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In the experimental mechanics community, full-field measurement techniques have gained popularity over the
last few decades, revolutionizing traditional testing procedures for materials and structures. While Digital Image
Correlation (DIC) remains the most widely used method, its reliance on randomly patterned surfaces limits its
metrological performance, and the iterative calculations required for retrieving displacement and strain fields
can be computationally expensive. In recent years, there has been a proposal to use optimal checkerboard
patterns instead. Images of such periodic patterns can be processed using a method called Localized Spectrum
Analysis (LSA). LSA proposes processing these images in the frequency domain using spectral techniques, which

reduces computational costs. This paper presents an open-source LSA software written in Python and illustrates
two application cases in experimental mechanics.
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1. Motivation and significance

In experimental mechanics, devices providing full-field kinematic
data are nowadays routinely used. They mostly rely on cameras that
take images of the surface texture of a specimen, the latter being
subjected to thermal and/or mechanical loads. Image processing is
then performed to retrieve the displacements at every pixel from the
stack of images. Considering planar specimens, such displacement maps
make it possible to observe the different mechanisms that operate in
the specimen properly. Modeling these mechanisms and identifying the
material constitutive behavior become then easier. It is worth noting

that the elastic domain is often investigated. This usually leads to
strain magnitude below 10~3 [-]. Digital Image Correlation (DIC) is
the most common image processing technique used to determine the
displacement field from a pair of images [1]. It identifies that displace-
ment field by iteratively minimizing the optical residual. In its simplest
form, this quantity represents the squared difference of the gray level
distributions estimated over small subsets selected in the reference and
current images, the latter image being mapped onto the former through
the sought displacement. Numerous software are available, including
both open-source versions [2-5] or commercial versions [6-8]. These
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examples illustrate the diversity of available software, but it should be
noted that this is not a comprehensive list.

For the experimental mechanics community, challenges addressed
by full-field measurement tools mainly involve: (i) the reduction of the
computing time required for calculating the displacement maps, and
(ii) the optimization of the metrological performance associated with
the measurement. Both challenges have been widely addressed in the
literature.

For instance, Computing time has been reduced through the imple-
mentation of DIC on Graphics Processor Units [9,10]. Nevertheless, DIC
is an iterative process. It remains, by nature, computationally intensive.
More recently, the problem has been reformulated through the use of
a dedicated Convolutional Neural Network [11,12].

The assessment and the optimization of the metrological perfor-
mance of DIC tools is a topical subject [13-40]. The community now
acknowledges that enhancing the metrological performance requires
paying closer attention to the image pattern. In the early ages of DIC,
ease of implementation was considered paramount. Speckle textures
obtained with spray paint were then commonly used for this purpose,
given random features that prevented DIC from getting trapped in local
minima. However, the demand for accurate measurements now com-
pels DIC users to accurately formulate rules regarding pattern texture
in DIC measurements. Checkerboard patterns appear optimal for ob-
taining measurements with the highest metrological performance [29,
41]. Nevertheless, DIC users generally do not employ such patterns
because of their periodicity, which causes classic DIC algorithms to
be entrapped in local minima. Some studies state that patterns should
ideally be “similar to” a checkerboard, but “sufficiently random” to
avoid the above-mentioned issue [42].

Localized Spectrum Analysis (LSA) is one of the techniques devel-
oped to extract displacement fields from images of periodic patterns.
It presents interesting properties in this context. First, this is a spectral
approach that minimizes the optical residual in the Fourier domain,
thus drastically reducing the computing cost of displacement calcula-
tions [43]. Second, it can easily process checkerboard images and other
types of periodic patterns such as 2D grids.

The present paper aims to introduce a new software, OpenLSA. It
is the culmination of developments over the last decade in collabo-
ration between LORIA, (Université de Lorraine, Nancy, France) and
the “Experimental Mechanics” team of the Institut Pascal research
group, Clermont-Ferrand, France. LSA has been utilized in numerous
papers dealing with material and structure characterization [35,43—
53]. However, only an early Matlab software toolbox [54] based on
this technique is available, which justifies the present contribution
developed with Python.

2. Software description
2.1. Properties of images of periodic patterns

The images considered here exhibit specific properties. They consist
of multiple repetitions of an initial pattern, arranged with a given
period along two perpendicular directions. An illustration is provided
in Fig. 1. Fig. 1(a) depicts an imaged specimen surface, on which
a checkerboard has been engraved following the procedure detailed
in [47]. On a white background, the unit cell of the pattern consists
here of a black shape of width about 30 [pm]. This pattern is then
repeated along the perpendicular directions (e, e ) of the square with
the period p = 30\/5 [um], as illustrated by the close-up in Fig. 1(b).
The acquired image by the camera sensor can thus be modeled as
the summation of two perpendicular 1D-periodic signals. In practice,
the wave vector k, defined for both « and g directions, uniquely
characterizes the direction and the period of such a signal. Specifically,
its period corresponds to the inverse of the norm of the wave vector, i.e.
p = 1/| k|| and the repetition direction is given by the vector direction.
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2.2. Brief reminder of LSA basics

2.2.1. Displacement measurement with periodic patterns

The present paragraph presents the modeling of images of checker-
board patterns, possibly deformed. The undeformed checkerboard is
assumed to be made of square patterns. Let I (resp. I') be the gray
level intensities of the reference image (resp. current image). It satisfies
at any pixel location x, Vi € {0,1},

T = frng (27k, - X+ ¢, (9) + frng (27K, - x+ 7)) o)

where “frng” is a 2z periodic function, k, (resp. k ﬂ) is the wave vector
of the pattern periodicity and e, (resp. ¢,) is the unit vector such that
e, =k,/llk |, V¢ € {a,p). With checkboard patterns, the directions of
the pattern periodicity ¢, and e 4 are orthogonal. ((pg, #")re(ap) are the
phase modulations of the reference and the current configurations, of
the two perpendicular signals forming the checkerboard pattern [53],
and finally “.” is the 2D Euclidean dot product.

Denoting by u the displacement field that warps the reference image
1° to the current image I’, the conservation of the optical flow writes:

1°(x) = I'(x + u(x)). @)

After identification of the phase modulations of the “frng” functions,
the above equation leads to, V¢ € {a, §}:

2rk, - x+ (p(}(z) =27k, - (x + u(x) + @, (x + u(x). 3

Hence, since (e, e ﬂ) defines an orthonormal basis, the displacement
satisfies:

@20 — @ (x + u(x))

u(x) =
p T 2k

where ||-|| denotes the Euclidean norm of vector }}-e. These phase

modulations may be caused by any global translation or local deviation

from a perfect periodic pattern, typically displacement for the latter.

€ ()]

2.2.2. Extraction of the raw phase modulations

From an image I' with i € {0,t}, an estimation of the phase
modulations ((p;)fell’z) is obtained, at first order, by calculating the
arguments of the windowed discrete Fourier transform (WDFT) at the
frequencies and directions of each wave carrier [55]. Let FWJ(I) be to
the windowed discrete Fourier transform of image I with the Gaussian
window of standard deviation ¢ denoted by w,:

Fuo, D) = Y w, (x = 0I(x)e >Ex, ©)

with w,(x) = 1/Q2zc?)e 12l 29) and j is the imaginary unit defined
by j2 = —1. The pros and cons of different windows are discussed
in [56] and the conclusion is that the Gaussian window leads to the
best trade-off.

Hence, the phase modulation writes, V¢ € {a, f}, Vi € {0, 1}

¢, () ~ angle (F,,, (D(xk,) ) + 276, (3) 6)

where functions cif, which return signed integers for any pixels, are
introduced to correct the 2z-jumps of the “angle” function, because the

latter is giving the argument of any complex number, defined up to 2.

2.2.3. Unwrapping the raw phase modulations

The calculation of functions c; is depicted with an academic illustra-
tion in Fig. 2. Let us consider a 1D problem consisting of a 1D specimen
subjected to a uniform stretch of 5% strain. The corresponding displace-
ment is shown in Fig. 2(a). This displacement is equal to 0 [px] at the
center of the studied domain, ie. for x = 100 [px] here. The phase
modulation associated with such a displacement, considering a wave
carrier of 5 [px] period, is also displayed. In this particular case, we
assume the pattern to be perfectly encoded; consequently, the phase
modulation of the reference state is null.
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Fig. 1. Illustration of an image of a periodic pattern. A checkerboard has been deposited onto a specimen surface. (a) image of the specimen surface; (b) Close-up view of the

image (a).

Applying 1D LSA to the 1D deformed pattern provides the raw
phase modulation plotted in Fig. 2(b). However, the angle of a complex
number is defined modulo 2. Hence, two phenomena are induced.

« First, the angle of the WDFT is often spatially wrapped, so spatial
unwrapping must be performed. This spatial unwrapping consists
of adding pixel-wise integer multiple of 2z, so that the 2z-jumps
of wrapped maps are removed. (c"f),-E (0.}.£€{1,2) Maps collect these
pixel-wise integers, as illustrated in Fig. 2(c) for the considered 1D
case.

Second, the unwrapped phase maps are obtained modulo 2z, with
the same multiple of 2z for all the pixels. A pairing is, therefore,
performed between the reference and current phase modulations
to obtain the value of this multiple. Plugging Eq. (6) into Eq. (3)
gives, V¢ € {a, f}:

P00 — @L(x + ux)

k,ux) = o

+69(%) — cl(x + u(x)
with @), (x) = angle (F,, I)(x.k,)) .(7)

The pairing is calculated by assuming that the displacement u, at
a given specific location x, is known. In practice, u, is obtained
by tracking a marking defect. Indeed, Eq. (7) leads to

-0 =1
S X + tg) = p(xp) + W—&M@ : ®
The bracket notation refers to the rounding function to the nearest
integer. This rounding is required because of numerical errors.
Considering the 1D case, the correction function is adjusted such
that the displacement u;, deduced from the phase modulation,
equals 0 [px] at x, = 100 [px], i.e. at the center of the domain.
This is illustrated in Fig. 2(d).

2.2.4. Code overview
To summarize, the displacement estimation from a pair of images
by LSA consists of

(i) extracting the wrapped phase modulations from images I° and I’
using Eq. (6);

(i) computing functions (C;(é))ie {04}.¢€(12)+ Spatially unwrapping all
maps, and pairing the reference and current phase modulations
based on the known displacement of a given point using Eq. (8);

(iii) solving Eq. (4) using a fixed-point algorithm, since the sought
quantity u(x) is involved in both parts of the equality.

The organigram in Fig. 3 illustrates the code flow.
2.3. Software architecture

The software was designed to be straightforward for easy com-
prehension. The aim is to enable researchers, even those with little

programming experience, to read, understand, and modify the code
easily if needed.

The 1sa class is the main class of this software. The __init__
method of this class initializes the problem. For any new case study, an
image must be provided. The period and the orientation of the pattern,
gathered in vector k, are determined by the __compute_vec_k
private method, which localizes the highest peak in the spectrum of the
checkerboard image. The central peak is masked under the assumption
that the pattern pitch is lower than max_pitch, which is set by
default to 30 [pixels]. This corresponds to masking the central part
of the spectrum: the pattern pitch is sought in the spectrum with
a frequency larger than 1/max_pitch. Similarly, a lower bound is
also introduced, defined by the variable min_pitch, which is set by
default to 2\/5 [px]. For a checkerboard, the pattern pitch corresponds
to the diagonal of a white or black square. This default value thus
encodes each square by 2 x 2 pixels, which reaches the lowest limit
to avoid aliasing effects [57]. Once the highest peak is located, k, is
defined. It is rotated by a multiple of z/2 to be as close as possible to
the init_angle angle, which is set to 0 [rad] by default. The class
constructor __init__ initializes k if an image is given; otherwise, k_
must be provided by the user. k, is then defined by rotating k, by /2.
k, and k 5 define an attribute of the OpenLSA class, concatenated into
the vec_k list.

After creating the class and defining the wave carriers, the window
required for the WDFT needs to be elaborated. The compute_kernel
method builds the Gaussian kernel with a standard deviation equal
to std. std corresponds to ¢ in the previous section. If std is not
provided, it is defined by default as the smallest acceptable value, i.e.,
the period of the wave carriers [53].

At this stage, it is possible to compute the phase modulation for
every image. This is the objective of the compute_phases_mod
method. In practice, for each wave carrier direction ¢,, £ € {a,f},
the method calculates the value of the angle taken by the WDFT of
the checkerboard image at the corresponding frequency, ¢f Eq. (6).
The modulus of the WFDT is also computed. It defines the region of
interest roi if not provided. roi corresponds to the locations where
the modulus of the WDFT is greater than an arbitrary value, set by
default to a fifth of its maximum. The obtained phase modulations are
subsequently unwrapped within the roi.

The temporal _unwrap method pairs phase modulations accord-
ing to their corresponding images. To achieve this, a feature is extracted
from the reference image, and its position defines a marker. This
marker is then identified in the current image to facilitate pairing. The
feature is usually a bright spot in a part of the pattern that exhibits
correct encoding. Choosing a bright spot helps ensure that it is not
caused by dust within the optical system. Since dust particles typically
create black spots. The correct encoding of the pattern is determined
by thresholding the modulus of the WDFT of the image at the pattern
frequency by 75% of its maximum value. This ensures the selected
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Fig. 2. Illustration of the spatial and temporal unwrapping necessary for the correct estimation of phase modulation. (a) 1D case: homogeneous stretching of a 1D sample. The
displacement is affine, as is the associated phase modulation when considering a perfect pattern of 5 [px] period; (b) Raw wrapped phase modulation, obtained from the “angle”
function applied to the WDFT of the stretched pattern; (c) Spatially unwrapped phase and its corresponding correction function; (d) Spatially and temporally unwrapped phase
modulation, once the phase modulation of the stretched configuration has been paired to return the expected null displacement at the center of the specimen. The correction

function is thus updated accordingly.

10 [OpenLSA| - Compute_kernele........
class o .
fcomputc,phascsﬂlod] (0)ee{a,8}
Equation (6)
]
l l u'm,z,/,
¢ u
It compute_phases_mod (P)ee(o,s) temporal unwrap

Equation (6)

t
Equation (8) “r:{')ée{a,j}

¥
compute_displacement|u,
Equation (4)

Fig. 3. Organigram of the code flow when OpenLSA is applied on an image pair (I°,I') to retrieve the displacement u that operates from the image I° to the image I'.

feature is located far from the surface border and helps limit spot size,
which could otherwise impair phase estimation. Two approaches to
determining the marker location in the current image are implemented
to limit incorrect pairing. Both methods utilize the OpenCV Python
library. The first approach determines the displacement from the refer-
ence image to the current one by computing the corresponding optical
flow, specifically using the Dense Inverse Search (DIS) algorithm. Blur-
ring the images with a large kernel significantly smoothes the pattern
to mitigate the influence of pattern periodicity, which could impede the
DIS optical flow algorithm. The position of the marker in the current
image is then computed using this displacement. The second approach
finds the location that minimizes the normalized squared difference
between the marker (size 30 x 30 pixels) and the current image. This
calculation is carried out using the matchTemplate algorithm. If the
positions of the markers differ by more than 1 [px], the one that results
in the smallest sum of squared differences between the current image
and the feature is kept. However, such an event generates a warning in
the Python terminal during code execution. The pairing is then carried
out by correcting the current phase modulation accordingly to Eq. (8).

Finally, the compute_displacement method solves Eq. (4) at
each pixel of the region of interest. The displacement is defined as a
complex number. The real (resp. imaginary) part corresponds to the
displacement along the e, (resp. e,) direction. A fixed-point algorithm
is implemented for this purpose. The associated stopping criterion,
defined by the average of the Euclidean norm of iterative correc-
tions, is set by default to 5 x 107, Moreover, the iterative process is
stopped when the number of iterations reaches the value specified by
max_iter, set to 15 by default. An option permits the initialization
of this fixed point algorithm with the displacement returned by the
DIS optical flow algorithm to reduce computing time. Moreover, when
solving Eq. (4), the current phase modulation is interpolated at the
location given by the iteratively-estimated displacement g", ie. ((p’f(z +
g't(p))fe(a,ﬁ). Since the region of interest is defined in the reference
state, for pixels close to its boundary, the zero initial guess of the
displacement, i.e. 4", might lead to interpolating the current phase
at a point of the image which does not correspond anymore to the
specimen surface. Initializing the compute_displacement method
with the displacement returned by the DIS optical flow algorithm also
prevents such an issue.
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2.4. Software functionalities

The proposed code computes phase modulations of two orthogonal
wave carriers within a pair of images. It deduces the displacement field
from these phase modulations. The properties of the pattern (k, and
kﬂ) and the LSA parameters (wave vectors characterizing the pattern
periodicity) are automatically computed. Two additional functionalities
are introduced at this stage. They are discussed in the next two sections.

2.4.1. Phase and phases classes

The code introduces two additional classes related to the phase mod-
ulation quantity to facilitate its use. A phase modulation corresponds to
the pixel-wise shift of an imaged pattern to its theoretical wave carrier.
The Phase class encapsulates this information: its attributes include
the wave carrier, defined by its wave vector denoted vec_k, and the
phase modulation, formatted as a Numpy array and called data. An
additional attribute corresponds to the dimensions of the data array.
Several methods are defined within the Phase class. For example, the
unwrap and interp methods spatially unwrap and interpolate the
phase maps, respectively. Additionally, the save and load methods
aid in backing up results using the npz Numpy compressed file format.

The Phases class primarily consists of a list of objects defined
as instances of the Phase class. Applying the main methods, such
as unwrap and interp, of the Phase class to an object of the
Phases class propagates them to each phase it encapsulates. Since
images contain two phase modulations, one for each wave carrier,
manipulating objects of the Phases class greatly enhances the ease
of code reading.

2.4.2. Reducing sensor noise effect considering an image stack

An additional method called
compute_refstate_from_im_stack is proposed for computing
an averaged reference phase modulation from a stack of images. In-
deed, it is often recommended to acquire several pictures of the un-
loaded reference state to minimize the impact of sensor noise on
displacement estimation. Nevertheless, directly averaging the pictures
may potentially result in a biased estimation of the noiseless reference
phase map. Indeed, micro-vibrations (if any) occurring while capturing
the stack of reference images can induce a bias in the phase map of
the resulting averaged reference image. Here, the phase modulation
is computed for each image of the stack, and the rigid body motion
with respect to the first image of this stack is estimated and removed.
A consistent average phase modulation is then computed.

The available images are also used to compute the noise floor
level associated with the proposed measurement. For this purpose,
the displacement and the strain fields that warp the first image to
each other images in the stack are computed using the aforementioned
phase modulations. This allows the estimation of the metrological
performance of the measurement tool:

» The standard deviation of each component of the displacement
and strain is calculated pixel-wise. The input variable display
of the compute_refstate_from_im_stack method can be
set to True for displaying such standard deviation maps. The
global standard deviation of each component is also computed.
It defines the measurement resolution [58]. These values are
directly displayed in the terminal.

The spatial resolution is also computed. The spatial resolution
corresponds here to the smallest period of a sine displacement
measured with a bias equal to 1% or less. Here, 4 = 10% to be
consistent with other studies dealing with the metrological per-
formance of full-field measurement techniques [33,38,44]. The
closed form expression of this quantity given in [59] is used here.
The Metrological Efficiency Indicator (MEI) [60] is finally esti-
mated for the displacement and the strain. For both quantities,
only the component of the maximal measurement resolution is
kept for calculating an upper bound.
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Since the first image of the stack defines the reference coordinate
system for the averaged phase modulations, it must also be used to
initialize the problem for further LSA calculations. To avoid misuse, the
compute_refstate_from_im_stack method runs the OpenLSA
constructor with the first image and returns it, along with the calculated
reference phase modulations and the kernel employed for it.

2.4.3. Access to image stored on an s3 server

In our research institute, data are stored in a lasting manner using
an s3 server. For this purpose, OpenLSA code is written in such a way
that access to an image stack is possible when an s3_dictionary
is provided. This option is especially implemented for the OpenLSA
constructor, which can thus build a reference phase from images stored
in a single folder in such a s3 server.

3. Illustrative examples
3.1. Highlights of the main OpenLSA features

As a typical example, the OpenLSA software is applied here to
images obtained during a compression test of a wood specimen. The
images have already been used for another purpose in [52]. The
specimen is made of fir, with dimensions of 50 x 35 x 15 [mm3]. It is
subjected to a load of 955 [N], see picture in Fig. 4(a). A checkerboard
pattern was deposited on the observed surface of the specimen with
the procedure detailed in [61]. It is worth noting that since then, the
marking procedure has been simplified by using a laser engraver [47].
The deposited pattern features squares 100 [pm] wide. It is encoded
with a 12-bit Sensicam CCD camera featuring 1376 x 1040 pixels,
see the reference image I° in Fig. 4(b). The close-up view in Fig. 4(c)
displays the white and black squares.

First, the properties of the wave carriers are computed. For illus-
tration, the Discrete Fourier Transform is applied to the image I°. The
resulting spectrogram is depicted in Fig. 4(d). According to the details
provided in Section 2, a portion of this representation is masked to
estimate a preliminary wave vector. This mask is displayed with a
reduced transparency in Fig. 4(d). Both the k, and k 5 wave vectors
are plotted in Fig. 4(e), which is a close-up view of the spectrogram of
image 1°.

In this example, the standard deviation of the Gaussian window
used in LSA is set to its minimum value, i.e., the pattern period. This
length corresponds here to the minimum distance between two black
or white squares obtained on the diagonal of the squares. It is then
possible to extract the phase modulations from the reference image
along both the e, and e, directions at the frequency of ||k Al They are
illustrated in Figs. 5(a) and 5(b). These figures also show the automatic
selection of the region of interest, which considers all the pixels for
which the modulus is greater than 25% of its maximum value. The
pixels not included within this region of interest are not displayed. If
any, they appear in white in Figs. 5(a) and 5(b) and in all subsequent
Figures.

As discussed in Section 2, the raw estimation of the phase maps is
computed pixelwise and modulo 2z. The resulting raw phase maps are
unwrapped, and the results are shown in Figs. 5(c) and 5(d). The same
procedure is then applied to the current image I'. The corresponding
unwrapped phases are shown in Figs. 5(e) and 5(f). The temporal
pairing with the reference image I' has been achieved through the
calculation of the movement that followed an arbitrary point x, located
at the coordinates [867,412], as indicated by a red cross in Fig. 4(b).
This point corresponds to a feature, illustrated in Fig. 6, easily trackable
from one image to another.

Finally, the displacement maps along directions 1 and 2 are deduced
from the two phase modulations, according to Eq. (4). They are plotted
in Fig. 7(e).
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Fig. 4. Illustrative example: (a) Wood specimen subjected to compression test. (b) Image of the specimen surface after depositing a checkerboard pattern. (¢) Close-up view of this
pattern. (d) Spectrogram of the image is shown in (b); transparency is added to highlight the masked area where peaks are not searched. (e) Central part of (a), with superposition

of both the wave vectors k_ and Eﬂ.

The strain maps are displayed in Fig. 7(e). The following remarks
can be drawn from this Figure:

+ As expected with this kind of test, the order of magnitude of the
strain is quite small. Indeed, the longitudinal strain ¢,, remains
below 1%, in absolute value (see Fig. 7(d)). In other words, the
difference in displacement is about 1 pixel between the top and
bottom of the specimen.

ey, of Fig. 7(c) illustrates the Poisson effect. With a mean value
of about 2.4 x 107 [-], €, reveals the effect of sensor noise
propagation on the strain maps. Interestingly, the strain noise
observed here does not correlate with the pattern, contrary to its
counterpart observed with DIC [35,36] in similar cases.

Because it processes optimized patterns, LSA provides displace-
ment/strain maps with the highest possible metrological per-
formance. This is highlighted by the ability of the method to
illustrate material heterogeneity within strain maps. Here, early
and late woods are identifiable in the strain maps. This is partic-
ularly true for the normal strain ¢,,, and the shear strain ¢,,; see
Figs. 7(c) and 7(e).

3.2. Using an image stack of the reference state for improving metrological
performance

The second example illustrates the ability of the OpenLSA program
to take advantage of an image stack of the reference state to improve
the metrological performance of the measurement. For this purpose,
a set of images already used in [62] and available here [63] are
employed. These images correspond to a tensile test of a wood specimen
and come from Test #2 of [62]. This test has been selected here because
the observed strain maps are of low level and consequently show a
relatively poor signal-to-noise ratio. A checkerboard pattern has been
deposited onto the wood surface following the procedure presented
in [47]. An interested reader will find more details about the test
in [62].

Images have been duplicated onto our university’s s3 server to
facilitate code testing, example manipulation, and the illustration of the
s3 access code option. Moreover, images are cropped to 1024 x 1024
pixels to reduce the computing time of this illustration. The crop loca-
tion includes a few tree rings, which induce strain map heterogeneity
to emphasize the gain of using an image stack. Two sets of images are
available:
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Fig. 5. Phase maps associated with images I and I' (a) and (b) are the raw phase maps associated with image I° along the wave carrier directions: (a) (resp. (b)) corresponds to
the carrier of wave vector k_ (resp. k ﬁ). The results are wrapped because they are given modulo 2z. (c) and (d) show the same phase maps after unwrapping. (e) and (f) display
the unwrapped phase maps associated with image I'.

+ the first set is called 7° and contains 201 images corresponding to
the reference state (loading F =0 [N1): Z° = (I)ic(o.... 200}

+ the second set, called I', was exceptionally taken to capture the

< current state (loading F = 3200 [N]). It collects 201 images:
1
= I' = (IDre(o.....200)-
~N
; Three image procedures are applied to these sets.
% + First, LSA is applied using only the first image of each set. Let u! ™
< be the retrieved displacement. This displacement corresponds to
B the regular use of LSA, which relies on a pair of images.
é + LSA is then applied using the whole set Z° and the first image
] = e of the I' set. The obtained displacement is denoted by u/™ s'ack,
O . . . -
850 860 870 880 It corresponds to the proposed strategy, in which an image stack
position along e; [px] of the reference state is taken to improve the metrological per-
formance, and one current image is indeed used to describe the
Fig. 6. Close-up of the green square in Fig. 4(b), which is centered on a specific pattern current state. Processing the 70 image set, which corresponds to
feature. The later is tracked across images to solve the phase modulations’ temporal

multiple views of the same material state, allows the calculation
of the metrological performances in this case. The values are
given in Table 1.

Finally, the unusual fact that an image stack of the current state
is also available makes the calculation of a noise-reduced current

pairing.
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Table 1
Expected metrological performances estimated with the image stack used to calculate
the reference phase.

Name Component Value
u 4.37x 1073 [px]
X u, 4.85x 1073 [px]
Measurement resolution
£ 524 x107* [-]
£, 528 x107* [-]
£ 3.71x107% [-]
Spatial resolution - 55.3 [px]
i 2
Metrological efficiency indicator (MEI) displacement 0.27 [px*]
strain 1.62 [px]

phase possible. The compute_refstate_from_im_stack
method is thus run for this purpose. A displacement is then
deduced from both the reference and the current noise-reduced
phases; it is denoted by »". In what follows, the latter is used

to characterize the measurement error associated with u! " and
yim stack
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and e, components of the displacement. (c), (d), and (e) are the components of the strain tensor in the (e ,e,) plane. ¢,, corresponds
to the longitudinal strain along direction 2. This is a compression test, so ¢,, is negative.

The focus is made here on the strain maps, on which the effect of
noise is clearly noticeable. Fig. 8 gathers the results. Fig. 8(a) shows
eézi'” = £5,(u' ™) maps. On top of the tree rings, the usual peach-skin
aspect of the noise is visible. The latter is indeed perceptible for strain
values of a few 1073, The standard deviation of the error between the
22-strain maps elaborated from u' " and u" is equal to 8.78 x 107*
[px].

Fig. 8(b) shows &3 19k = gy, (ui" s19¢k). Tree rings are also visible,
and the map is slightly less noisy. The standard deviation of the error
between the 22—strain maps elaborated from ™ %k and ™ is equal
to 6.06 x 10™* [px].

By definition, the variance of the strain maps is proportional to the
average of the variances of the phases of the reference and the current
states [59]. When a large image stack is considered for estimating the
reference phase, the latter can be considered as noiseless. Consequently,
the variance of the strain maps should be divided by 2, and thus its
standard deviation by \/5 This property is almost verified here:

sy —ep) _878x107 o ©
std(elm stack —gnly  6.06x 107+ '

Finally, Fig. 8(c) plots the &)™ and &7 */** strains along the line

shown in Fig. 8(a) (black line) and Fig. 8(b) (red line), respectively.
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Fig. 8. 22-Strain maps obtained (a) using a pair of images which correspond to the reference and the current states, (b) using an image stack for the reference state and a single
image for the current state. Extraction of the data along the black line (a) and red line (b). The dashed blue line corresponds to noise-reduced strain data elaborated using image
stacks for both the reference and the current states. Standard deviations are computed with respect to this noise-reduced strain. (For interpretation of the references to color in

this figure legend, the reader is referred to the web version of this article.)

The dashed blue line corresponds to €, at the same location. Again,
5’2'; stack js closer to €”". This is confirmed by the standard deviation of

S22 .
the difference &),/ — €27 and £ sk — ¢ along this line:
std(ey,™ — €55) = 8.86 X 107 > 5.21 x 107* = std(ey “** —£5)  (10)
4. Impact

Material comprehension and optimization are significant motiva-
tions for many studies in the experimental mechanics community.
Undoubtedly, full-field measurement techniques have revolutionized
how experimentalists perceive their experiments. Material testing is
currently undergoing a breakthrough, with experimentation designed
to leverage the rich insights provided by full-field measurements [64,
65]. Thanks to its availability as commercial or free software, Digital
Image Correlation (DIC) is routinely used for computing displacement
and strain fields. However, DIC has drawbacks, such as its inability to
deal with patterns optimized for metrological performance. Localized
Spectrum Analysis (LSA), the backbone of OpenLSA, is specifically de-
signed to process such optimal patterns, such as checkerboards. While
an early in-house Matlab software toolbox is available [54], by publish-
ing our Python code, we aim to assist DIC users and experimentalists in
exploring the alternative offered by the LSA method. The outstanding
metrological performance of LSA [43] ensures its valuable use.

The deposition of patterns was previously a challenge that limited
the adoption of LSA. However, this limitation is now outdated, thanks
to the ease of use of a laser engraver [47], and more recently, the ability
to deposit checkerboard patterns using similar materials and techniques
as those used for strain gauges [62].

We aim to contribute to the broader scientific community by sharing
our methods, techniques, and findings, in the hope that they will assist
other researchers in understanding and potentially building upon our
work.

Moreover, LSA has facilitated collaborations for us, both at a na-
tional level [51,66] and internationally [46,49,50,67]. Making this
code accessible will contribute to the dissemination of these relevant
full-field measurement techniques in the experimental mechanics com-
munity, serving as a valuable resource for experimentalists tackling
similar problems or building upon related concepts. Additionally, the
software code is intended for educational purposes.

Making our research publicly available also enhances its repro-
ducibility. Other researchers can now utilize and validate our methods,
leading to more robust and reliable scientific results.

Finally, this work contributes to the ongoing efforts aimed at stan-
dardizing full-field measurement techniques, particularly in surface
marking. The geometry of a periodic pattern, such as a checkerboard,
can be easily defined with a limited number of parameters, making it
conducive to standardization.

5. Conclusions

In this article, we introduce OpenLSA, a software that applies Local-
ized Spectrum Analysis (LSA) to images of periodic patterns to retrieve
the displacement that warps them. LSA demands low computations.
It processes optimal patterns, such as checkerboard patterns, and pro-
vides full-field measurements with the best metrological performance.
Dedicated to the experimental mechanics community, this program will
significantly facilitate the adoption of LSA. Written as a Python class,
its use is easy, with many automated steps. Thanks to its open-source
nature, it encourages community collaboration.

Further work will propose integrating the dedicated deconvolution
algorithm for LSA, which will enhance the metrological performance of
the measuring tool. Lastly, an additional extension that would enhance
the framework’s usability is the integration of a camera model to take
it into account within full-field estimation.
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