl
.

(8.1)

Moreover, for any s ∈ [0,+∞[, l ∈ N∗, we have

SymlA(Hs,F)|El
≤[SymlHs] A([Sym

lHs], [Sym
lF ]). (8.2)

Before that, let us explain its usefulness for us.

Proof of Theorem 7.1. Directly from (8.2), we deduce that

Tr
[
∣

∣

∣
SymlA(Hs,F)|El

− A([SymlHs], [Sym
lF ])

∣

∣

∣

]

= Tr
[

A([SymlHs], [Sym
lF ])

]

− Tr
[

SymlA(Hs,F)|El

]

. (8.3)

Remark, however, that by (8.1), we have

Tr
[

SymlA(Hs,F)|El

]

≥ Tr
[

A([SymlH0], [Sym
lF ])

]

−
(Cl

s
+ C + ǫl

)

· rk(El). (8.4)

We conclude by (8.3) and (8.4).

The proof of Theorem 8.1 is based on the comparison of the related geodesic rays. More

precisely, we denote by [SymlH ]s the geodesic ray of Hermitian metrics on El departing from

[SymlH ] and associated with the filtration [SymlF ]. The following result will be established in

Sections 9, 10, and it lies at the heart of our approach to Theorem 8.1.

Theorem 8.2. For any ǫ > 0, there are l0 ∈ N, C > 0, such that for any l ≥ l0, s ≥ 0, we have

[SymlHs] ≤ [SymlH ]s · exp(Cl + Cs+ ǫls). (8.5)

Moreover, for any l ∈ N, s ≥ 0, we also have [SymlH ]s ≤ [SymlHs].
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Remark 8.3. In the non-family version, a related result appeared in [38, Theorem 4.8].

Now, to establish Theorem 8.1 from Theorem 8.2, we recall some preliminaries. We say that a

filtration F1 dominates (≥) F2 if on the level of associated non-Archimedean norms, see (1.19),

we have χF1 ≥ χF2 . The following consequence of submultiplicativity, cf. [37, §3.1], will play a

crucial role in what follows.

Lemma 8.4. For any submultiplicative filtration F on the section ring R(Y, F ) of a complex

projective manifold Y polarized by an ample line bundle F , and any k ∈ N, l ∈ N∗, we have

[SymlFk] ≥ Fkl. (8.6)

To make a connection between the order on the space of filtrations and the natural order on the

weight operators, we need the following result.

Lemma 8.5. For any Hermitian product H on a vector space V and an ordered pair of filtrations,

F1 ≥ F2, on V , the associated weight operators relate as A(H,F1) ≤ A(H,F2).

For the proof of Lemma 8.5 and further use, let us recall the following result from [38, Propo-

sition 4.12]. We consider a surjection p : V → Q between two finitely dimensional vector spaces

V , Q. We fix a Hermitian metric HV on V and a filtration F . We denote by HV
s the geodesic

ray of Hermitian metrics on V departing from HV and associated with F . We denote by [HV
s ] the

induced quotient metric on Q.

Proposition 8.6. Let H0 (resp. H1) be a fixed Hermitian metric on V (resp. Q) and F (resp. G) is

a filtration on V (resp. Q). We assume that [H0] ≥ H1 and [F ] ≥ G. Then the geodesic ray HV
s ,

s ∈ [0,+∞[, of Hermitian metrics on V associated with F and emanating from H0 compares to

the geodesic ray HQ
s of Hermitian metrics on Q associated with G and emanating from H1 as

[HV
s ] ≥ HQ

s . (8.7)

Moreover, for any s0 ≥ 0, the following identities take place

([HV
s ]

−1 d

ds
[HV

s ])|s=0 = −A([H0],F)|Q,

((HV
s )

−1 d

ds
HV

s )|s=0 = ((HV
s )

−1 d

ds
HV

s )|s=s0,

(8.8)

And ((HV
s )

−1 d
ds
HV

s )|s=0 is Hermitian with respect to HV
s for any s ∈ [0,+∞[.

Proof of Lemma 8.5. Follows directly from comparing the associated geodesic rays using Propo-

sition 8.6 and taking derivative at t = 0.

Finally, we need to compare the geodesics associated between two endpoints, and for this, the

following result will play a crucial role.

Proposition 8.7 (cf. [4, Theorem 5.4.1] or [36, Corollary 4.22]). Let HV
0 , HV

1 be two Hermitian

metrics on V and HQ
0 , HQ

1 be the induced quotient Hermitian metrics on Q. For s ∈ [0, 1], we

denote by HV
s the geodesics between HV

0 and HV
1 , and by HQ

s the geodesics between HQ
0 and HQ

1 .

Then for any s ∈ [0, 1], we have

[HV
s ] ≥ HQ

s . (8.9)
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Proof of Theorem 8.1. We will establish that Theorem 8.1 holds for l0 ∈ N, C > 0 as in Theorem

8.2. We fix s0 ∈ [1,+∞[, and consider the geodesic H ′
s, s ∈ [0, s0], of Hermitian metrics on El,

such that H ′
0 = [SymlH ] and H ′

s0
= [SymlHs0]. By Proposition 8.7, for any s ∈ [0, s0], we have

[SymlHs] ≥ H ′
s. (8.10)

We let Bl,s0 := −((H ′
s)

−1 d
ds
H ′

s)|s=0 and take the derivative of (8.10) at s = s0 to get

[SymlHs0]
−1 d

ds
[SymlHs]|s=s0 ≤[SymlHs0 ]

−Bl,s0, (8.11)

where we implicitly used the second equation from Proposition 8.6. The first inequality of (8.1)

then follows directly from (8.11) and Proposition 8.6.

Remark now that by Theorem 8.2, we have the following bound

exp(−s0Bl,s0) ≤[SymlH0]
exp(−s0A([Sym

lH ], [SymlF ])) exp(Cl + Cs0 + ǫls0). (8.12)

From (8.12), and the fact that the logarithm is a matrix monotone function, i.e. if two positive

definite Hermitian operators, A,B ∈ End(V ) on (V,H) are related as A ≥ B, then ln(A) ≥
ln(B), cf. [57] and [74], we have

−Bl,s0 ≤[SymlH0]
−A([SymlH ], [SymlF ]) +

(Cl

s0
+ C + ǫl

)

· IdEl
, (8.13)

which gives us the second inequality of (8.1).

We fix s0 > 0 and consider the geodesic ray H ′′
s , s ∈ [0,+∞[, of Hermitian metrics on El,

departing from H ′′
0 = [SymlHs0] and associated with [SymlF ]. Then by Proposition 8.6, we have

[SymlHs+s0] ≥ H ′′
s . (8.14)

By taking the derivatives of (8.14) at s = 0, and using Proposition 8.6, we get (8.2) for s := s0.

Remark 8.8. While the geometric situation here is very different, our argument on comparing the

derivatives from (8.11) was inspired by Berndtsson [6, (3.2) and (3.3)].

9 Symmetric powers of geodesic rays and holomorphic extension theorem

The main goal of this section is to establish Theorem 8.2. We decompose this statement into two

parts, and show that one part follows from the holomorphic extension theorem. We conserve the

notations from Section 8.

We fix a (n, n)-form η ∈ C ∞(X,∧n,nT ∗X) so that its restriction to each fiber, η|Xb
, b ∈ B,

gives a positive volume form normalized so that the volume of each fiber equals to 1. For any

relatively positive Hermitian metric hF on F , we denote by Hilbπ
l (h

F , η) a Hermitian metric on

El, l ∈ N, defined as in (1.9), but instead of the standard volume form, we use η|Xb
.

We will use the following elementary lemma.

Lemma 9.1. For any Hermitian metric Hl on El, we have Hl ≥ Hilbπ
l (FS(Hl)

1
l , η).

Proof. First of all, directly from (2.4), we obtain, cf. [37, Lemma 2.1], that for any x ∈ X ,

e ∈ F⊗l
x , b = π(x), the following identity takes place |e|FS(Hl) = inf ‖s‖Hl

, where the infimum is

taken over all s ∈ Gl,b, verifying the constraint s(x) = e. In particular, for any f ∈ Gl,b, we get

|f(x)|2FS(Hl)
≤ ‖f‖2Hl

. By integrating this inequality over the whole fiber, Xb, with respect to the

volume form η|Xb
, and using the fact that η|Xb

is of unit volume, we obtain the result.
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The other two ingredients in the proof of Theorem 8.2 are given below

Theorem 9.2. There are l0 ∈ N, C > 0, such that for any l ≥ l0, s ≥ 1, we have

[SymlHs] ≤ Hilbπ
l (FS(Hs), η) · exp(Cl + Cs). (9.1)

Theorem 9.3. For any ǫ > 0, there are l0 ∈ N, C > 0, such that for any l ≥ l0, s ≥ 0, we have

FS(Hs) ≤ FS([SymlH ]s)
1
l · exp(C + ǫs). (9.2)

The proof of Theorem 9.2 will be given in the end of this section, and the proof of Theorem

9.3 is deferred until the next section.

Proof of Theorem 8.2. Remark first that by Theorem 9.3, for any ǫ > 0, there are l0 ∈ N, C > 0,

such that for any l ≥ l0, s ≥ 0, we have

Hilbπ
l (FS(Hs), η) ≤ Hilbπ

l (FS([SymlH ]s)
1
l , η) · exp(Cl + ǫls). (9.3)

Now, by Lemma 9.1, we have

Hilbπ
l (FS([SymlH ]s)

1
l , η) ≤ [SymlH ]s. (9.4)

The first part of Theorem 8.2 now follows directly by a combination of Theorem 9.2 and (9.3),

(9.4). The second part is a direct consequence of Proposition 8.7.

Let us now prove Theorem 9.2. A related result in a non-family version has already appeared

in [38, Theorem 4.5]. We will use now the notations introduced in Section 5.

We fix a relatively positive Hermitian metric hF
0 on F over P , an (n, n)-form ηX over X and

an (n′, n′)-form ηP over P , verifying similar hypotheses as the form η from the beginning of this

section. We need the following result, which we suggest to compare with Theorem 5.1, from which

we borrow the notations.

Theorem 9.4. There are C > 0, l0 ∈ N, such that for any l ≥ l0, and an arbitrary relatively

positive Hermitian metric hF on F , we have

[Hilbp
l (h

F , ηP )] ≤ Hilbπ
l (ι

∗hF , ηX) ·
(

supmax
(hF

hF
0

,
hF
0

hF

))C

· exp(C). (9.5)

Proof. The statement can be rephrased in the following manner: for any b ∈ B, f ∈ Gl,b, there is

f̃ ∈ Kl,b, so that Resl(f̃) = f , and we have

‖f̃‖Hilbpl (h
F ,ηP ) ≤ ‖f‖Hilbπl (ι

∗hF ,ηX) ·
(

supmax
(hF

hF
0

,
hF
0

hF

))C

· exp(C). (9.6)

In the non-family version, such a statement appeared in [38, Theorem 4.14] and [36, Theorem 2.5]

as an easy consequence of a version of Ohsawa-Takegoshi extension theorem from [25]. In the

end, the only thing which was used there was the inequality [36, (2.11)] which says that there is a

uniform constant p0 ∈ N, so that p0c1(F, h
F
0 )− c1(∧n′

T (1,0)∗Pb, h
ηP ) +

√
−1α∂∂δXb

/2π is a non-

negative current over each fiber, for any α ∈ [1, 2], where hηP is the Hermitian metric associated

with ηP , δXb
is a quasi-psh function with logarithmic singularities along Xb, and hF

0 is an arbitrary

relatively positive metric on F . But as the latter bound clearly holds in families, the whole estimate

continues to hold as well.
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Proof of Theorem 9.2. We follow the same line of though as in the proof of Theorem 4.1 in Section

5, from which we borrow the notations. Directly from (5.5), we see that in the left-hand side of

(9.1), we can replace SymlHs by Hilbp
l (h

Hs), where hHs is the Fubini-Study metric on F := O(1)
over P(G∗

1) induced by Hs. From the definition of the geodesic ray, there is C > 0, such that

hH0 · exp(−Cs) ≤ hHs ≤ hH0 · exp(Cs). (9.7)

Moreover, as the symplectic volume form on the fibers Pb = P(G∗
1) of π : P(G∗

1) → B, induced

by c1(F, h
Hs)|Pb

, coincides with the Riemannian volume form induced by the Fubini-Study metric,

we conclude by (9.7) that there is a constant C > 0, such that for any l ∈ N, s > 0, we have

Hilbp
l (h

Hs) ≤ exp(C + Cs) · Hilbp
l (h

Hs , ηP ), (9.8)

where ηP is an arbitrary relative volume form chosen as in the beginning of this section. The result

now follows directly from Theorem 9.4 and (9.7), (9.8).

10 Geodesic rays of symmetric powers and fibration degenerations

The main goal of this section is to prove Theorem 9.3. We will in fact establish the following

stronger result, for which we conserve the notations from Section 9.

Theorem 10.1. Assume that the filtration from (7.1) has rational weights, i.e. λi ∈ Q, i = 1, . . . , q.

Then there are l0 ∈ N, C > 0, such that for any l ≥ l0, s ≥ 0, we have

FS(Hs) ≤ FS([SymlH ]s)
1
l · exp(C). (10.1)

Proof of Theorem 9.3 assuming Theorem 10.1. For a given ǫ > 0, we fix rational weights λ′
i, i =

1, . . . , q, verifying λ′
i < λi < λ′

i + ǫ. We also assume that ǫ < λi+1 − λi, for any i = 1, . . . , q − 1,

so that we have λ′
1 < λ′

2 < · · · < λ′
q.

We consider a filtration given by F ′
λ′
i
:= Fλi

, i = 1, . . . , q, and denote by H ′
s, [Sym

lH ]′s,

s ∈ [0,+∞[, the geodesic rays defined analogously to Hs and [SymlH ]s, but with filtration E =
F ′

λ′
1
⊃ F ′

λ′
2
⊃ · · ·F ′

λ′
q

instead of (7.1).

From Proposition 8.6, for any s ∈ [0,+∞[, l ∈ N∗, we have

H ′
s · exp(−ǫs) ≤ Hs ≤ H ′

s, [SymlH ]′s · exp(−ǫls) ≤ [SymlH ]s ≤ [SymlH ]′s. (10.2)

Theorem 9.3 then follows directly from (10.2) and Theorem 10.1 applied for H ′
s and [SymlH ]′s.

Our proof of Theorem 10.1 is greatly inspired by Phong-Sturm [69, Lemma 4], which treats a

related problem in the non-family setting.

First of all, it is immediate that if Theorem 10.1 holds under the additional assumption of

integer even weights of the filtration, then it holds in general. Indeed, if the filtration has rational

weights, then the ray HNs, s ∈ [0,+∞[, is associated with a filtration with integer even weights,

for N ∈ N∗ divisible enough. Moreover, by shifting the weights, we can always assume that

λ1 = 0. We make these two assumptions in what follows.

Our proof will be based on the precise relation between geodesic rays and smooth Hermitian

metrics on certain degenerations of a vector bundle. We first recall that an arbitrary filtration (7.1)

of G1 induces a degeneration G̃1 over B × C, defined as follows

G̃1 := Coker(Fλq ⊕ Fλq−1 ⊕ · · · ⊕ Fλ1 → E ⊕Fλq ⊕Fλq−1/Fλq ⊕ · · · ⊕ Fλ1/Fλ2), (10.3)
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where over B × {z}, z ∈ C, the above map is defined as

(fq, . . . , f1) 7→ (f q + · · ·+ f 1, z
λq/2fq, z

λq−1/2f̃q−1, . . . , z
λ1/2f̃1), (10.4)

where f i ∈ E, i = 1, . . . , q, are the images of fi ∈ Fi in E, and f̃i ∈ Fλi
/Fλi+1

, i = 1, . . . , q − 1,

are respective elements in the quotient spaces. Our assumption λi ∈ N assures that (10.4) is

well-defined. This is the only place in the proof where we use the fact that λi ∈ N.

Let us describe the basic properties of this construction. First of all, it is immediate to verify

that a vector bundle G̃1 carries a natural C∗-action, compatible with the diagonal action on p :
B×C → C, acting trivially at the first factor and by the standard action on the second one. Second,

for z ∈ C, z 6= 0, the restriction of G̃1 over (B, {z}) is isomorphic with G1, and over (B, {0}), the

restriction of G̃1 is isomorphic with the vector bundle gr(G1) := Fλq⊕Fλq−1/Fλq⊕· · ·⊕Fλ1/Fλ2 .

In particular, by the C∗-action, once restricted over B × C∗, G̃1 is canonically isomorphic with

q∗G1, where q : B × C∗ → B is the natural projection.

Using this isomorphism, for an arbitrary ray of Hermitian metrics Hs, s ∈ [0,+∞[, on G1, we

construct the S1-equivariant Hermitian metric H◦ over B × D∗, defined so that the restriction H◦
τ ,

τ ∈ D∗, of H◦ over B × {τ} is given by H◦
τ := H− log |τ |. The following basic observation lies at

the heart of our approach to Theorem 10.1.

Lemma 10.2. For a geodesic ray Hs, s ∈ [0,+∞[, associated with the filtration (7.1), the asso-

ciated S1-equivariant Hermitian metric H◦ on G̃1 over B × D∗ extends smoothly to a Hermitian

metric on G̃1 over B × D.

Proof. First, the metric H0 on G1 defines the quotient metric H ′◦ on G̃1. Since the rank of the

map (10.4) is independent on z ∈ C, H ′◦ extends smoothly to a Hermitian metric over B × D.

Let us compare Hs with the Hermitian metrics H ′
s, s ∈ [0,+∞[, on G1, constructed from H ′◦

using the above correspondence between rays of metrics on G1 and S1-equivariant metrics on G̃1.

Assume for simplicity of the notations that the filtration is complete, and denote by ei, i = 1, . . . , q,

q := rk(G1), an orthonormal local frame of (G1, H), adapted to the filtration (7.1). By this we

mean that ei ∈ Fλi
and ei ⊥ Fλi−1

. Then an easy calculation reveals that for any s ∈ [0,+∞[,

‖ei‖Hs = exp(−sλi/2), ‖ei‖H′
s
=

exp(−sλi/2)
√

1 + exp(−sλi)
. (10.5)

As H ′◦ extends smoothly to a Hermitian metric over B × D, the same is true for H◦.

Now, using the C∗-action on G̃1, let us construct a certain degeneration of the family π : X →
B. More precisely, we denote by X ⊂ P(G̃∗

1) the (analytic Zariski) closure of C∗ · Kod(X) ⊂
P(G̃∗

1), where Kod : X →֒ P(G∗
1) is the relative Kodaira embedding as in (3.10), and we implicitly

identified P(G∗
1) with the fiber at B × {1} of P(G̃∗

1). We then have a natural embedding

K : X →֒ P(G̃∗
1), (10.6)

and we introduce the following line bundle F := K ∗O(1) over X .

Then by definition X is a complex analytic space, and it is classical, cf. [45, Proposition

III.9.8] and [27, Lemma 3.2], that the restriction, X ∗, of X to a family over B×C∗ is isomorphic

with X × C∗ under the C∗-action. In other words, we constructed a fibration degeneration in
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the terminology of Dervan-Sektnan [27], and the fibers of this degeneration correspond to test

configurations, introduced by Tian [81] and Donaldson [32].

We extend the definition of the Fubini-Study operator from (3.10) in such a way that any

Hermitian metric H◦ on G̃1 induces a Hermitian metric FS(H◦) on F over X , given by the

pull-back of the induced metric on O(1).

We denote by p̂ : X̂ → X a resolution of singularities of X . We use the notations X̂D, X̂ ∗
D

for the restrictions of X̂ to the families over B×D and B×D∗ respectively. By Lemma 10.2, the

(1, 1)-form Ω1 := p̂∗c1(F , FS(H◦)), defined over X̂ ∗
D , extends smoothly over X̂D.

For any l ∈ N∗, we will now introduce a function φl : X̂ ∗
D → R, which under the identification

of X̂ ∗
D with X × D∗, is given by

φl(x, τ) :=
1

l
log

(

Nl
∑

j=1

|s(l)j (x)|2(hF )⊗k |τ |−λ
(l)
j

)

− log
(

N1
∑

i=1

|si(x)|2hF |τ |−λi

)

, (10.7)

where hF is an arbitrary metric on F (the definition is clearly independent on its choice), si,

i = 1, . . . , N1, (resp. s
(l)
j , j = 1, . . . , Nl) is an orthonormal basis of H (resp. [SymlH ]) adapted to

the (resp. quotient) filtration induced by (7.1).

Directly from (2.4) and the definition of the geodesic rays, for any τ 6= 0, we have

φl(x, τ) = log
(

FS(H− log |τ |)/FS([SymlH ]− log |τ |)
1
l

)

. (10.8)

The following result is the technical backbone of our analysis.

Lemma 10.3. The function φl extends as a Ω1-psh function over X̂D, i.e. there is Cl > 0, such

that φl ≤ Cl over X̂ ∗
D , and over X̂D, we have

√
−1∂

X̂ ∗
D

∂
X̂ ∗

D

φl ≥ −Ω1. (10.9)

Proof. By the classical extension result, cf. [24, Corollary I.5.25], it is enough to show the exis-

tence of Cl as above and to establish the inequality (10.9) over X̂ ∗
D instead of X̂D.

Directly from (10.7), we obtain

φl(x, τ) =
1

l
log

(

Nl
∑

j=1

|s(l)j (x)|2FS(H◦
τ )
|τ |−λ

(l)
j

)

. (10.10)

Remark now that by Poincaré-Lelong equation, 1
l
log |s(l)j (x)|2FS(H◦

τ )
, x ∈ X , τ ∈ C, is a Ω1-psh

function over X̂ ∗
D . By (10.10), it is then classical, cf. [24, Theorem I.4.16], that φl is also Ω1-psh.

Let us now establish the existence of a constant Cl as above. For α ∈ NN1 , α = (α1, . . . , αN1),

we denote by sα := s⊗α1
1 ⊗ · · · ⊗ s

⊗αN1
N1

, and let α · λ := α1λ1 + · · · + αN1λN1 . Clearly, by the

definition of the quotient filtration, there are cαj ∈ C, α ∈ NN1 , |α| = l, α · λ ≥ λ
(l)
j , so that

s
(l)
j =

∑

α·λ≥λ
(l)
j

cαjs
α. (10.11)
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Then there is C ′
l > 0, such that for any x ∈ B, |τ | ≤ 1, l ∈ N∗, we have

|s(l)j (x)|2(hF )⊗k |τ |−λ
(l)
j ≤ C ′

l ·
(

∑

α·λ≥λ
(l)
j

|sα(x)|2(hF )⊗k |τ |−λ·α
)

. (10.12)

It is then a simple manipulation to see that one can take Cl := log(C ′
lNl)/l to satisfy the claim of

the lemma.

Proof of Theorem 10.1. Remark first that by (10.8), we have φl|∂X̂D
=

2 log(FS(H0)/FS([SymlH0])
1
l ). However, it is easy to verify that FS(H0) = FS([SymlH0])

1
l ,

cf. [36, Lemma 4.11]. We fix a Hermitian (1, 1)-form ω
X̂

over X̂ . Directly from (10.9), we

conclude that there is C ′ > 0, such that for any l ∈ N∗, we have

∆ω
X̂
φl ≥ −C ′. (10.13)

Let us now fix a solution u : X̂D → R to the following Dirichlet problem

∆ω
X̂
u = −C ′, u|∂X̂D

= 0. (10.14)

Then by the maximal principle, we have φl ≤ u. As u is continuous over X̂D, there is C > 0, so

that u < C over X̂D. But then φl < C for any l ∈ N∗, which finishes the proof by (10.8).

11 Approximate critical Hermitian structures and geodesic rays

The main goal of this section is to establish a result concerning the compatibility of the construction

of geodesic rays and approximate critical Hermitian structures, i.e. Theorem 7.3.

The proof is based on some local calculations of the curvature of geodesic rays. More precisely,

for a holomorphic vector bundle E over B with a filtration by subbundles E = Fλ1 ⊃ Fλ2 ⊃ · · · ⊃
Fλq ⊃ Fλq+1 = {0}, we consider a geodesic ray Hs, s ∈ [0,+∞[, associated with the filtration

and departing from a Hermitian metric H on E. We denote Gi := Fλi
/Fλi+1

, qi = rk(Fλi
),

i = 1, . . . , q, and assume that the filtration is decreasing, i.e. λ1 < λ2 < · · · < λq.

Consider a local holomorphic frame e1, . . . , er of E adapted to the filtration in the sense that

er−qi+1, . . . , er form a holomorphic frame Fλi
for any i = 1, . . . , q. We now construct a (non-

holomorphic) frame f1, . . . , fr by projecting orthogonaly er−qi+j , j = 1, . . . , qi − qi+1, onto the

orthogonal complement of Fλi+1
. It is then immediate that

‖fr−qi+j‖Hs = exp(−sλi/2) · ‖fr−qi+j‖H0, for i = 1, . . . , q and j = 1, . . . , qi − qi+1. (11.1)

We denote by αs, s ∈ [0,+∞[, the connection form of the Chern connection on (E,Hs) with

respect to the frame f1, . . . , fr. We write it in a matrix form

αs =











β11,s β12,s . . . β1q,s

β21,s β22,s . . . β2q,s
...

...
. . .

...

βq1,s βq2,s . . . βqq,s











(11.2)

where βij,s, i, j = 1, . . . , q, are differential forms of degree 1 with values in Hom(Gj , Gi). Recall

the following well-known calculation, cf. [53, Propositions 1.6.4 - 1.6.6], [50, Lemmas 3.1, 3.2].
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Lemma 11.1. For i > j, βij,s has only (0, 1)-differential form components, and for i < j, βij,s has

only (1, 0)-differential form components. Moreover, (βij,0)
∗ = −βji,0, and we have

βij,s =

{

βij,0, if i > j

exp(−s(λj − λi)) · βij,0, if i ≤ j.
(11.3)

We will now apply Lemma 11.1 for the study of geodesic rays associated with the Harder-

Narasimhan filtrations. More precisely, consider the Harder-Narasimhan filtration of a vector bun-

dle E as in (1.3). We use the notations (3.13) for a resolution of the Harder-Narasimhan filtration,

and let GHN
i = µ̃∗

0Fλi
/µ̃∗

0Fλi+1
, i = 1, . . . , q. We fix a δ-approximate critical Hermitian structure

H on E and construct the geodesic ray, Hs, s ∈ [0,+∞[, associated with the resolution of the

Harder-Narasimhan filtration and departing from H , as in Theorem 7.3.

We choose a cover of B0 by open subsets Uu, u = 1, . . . , v, with a subordinate partition of

unity ρu : X → [0, 1], and local holomorphic frames eu1 , . . . , e
u
r of µ∗

0E over Uu adapted to the

filtration µ̃∗
0F as before (11.2). We denote by αHN,u

s , s ∈ [0,+∞[, u = 1, . . . , v, the connection

form of the Chern connection on (E,Hs) with respect to the frame fu
1 , . . . , f

u
r associated with

eu1 , . . . , e
u
r in the same way as f1, . . . , fr was associated with e1, . . . , er in (11.2). We denote by

βHN,u
ij,s , i, j = 1, . . . , q, the components of the associated connection form as in (11.2).

We denote by RGHN
i , i = 1, . . . , q, the curvature of the Chern connection on GHN

i with the

metric induced by H . For b ∈ Uu, we denote by dzl(b) ∈ T 1,0∗
b B0, l = 1, . . . , m, some orthogonal

frame (with respect to µ∗
0ωB). For i, j = 1, . . . , q, i < j, u = 1, . . . , v, l = 1, . . . , m, we define the

section Au
ijl of Hom(GHN

j , GHN
i ) as follows

βHN,u
ij,0 =

m
∑

l=1

dzl · Au
ijl. (11.4)

Then by Lemma 11.1, for any i > j, we have

βHN,u
ij,0 = −

m
∑

l=1

dzl · Au∗
jil. (11.5)

We also denote by RE
ij,s ∈ C ∞(B,∧1,1T ∗B⊗Hom(GHN

j , GHN
i )) the components of the curvature

tensor of the Chern connection on (µ∗
0E,Hs).

Lemma 11.2. For any i, j = 1, . . . , q, i 6= j, the following estimates hold

v
∑

u=1

∥

∥ρu · dβHN,u
ij,0 ∧ µ∗

0ω
m−1
B

∥

∥

L1(Uu,H0)
≤ 2πδrq8q+3, (11.6)

v
∑

u=1

∥

∥ρu · βHN,u
ij,0 ∧ βHN,u

ji,0 ∧ µ∗
0ω

m−1
B

∥

∥

L1(Uu,H0)
≤ 2πδr8q−max(i,j)+1. (11.7)

Moreover, we have

∥

∥RGHN
i ∧ µ∗

0ω
m−1
B − λiIdGHN

i
· µ∗

0ω
m
B

∥

∥

L1(B0,H0)
≤ 2πδr8q−i+1. (11.8)



Wess-Zumino-Witten equation and Harder-Narasimhan potentials 40

Proof. Remark first that by Lemma 11.1, in order to prove (11.6), (11.7), in their full generality, it

is enough to establish them for i < j. By the definition of βHN,u
ij,0 , cf. [24, (V.14.6)], we have

√
−1RE

ii,0 =
√
−1RGHN

i +

q
∑

j=1
j 6=i

v
∑

u=1

ρu
√
−1βHN,u

ij,0 ∧ βHN,u
ji,0 . (11.9)

However, directly from (11.4) and (11.5), we see that

βHN,u
ij,0 ∧ βHN,u

ji,0 ∧ µ∗
0ω

m−1
B =

{

−
∑m

l=1 dzl ∧ dzl ·Au
ijlA

u∗
ijl ∧ µ∗

0ω
m−1
B , if i < j,

∑m
l=1 dzl ∧ dzl · Au∗

jilA
u
jil ∧ µ∗

0ω
m−1
B , if i > j.

(11.10)

Also, by the Chern-Weil theory, we have
∫

B

Tr
[√

−1RGHN
i

]

∧ µ∗
0ω

m−1
B = 2π

∫

B

c1(G
HN
i )µ∗

0[ωB]
m−1. (11.11)

Since H is an δ-approximate critical Hermitian structure, we have

∥

∥

∥

√
−1RE

ii,0 ∧ µ∗
0ω

m−1
B − 2πλiIdGHN

i
µ∗
0ω

m
B

∥

∥

∥

tr

L1(B0,H0)
≤ 2πδr. (11.12)

And by the definition of λi, we have

λi

∫

B

ωm
B =

∫

B

c1(Fλi
/Fλi+1

)[ωB]
m−1. (11.13)

As the saturation can only increase the first Chern class, cf. [53, Lemma 5.7.5], we have
∫

B0

c1(G
HN
i )µ∗

0[ωB]
m−1 ≥

∫

B

c1(Fλi
/Fλi+1

)[ωB]
m−1. (11.14)

A combination of (11.11)-(11.14) gives us
∫

B

Tr
[√

−1RGHN
i

]

∧ µ∗
0ω

m−1
B ≥

∫

B

Tr
[√

−1RE
ii,0

]

∧ µ∗
0ω

m−1
B − 2πδr. (11.15)

Remark now that by (11.10), in the sum (11.9), each summand is negative for i = q (it goes in line

with the fact that the the curvature of a Hermitian vector bundle decreases under taking subbundles,

cf. [24, Theorem V.14.5]). Hence, we have

√
−1RGHN

q ∧ µ∗
0ω

m−1
B ≤

√
−1RE

qq,0 ∧ µ∗
0ω

m−1
B . (11.16)

From (11.15) and (11.16), we obtain

∥

∥

∥
RE

qq,0 ∧ µ∗
0ω

m−1
B − RGHN

q ∧ µ∗
0ω

m−1
B

∥

∥

∥

tr

L1(Uu,H0)
≤ 2πδr. (11.17)

From (11.12) and (11.17), we obtain (11.8) for i = q. Moreover, from (11.9) and (11.17), we get

v
∑

u=1

∥

∥

∥
ρu ·

q−1
∑

j=0

√
−1βHN,u

qj,0 ∧ βHN,u
jq,0 ∧ µ∗

0ω
m−1
B

∥

∥

∥

tr

L1(Uu,H0)
≤ 2πδr. (11.18)
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By the linearity of the trace and again the fact that in the sum under the norm (11.18), each sum-

mand is positive by (11.10), we see that (11.18) implies (11.7) for i = q.

Let us now describe the first step of induction, i.e. establish (11.7) and (11.8) for i = q − 1.

First, by the similar argument as in (11.16), we get

√
−1RGHN

q−1 ∧ µ∗
0ω

m−1
B +

v
∑

u=1

ρu
√
−1βHN,u

q−1q,0 ∧ βHN,u
qq−1,0 ≤

√
−1RE

q−1q−1,0 ∧ µ∗
0ω

m−1
B . (11.19)

But then we already know that (11.7) holds for i = q, and since it is symmetric in i, j, it also holds

for j = q. From this, (11.15) and (11.19), we obtain
∥

∥

∥
RE

q−1q−1,0 ∧ µ∗
0ω

m−1
B −RGHN

q−1 ∧ µ∗
0ω

m−1
B

∥

∥

∥

L1(B0,H0)
≤ 2πδr9. (11.20)

From (11.12) and (11.20), we get (11.8) for i = q−1. From (11.9), the fact that the estimate (11.7)

holds for i = q and (11.20), we get (11.7) for i = q − 1. The rest of induction is done similarly.

Let us establish (11.6). Since H is an δ-approximate critical Hermitian structure, for i 6= j,

v
∑

u=1

∥

∥

∥
ρu ·

(

dβHN,u
ij,0 +

q
∑

k=1

βHN,u
ik,0 ∧ βHN,u

kj,0

)

∧ µ∗
0ω

m−1
B

∥

∥

∥

L1(Uu,H0)
≤ 2πδ. (11.21)

However, by Cauchy-Schwarz inequality, we have

(

v
∑

u=1

∥

∥

∥
ρv · βHN,u

ik,0 ∧ βHN,u
kj,0 ∧ µ∗

0ω
m−1
B

∥

∥

∥

tr

L1(Uu,H0)

)2

≤
(

v
∑

u=1

∥

∥

∥
ρv · βHN,u

ik,0 ∧ βHN,u
ki,0 ∧ µ∗

0ω
m−1
B

∥

∥

∥

tr

L1(Uu,H0)

)

·

·
(

v
∑

u=1

∥

∥

∥
ρv · βHN,u

jk,0 ∧ βHN,u
kj,0 ∧ µ∗

0ω
m−1
B

∥

∥

∥

tr

L1(Uu,H0)

)

. (11.22)

We obtain (11.6) from (11.7), (11.21) and (11.22).

As an application of Lemmas 11.1 and 11.2, we establish the following result.

Lemma 11.3. For any i 6= j, the following estimates hold
∥

∥

√
−1RE

ij,s ∧ µ∗
0ω

m−1
B

∥

∥

L1(B0,Hs)
≤ 2πδrq8q+4,

∥

∥

√
−1RE

ii,s ∧ µ∗
0ω

m−1
B − 2πλi · IdGHN

i
∧ µ∗

0ω
m
B

∥

∥

L1(B0,Hs)
≤ 2πδrq8q+3,

(11.23)

Proof. We will establish the first bound of (11.23) under the assumption i < j, as the other case is

completely analogous. By Lemma 11.1, for i ≤ j, we can write

RE
ij,s = dβHN,u

ij,0 · exp(−s(λj − λi)) +
i

∑

k=1

βHN,u
ik,0 ∧ βHN,u

ki,0 · exp(−s(λj − λk))

+

j
∑

k=i+1

βHN,u
ik,0 ∧ βHN,u

ki,0 · exp(−s(λj − λi))

+

q
∑

k=j+1

βHN,u
ik,0 ∧ βHN,u

ki,0 · exp(−s(λk − λi)).

(11.24)
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Remark now that by (11.1) for a section A of Hom(GHN
j , GHN

i ), we have

∥

∥Aµ∗
0ω

m
B

∥

∥

L1(Uu,Hs)
=

∥

∥Aµ∗
0ω

m
B

∥

∥

L1(Uu,H0)
· exp(s(λj − λi)/2). (11.25)

Then by (11.24) and (11.25) it is clear that we have

∥

∥

√
−1RE

ij,s ∧ µ∗
0ω

m−1
B

∥

∥

L1(B0,Hs)
≤

∥

∥dβHN,u
ij,0 ∧ µ∗

0ω
m−1
B

∥

∥

L1(B0,H0)

+

q
∑

k=1

∥

∥βHN,u
ik,0 ∧ βHN,u

kj,0 ∧ µ∗
0ω

m−1
B

∥

∥

L1(B0,H0)
. (11.26)

The first bound of (11.23) for i < j then follows directly from Lemma 11.2, (11.22) and (11.26).

Similarly, by (11.24), we have

RE
ii,s = RGHN

i +

q
∑

k=1
k 6=i

βHN,u
ik,0 ∧ βHN,u

ki,0 · exp(−s|λi − λk|). (11.27)

The second bound from (11.23) then follows from Lemma 11.2 and (11.27).

Proof of Theorem 7.3. Remark that the components of the weight operator, A(Hs, µ̃
∗
0FHN)ij ∈

Hom(GHN
j , GHN

i ), in the frame fu
1 , . . . , f

u
r are given by A(Hs, µ̃

∗
0FHN)ij = λiδijIdGHN

i
, where

δij is the Kronecker delta. The result now follows directly from this and Lemma 11.3.

12 Mehta-Ramanathan type formula for the Wess-Zumino-Witten functional

The main goal of this section is to describe an application of Theorem 1.1 giving a Mehta-

Ramanathan type formula for the Wess-Zumino-Witten functional. Roughly, this formula says

that for projective families, the value of the Wess-Zumino-Witten functional can be determined

from the values of the respective functionals on the restriction of our family to generic curves.

To state our result precisely, we assume that [ωB] ∈ H2(X,Z) (in particular, B is projective)

and m ≥ 2. By Bertini’s theorem, there is l0 ∈ N, such that for any l ≥ l0, a generic curve Cl,

ιl : Cl →֒ B obtained as an intersection of m − 1 generic divisors in the class l[ωB], is regular.

Denote by Yl the pull-back of ιl and π, and by πl : Yl → Cl, il : Yk →֒ X the natural corresponding

maps, verifying the following commutative diagram

Yl X

Cl B.

il

πl π

ιl

(12.1)

The main result of this section goes as follows.

Theorem 12.1. For any l ≥ l0, t ∈ R, the value inf
∫

Yl
|βn+1|, where the infimum is taken over all

smooth closed (1, 1)-forms β in the class i∗l (c1(L) − tπ∗[ωB]), which are positive along the fibers

of πl, is independent on the choice of a generic curve Cl. Moreover, the limit below exists, and the

following formula holds

WZW(c1(L)− tπ∗[ωB], ωB) = lim
l→∞

1

lm−1
inf

∫

Yl

|βn+1|. (12.2)
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The proof of Theorem 12.1 is based on a combination of Theorem 1.1 and Mehta-Ramanathan

type theorem for the measures ηHN . Recall that the classical Mehta-Ramanathan theorem from

[63], [64] says that if a vector bundle E is (semi)stable, then for l ∈ N big enough, the vector

bundle i∗lE is (semi)stable over a generic curve Cl. In particular, the Harder-Narasimhan slopes of

an arbitrary vector bundle can be recovered from the Harder-Narasimhan slopes of the restriction

of this vector bundle to generic curves of sufficiently large degree.

The main result of [40] roughly says that a weak uniform version of the Mehta-Ramanathan

theorem holds if instead of a single vector bundle E, we consider a sequence of vector bundles

Ek, k ∈ N, given by direct images. More precisely, we denote by ηHN,l, l ∈ N∗, the measure

constructed similarly to ηHN , but associated with the family πl : Yl → Cl, i
∗
lL, [ωB]|Cl

, where Cl is

the generic curve as above (it is standard that the Harder-Narasimhan slopes of the restrictions of a

vector bundle to curves, given by complete intersections, are independent on the choice of generic

curve, cf. [40, Corollary 3.8]). The main result of [40] goes as follows.

Theorem 12.2 ( [40, Theorem 1.2]). The measures ηHN,l converge weakly to ηHN , as l → ∞.

Proof of Theorem 12.1. By applying Theorem 1.1 to πl : Yl → Cl, i
∗
lL and [ωB]|Cl

, we obtain

inf

∫

Yl

|βn+1| =
∫

x∈R
|x− t|dηHN,l(x) ·

∫

Yl

c1(i
∗
lL)

nπ∗
l ι

∗
l [ωB] · (n + 1), (12.3)

where the infimum is taken over β as in (12.2). This formula and the fact that ηHN,l doesn’t depend

on the choice of generic curve implies that the value inf
∫

Yl
|βn+1| doesn’t depend on the choice

of generic curve either. Remark that by the definition of Cl, we have
∫

Yl
c1(i

∗
lL)

nπ∗
l ι

∗
l [ωB] =

lm−1 ·
∫

X
c1(L)

nπ∗[ωB]
m. The result now follows from this, Theorem 12.2, (1.5) and (12.3).

13 Asymptotic cohomology and the absolute Monge-Ampère functional

The primary objective of this section is to prove Corollary 1.5. We achieve this by interpreting

Conjecture 1 in terms of a related conjecture on the sharp lower bound for the absolute Monge-

Ampère functional. Then, we apply Theorem 1.1 alongside calculations involving the Harder-

Narasimhan measures. Let us introduce some notations first. We fix a compact complex manifold

Y of dimension n+1. For an arbitrary class [α] ∈ H1,1(Y ) and a smooth closed (1, 1)-differential

form α, we introduce the absolute Monge-Ampère functional as follows

|MA|(α) :=
∫

Y

|αn+1|, |MA|([α]) = inf |MA|(α), (13.1)

where the infimum is taken over all smooth closed (1, 1)-forms α in the class [α]. We fix a holo-

morphic line bundle F .

Proposition 13.1. For an arbitrary smooth closed (1, 1)-form α in the class c1(F ), we have

|MA|(α) ≥
n+1
∑

i=0

ĥq(Y, F ). (13.2)

Proof. By the definition of the sets Y (α, q) from (1.8), we can rewrite

|MA|(α) =
n+1
∑

i=0

∫

Y (α,q)

(−1)qαn+1. (13.3)

The result now follows directly from (1.8).
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Conjecture 2. We have |MA|(c1(F )) =
∑n+1

i=0 ĥq(Y, F ).

From (1.8) and (13.2), Conjecture 2 refines Conjecture 1. Moreover, Conjecture 2 is equivalent

to the following statement: for any ǫ > 0, there is a smooth closed (1, 1)-form αǫ in the class

c1(F ), such that
∫

Y (αǫ,q)
(−1)qαn

ǫ ≤ ĥq(Y, F ) + ǫ, for any q = 0, . . . , n+ 1.

We argue that Conjecture 2 refines the trivial lower bound given by the triangle inequality, i.e.

n+1
∑

q=0

ĥq(Y, F ) ≥
∣

∣

∣

∫

Y

c1(F )n+1
∣

∣

∣
. (13.4)

Indeed, by Riemann-Roch-Hirzebruch theorem, we have

n+1
∑

q=0

(−1)q dimHq(Y, F⊗k) =

∫

Y

Td(TY ) · ch(F⊗k), (13.5)

where Td and ch are Todd and Chern classes. We take the absolute value from each side of (13.5),

apply the triangle inequality on the left-hand side, divide by kn+1 and take a limit k → ∞ to get

(13.4). Remark also that if we knew that the lim sup in (1.7) is actually a limit, then from (13.5),

we would get immediately

n+1
∑

q=0

(−1)qĥq(Y, F ) =

∫

Y

c1(F )n+1. (13.6)

We can now state the main result of this section, refining Corollary 1.5.

Theorem 13.2. In the setting of Corollary 1.5, Conjecture 2 holds. Moreover, in this setting, it is

enough to consider relatively positive α in the definition of |MA|([α]), i.e. for an arbitrary Kähler

form ωB on Y , we have |MA|([α]) = WZW([α], ωB).

Proof. We conserve the notations from Corollary 1.5. We first argue that

ĥq(Y, F ) = 0, for any q > 1. (13.7)

By Serre vanishing theorem, it is immediate to see that Leray spectral sequence associated with

F⊗k and π degenerates at the second page for k ∈ N big enough. In particular, for any q =
0, . . . , n+ 1, and k large enough, we have

Hq(Y, F⊗k) = Hq(C,Ek). (13.8)

However, since C is a Riemann surface, we clearly have Hq(C,Ek) = 0 for any q > 1. Together

with (13.8), this implies (13.7).

Now, since the base of the fibration is 1-dimensional, the value under the integral of the Wess-

Zumino-Witten functional coincides with the absolute Monge-Ampère functional, and Theorem

1.1 for the class [ωC ] ∈ H1,1(C,R) and a Kähler form ωC ∈ [ωC], verifying
∫

C
[ωC ] = 1, gives us

|MA|(c1(F )) ≤ WZW(c1(F ), ωC) =

∫

x∈R
|x|dηHN(x) ·

∫

c1(F )nπ∗[ωC ] · (n + 1). (13.9)
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It is one of the two crucial places in the proof where we use the fact that dimB = 1.

We argue that
∫

x∈R
|x|dηHN(x) ·

∫

c1(F )nπ∗[ωC ] · (n+ 1) = ĥ0(Y, F ) + ĥ1(Y, F ). (13.10)

Once (13.10) is established, the proof of Theorem 13.2 follows by Proposition 13.1, (13.7), (13.9)

and (13.10).

Let us now establish (13.10). We first show that
∫

x∈R
xdηHN (x) ·

∫

c1(F )nπ∗[ωC ] · (n + 1) =

∫

Y

c1(F )n+1. (13.11)

Recall that ηHN is the weak limit of ηHN
k (the latter measures were defined in (1.4)), as k → ∞.

In particular, we have
∫

x∈R
xdηHN(x) = lim

k→∞

1

k ·Nk

Nk
∑

i=1

µk
i , (13.12)

where Nk and µk
i were defined before (1.4). However, by the additivity of the degree, we obtain

Nk
∑

i=1

µk
i =

deg(Ek)
∫

C
[ωC ]

. (13.13)

By Riemann-Roch-Grothendieck theorem, similarly to (13.6) and (13.5), it is easy to see that

lim
k→∞

deg(Ek)

k ·Nk
=

∫

Y
c1(F )n+1

(n + 1) · p∗c1(F )n
. (13.14)

A combination of (13.12), (13.13) and (13.14) implies (13.11).

Now, from (13.11), we deduce

∫

x∈R
|x|dηHN(x) ·

∫

Y

c1(F )nπ∗[ωC ] · (n + 1)

= 2

∫

x≥0

xdηHN(x) ·
∫

Y

c1(F )nπ∗[ωC ] · (n+ 1)−
∫

Y

c1(F )n+1. (13.15)

Recall, however, that Chen in [15, Theorem 1.1] established that there is the following relation

ĥ0(Y, F ) =

∫

x≥0

xdηHN(x) ·
∫

Y

c1(F )nπ∗[ωC ] · (n + 1). (13.16)

This is the second crucial place in the proof where we use the fact that dimB = 1. We argue that

ĥ0(Y, F )− ĥ1(Y, F ) =

∫

Y

c1(F )n+1. (13.17)

Once we get (13.17), a combination of it, (13.15) and (13.16) would imply (13.10), which finishes

the proof. To establish (13.17). Recall that by (13.6), it suffices to establish that lim sup in (1.7)

is actually a limit. For q = 0, a famous Fujita’s theorem, [44], cf. [26], states that lim sup in (1.7)

is actually a limit. For q > 1, there is nothing to prove due to (13.7). The only case which is left,

q = 1, then follows from (13.5) and the validity of the statement for q 6= 1.
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In conclusion to this section, let us point out a relation – originally described in [23] – between

Corollary 1.5 and the Andreotti-Grauert theorem. Recall that the Andreotti-Grauert theorem asserts

the vanishing of some cohomology groups, associated with high tensor powers of a line bundle,

carrying a metric with curvature having enough of positive eigenvalues at every point. The con-

verse of this statement asks for the existence of metrics on the line bundle with certain positivity

constraints on the curvature, provided that some cohomology groups vanish. It is known to hold in

some special cases, cf. [87], but it fails in general, see [66]. What Conjecture 1 asks is a version of

this converse statement, saying that asymptotic vanishing of the cohomology implies the existence

of a sequence of metrics with suitable curvature.

14 Kobayashi-Hitchin correspondence and Hessian quotient equations

The goal of this section is to describe a connection between the Wess-Zumino-Witten equation,

Hermite-Einstein and Hessian quotient equations.

Let us first explain the relation with Hermite-Einstein equation and show that Corollary 1.3

can be seen as a generalization of Kobayashi-Hitchin correspondence to fibrations which are not

necessarily associated with vector bundles.

More precisely, let F be a holomorphic vector bundle of rank r over B. Let L := O(1) be the

hyperplane bundle over X := P(F ∗), and let π : P(F ∗) → B be the natural projection.

Let us recall how to calculate the limiting Harder-Narasimhan measure ηHN for this family.

First, it is classical that the vector bundles Ek = R0π∗L
⊗k are isomorphic with SymkF . It is also

easy to see that for any k ∈ N∗, the Harder-Narasimhan slopes of SymkF can be easily expressed

in terms of the Harder-Narasimhan slopes, µ1, . . . , µk of F . To describe the limit of this relation,

we denote by ∆ = {(x1, . . . , xr) : x1 + · · · + xr = 1, xi ≥ 0} the r − 1-simplex, and by dλ
the Lebesgue measure on ∆, normalized so that

∫

∆
dλ = 1. We denote by φ : ∆ → R the map

(x1, . . . , xr) 7→ x1µ1+ · · ·+xrµr. Then according to [15, Proposition 3.5], we have ηHN = φ∗dλ.

In particular, the measure ηHN is a singleton if and only if µ1 = · · · = µk, i.e. F is semistable.

Let us now describe the geometric side of Theorem 1.1 in this specific setting. We fix a Her-

mitian metric hF on F . We endow L with the metric hL induced by hF . It is then a classical

calculation, cf. [52], [39, Lemma 3.3 and Remark 3.4], that the metric hF solves the Hermite-

Einstein equation
√
−1
2π

RhF ∧ ωm−1
B = λωm

B if and only if ω := c1(L, h
L) solves

ωn+1 ∧ π∗ωm−1
B = λ(n + 1) · ωn ∧ π∗ωm

B . (14.1)

Moreover, following a question raised by Kobayashi [52], it was established by Feng-Liu-Wan

in [34, Proposition 3.5] that if there is a metric hL on L such that ω := c1(L, h
L) solves (14.1),

then one can cook up from it a Hermitian metric on F , solving the Hermite-Einstein equation (in

particular, F is then polystable).

What Corollary 1.3 tells us in this specific setting is that if the vector bundle F is semistable,

then (14.1) can be solved approximately. Due to the explanations above, this gives us a weak

version of Kobayashi-Hitchin correspondence, and Corollary 1.3 in its full generality is a gen-

eralization of this correspondence to more general fibrations. We say “weak version” for two

reasons: first, Kobayashi-Hitchin correspondence asserts existence of a Hermitian metric on F .

As it is not clear what is the fibered analogue of a Hermitian metric on F , Corollary 1.3 can only

provide the existence of a Finsler metric (a metric on O(1)). Second, Corollary 1.3 proves that L1-

approximate solutions exists for semistable vector bundles, but Kobayashi-Hitchin correspondence

provides L∞-approximate solutions, cf. [53, Theorem 6.10.13].
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Proof of Corollary 1.3. We argue that Theorem 1.1 establishes the equivalence between statements

a) and c). Specifically, condition a) corresponds to the vanishing of the right-hand side of (1.5),

while condition c) corresponds to the vanishing of the left-hand side of (1.5). But as Theorem 1.1

asserts the identity between the two sides, a) and c) are equivalent.

Let us establish the equivalence between a) and b). Clearly, in the notations of (1.4), we have

µk
Nk

= sup
{

µ(Fk) : Fk is a coherent subsheaf of Ek, rk(Fk) > 0
}

. (14.2)

Moreover, by (13.12), we have

lim
k→∞

µ(Ek)

k
=

∫

x∈R
xdηHN(x) (14.3)

However, by [40, Theorem 1.1], we have

lim
k→∞

µk
Nk

k
= ess sup ηHN . (14.4)

A combination of (14.2), (14.3) and (14.4), yields that the inequality from b) is equivalent to the

fact that ηHN is the Dirac mass. By calculations as in (13.14), we see that

lim
k→∞

µ(Ek)

k
=

∫

X
c1(L)

n+1 · π∗[ωB]
m−1

(n + 1) ·
∫

X
c1(L)n · π∗[ωB]m

. (14.5)

A combination of (14.3) and (14.5) then determines the support of ηHN . Since it is a probability

measure, which is a Dirac mass, the support fully determines it. This finishes the proof of the

equivalence between a) and b).

Lastly, let us establish the equivalence between a) and d) under an additional assumption

dimB = 1. Recall that in [39], we defined asymptotic semistability of Ek := R0π∗L
k as fol-

lows: for any ǫ > 0, there is k0 ∈ N, such that for any k ≥ k0, for any quotient sheave Qk of Ek,

rk(Qk) > 0, we have µ(Qk) ≥ µ(Ek) − ǫk. In [39, Theorem 1.3], by relying on the assumption

dimB = 1, we established that asymptotic semistability is equivalent to the validity of the inequal-

ity from condition d) for all irreducible complex analytic subspaces Y ⊂ X projecting surjectively

over B. Remark, however, that if Y ⊂ X doesn’t project surjectively over B, by the Grauert’s

theorem, the image is a proper analytic subset of B (a point). The term on the right-hand side then

vanishes, but the term on the left-hand side is positive by the relative ampleness of L. Hence the

inequality part from condition d) is satisfied in full.

Moreover, in the proof of this result, see [39, after (4.18)], we established that asymptotic

semistability is equivalent in the notations of (1.4) to

lim
k→∞

µk
1

k
= lim

k→∞

µk
Nk

k
. (14.6)

However, by [40, Proposition 6.1], if dimB = 1, then limk→∞ µk
1/k = ess inf ηHN . From this and

(14.4), the condition (14.6) is equivalent to ess inf ηHN = ess sup ηHN , which means precisely that

ηHN is a Dirac mass. As described after (14.5), when ηHN is a Dirac mass, its support is given by

the λ giving the identity from d), which finishes the proof.
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Let us now describe a connection with the so-called Hessian quotient equations. Here we no

longer assume that our fibration is associated with a vector bundle as we did before. We fix a Kähler

form χ and a Kähler class [ω] on X . The Hessian quotient equation, introduced by Székelyhidi

in [79, (185)], is then given by

ωn+1 ∧ χm−1 = λ(n + 1) · ωn ∧ χm, (14.7)

where λ is a certain (topological) constant, and ω is the unknown Kähler form from [ω].
Remark that (14.1) has the same form as (14.7) with only one difference that instead of the

positive (1, 1)-form χ, we have a semi-positive form π∗ωB. This – seemingly minor – change

breaks down many of the known techniques for the study of (14.7), as the linearization of (14.1),

unlike (14.7), in not elliptic. Also, the notion of subsolution from [79, (12)] collapses in this

degenerate setting, as it is easy to see there is no relatively positive (1, 1)-form ω, which verifies

the inequality ωn ∧ π∗ωm−1
B − λnωn−1 ∧ π∗ωm

B > 0 (and if we replace the sign > with ≥, then any

form verifying this bound automatically solves (14.1)).

Another difference between (14.1) and (14.7) is that we only assume that [ω] is relatively Kähler

in Corollary 1.3 instead of the Kähler assumption from (14.7). However, this issue is a minor one,

as (14.1) doesn’t change much if one changes ω to ω + Tπ∗ωB for some T > 0 big enough, and

[ω] + Tπ∗[ωB] becomes Kähler for T big enough.

We will now show that, a least when dimB = 1, when L is ample, the forms ωǫ appearing in

Corollary 1.3 can be obtained as solutions to the Hessian quotient equation, (14.7).

More precisely, for ǫ > 0, we consider a (1, 1)-form χǫ := π∗ωB + ǫω0, where ω0 is an

arbitrary Kähler form from [ω]. Clearly, the form χǫ is Kähler for ǫ > 0. We denote λǫ :=
∫

X
[ω]n+1[χǫ]

m−1/(
∫

X
[ω]n[χǫ]

m(n+ 1)).

Proposition 14.1. Assume that dimB = 1, and ηHN is the Dirac mass. Then for any ǫ > 0, the

J-equation, given by

ωn+1 = λǫ(n + 1) · ωn ∧ χǫ, (14.8)

admits a solution, ω := ωǫ,0, from the class [c1(L)]. Moreover, the (1, 1)-form ωǫ from Corollary

1.3 can be taken as ωǫ′,0 for some ǫ′ > 0 small enough.

This result will be established as a consequence of the numerical criteria for the existence of

the solutions to (14.8). Recall the following statement proved by Datar-Pingali [20, Theorem 1.1],

see also Székelyhidi [79] and G. Chen [13] for related results.

Theorem 14.2. For any Kähler formχ on X from the class [χ] and a Kähler class [ω], the following

conditions are equivalent.

a) For λ =
∫

X
[ω]n+1/(

∫

X
[ω]n[χ](n + 1)), there is a unique Kähler form ω from [ω], verifying

ωn+1 = λ(n+ 1) · ωn ∧ χ, and so that the (n, n)-form ωn − λnωn−1 ∧ χ is positive.

b) For any irreducible complex analytic subspace Y ⊂ X of dimension k + 1, k ∈ N, k < n,

we have
∫

Y
[ω]k+1 > λ(k + 1) ·

∫

Y
[ω]k[χ].

Proof of Proposition 14.1. In order to show that the equation (14.8) has solutions, we will verify

that the second condition from Theorem 14.2 is satisfied.

Let us show that if the inequality
∫

Y
c1(L)

k+1 ≥ λǫ(k + 1) ·
∫

Y
c1(L)

k · [χǫ] holds for ǫ = 0,

then it holds (with a sign > instead of ≥ if k < n) for any ǫ > 0. For this, we introduce

a :=

∫

Y
[ω]k+1

(k + 1) ·
∫

Y
[ω]k[χ]

, b :=

∫

X
[ω]n+1

(n+ 1) ·
∫

X
[ω]n[χ]

. (14.9)
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Then an easy manipulation shows that the inequality
∫

Y
c1(L)

k+1 > λǫ(k + 1) ·
∫

Y
c1(L)

k · [χǫ] is

equivalent to a(1 + ǫ(n + 1)b) > b(1 + ǫ(k + 1)a), which clearly holds for any ǫ > 0 as long as

a ≥ b > 0, k 6= n, which is true by our assumption.

Hence, the second condition in Theorem 14.2 holds for any ǫ > 0. By Theorem 14.2, for any

ǫ > 0, there is a Kähler form ωǫ,0, verifying ωn+1
ǫ,0 = λǫ(n + 1)ωn

ǫ,0 ∧ χǫ.

Now, by the triangle inequality, we have
∣

∣ωn+1
ǫ,0 − λ(n+ 1)ωn

ǫ,0 ∧ π∗ωB

∣

∣ ≤ (λ− λǫ)(n+ 1)ωn
ǫ,0 ∧ χǫ + ǫλ(n+ 1)ωn

ǫ,0 ∧ ω0, (14.10)

which immediately implies the result, as by Chern-Weil theory, we have
∫

X
ωn
ǫ,0∧χǫ =

∫

X
[ω]n[χǫ],

∫

X
ωn
ǫ,0 ∧ ω0 =

∫

X
[ω]n[ω0], and these quantities remain bounded, as ǫ → 0.

It will be interesting to know if for dimB ≥ 2 the forms from Corollary 1.3 can also be taken

as solutions of some auxiliary differential equations.

Also, taken into account the fact that the continuity method and the method of geometric flows

plays a crucial role in Kobayashi-Hitchin correspondence and the study of Hessian quotient equa-

tions, it is interesting to know if these methods can be used to give alternative proofs for the results

from this paper, obtained through quantization. This is particularly relevant as in the situations

analogous to the one of Theorem 1.1, cf. [33], [86] [49], [28], the minimizing sequences for other

functionals were obtained through solutions of some geometric flows.

As a concluding remark, we would like to mention some related works concerning the equation

(1.1) in the setting when B has a boundary. First, when B is an annuli in C, weak solutions to the

Dirichlet problem associated with (1.1) correspond to the Mabuchi geodesics in the space of all

Kähler potentials, [72] [30], and they always exist, see [17] (cf. also [85] for a related result on

pseudoconvex domains in Cm). Moreover, the results [67], [71], [76], [85] show that the solution

to this equation can be obtained as a dequantization of solutions to a Dirichlet problem associated

with the Hermite-Einstein equations on Ek, as k → ∞.

Of course in the setting of a manifold with boundary, the solution to (1.1) minimizes the Wess-

Zumino-Witten functional, and the solutions to the Hermite-Einstein equations minimize the re-

spective Hermitian Yang-Mills functionals (both miniminal values are zero). The major difference

between these results and the ones from this article are due to the fact in the boundaryless setting

considered here, neither (1.1), nor Hermite-Einstein equation have solutions.
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