

Stochastic closures for linear wave propagation in turbulence

Valentin Resseguier, Erwan Hascoët, Fabrice Collard, Bertrand Chapron

Sparse sensors

POD-Galerkin of thermic SALT/LU

OpenVFOAM

园 SCALIAN

freeze

tower

3D turbulent flow

 $Re \sim 10^6$

Needed?

Efficient?

Hiring:

- **1-year postdoc position -**
- **Permanent research engineer position -** (computer science)

Content

- I. Wave refraction due to turbulence
- II. Markovian closure
	- II.A. Generalized fast wave approximation
	- II.B. Calibration
	- II.C. Simplification for single ray dynamics
	- II.D. Waves trapped in a jet
- III. Beyond Markovian closure
	- II.A. Waves trapped in a SQG jet
	- II.B. Tests with satellite data
	- II.C. Calibration

Content

- I. Wave refraction due to turbulence
- II. Markovian closure
	- II.A. Generalized fast wave approximation
	- II.B. Calibration
	- II.C. Simplification for single ray dynamics
	- II.D. Waves trapped in a jet
- III. Beyond Markovian closure
	- II.A. Waves trapped in a SQG jet
	- II.B. Tests with satellite data
	- II.C. Calibration

Resseguier, Hascoet, Chapron (2024). JFM

I. Wave refraction due to turbulence

opi

opt

Feel Tigot " "

oor

DOE

009

dor

ODB

006

Horizontal buoyancy field (oceanic surface dynamics)

opi

ODE

Feel Tigot - 1

oor

DOC

 ∞

dor

BB

006

Horizontal buoyancy field (oceanic surface dynamics)

Wave:

 $he^{i\,\boldsymbol{\phi}}$

Current velocity: $\boldsymbol{\mathcal{V}}$

Dispersion ratio At the first order in steepness (= $\|\nabla \phi\|a$)

Wave: $he^{i\,\boldsymbol{\phi}}$

 $k = \nabla \phi$

Doppler frequency: $\omega_0 \propto |k|^{\alpha}$ $\partial \phi$ $\frac{\partial \tau}{\partial t} + v \cdot \nabla \phi = -\omega_0 (k)$ $=k$

$$
-\frac{\partial \phi}{\partial t} = \omega(k) = v \cdot k + \omega_0(k)
$$

Refraction & contraction/dilatation Wave-vector Conservation of action spectral density N Amplitude tracing / method of characteristic Ray 13 Total group velocity u_q : $\boldsymbol{\mathcal{V}}$ Wave: $he^{i\,\boldsymbol{\phi}}$ **Group velocity** without current $C_g^0 = \nabla_k \omega_0$ $|\nabla=\overline{\nabla_\chi}|$ **Doppler** frequency: $\omega_0 \propto |k|^{\alpha}$ $+C_g^0$ dk dt $=-\nabla_{\chi}\omega = -\nabla v^T$ k $dX_{\bm r}$ dt $= \nabla_k \omega = C_g^0 + v$ $N =$ h^2 $\overline{\omega_0(k)}$ dN dt $= 0$

Wave:

 $he^{i\,\boldsymbol{\phi}}$

opi

ODE

Feel Tigot -- 1

ODT

ODE

dor

ODB

006

Wave:

 $he^{i\,\boldsymbol{\phi}}$

eddy

Large-scale

eddy

Feel Tions , r

Wave:

 80°

ODB

006

 v' multi-scale in space & **white in time** => Markovian wave dynamics

ODB

Part II.

Medium-scale eddy

ODE

Large-scale eddy

Small-scale

Feel Tigot - A

OBY

009

ODE

Wave:

 $he^{i\,\boldsymbol{\phi}}$

II. Markovian closure

II.A. Generalized fast wave approximation (GenFWA)

Large scale group velocity:

- Small scale group velocity:
- $\nu'=\sigma$ 。 dB_t dt

$$
= \sum_i \xi_i \circ \frac{dW_t^i}{dt}
$$

Wave:

 $he^{i\, \boldsymbol{\phi}}$

Doppler

frequency:

 $\omega_0 \propto |k|^{\alpha}$

Generalized fast wave approx. Smallest scale turbulence v' decorrelates along the wave propagation

• **Validity:**

 $\epsilon =$ Along–ray v' correlation time characteristic time of wave group properties evolution = \boldsymbol{l} v' $l_{\boldsymbol{\mathcal{v}}}$ $\boldsymbol{\mathcal{V}}$ $\mathcal{C}^\mathbf{0}_\mathcal{G}$ $\frac{1}{\sqrt{10}} \ll 1$

- Limitations :
	- Fast waves $\left(\frac{\|c_g^0\|}{\|c_g\|}\right)$ $\boldsymbol{\mathcal{V}}$ ≫ 1
	- Small-scale currents \int_{0}^{1} v' $l_{\boldsymbol{\mathcal{v}}}$ ≪ 1
	- Moderate current gradients $(||\nabla v|| \ll 1)$ \Rightarrow steep spectrum \Rightarrow non-local current dynamics)

Large scale group velocity:

$$
\begin{array}{c}\n\bar{v} + C_g^0 \\
\text{Small scale} \\
\text{mean scale} \\
\end{array}
$$

group velocity: $\nu'=\sigma\,{\overset{d B_t}{-}}$

 dt $=\sum_i \xi_i\circ\frac{dW^i_t}{dt}$ dt $(\delta$ -correlated in t)

Wave:

 $he^{i\,\boldsymbol{\phi}}$

Group velocity without current $\mathcal{C}_g^0 = \nabla_k \omega_0$

 $\overline{\nabla} = \overline{\nabla_{_{\mathcal{X}}}}$

Doppler

frequency:

 $\omega_0 \propto |k|^{\alpha}$

Stratonovich dispersion ratio At the first order in steepness (= $\|\nabla \phi\|a$)

$$
\frac{\partial \phi}{\partial t} + \left(\bar{v} + \sigma \circ \frac{dB_t}{dt}\right) \cdot \nabla \phi = -\omega_0(\mathbf{k})
$$

$$
= k
$$

Frequency without

currents

 $\omega_0(k)$

Large scale group velocity:

 \bar{v} Small scale group velocity: $\nu'=\sigma\,{\overset{d B_t}{-}}$ dt $= \sum_i \bar{\xi}_i$ o $dW^{\widetilde l}_{t}$ dt δ -correlated in t) Wave: $he^{i\,\boldsymbol{\phi}}$ Group velocity $+C_g^0$

without current $\mathcal{C}_g^0 = \nabla_k \omega_0$

 $\overline{\nabla} = \overline{\nabla_\chi}$

Doppler

frequency:

 $\omega_0 \propto |k|^{\alpha}$

Stratonovich stochastic ray tracing

$$
\frac{dX_r}{dt} = C_g^0 + \bar{v} + \sigma \circ \frac{dB_t}{dt}
$$
 Ray
Refraction & contraction/dilatation

$$
\frac{dk}{dt} = -\nabla \left(\bar{v} + \sigma \circ \frac{dB_t}{dt} \right)^2 k
$$

Conservation of action spectral density *N*

$$
\frac{dN}{dt} = 0
$$

$$
N = \frac{h^2}{\omega_0(k)}
$$
 Amplitude

Large scale group velocity:

$$
\begin{array}{c|c}\n\bar{v} & +C_g^0 \\
\hline\n\text{Small scale}\n\end{array}
$$

group velocity:

$$
\nu' = \sigma \frac{dB_t}{dt}
$$

= $\sum_i \xi_i \circ \frac{dW_t^i}{dt}$
(δ -correlated in t
homogenous
& isotropic)
& isotropic)
Wave:

 $he^{i\,\boldsymbol{\phi}}$

Group velocity without current $\mathcal{C}_g^0 = \nabla_k \omega_0$

 $\overline{\nabla} = \overline{\nabla_\chi}$

Doppler

frequency:

 $\omega_0 \propto |k|^{\alpha}$

Itō stochastic ray tracing

$$
\frac{dX_r}{dt} = C_g^0 + \bar{v} + \sigma \frac{dB_t}{dt}
$$
 Ray
Refraction & contraction/dilatation

$$
\frac{dk}{dt} = -\nabla \left(\bar{v} + \sigma \frac{dB_t}{dt} \right)^T k
$$
 | Wave-vector
Conservation of action spectral density *N*

$$
\frac{dN}{dt} = 0
$$
 | $N = \frac{h^2}{\omega_0(k)}$ Amplitude

Time-uncorrelated model for v' : Method of characteristic

Time-uncorrelated model for v' : Method of characteristic

Time-uncorrelated model for v' : Method of characteristic

II. Markovian closure

II.B. Calibration

Small scale group velocity:

$$
v' = \sigma \frac{dB_t}{dt}
$$

= $\sum_i \xi_i \circ \frac{dW_t^i}{dt}$
(δ -correlated in t
homogeneous
& isotropic)

Time-uncorrelated model for v' : **Calibration**

$v' = \sigma \dot{B} =$ (filter) * (white noise

Small scale group velocity:

$$
\nu' = \sigma \frac{dB_t}{dt}
$$

= $\sum_i \xi_i \circ \frac{dW_t^i}{dt}$
(δ -correlated in t
homogeneous
& isotropic)

Time-uncorrelated model for v' : **Calibration**

 $\bigl(\begin{smallmatrix} \mathcal{L} \ \mathcal{L} \end{smallmatrix} \bigr)$

 $v' = \sigma \dot{B} =$ (filter) * (white noise

16 40

Resseguier, Pan & Fox-Kemper 2020

Reference: *Resseguier, Pan & Fox-Kemper 2020*

 $1/\kappa$

 $\mathcal{C}^{\mathbf{0}}_g$

II. Markovian closure

II.C. Simplification for single ray dynamics

 $\bar{\sigma}$, $\bar{\omega}$, $\bar{\phi}$ related to $\nabla \bar{v}^T$

Small scale group velocity:

$$
v' = \sigma \frac{dB_t}{dt}
$$

 $(\delta$ -correlated in t homogenous & isotropic) $a_0 =$ $\mathbf{1}$ $\frac{1}{2} \mathbb{E} \|\sigma dB_t\|^2/dt$ $\mathbf{v_0} =$ $\mathbf{1}$ $\frac{1}{8}\mathbb{E}\big\|\nabla(\sigma dB_t)^T\big\|^2$ $/dt$

Simplification for single ray dynamics only 4 Brownian motions needed

 $\bar{\sigma}$, $\bar{\omega}$, $\bar{\phi}$ related to $\nabla \bar{v}^T$

Small scale group velocity:

$$
v' = \sigma \frac{dB_t}{dt}
$$

 $(\delta$ -correlated in t homogenous & isotropic) $a_0 =$ $\mathbf{1}$ $\frac{1}{2} \mathbb{E} \|\sigma dB_t\|^2/dt$ $\mathbf{v_0} =$ $\mathbf{1}$ $\frac{1}{8}\mathbb{E}\big\|\nabla(\sigma dB_t)^T\big\|^2$ $/dt$

Simplification for single ray dynamics only 4 Brownian motions needed

$$
\frac{dX_r}{dt} = |C_g^0| \begin{pmatrix} \cos \theta_k \\ \sin \theta_k \end{pmatrix} + \bar{v} + \sqrt{a_0} \begin{pmatrix} dB_t^{(1)}/dt \\ dB_t^{(2)}/dt \end{pmatrix}
$$
 Ray

 $\bar{\sigma}$, $\bar{\omega}$, $\bar{\phi}$ related to $\nabla \bar{v}^T$

Small scale group velocity:

$$
\nu'=\sigma\frac{dB_t}{dt}
$$

 $(\delta$ -correlated in t homogenous & isotropic) $a_0 =$ $\mathbf{1}$ $\frac{1}{2} \mathbb{E} \|\sigma dB_t\|^2/dt$ $\mathbf{v_0} =$ $\mathbf{1}$ $\frac{1}{8}\mathbb{E}\big\|\nabla(\sigma dB_t)^T\big\|^2$ $/dt$

Simplification for single ray dynamics only 4 Brownian motions needed

$$
\frac{dX_r}{dt} = |C_g^0| \left(\frac{\cos \theta_k}{\sin \theta_k}\right) + \bar{v} + \sqrt{a_0} \left(\frac{dB_t^{(1)}/dt}{dB_t^{(2)}/dt}\right)
$$
 Ray
Refraction & contraction/dilatation

$$
\frac{d \ln \kappa(t)}{dt} = -\bar{\sigma} \sin \zeta(t) + \gamma_0 + \sqrt{\gamma_0} \frac{dB_t^{(3)}}{dt}
$$
 Wave-vector

$$
d\theta_k(t) = -\frac{\partial \bar{v}}{\partial \zeta} (\zeta(t))dt + \sqrt{3\gamma_0} \frac{dB_t^{(4)}}{dt}
$$
 $k = \kappa \left(\frac{\cos \theta_k}{\sin \theta_k}\right)$
with $\zeta = 2(\theta_k + \bar{\phi})$ and potential $\bar{V}(\zeta) = \bar{\omega} \zeta - \bar{\sigma} \sin \zeta$

 $\bar{\sigma}$, $\bar{\omega}$, $\bar{\phi}$ related to $\nabla \bar{v}^T$

Small scale group velocity:

$$
\nu'=\sigma\frac{dB_t}{dt}
$$

 $(\delta$ -correlated in t homogenous & isotropic) $a_0 =$ $\mathbf{1}$ $\frac{1}{2} \mathbb{E} \|\sigma dB_t\|^2/dt$ $\mathbf{v_0} =$ $\mathbf{1}$ $\frac{1}{8}\mathbb{E}\big\|\nabla(\sigma dB_t)^T\big\|^2$ $/dt$

Simplification for single ray dynamics only 4 Brownian motions needed

$$
\frac{dX_r}{dt} = |C_g^0| \left(\frac{\cos \theta_k}{\sin \theta_k} \right) + \bar{v} + \sqrt{a_0} \left(\frac{dB_t^{(1)}/dt}{dB_t^{(2)}/dt} \right)
$$
 Ray
Refraction & contraction/dilatation

$$
\frac{d \ln \kappa(t)}{dt} = -\bar{\sigma} \sin \zeta(t) + \gamma_0 + \sqrt{\gamma_0} \frac{dB_t^{(3)}}{dt} \left| \begin{array}{c} \text{Wave-vector} \\ \text{Wave-vector} \end{array} \right|
$$

$$
d\theta_k(t) = -\frac{\partial \bar{v}}{\partial \zeta} (\zeta(t)) dt + \sqrt{3\gamma_0} \frac{dB_t^{(4)}}{dt} \left| k = \kappa \left(\frac{\cos \theta_k}{\sin \theta_k} \right) \right|
$$

$$
\text{with } \zeta = 2(\theta_k + \bar{\phi}) \text{ and potential } \bar{V}(\zeta) = \bar{\omega} \zeta - \bar{\sigma} \sin \zeta
$$

Conservation of action spectral density N $EN(x, k, t) = \int d x_r^0 d k^0 N^0(x_r^0, k^0) p(x, k|x_r^0, k^0, t)$

 $\bar{\sigma}$, $\bar{\omega}$, $\bar{\phi}$ related to $\nabla \bar{v}^T$

Small scale group velocity:

$$
\nu'=\sigma\frac{dB_t}{dt}
$$

 $(\delta$ -correlated in t homogenous & isotropic) $a_0 =$ $\mathbf{1}$ $\frac{1}{2} \mathbb{E} \|\sigma dB_t\|^2/dt$ $\mathbf{v_0} =$ $\mathbf{1}$ $\frac{1}{8}\mathbb{E}\big\|\nabla(\sigma dB_t)^T\big\|^2$ $/dt$

Simplification for single ray dynamics only 4 Brownian motions needed

$$
\frac{dX_r}{dt} = |C_g^0| \left(\frac{\cos \theta_k}{\sin \theta_k}\right) + \bar{v} + \sqrt{a_0} \left(\frac{dB_t^{(1)}/dt}{dB_t^{(2)}/dt}\right)
$$
 Ray
Refraction & contraction/dilatation

$$
\frac{d \ln \kappa(t)}{dt} = -\bar{\sigma} \sin \zeta(t) + \gamma_0 + \sqrt{\gamma_0} \frac{dB_t^{(3)}}{dt} \qquad \text{Wave-vector}
$$

$$
d\theta_k(t) = -\frac{\partial \bar{v}}{\partial \zeta} (\zeta(t))dt + \sqrt{3\gamma_0} \frac{dB_t^{(4)}}{dt} \qquad k = \kappa \left(\frac{\cos \theta_k}{\sin \theta_k}\right)
$$
with $\zeta = 2(\theta_k + \bar{\phi})$ and potential $\bar{V}(\zeta) = \bar{\omega} \zeta - \bar{\sigma} \sin \zeta$

Conservation of action spectral density N $EN(x, k, t) = \int d x_r^0 d k^0 N^0(x_r^0, k^0) p(x, k|x_r^0, k^0, t)$

We can get analytic solutions !

 $\bar{\sigma}$, $\bar{\omega}$, $\bar{\phi}$ related to $\nabla \bar{v}^T$ assumed to be cst.

Simplification for single ray dynamics - *Deterministic case* -

Refraction & contraction/dilatation Wave-vector $k=\kappa$ $\cos\theta_{\pmb{k}}$ sin θ_k $d \ln \kappa(t)$ dt $=-\bar{\sigma}\sin\zeta(t)$ $d\zeta = \partial \bar{V}$ $\frac{\partial V}{\partial \zeta}(\zeta(t))dt$ with $\zeta = 2(\theta_k + \bar{\phi})$ and potential $\bar{V}(\zeta) = \bar{\omega} \zeta - \bar{\sigma} \sin \zeta$

49

 $\theta_k(t)$ $\left.\frac{d}{dt}\right|$ $\theta_k(t)$ $\frac{40}{\tau}$ 20 60 80

 \bar{v}

 $\bar{\sigma}$, $\bar{\omega}$, $\bar{\phi}$ related to $\nabla \bar{v}^T$ assumed to be cst.

Small scale group velocity:

$$
\nu'=\sigma\frac{dB_t}{dt}
$$

 δ -correlated in t homogenous & isotropic) $a_0 =$ $\mathbf{1}$ $\frac{1}{2} \mathbb{E} \|\sigma dB_t\|^2/dt$ γ_0 = $\mathbf{1}$ $\frac{1}{8}\mathbb{E}\big\|\nabla(\bm{\sigma} \bm{d}\bm{B_t})^T\big\|^2$ $/dt$ Wave: $he^{i\,\boldsymbol{\phi}}$ $k = \nabla \phi = \kappa \left(\frac{\cos \theta_k}{\sin \theta_k} \right)$ sin θ_k $\overline{\zeta} = 2(\theta_k + \overline{\phi})$ $\bar{V}(\zeta) = \bar{\omega} \zeta - \bar{\sigma} \sin \zeta$

Simplification for single ray dynamics - *Stochastic case* -

We can solve the stationary Fokker-Planck for ζ ,

$$
d\zeta = -\frac{\partial \overline{v}}{\partial \zeta} (\zeta(t)) dt + \sqrt{3\gamma_0} \frac{dB_t^{(4)}}{dt}
$$

 \Rightarrow Up to periodicity constraints,

$$
p(\zeta) \propto \exp\left(-\frac{2}{3} \frac{\overline{V}(\zeta)}{\gamma_0}\right)
$$

and

$$
\kappa(t) = \kappa(0) \exp\left(-\int_0^t \overline{\sigma} \sin \zeta(t') dt'\right) \exp\left(\gamma_0 t + \sqrt{\gamma_0} B_t^{(3)}\right)
$$

$$
\frac{\overline{\omega}}{\overline{\sigma}}
$$

$$
\theta_k + \overline{\psi} + \pi/4
$$

 \bar{v}

 $\bar{\sigma}$, $\bar{\omega}$, $\bar{\phi}$ related to $\nabla \bar{v}^T$ assumed to be cst.

Small scale group velocity:

$$
\nu'=\sigma\frac{dB_t}{dt}
$$

 δ -correlated in t homogenous & isotropic) $a_0 =$ $\mathbf{1}$ $\frac{1}{2} \mathbb{E} \|\sigma dB_t\|^2/dt$ $|\boldsymbol{\varUpsilon_{0}}$ = $\mathbf{1}$ $\frac{1}{8}\mathbb{E}\big\|\nabla(\bm{\sigma} \bm{d}\bm{B_t})^T\big\|^2$ $/dt$ Wave: $he^{i\,\boldsymbol{\phi}}$ $k = \nabla \phi = \kappa \left(\frac{\cos \theta_k}{\sin \theta_k} \right)$ sin θ_k

$$
\zeta = 2(\theta_k + \overline{\phi})
$$

$$
\overline{V}(\zeta) = \overline{\omega} \zeta - \overline{\sigma} \sin \zeta
$$

Simplification for single ray dynamics - *Stochastic case* -

We can solve the stationary Fokker-Planck for ζ ,

$$
d\zeta = -\frac{\partial \overline{v}}{\partial \zeta} (\zeta(t)) dt + \sqrt{3\gamma_0} \frac{dB_t^{(4)}}{dt}
$$

\n
$$
\Rightarrow
$$
 Up to periodicity constraints,

$$
p(\zeta) \propto \exp\left(-\frac{2}{3} \frac{\overline{V}(\zeta)}{\gamma_0}\right)
$$

and

 \bar{v}

 $\bar{\sigma}$, $\bar{\omega}$, $\bar{\phi}$ related to $\nabla \bar{v}^T$ assumed to be cst.

Small scale group velocity:

$$
\nu'=\sigma\frac{dB_t}{dt}
$$

 $(\delta$ -correlated in t homogenous & isotropic) $a_0 =$ $\mathbf{1}$ $\frac{1}{2} \mathbb{E} \|\sigma dB_t\|^2/dt$ $|\boldsymbol{\varUpsilon_{0}}$ = $\mathbf{1}$ $\frac{1}{8}\mathbb{E}\big\|\nabla(\bm{\sigma} \bm{d}\bm{B_t})^T\big\|^2$ $/dt$ Wave: $he^{i\,\boldsymbol{\phi}}$

$$
k = \nabla \phi = \kappa \left(\frac{\cos \theta_k}{\sin \theta_k} \right)
$$

$$
\zeta = 2(\theta_k + \overline{\phi})
$$

$$
\overline{V}(\zeta) = \overline{\omega} \zeta - \overline{\sigma} \sin \zeta
$$

Simplification for single ray dynamics - *Stochastic case* -

We can solve the stationary Fokker-Planck for ζ ,

$$
d\zeta = -\frac{\partial \overline{v}}{\partial \zeta} (\zeta(t)) dt + \sqrt{3\gamma_0} \frac{dB_t^{(4)}}{dt}
$$

\n
$$
\Rightarrow \text{Up to periodicity constraints,}
$$

\n
$$
p(\zeta) \propto \exp\left(-\frac{2}{3} \frac{\overline{v}(\zeta)}{\gamma_0}\right)
$$

and

II. Markovian closure

II.D. Waves trapped in a jet

Sweel trapped in a jet

Sentinel 2

Idealized jet

Agulhas current Mercator current (01/01/2016) + SSHA weekly

Swells in a jet

forced 2D Euler

 ω

Swells in a jet

Resolution effect & stochastic closure

 ω and ω and ω

Deterministic reference: wave groups in 512 x 512 flow

Deterministic benchmark: wave groups in smoothed flow \bar{v} (4 x 4)

Swells in a jet

Resolution effect & stochastic closure

$$
\bar{u} \approx \bar{U}_0 - \frac{1}{2}\bar{\beta}y^2 + C_g^0
$$

 $\bar{v} \approx 0$

with \overline{U}_0 , $\overline{\beta}$ < 0

Small scale group velocity: $v' = \sigma dB_t/dt$ δ -correlated in t Isotropic and

homogeneous in x

Wave:

 $h e^{i \phi}$

Swells in a jet Analytic solution

Oscillating ray (x_r, y_r, k_x, k_y) d^2y_r $rac{d^2y_r}{dt^2} + \overline{\omega}_r^2 y_r = v_g^0 \sqrt{3\gamma_0} \dot{\beta}_t$ with $\overline{\omega}_r = \sqrt{|\nu_g^0 \bar{\beta}|}$ and $\gamma_0 = \frac{1}{8}$ $\frac{1}{8}$ $\mathbb{E} \|\nabla (\sigma dB_t)^T\|^2/dt$

Analytic stochastic solutions for

Ray position & wave direction

 $y_r(t) = y_r(0) \cos(\overline{\omega}_r t) + \cdots + Y_{\gamma_0} \sqrt{\overline{\omega}_r} \int_0^t$ \boldsymbol{t} $\sin(\overline{\omega}_r(t-t'))d\beta_t$ \overline{I}

- Wave number fluctuations
- Mean distribution of wave action and wave energy

II. Beyond Markovian closure

II.A. Waves trapped in a SQG jet

$$
\bar{v}\left|+C_g^0\right|
$$

Small scale group velocity: v'

Wave:

 $he^{i\,\boldsymbol{\phi}}$

Doppler frequency:

 $\omega_0 \propto |k|^{\alpha}$

Beyond validity of GFW

• Validity :

 $\epsilon =$ Along–ray v' correlation time characteristic time of wave group properties evolution = \boldsymbol{l} v' $l_{\boldsymbol{\mathcal{v}}}$ $\boldsymbol{\mathcal{V}}$ $\mathcal{C}^{\mathbf{0}}_g$ $\frac{1}{\sqrt{10}} \ll 1$

=

- Limitations :
	- Fast waves $\left(\frac{\|c_g^0\|}{\|c_g\|}\right)$ $\boldsymbol{\mathcal{V}}$ ≫ 1
	- Small-scale currents $(l_{\nu'} \ll 1)$
	- Moderate current gradients $(||\nabla v|| \ll 1)$
		- \Rightarrow steep spectrum \Rightarrow non-local current dynamics)

Small scale group velocity: v'

Wave:

 $he^{i\, \boldsymbol{\phi}}$

Doppler frequency:

 $\omega_0 \propto |k|^{\alpha}$

Beyond validity of GFW

• Validity :

 $\epsilon =$ Along–ray v' correlation time characteristic time of wave group properties evolution = \boldsymbol{l} v' $\boldsymbol{\mathcal{V}}$ $\frac{1}{\sqrt{10}} \ll 1$

=

Limitations :

 $l_{\boldsymbol{\mathcal{v}}}$

 $\mathcal{C}^{\mathbf{0}}_g$

- Fas^l GFW would fail for strong local current dynamics.
- Smanle: Swells in a jet with flat spectrum,
- Moderative current via typically forced SQG with U ~ 1m/s

 \Rightarrow steep spectrum \Rightarrow non-local current dynamics)

Time-correlated model for v' Forward ray tracing

reference: wave groups in 512 x 512 SQG flow

benchmark: wave groups in smoothed flow \bar{v} (16 x 16)

Time-correlated model for v' Forward ray tracing

Deterministic reference: wave groups in 512 x 512 SQG flow

Deterministic benchmark: wave groups in smoothed flow \bar{v} (16 x 16)

Time-correlated model for v' Forward ray tracing

Deterministic reference: wave groups in 512 x 512 SQG flow

Deterministic benchmark: wave groups in smoothed flow \bar{v} (16 x 16)

Deterministic reference: wave groups in 512 x 512 SQG flow

Deterministic benchmark: wave groups in smoothed flow \bar{v} (16 x 16)

Deterministic reference: wave groups in 512 x 512 SQG flow

Deterministic benchmark: wave groups in smoothed flow \bar{v} (16 x 16)

Time-correlated model for v' Wave spectra

Time-correlated model for v' Large-scale significant wave height H_s

Deterministic reference: wave groups in 512 x 512 SQG flow

Deterministic benchmark: wave groups in smoothed flow \bar{v} (16 x 16)

Our random model wave groups in smoothed flow \bar{v} (16 x 16) $+$ time-correlated v'

Time-correlated model for v' Large-scale significant wave height H_s

Deterministic reference: wave groups in 512 x 512 SQG flow

Deterministic benchmark: wave groups in smoothed flow \bar{v} (16 x 16)

Our random model wave groups in smoothed flow \bar{v} (16 x 16) $+$ time-correlated v'

Time-correlated model for v' Large-scale significant wave height H_s

Deterministic reference: wave groups in 512 x 512 SQG flow

Deterministic benchmark: wave groups in smoothed flow \bar{v} (16 x 16)

Our random model wave groups in smoothed flow \bar{v} (16 x 16) $+$ time-correlated v'

II. Beyond Markovian closure

II.B. Tests with satellite data

Estimation of the incident spectrum on SAR imagery

Estimation of the incident spectrum on SAR imagery.

Édition

Affichage

Insérer

Cellule Noyau

Widgets

Python 3 C

Define Collection:

** A granule has to belong to a collection **

Entrée [349]: from SEAScope.lib.utils import create collection, init ids # Make sure to keep the collection identifier, we will need it later collection_id, collection = create_collection('User 4- Simulated wave rays') print(collection id)

Determinist model

17 dec 2015

Determinist model

Determinist model

II. Beyond Markovian closure

II.C. Callibration

Small scale group velocity:

 v'

Wave:

Time-correlated model for v' : **Calibration**

v' = (filter) * (time−correl. noise

Large scale group velocity:

Small scale group velocity:

v' Wave:

 $ae^{\frac{i}{\epsilon}\phi}$

Time-correlated model for v' : **Calibration**

v' = (filter) * (time−correl. noise

v' = (filter) * (time−correl. noise

Conclusion

Conclusion

Generalized Fast Wave Approximation (GenFWA)

- Smallest scale turbulence decorrelates along the wave propagation => broader validity range compared to FWA
- Encodes both large-scale refraction and random scattering effects
- Takes into account wavenumber variation and handles strong heterogeneous flows, like localized jets with strong current gradients
- Provides both numerical and theoretical results
- Explains and quantifies ray trapping effects by jets, unlike FWA
- For strong currents with flat spectra,
	- we propose a new stochastic closure with stochastic currents multi-scale in space and time.
- Better explain satellite observations

In the future,

- we would like to use it as prior emulator of data assimilation
- Finite-size wave group with PiClES (Tom Protin's PhD)