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Dispersion ratio
At the first order in steepness (= ∇𝜙 𝑎)
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Wave phase transport
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Frequency without currentsWave phase transport

with a current velocity 𝑣

Dispersion ratio
At the first order in steepness (= ∇𝜙 𝑎)

12

𝜕𝜙

𝜕𝑡
+ 𝑣 ⋅ ด∇𝜙

=𝑘

= −𝜔0 k

−
𝜕𝜙

𝜕𝑡
= 𝜔 𝑘 = 𝑣 ⋅ 𝑘 + 𝜔0 k

Current 

velocity: 

𝑣

Wave:

ℎ𝑒𝑖 𝜙

𝑘 = ∇𝜙

Doppler

frequency:

𝜔0 ∝ 𝑘 𝛼



Refraction & contraction/dilatation

Wave-vector

Conservation of action spectral density 𝑁

Amplitude

Ray tracing / method of characteristic

Ray 

13

Total group 
velocity 𝑢𝑔: 

𝑣

Wave:

ℎ𝑒𝑖 𝜙

Group velocity

without current

𝐶𝑔
0 = ∇𝑘𝜔0

∇= ∇𝑥

Doppler

frequency:

𝜔0 ∝ 𝑘 𝛼

+𝐶𝑔
0

𝑑𝑘

𝑑𝑡
= −∇𝑥𝜔 = −𝛻𝑣𝑇 𝑘

𝑑𝑋𝑟
𝑑𝑡

= ∇𝑘𝜔 = 𝐶𝑔
0 + 𝑣

𝑁 =
ℎ2

𝜔0(𝑘)

𝑑𝑁

𝑑𝑡
= 0



Refraction & contraction/dilatation

Wave-vector

Conservation of action spectral density 𝑁

Amplitude

Ray tracing / method of characteristic

Ray 

14

Fonction 

of k

Total group 
velocity 𝑢𝑔: 

𝑣

Wave:

ℎ𝑒𝑖 𝜙

Group velocity

without current

𝐶𝑔
0 = ∇𝑘𝜔0

∇= ∇𝑥

Doppler

frequency:

𝜔0 ∝ 𝑘 𝛼

+𝐶𝑔
0

𝑑𝑘

𝑑𝑡
= −∇𝑥𝜔 = −𝛻𝑣𝑇 𝑘

𝑑𝑋𝑟
𝑑𝑡

= ∇𝑘𝜔 = 𝐶𝑔
0 + 𝑣

𝑁 =
ℎ2

𝜔0(𝑘)

𝑑𝑁

𝑑𝑡
= 0



Refraction & contraction/dilatation

Wave-vector

Conservation of action spectral density 𝑁

Amplitude

Ray tracing / method of characteristic

Ray 

15

Fonction 

of x

Fonction 

of k

Total group 
velocity 𝑢𝑔: 

𝑣

Wave:

ℎ𝑒𝑖 𝜙

Group velocity

without current

𝐶𝑔
0 = ∇𝑘𝜔0

∇= ∇𝑥

Doppler

frequency:

𝜔0 ∝ 𝑘 𝛼

+𝐶𝑔
0

𝑑𝑘

𝑑𝑡
= −∇𝑥𝜔 = −𝛻𝑣𝑇 𝑘

𝑑𝑋𝑟
𝑑𝑡

= ∇𝑘𝜔 = 𝐶𝑔
0 + 𝑣

𝑁 =
ℎ2

𝜔0(𝑘)

𝑑𝑁

𝑑𝑡
= 0



Refraction & contraction/dilatation

Wave-vector

Conservation of action spectral density 𝑁

Amplitude

Ray tracing / method of characteristic

Ray 

16

Non-linear

coupling

Fonction 

of x

Fonction 

of k

Total group 
velocity 𝑢𝑔: 

𝑣

Wave:

ℎ𝑒𝑖 𝜙

Group velocity

without current

𝐶𝑔
0 = ∇𝑘𝜔0

∇= ∇𝑥

Doppler

frequency:

𝜔0 ∝ 𝑘 𝛼

+𝐶𝑔
0

𝑑𝑘

𝑑𝑡
= −∇𝑥𝜔 = −𝛻𝑣𝑇 𝑘

𝑑𝑋𝑟
𝑑𝑡

= ∇𝑘𝜔 = 𝐶𝑔
0 + 𝑣

𝑁 =
ℎ2

𝜔0(𝑘)

𝑑𝑁

𝑑𝑡
= 0



Refraction & contraction/dilatation

Wave-vector

Conservation of action spectral density 𝑁

Amplitude

Ray tracing / method of characteristic

Ray 

17

Non-linear

coupling

Fonction 

of x

Fonction 

of k

Total group 
velocity 𝑢𝑔: 

𝑣

Wave:

ℎ𝑒𝑖 𝜙

Group velocity

without current

𝐶𝑔
0 = ∇𝑘𝜔0

∇= ∇𝑥

Doppler

frequency:

𝜔0 ∝ 𝑘 𝛼

+𝐶𝑔
0

𝑑𝑘

𝑑𝑡
= −∇𝑥𝜔 = −𝛻𝑣𝑇 𝑘

𝑑𝑋𝑟
𝑑𝑡

= ∇𝑘𝜔 = 𝐶𝑔
0 + 𝑣

Main 

contribution

𝑁 =
ℎ2

𝜔0(𝑘)

𝑑𝑁

𝑑𝑡
= 0



Refraction & contraction/dilatation

Wave-vector

Conservation of action spectral density 𝑁

Amplitude

Ray tracing / method of characteristic

Ray 

18

Non-linear

coupling

Fonction 

of x

Fonction 

of k

Total group 
velocity 𝑢𝑔: 

𝑣

Wave:

ℎ𝑒𝑖 𝜙

Group velocity

without current

𝐶𝑔
0 = ∇𝑘𝜔0

∇= ∇𝑥

Doppler

frequency:

𝜔0 ∝ 𝑘 𝛼

+𝐶𝑔
0

𝑑𝑘

𝑑𝑡
= −∇𝑥𝜔 = −𝛻𝑣𝑇 𝑘

𝑑𝑋𝑟
𝑑𝑡

= ∇𝑘𝜔 = 𝐶𝑔
0 + 𝑣

Main 

contribution

Change

orientation

of 𝐶𝑔
0

𝑁 =
ℎ2

𝜔0(𝑘)

𝑑𝑁

𝑑𝑡
= 0



Numerical example of wave (swell) 

traveling inside turbulence
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Large-scale

eddy
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eddyMedium-scale

eddy

Known ഥ𝒗

Part II.
𝑣′ multi-scale in space 

& white in time

=> Markovian wave 

dynamics

Wave:

ℎ𝑒𝑖 𝜙

Part III.
For strong currents with local dyn. :  

𝑣′ multi-scale in space

& multi-scale in time

=> non-Markovian wave dynamics



II. Markovian closure

II.A. Generalized fast 

wave approximation

(GenFWA)
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Generalized fast wave approx.
Smallest scale turbulence 𝑣′ decorrelates

along the wave propagation

• Validity :

𝜖 =
Along−ray 𝑣’ correlation time

characteristic time of
wave group properties evolution

=

𝑙
𝑣′

𝐶𝑔
0

1

𝛻𝑣

=
𝑙
𝑣′

𝑙𝑣

𝑣

𝐶𝑔
0 ≪ 1

• Limitations : 

• Fast waves 
𝐶𝑔
0

𝑣
≫ 1

• Small-scale currents 
𝑙
𝑣′

𝑙𝑣
≪ 1

• Moderate current gradients 𝛻𝑣 ≪ 1
(⇨ steep spectrum ⇨ non-local current dynamics)

Large scale

group velocity: 

ҧ𝑣
Small scale

group velocity:

𝑣′ = 𝜎 ∘
𝑑𝐵𝑡

𝑑𝑡

= σ𝑖 𝜉𝑖 ∘
𝑑𝑊𝑡

𝑖

𝑑𝑡

Wave:

ℎ𝑒𝑖 𝜙

Doppler

frequency:

𝜔0 ∝ 𝑘 𝛼

+𝐶𝑔
0
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Stratonovich dispersion ratio
At the first order in steepness (= ∇𝜙 𝑎)
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Wave phase transport

with a current velocity 𝑣

Stratonovich dispersion ratio
At the first order in steepness (= ∇𝜙 𝑎)
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Frequency without 

currents
Wave phase transport

with a current velocity 𝑣

Stratonovich dispersion ratio
At the first order in steepness (= ∇𝜙 𝑎)
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II. Markovian closure

II.B. Calibration
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Large scale

group velocity: 

ҧ𝑣
Small scale

group velocity:

𝑣′ = 𝜎
𝑑𝐵𝑡

𝑑𝑡

= σ𝑖 𝜉𝑖 ∘
𝑑𝑊𝑡

𝑖

𝑑𝑡
(𝛿-correlated in t

homogenous

& isotropic)

+𝐶𝑔
0

𝑣′ = 𝜎 ሶ𝐵 = filter ∗ white noise

Time-uncorrelated model for 𝑣′:
Calibration
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100
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ҧ𝑣

𝑣′

KE Spectrum 𝐸(𝜅)

𝐸
(𝜅
)

𝜅

16

Large scale

group velocity: 

ҧ𝑣
Small scale

group velocity:

𝑣′ = 𝜎
𝑑𝐵𝑡

𝑑𝑡

= σ𝑖 𝜉𝑖 ∘
𝑑𝑊𝑡

𝑖

𝑑𝑡
(𝛿-correlated in t

homogenous

& isotropic)

+𝐶𝑔
0

𝑣′ = 𝜎 ሶ𝐵 = filter ∗ white noise

Time-uncorrelated model for 𝑣′:
Calibration
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10-5 10-4 10-3

10-2

100

102

ҧ𝑣

𝑣′

KE Spectrum 𝐸(𝜅)

𝐸
(𝜅
)

𝜅

16

Large scale

group velocity: 

ҧ𝑣
Small scale

group velocity:

𝑣′ = 𝜎
𝑑𝐵𝑡

𝑑𝑡

= σ𝑖 𝜉𝑖 ∘
𝑑𝑊𝑡

𝑖

𝑑𝑡
(𝛿-correlated in t

homogenous

& isotropic)

+𝐶𝑔
0

𝑣′ = 𝜎 ሶ𝐵 = filter ∗ white noise

Time-uncorrelated model for 𝑣′:
Calibration
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10-5 10-4 10-3

100

105

ADSD 𝐴(𝜅)

ҧ𝑣

𝑣′

Reference:

Resseguier, Pan & Fox-Kemper 2020

Absolute Diffusivity

Spectral Density

𝐴 𝜅 = 𝐸 𝜅 𝜏(𝜅)

𝐴
(𝜅
)

𝜅



10-5 10-4 10-3
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100

102

ҧ𝑣

𝑣′

KE Spectrum 𝐸(𝜅)

𝐸
(𝜅
)

𝜅

16

Large scale

group velocity: 

ҧ𝑣
Small scale

group velocity:

𝑣′ = 𝜎
𝑑𝐵𝑡

𝑑𝑡

= σ𝑖 𝜉𝑖 ∘
𝑑𝑊𝑡

𝑖

𝑑𝑡
(𝛿-correlated in t

homogenous

& isotropic)

+𝐶𝑔
0

𝑣′ = 𝜎 ሶ𝐵 = filter ∗ white noise

Time-uncorrelated model for 𝑣′:
Calibration
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10-5 10-4 10-3

100

105

ADSD 𝐴(𝜅)

ҧ𝑣

𝑣′

Reference:

Resseguier, Pan & Fox-Kemper 2020

Absolute Diffusivity

Spectral Density

𝐴 𝜅 = 𝐸 𝜅 𝜏(𝜅)

𝐴
(𝜅
)

𝜅

Residual

ADSD

Correlation time along ray

𝜏 𝜅 = 𝜏𝑟𝑎𝑦 𝜅 =
1/𝜅

𝐶𝑔
0



10-5 10-4 10-3

10-2

100

102

ҧ𝑣

𝑣′

KE Spectrum 𝐸(𝜅)

𝐸
(𝜅
)

𝜅

16

Large scale

group velocity: 

ҧ𝑣
Small scale

group velocity:

𝑣′ = 𝜎
𝑑𝐵𝑡

𝑑𝑡

= σ𝑖 𝜉𝑖 ∘
𝑑𝑊𝑡

𝑖

𝑑𝑡
(𝛿-correlated in t

homogenous

& isotropic)

+𝐶𝑔
0

𝑣′ = 𝜎 ሶ𝐵 = filter ∗ white noise

Time-uncorrelated model for 𝑣′:
Calibration
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10-5 10-4 10-3

100

105

ADSD 𝐴(𝜅)

ҧ𝑣

𝑣′

Reference:

Resseguier, Pan & Fox-Kemper 2020

Absolute Diffusivity

Spectral Density

𝐴 𝜅 = 𝐸 𝜅 𝜏(𝜅)

𝐴
(𝜅
)

𝜅

Residual

ADSD

Correlation time along ray

𝜏 𝜅 = 𝜏𝑟𝑎𝑦 𝜅 =
1/𝜅

𝐶𝑔
0



II. Markovian closure

II.C. Simplification

for single ray dynamics

17



Large scale

group velocity: 

ҧ𝑣

ത𝜎, ഥ𝜔, ത𝜙 related to ∇ ҧ𝑣𝑇

Small scale

group velocity:

𝑣′ = 𝜎
𝑑𝐵𝑡

𝑑𝑡

(𝛿-correlated in t

homogenous

& isotropic)

𝒂𝟎 =
𝟏

𝟐
𝔼 𝝈𝒅𝑩𝒕

𝟐/𝒅𝒕

𝜸𝟎 =
𝟏

𝟖
𝔼 𝛁 𝝈𝒅𝑩𝒕

𝑻 𝟐
/𝒅𝒕

Simplification for single ray dynamics

only 4 Brownian motions needed+𝐶𝑔
0

44



Ray 

Large scale

group velocity: 

ҧ𝑣

ത𝜎, ഥ𝜔, ത𝜙 related to ∇ ҧ𝑣𝑇

Small scale

group velocity:

𝑣′ = 𝜎
𝑑𝐵𝑡

𝑑𝑡

(𝛿-correlated in t

homogenous

& isotropic)

𝒂𝟎 =
𝟏

𝟐
𝔼 𝝈𝒅𝑩𝒕

𝟐/𝒅𝒕

𝜸𝟎 =
𝟏

𝟖
𝔼 𝛁 𝝈𝒅𝑩𝒕

𝑻 𝟐
/𝒅𝒕

Simplification for single ray dynamics

only 4 Brownian motions needed+𝐶𝑔
0

𝑑𝑋𝑟
𝑑𝑡

= 𝐶𝑔
0

cos 𝜃𝑘
sin 𝜃𝑘

+ ҧ𝑣 + 𝑎0
𝑑𝐵𝑡

1 /𝑑𝑡

𝑑𝐵𝑡
2 /𝑑𝑡

45



Ray 

Refraction & contraction/dilatation

Wave-vector

𝑘 = 𝜅 cos 𝜃𝑘
sin 𝜃𝑘

𝑑 ln 𝜅 𝑡

𝑑𝑡
= −ത𝜎 sin 𝜁 𝑡 + 𝛾0 + 𝛾0

𝑑𝐵𝑡
3

𝑑𝑡

𝒅𝜽𝒌 𝒕 = −
𝝏ഥ𝑽

𝝏𝜻
𝜻 𝒕 𝒅𝒕 + 𝟑𝜸𝟎

𝒅𝑩𝒕
𝟒

𝒅𝒕

with 𝜁 = 2 𝜃𝑘 + ത𝜙 and potential ത𝑉 𝜁 = ഥ𝜔 𝜁 − ത𝜎 𝑠𝑖𝑛 𝜁

Large scale

group velocity: 

ҧ𝑣

ത𝜎, ഥ𝜔, ത𝜙 related to ∇ ҧ𝑣𝑇

Small scale

group velocity:

𝑣′ = 𝜎
𝑑𝐵𝑡

𝑑𝑡

(𝛿-correlated in t

homogenous

& isotropic)

𝒂𝟎 =
𝟏

𝟐
𝔼 𝝈𝒅𝑩𝒕

𝟐/𝒅𝒕

𝜸𝟎 =
𝟏

𝟖
𝔼 𝛁 𝝈𝒅𝑩𝒕

𝑻 𝟐
/𝒅𝒕

Simplification for single ray dynamics

only 4 Brownian motions needed+𝐶𝑔
0

𝑑𝑋𝑟
𝑑𝑡

= 𝐶𝑔
0

cos 𝜃𝑘
sin 𝜃𝑘

+ ҧ𝑣 + 𝑎0
𝑑𝐵𝑡

1 /𝑑𝑡

𝑑𝐵𝑡
2 /𝑑𝑡
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Ray 

Refraction & contraction/dilatation

Wave-vector

𝑘 = 𝜅 cos 𝜃𝑘
sin 𝜃𝑘

𝑑 ln 𝜅 𝑡

𝑑𝑡
= −ത𝜎 sin 𝜁 𝑡 + 𝛾0 + 𝛾0

𝑑𝐵𝑡
3

𝑑𝑡

𝒅𝜽𝒌 𝒕 = −
𝝏ഥ𝑽

𝝏𝜻
𝜻 𝒕 𝒅𝒕 + 𝟑𝜸𝟎

𝒅𝑩𝒕
𝟒

𝒅𝒕

with 𝜁 = 2 𝜃𝑘 + ത𝜙 and potential ത𝑉 𝜁 = ഥ𝜔 𝜁 − ത𝜎 𝑠𝑖𝑛 𝜁

Large scale

group velocity: 

ҧ𝑣

ത𝜎, ഥ𝜔, ത𝜙 related to ∇ ҧ𝑣𝑇

Small scale

group velocity:

𝑣′ = 𝜎
𝑑𝐵𝑡

𝑑𝑡

(𝛿-correlated in t

homogenous

& isotropic)

𝒂𝟎 =
𝟏

𝟐
𝔼 𝝈𝒅𝑩𝒕

𝟐/𝒅𝒕

𝜸𝟎 =
𝟏

𝟖
𝔼 𝛁 𝝈𝒅𝑩𝒕

𝑻 𝟐
/𝒅𝒕

Simplification for single ray dynamics

only 4 Brownian motions needed+𝐶𝑔
0

𝑑𝑋𝑟
𝑑𝑡

= 𝐶𝑔
0

cos 𝜃𝑘
sin 𝜃𝑘

+ ҧ𝑣 + 𝑎0
𝑑𝐵𝑡

1 /𝑑𝑡

𝑑𝐵𝑡
2 /𝑑𝑡

47

Conservation of action spectral density 𝑁

𝔼𝑁(𝒙, 𝒌, 𝑡) = ඵ𝑑𝒙𝒓
𝟎𝑑𝒌𝟎𝑁0 𝒙𝒓

𝟎, 𝒌𝟎 𝑝 𝒙, 𝒌 𝒙𝒓
𝟎, 𝒌𝟎, 𝑡



Ray 

Refraction & contraction/dilatation

Wave-vector

𝑘 = 𝜅 cos 𝜃𝑘
sin 𝜃𝑘

𝑑 ln 𝜅 𝑡

𝑑𝑡
= −ത𝜎 sin 𝜁 𝑡 + 𝛾0 + 𝛾0

𝑑𝐵𝑡
3

𝑑𝑡

𝒅𝜽𝒌 𝒕 = −
𝝏ഥ𝑽

𝝏𝜻
𝜻 𝒕 𝒅𝒕 + 𝟑𝜸𝟎

𝒅𝑩𝒕
𝟒

𝒅𝒕

with 𝜁 = 2 𝜃𝑘 + ത𝜙 and potential ത𝑉 𝜁 = ഥ𝜔 𝜁 − ത𝜎 𝑠𝑖𝑛 𝜁

Large scale

group velocity: 

ҧ𝑣

ത𝜎, ഥ𝜔, ത𝜙 related to ∇ ҧ𝑣𝑇

Small scale

group velocity:

𝑣′ = 𝜎
𝑑𝐵𝑡

𝑑𝑡

(𝛿-correlated in t

homogenous

& isotropic)

𝒂𝟎 =
𝟏

𝟐
𝔼 𝝈𝒅𝑩𝒕

𝟐/𝒅𝒕

𝜸𝟎 =
𝟏

𝟖
𝔼 𝛁 𝝈𝒅𝑩𝒕

𝑻 𝟐
/𝒅𝒕

Simplification for single ray dynamics

only 4 Brownian motions needed+𝐶𝑔
0

𝑑𝑋𝑟
𝑑𝑡

= 𝐶𝑔
0

cos 𝜃𝑘
sin 𝜃𝑘

+ ҧ𝑣 + 𝑎0
𝑑𝐵𝑡

1 /𝑑𝑡

𝑑𝐵𝑡
2 /𝑑𝑡
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Conservation of action spectral density 𝑁

𝔼𝑁(𝒙, 𝒌, 𝑡) = ඵ𝑑𝒙𝒓
𝟎𝑑𝒌𝟎𝑁0 𝒙𝒓

𝟎, 𝒌𝟎 𝑝 𝒙, 𝒌 𝒙𝒓
𝟎, 𝒌𝟎, 𝑡

We can get analytic solutions !



Refraction & contraction/dilatation

Wave-vector

𝑘 = 𝜅 cos 𝜃𝑘
sin 𝜃𝑘

𝑑 ln 𝜅 𝑡

𝑑𝑡
= −ത𝜎 sin 𝜁 𝑡

𝑑𝜁 = −
𝜕ഥ𝑉

𝜕𝜁
𝜁 𝑡 𝑑𝑡

with 𝜁 = 2 𝜃𝑘 + ത𝜙 and potential ത𝑉 𝜁 = ഥ𝜔 𝜁 − ത𝜎 𝑠𝑖𝑛 𝜁

Large scale

group velocity: 

ҧ𝑣

ത𝜎, ഥ𝜔, ത𝜙 related to ∇ ҧ𝑣𝑇

assumed to be cst.

Simplification for single ray dynamics

- Deterministic case -+𝐶𝑔
0

4949

Wave shortening Wave rotation

ln 𝜅 𝑡 ln 𝜅 𝑡

ഥ𝜔 < ത𝜎 ഥ𝜔 > ത𝜎

𝜃𝑘(𝑡) 𝜃𝑘(𝑡)



ഥ𝜔

ത𝜎

𝜃𝑘 + ത𝜓 + 𝜋/4

We can solve the stationary Fokker-Planck for 𝜁,

𝑑𝜁 = −
𝜕ഥ𝑉

𝜕𝜁
𝜁 𝑡 𝑑𝑡 + 3𝛾0

𝑑𝐵𝑡
4

𝑑𝑡

⇨ Up to periodicity constraints,

𝑝 𝜁 ∝ exp −
2

3

ഥ𝑉 𝜁

𝛾0
and

𝜅 𝑡 = 𝜅 0 exp ׬−
0

𝑡
ത𝜎 sin 𝜁 𝑡′ 𝑑𝑡′ exp 𝛾0𝑡 + 𝛾0𝐵𝑡

3

unstable
stable

no fixed point for 𝑉

Large scale

group velocity: 

ҧ𝑣

ത𝜎, ഥ𝜔, ത𝜙 related to ∇ ҧ𝑣𝑇

assumed to be cst.

Small scale

group velocity:

𝑣′ = 𝜎
𝑑𝐵𝑡

𝑑𝑡

(𝛿-correlated in t

homogenous

& isotropic)

𝒂𝟎 =
𝟏

𝟐
𝔼 𝝈𝒅𝑩𝒕

𝟐/𝒅𝒕

𝜸𝟎

=
𝟏

𝟖
𝔼 𝛁 𝝈𝒅𝑩𝒕

𝑻 𝟐
/𝒅𝒕

Wave:

ℎ𝑒𝑖 𝜙

𝑘 = ∇𝜙 = 𝜅 cos 𝜃𝑘
sin 𝜃𝑘

𝜁 = 2 𝜃𝑘 + ത𝜙

ത𝑉 𝜁 = ഥ𝜔 𝜁 − ത𝜎 𝑠𝑖𝑛 𝜁

Simplification for single ray dynamics

- Stochastic case -

20
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ഥ𝜔

ത𝜎

𝜃𝑘 + ത𝜓 + 𝜋/4

We can solve the stationary Fokker-Planck for 𝜁,

𝑑𝜁 = −
𝜕ഥ𝑉

𝜕𝜁
𝜁 𝑡 𝑑𝑡 + 3𝛾0

𝑑𝐵𝑡
4

𝑑𝑡

⇨ Up to periodicity constraints,

𝑝 𝜁 ∝ exp −
2

3

ഥ𝑉 𝜁

𝛾0
and

𝜅 𝑡 = 𝜅 0 exp ׬−
0

𝑡
ത𝜎 sin 𝜁 𝑡′ 𝑑𝑡′ exp 𝛾0𝑡 + 𝛾0𝐵𝑡

3

unstable
stable

no fixed point for 𝑉

Large scale

group velocity: 

ҧ𝑣

ത𝜎, ഥ𝜔, ത𝜙 related to ∇ ҧ𝑣𝑇

assumed to be cst.

Small scale

group velocity:

𝑣′ = 𝜎
𝑑𝐵𝑡

𝑑𝑡

(𝛿-correlated in t

homogenous

& isotropic)

𝒂𝟎 =
𝟏

𝟐
𝔼 𝝈𝒅𝑩𝒕

𝟐/𝒅𝒕

𝜸𝟎

=
𝟏

𝟖
𝔼 𝛁 𝝈𝒅𝑩𝒕

𝑻 𝟐
/𝒅𝒕

Wave:

ℎ𝑒𝑖 𝜙

𝑘 = ∇𝜙 = 𝜅 cos 𝜃𝑘
sin 𝜃𝑘

𝜁 = 2 𝜃𝑘 + ത𝜙

ത𝑉 𝜁 = ഥ𝜔 𝜁 − ത𝜎 𝑠𝑖𝑛 𝜁

Simplification for single ray dynamics

- Stochastic case -

20

𝑝 𝜁



ഥ𝜔

ത𝜎

𝜃𝑘 + ത𝜓 + 𝜋/4

We can solve the stationary Fokker-Planck for 𝜁,

𝑑𝜁 = −
𝜕ഥ𝑉

𝜕𝜁
𝜁 𝑡 𝑑𝑡 + 3𝛾0

𝑑𝐵𝑡
4

𝑑𝑡

⇨ Up to periodicity constraints,

𝑝 𝜁 ∝ exp −
2

3

ഥ𝑉 𝜁

𝛾0
and

𝜅 𝑡 = 𝜅 0 exp ׬−
0

𝑡
ത𝜎 sin 𝜁 𝑡′ 𝑑𝑡′ exp 𝛾0𝑡 + 𝛾0𝐵𝑡

3

unstable
stable

no fixed point for 𝑉

Large scale

group velocity: 

ҧ𝑣

ത𝜎, ഥ𝜔, ത𝜙 related to ∇ ҧ𝑣𝑇

assumed to be cst.

Small scale

group velocity:

𝑣′ = 𝜎
𝑑𝐵𝑡

𝑑𝑡

(𝛿-correlated in t

homogenous

& isotropic)

𝒂𝟎 =
𝟏

𝟐
𝔼 𝝈𝒅𝑩𝒕

𝟐/𝒅𝒕

𝜸𝟎

=
𝟏

𝟖
𝔼 𝛁 𝝈𝒅𝑩𝒕

𝑻 𝟐
/𝒅𝒕

Wave:

ℎ𝑒𝑖 𝜙

𝑘 = ∇𝜙 = 𝜅 cos 𝜃𝑘
sin 𝜃𝑘

𝜁 = 2 𝜃𝑘 + ത𝜙

ത𝑉 𝜁 = ഥ𝜔 𝜁 − ത𝜎 𝑠𝑖𝑛 𝜁

Simplification for single ray dynamics

- Stochastic case -
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𝑝 𝜁

log(𝛾0/ ത𝜎)

Stochastic

shortening

Rotation

Rotation

Shortening

Weak

shortening

Shortening

with rotation

burstsShortening

Weak

shortening



II. Markovian closure

II.D. Waves trapped

in a jet

21



Sweel trapped

in a jet

Sentinel 2
22
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Idealized jet

| 𝑣 |

Agulhas current
Mercator current (01/01/2016)

+ SSHA weekly

Our simulationSituation to mimic:



𝑈

Swells in a jet
forced 2D Euler

(U ~ 1m/s)

Ray tracing with

trapping + scattering

56

𝜔

Large scale 

group velocity: 

ഥ𝑢, ҧ𝑣

from 

forced 2D Euler

Wave:

ℎ 𝑒𝑖 𝜙

+𝐶𝑔
0



𝑈

Swells in a jet
forced 2D Euler

(U ~ 1m/s)

Ray tracing with

trapping + scattering

57

𝜔

Large scale 

group velocity: 

ഥ𝑢, ҧ𝑣

from 

forced 2D Euler

Wave:

ℎ 𝑒𝑖 𝜙

+𝐶𝑔
0



Swells in a jet
Resolution effect & stochastic closure

Deterministic

reference:

wave groups in
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Our random

model
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+ time-uncorrelated 𝑣′
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𝑣 = ҧ𝑣 + 𝑣′ 𝑣 = ҧ𝑣 𝑣 = ҧ𝑣 + 𝜎 ሶ𝐵
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Large scale 

group velocity: 

ത𝑢 ≈ ഥ𝑈0 −
1

2
ҧ𝛽𝑦2

ҧ𝑣 ≈ 0

with ഥ𝑈0, ҧ𝛽 < 0

Small scale 

group velocity:

𝑣′ = 𝜎𝑑𝐵𝑡/𝑑𝑡

𝛿-correlated in t

Isotropic and 

homogeneous in x

Wave:

ℎ 𝑒𝑖 𝜙

Oscillating ray 𝒙𝒓, 𝒚𝒓, 𝒌𝒙, 𝒌𝒚

𝑑2𝑦𝑟

𝑑𝑡2
+ ഥ𝜔𝑟

2𝑦𝑟 = vg
0 3𝛾0 ሶ𝛽𝑡

with  ഥ𝜔𝑟 = 𝑣𝑔
0 ҧ𝛽 and  𝛾0 =

1

8
𝔼 ∇ 𝜎𝑑𝐵𝑡

𝑇 2/𝑑𝑡
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Analytic stochastic solutions for

• Ray position & wave direction

𝑦𝑟 t = 𝑦𝑟 0 cos ഥ𝜔𝑟t + ⋯+ Y𝛾0 ഥ𝜔𝑟 0׬
𝑡
sin ഥ𝜔𝑟(t − 𝑡′ )𝑑𝛽𝑡′

• Wave number fluctuations

• Mean distribution of wave action and wave energy

+𝐶𝑔
0

Swells in a jet
Analytic solution



II. Beyond Markovian 

closure

II.A. Waves trapped

in a SQG jet

27



Beyond validity of GFW

• Validity :

𝜖 =
Along−ray 𝑣’ correlation time

characteristic time of
wave group properties evolution

=

𝑙
𝑣′

𝐶𝑔
0

1

𝛻𝑣

=
𝑙
𝑣′

𝑙𝑣

𝑣

𝐶𝑔
0 ≪ 1

• Limitations : 

• Fast waves 
𝐶𝑔
0

𝑣
≫ 1

• Small-scale currents 𝑙𝑣′ ≪ 1

• Moderate current gradients 𝛻𝑣 ≪ 1

(⇨ steep spectrum ⇨ non-local current dynamics)

Large scale

group velocity: 

ҧ𝑣
Small scale

group velocity:

𝑣′

Wave:

ℎ𝑒𝑖 𝜙

Doppler

frequency:

𝜔0 ∝ 𝑘 𝛼

+𝐶𝑔
0
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GFW would fail for strong local current dynamics.

Example : Swells in a jet with flat spectrum,

typically forced SQG with U ~ 1m/s



Time-correlated model for 𝑣′
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Time-correlated model for 𝑣′

Wave spectra
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Time-correlated model for 𝑣′

Wave spectra
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Time-correlated model for 𝑣′

Wave spectra
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Wave spectra
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Wave spectra
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Wave spectra
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Time-correlated model for 𝑣′

Wave spectra



Time-correlated model for 𝑣′

Large-scale significant wave height 𝑯𝒔
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Time-correlated model for 𝑣′
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II. Beyond Markovian 

closure

II.B. Tests with

satellite data

32



Tests with Sentinel-1 and 

Jason-2 satellite data
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Tests with Sentinel-1 and 
Jason-2 satellite data
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Tests with Sentinel-1 and 

Jason-2 satellite data
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Tests with Sentinel-1 and 

Jason-2 satellite data
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Estimation of the incident 

spectrum on SAR imagery
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Sentinel-1 spectrum

Estimation of the incident 

spectrum on SAR imagery
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Determinist model
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Stochastic model with homogeneous and 

time-correlated 

small-scale velocities
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Stochastic model

with heterogeneous and time-correlated 

small-scale velocities
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17 dec 2015

Determinist model
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Stochastic model with homogeneous and 

time-correlated 

small-scale velocities
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Stochastic model

with heterogeneous and time-correlated 

small-scale velocities
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Sentinel-1 spectrum

Determinist model
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Sentinel-1 spectrum

Stochastic model

with heterogeneous and time-correlated 

small-scale velocities
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Sentinel-1 spectrum

Stochastic model

with heterogeneous and time-correlated 

small-scale velocities
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Sentinel-1 spectrum

Stochastic model

with heterogeneous and time-correlated 

small-scale velocities
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Sentinel-1 spectrum

Stochastic model

with heterogeneous and time-correlated 

small-scale velocities
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II. Beyond Markovian 

closure

II.C. Callibration
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Large scale

group velocity: 

ҧ𝑣
Small scale

group velocity:

𝑣′

Wave:

+𝐶𝑔
0

𝑣′ = filter ∗ time−correl. noise
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Time-correlated model for 𝑣′:
Calibration
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Time-correlated model for 𝑣′:
Calibration

Residual

spectrum

Physical scale symmetry

On-line fit : 𝐴 𝑘 −𝐻

(Similar to fractional Brownian motion in space)
෠ℎ2 = 𝐴𝑘−𝛼 − ෠ҧ𝑣 2
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𝑐

From 𝐵𝑡
𝑐 𝑥 = ෢𝐵𝑡׭

𝑐 𝑘 𝑒𝑖𝑘⋅𝑥𝑑𝑥,

Ornstein–Uhlenbeck process in time,

with correlation time 𝜏 𝑘 at the spatial scale 𝑘:

𝑑 ෢𝐵𝑡
𝑐 𝑘 = −

1

𝜏 𝑘
෢𝐵𝑡
𝑐 𝑘 𝑑𝑡 +

2

𝜏 𝑘
෣𝑑𝐵𝑡 𝑘

and 𝑑𝐵𝑡/𝑑𝑡 “spatiotemporal white noise”
(cylindrical Wiener Process)
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Time-correlated model for 𝑣′:
Calibration

Filter ℎ

Residual

spectrum

Physical scale symmetry

On-line fit : 𝐴 𝑘 −𝐻

(Similar to fractional Brownian motion in space)
෠ℎ2 = 𝐴𝑘−𝛼 − ෠ҧ𝑣 2
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Conclusion

Generalized Fast Wave Approximation (GenFWA)

• Smallest scale turbulence decorrelates along the wave propagation 

=> broader validity range compared to FWA

• Encodes both large-scale refraction and random scattering effects

• Takes into account wavenumber variation and handles strong heterogeneous flows, 

like localized jets with strong current gradients

• Provides both numerical and theoretical results

• Explains and quantifies ray trapping effects by jets, unlike FWA 

• For strong currents with flat spectra,

we propose a new stochastic closure with stochastic currents multi-scale in space and time.

• Better explain satellite observations

In the future, 

• we would like to use it as prior emulator of data assimilation

• Finite-size wave group with PiClES (Tom Protin’s PhD)
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