

Stochastic closures for linear wave propagation in turbulence

Valentin Resseguier, Erwan Hascoët, Fabrice Collard, Bertrand Chapron

thermic SALT/LU Sparse sensors Open ∇ FOAM Sparse sensors $Open \nabla$ FOAM $Re \sim 10^6$ Correction Correction of the sensors of the sensor

INRA

Hiring:

- 1-year postdoc position INRA@
- Permanent research engineer position SCALIAN (computer science)

Content

- I. Wave refraction due to turbulence
- II. Markovian closure
 - II.A. Generalized fast wave approximation
 - II.B. Calibration
 - II.C. Simplification for single ray dynamics
 - II.D. Waves trapped in a jet
- III. Beyond Markovian closure
 - II.A. Waves trapped in a SQG jet
 - II.B. Tests with satellite data
 - II.C. Calibration

Content

- I. Wave refraction due to turbulence
- II. Markovian closure
 - II.A. Generalized fast wave approximation
 - II.B. Calibration
 - II.C. Simplification for single ray dynamics
 - II.D. Waves trapped in a jet
- III. Beyond Markovian closure
 - II.A. Waves trapped in a SQG jet
 - II.B. Tests with satellite data
 - II.C. Calibration

Resseguier, Hascoet, Chapron (2024). JFM

I. Wave refraction due to turbulence

opi

000

Ont

KEP TOOT -1

40

008

500

002

00%

002

008

006

Horizontal buoyancy field (oceanic surface dynamics)

opi

000

FER TOOT 12

500

002

00%

002

008

006

Horizontal buoyancy field (oceanic surface dynamics)

Ja

008

Wave:

 $he^{i\phi}$

Current velocity: v

Wave:

 $k = \nabla \phi$

Doppler

frequency:

 $\omega_0 \propto |k|^{\alpha}$

 $he^{i\phi}$

Dispersion ratio At the first order in steepness $(=\|\nabla \phi\||a)$

 $\frac{\partial \phi}{\partial t} + v \cdot \nabla \phi = -\omega_0(\mathbf{k})$ = k

$$-\frac{\partial \phi}{\partial t} = \omega(k) = v \cdot k + \omega_0(k)$$

Total group velocity u_q : tracing / method of characteristic $+C_{g}^{0}$ \mathcal{V} Wave: dX_r $he^{i\phi}$ $= \nabla_k \omega = C_q^0 + v$ Ray dt Group velocity without current $C_q^0 = \nabla_k \omega_0$ **Refraction & contraction/dilatation** dk $\nabla = \nabla_{\chi}$ $-\nabla_x \omega = -\nabla \nu^T k$ Wave-vector dt Doppler frequency: $\omega_0 \propto |k|^{\alpha}$ Conservation of action spectral density N h^2 dNN = -Amplitude = 0 $\overline{\omega_0(k)}$ dt 13

Wave:

 $he^{i\phi}$

opi

002

OPE

Feb 1:001 = 3

la

800

002

002

aph

008

006

Wave:

 $he^{i\phi}$

Numerical example of wave (swell) traveling inside turbulence (oceanic surface currents) Part II.v' multi-scale in space

Medium-scale eddy

Large-scale

eddy

000

Kep 1:001 # 1

009

008

& white in time

=> Markovian wave

dynamics

Part III. <u>For strong currents with local dyn.</u>: *v'* multi-scale in space & multi-scale in time => non-Markovian wave dynamics

aph

008

006

Wave:

II. Markovian closure

II.A. Generalized fast wave approximation (GenFWA)

Large scale group velocity:

$$\bar{v} + C_g^0$$

Small scale group velocity:

 $v' = \sigma \circ \frac{dB_t}{dt}$

$$=\sum_i \xi_i \circ \frac{dW_t^i}{dt}$$

Wave:

he^{i φ}

Doppler

frequency:

 $\omega_0 \propto |k|^{\alpha}$

Generalized fast wave approx. Smallest scale turbulence v' decorrelates along the wave propagation

• Validity :

 $\epsilon = \frac{(\text{Along-ray } v' \text{ correlation time})}{(\text{ characteristic time of })}$ $= \frac{l_{v'}}{l_{v}} \frac{\|v\|}{\|C_{g}^{0}\|} \ll 1$

- Limitations :
 - Fast waves $\left(\frac{\|C_g^0\|}{\|v\|} \gg 1\right)$
 - Small-scale currents $\left(\frac{l_{\nu'}}{l_{\nu}} \ll 1\right)$
 - Moderate current gradients (||∇v|| ≪ 1)
 (⇒ steep spectrum ⇒ non-local current dynamics)

Large scale group velocity:

$$\bar{v} + C_g^0$$

Small scale
group velocity

$$\mathcal{V}' = \sigma \circ \frac{d D_t}{d t}$$
$$= \sum_i \xi_i \circ \frac{d W_t^i}{d t}$$

 $(\delta$ -correlated in t)

Wave:

 $he^{i\phi}$

Group velocity without current $C_g^0 = \nabla_k \omega_0$

$$abla =
abla_{\chi}$$

Doppler

frequency:

 $\omega_0 \propto |k|^{\alpha}$

Stratonovich dispersion ratio At the first order in steepness $(=\|\nabla \phi\|a)$

$$\frac{\partial \phi}{\partial t} + \left(\bar{v} + \boldsymbol{\sigma} \circ \frac{dB_t}{dt} \right) \cdot \nabla \phi = -\omega_0(\mathbf{k})$$
$$= k$$

Stratonovich dispersion ratio At the first order in steepness $(=\|\nabla \phi\||a)$

Large scale group velocity:

 $\bar{v} + C_g^0$ Small scale group velocity: $v' = \sigma \circ \frac{dB_t}{dt}$ $= \sum_i \xi_i \circ \frac{dW_t^i}{dt}$ (δ -correlated in t) Wave: $he^{i\phi}$

Group velocity without current $C_g^0 = \nabla_k \omega_0$

 $abla =
abla_{\chi}$

Doppler

frequency:

 $\omega_0 \propto |k|^{\alpha}$

Stratonovich stochastic ray tracing

$$\frac{dX_r}{dt} = C_g^0 + \bar{v} + \sigma \circ \frac{dB_t}{dt} \qquad \text{Ray}$$
Refraction & contraction/dilatation
$$\frac{dk}{dt} = -\nabla \left(\bar{v} + \sigma \circ \frac{dB_t}{dt} \right)^T k \qquad \text{Wave-vector}$$
Conservation of action spectral density N
$$\frac{dN}{dt} = 0 \qquad \qquad N = \frac{h^2}{\omega_0(k)} \qquad \text{Amplitude}$$

Large scale group velocity:

$$\bar{v} + C_g^0$$

Small scale

group velocity:

$$v' = \sigma \frac{dB_t}{dt}$$
$$= \sum_i \xi_i \circ \frac{dW_t^i}{dt}$$
$$(\delta \text{-correlated in t}$$
$$homogenous$$
$$\& \text{ isotropic})$$
$$Wave:$$

 $he^{i\phi}$

Group velocity without current $C_g^0 = \nabla_k \omega_0$

 $abla =
abla_{\chi}$

Doppler

frequency:

 $\omega_0 \propto |k|^{\alpha}$

Ito stochastic ray tracing

$$\frac{dX_r}{dt} = C_g^0 + \bar{v} + \sigma \frac{dB_t}{dt}$$
Ray
Refraction & contraction/dilatation
$$\frac{dk}{dt} = -\nabla \left(\bar{v} + \sigma \frac{dB_t}{dt} \right) k$$
Wave-vector
Conservation of action spectral density N
$$\frac{dN}{dt} = 0$$

$$N = \frac{h^2}{\omega_0(k)}$$
Amplitude

Time-uncorrelated model for v': Method of characteristic

Time-uncorrelated model for v': Method of characteristic

Time-uncorrelated model for v': Method of characteristic

II. Markovian closure

II.B. Calibration

Small scale group velocity:

$$v' = \sigma \frac{dB_t}{dt}$$
$$= \sum_i \xi_i \circ \frac{dW_t^i}{dt}$$
$$(\delta \text{-correlated in } \delta \text{-correlated in } \delta$$

Time-uncorrelated model for v': Calibration

$v' = \sigma \dot{B} = (\text{filter}) * (\text{white noise})$

Small scale group velocity:

$$v' = \sigma \frac{dB_t}{dt}$$
$$= \sum_i \xi_i \circ \frac{dW_t^i}{dt}$$
$$(\delta \text{-correlated in f}$$
$$homogenous$$
& isotropic)

Time-uncorrelated model for v': Calibration

 $E(\kappa)$

 $v' = \sigma \dot{B} = (\text{filter}) * (\text{white noise})$

κ

Residual

ADSD

12'

II. Markovian closure

II.C. Simplification for single ray dynamics

$\overline{\sigma}$, $\overline{\omega}$, $\overline{\phi}$ related to $\nabla \overline{v}^T$

Small scale group velocity:

$$v' = \sigma \frac{dB_t}{dt}$$

(δ -correlated in t homogenous & isotropic) $a_0 = \frac{1}{2} \mathbb{E} ||\sigma dB_t||^2 / dt$ $\gamma_0 = \frac{1}{8} \mathbb{E} ||\nabla (\sigma dB_t)^T||^2 / dt$

Simplification for single ray dynamics only 4 Brownian motions needed

 $ar{\sigma}$, $ar{\omega}$, $ar{\phi}$ related to $abla ar{
u}^T$

Small scale group velocity:

$$v' = \sigma \frac{dB_t}{dt}$$

(δ -correlated in t homogenous & isotropic) $a_0 = \frac{1}{2} \mathbb{E} ||\sigma dB_t||^2 / dt$ $\gamma_0 = \frac{1}{8} \mathbb{E} ||\nabla (\sigma dB_t)^T||^2 / dt$

Simplification for single ray dynamics only 4 Brownian motions needed

$$\frac{dX_r}{dt} = |C_g^0| \begin{pmatrix} \cos \theta_k \\ \sin \theta_k \end{pmatrix} + \bar{v} + \sqrt{a_0} \begin{pmatrix} dB_t^{(1)}/dt \\ dB_t^{(2)}/dt \end{pmatrix} \text{ Ray}$$

 $\overline{\sigma}$, $\overline{\omega}$, $\overline{\phi}$ related to $\nabla \overline{v}^T$

Small scale group velocity:

$$v' = \sigma \frac{dB_t}{dt}$$

(δ -correlated in t homogenous & isotropic) $a_0 = \frac{1}{2} \mathbb{E} ||\sigma dB_t||^2 / dt$ $\gamma_0 = \frac{1}{8} \mathbb{E} ||\nabla (\sigma dB_t)^T||^2 / dt$

Simplification for single ray dynamics only 4 Brownian motions needed

$$\frac{dX_r}{dt} = |C_g^0| \begin{pmatrix} \cos \theta_k \\ \sin \theta_k \end{pmatrix} + \bar{v} + \sqrt{a_0} \begin{pmatrix} dB_t^{(1)}/dt \\ dB_t^{(2)}/dt \end{pmatrix} \text{ Ray}$$

Refraction & contraction/dilatation

$$\frac{d \ln \kappa(t)}{dt} = -\bar{\sigma} \sin \zeta(t) + \gamma_0 + \sqrt{\gamma_0} \frac{dB_t^{(3)}}{dt} | \text{ Wave-vector}$$

$$d\theta_k(t) = -\frac{\partial \bar{v}}{\partial \zeta} (\zeta(t)) dt + \sqrt{3\gamma_0} \frac{dB_t^{(4)}}{dt} | k = \kappa \begin{pmatrix} \cos \theta_k \\ \sin \theta_k \end{pmatrix}$$

with $\zeta = 2(\theta_k + \bar{\phi})$ and potential $\bar{V}(\zeta) = \bar{\omega} \zeta - \bar{\sigma} \sin \zeta$

 $\overline{\sigma}$, $\overline{\omega}$, $\overline{\phi}$ related to $\nabla \overline{v}^T$

Small scale group velocity:

$$v' = \sigma \frac{dB_t}{dt}$$

(δ -correlated in t homogenous & isotropic) $a_0 = \frac{1}{2} \mathbb{E} ||\sigma dB_t||^2 / dt$ $\gamma_0 = \frac{1}{2} \mathbb{E} ||\nabla (\sigma dB_t)^T||^2 / dt$

Simplification for single ray dynamics only 4 Brownian motions needed

$$\frac{dX_r}{dt} = |C_g^0| \begin{pmatrix} \cos \theta_k \\ \sin \theta_k \end{pmatrix} + \bar{v} + \sqrt{a_0} \begin{pmatrix} dB_t^{(1)}/dt \\ dB_t^{(2)}/dt \end{pmatrix} \text{ Ray}$$
Refraction & contraction/dilatation
$$\frac{d \ln \kappa(t)}{dt} = -\bar{\sigma} \sin \zeta(t) + \gamma_0 + \sqrt{\gamma_0} \frac{dB_t^{(3)}}{dt} | \text{ Wave-vector}$$

$$d\theta_k(t) = -\frac{\partial \bar{V}}{\partial \zeta} (\zeta(t)) dt + \sqrt{3\gamma_0} \frac{dB_t^{(4)}}{dt} | k = \kappa \begin{pmatrix} \cos \theta_k \\ \sin \theta_k \end{pmatrix}$$
with $\zeta = 2(\theta_k + \bar{\phi})$ and potential $\bar{V}(\zeta) = \bar{\omega} \zeta - \bar{\sigma} \sin \zeta$

Conservation of action spectral density N $\mathbb{E}N(\boldsymbol{x}, \boldsymbol{k}, t) = \iint d\boldsymbol{x}_r^0 d\boldsymbol{k}^0 N^0(\boldsymbol{x}_r^0, \boldsymbol{k}^0) p(\boldsymbol{x}, \boldsymbol{k} | \boldsymbol{x}_r^0, \boldsymbol{k}^0, t)$

 $\overline{\sigma}$, $\overline{\omega}$, $\overline{\phi}$ related to $\nabla \overline{v}^T$

Small scale group velocity:

$$v' = \sigma \frac{dB_t}{dt}$$

(δ -correlated in t homogenous & isotropic) $a_0 = \frac{1}{2} \mathbb{E} ||\sigma dB_t||^2 / dt$ $\gamma_0 = \frac{1}{8} \mathbb{E} ||\nabla (\sigma dB_t)^T||^2 / dt$

Simplification for single ray dynamics only 4 Brownian motions needed

$$\frac{dX_r}{dt} = |C_g^0| \begin{pmatrix} \cos \theta_k \\ \sin \theta_k \end{pmatrix} + \bar{v} + \sqrt{a_0} \begin{pmatrix} dB_t^{(1)}/dt \\ dB_t^{(2)}/dt \end{pmatrix} \text{ Ray}$$
Refraction & contraction/dilatation
$$\frac{d \ln \kappa(t)}{dt} = -\bar{\sigma} \sin \zeta(t) + \gamma_0 + \sqrt{\gamma_0} \frac{dB_t^{(3)}}{dt} | \text{Wave-vector}$$

$$d\theta_k(t) = -\frac{\partial \bar{V}}{\partial \zeta} (\zeta(t)) dt + \sqrt{3\gamma_0} \frac{dB_t^{(4)}}{dt} | k = \kappa \begin{pmatrix} \cos \theta_k \\ \sin \theta_k \end{pmatrix}$$
with $\zeta = 2(\theta_k + \bar{\phi})$ and potential $\bar{V}(\zeta) = \bar{\omega} \zeta - \bar{\sigma} \sin \zeta$

Conservation of action spectral density N $\mathbb{E}N(\mathbf{x}, \mathbf{k}, t) = \iint d\mathbf{x}_r^0 d\mathbf{k}^0 N^0(\mathbf{x}_r^0, \mathbf{k}^0) p(\mathbf{x}, \mathbf{k} | \mathbf{x}_r^0, \mathbf{k}^0, t)$

We can get analytic solutions !

 $\overline{\sigma}, \overline{\omega}, \overline{\phi}$ related to $\nabla \overline{v}^T$ <u>assumed to be cst.</u> Simplification for single ray dynamics - Deterministic case -

Refraction & contraction/dilatation $\frac{d \ln \kappa(t)}{dt} = -\bar{\sigma} \sin \zeta(t)$ Wave-vector $d\zeta = -\frac{\partial \bar{V}}{\partial \zeta} (\zeta(t)) dt$ $k = \kappa \begin{pmatrix} \cos \theta_k \\ \sin \theta_k \end{pmatrix}$ with $\zeta = 2(\theta_k + \bar{\phi})$ and potential $\bar{V}(\zeta) = \bar{\omega} \zeta - \bar{\sigma} \sin \zeta$

 $\overline{\omega} < \overline{\sigma}$

49

 \overline{v}

 $\overline{\sigma}, \overline{\omega}, \overline{\phi}$ related to $\nabla \overline{v}^T$ <u>assumed to be cst.</u>

Small scale group velocity:

$$v' = \sigma \frac{dB_t}{dt}$$

 $(\delta \text{-correlated in t} \\ \text{homogenous} \\ \& \text{ isotropic}) \\ a_0 = \frac{1}{2} \mathbb{E} ||\sigma dB_t||^2 / dt \\ \gamma_0 \\ = \frac{1}{8} \mathbb{E} ||\nabla(\sigma dB_t)^T||^2 / dt \\ \text{Wave:} \\ he^{i\phi} \\ k = \nabla \phi = \kappa \begin{pmatrix} \cos \theta_k \\ \sin \theta_k \end{pmatrix} \\ \zeta = 2(\theta_k + \overline{\phi}) \\ \overline{V}(\zeta) = \overline{\omega} \zeta - \overline{\sigma} \sin \zeta \end{cases}$

Simplification for single ray dynamics - *Stochastic case* -

We can solve the stationary Fokker-Planck for ζ ,

$$d\zeta = -\frac{\partial \overline{V}}{\partial \zeta} (\zeta(t)) dt + \sqrt{3\gamma_0} \frac{dB_t^{(4)}}{dt}$$

 \Rightarrow Up to periodicity constraints,

$$p(\zeta) \propto \exp\left(-\frac{2}{3}\frac{\overline{V}(\zeta)}{\gamma_0}\right)$$

and

$$\kappa(t) = \kappa(0) \exp\left(-\int_0^t \bar{\sigma} \sin\zeta(t') dt'\right) \exp\left(\gamma_0 t + \sqrt{\gamma_0} B_t^{(3)}\right)$$

$$\overline{\sigma}$$

$$\theta_k + \overline{\psi_1} + \pi/4$$

 \overline{v}

 $\overline{\sigma}, \overline{\omega}, \overline{\phi}$ related to $\nabla \overline{v}^T$ assumed to be cst.

Small scale group velocity:

$$v' = \sigma \frac{dB_t}{dt}$$

(δ -correlated in t homogenous & isotropic) $a_0 = \frac{1}{2} \mathbb{E} ||\sigma dB_t||^2 / dt$ γ_0 $= \frac{1}{8} \mathbb{E} ||\nabla (\sigma dB_t)^T||^2 / dt$ Wave: $he^{i\phi}$ $k = \nabla \phi = \kappa \begin{pmatrix} \cos \theta_k \\ \sin \theta_k \end{pmatrix}$

$$\zeta = 2(\theta_k + \overline{\phi})$$

$$\overline{\zeta}(\zeta) = \overline{\zeta} \quad \overline{\zeta} \quad \overline{z} \text{ or } z$$

Simplification for single ray dynamics - *Stochastic case* -

We can solve the stationary Fokker-Planck for ζ ,

$$d\zeta = -\frac{\partial \overline{V}}{\partial \zeta} (\zeta(t)) dt + \sqrt{3\gamma_0} \frac{dB_t^{(4)}}{dt}$$

$$\Rightarrow \text{ Up to periodicity constraints,}$$

$$p(\zeta) \propto \exp\left(-\frac{2}{3}\frac{\overline{V}(\zeta)}{\gamma_0}\right)$$

and

 \bar{v}

 $\overline{\sigma}, \overline{\omega}, \overline{\phi}$ related to $\nabla \overline{v}^T$ assumed to be cst.

Small scale group velocity:

$$v' = \sigma \frac{dB_t}{dt}$$

(δ -correlated in t homogenous & isotropic) $a_0 = \frac{1}{2} \mathbb{E} \|\sigma dB_t\|^2 / dt$ γ_0 $=\frac{1}{8}\mathbb{E}\left\|\nabla(\sigma dB_t)^T\right\|^2/dt$ Wave: $he^{i\phi}$

$$k = \nabla \phi = \kappa \begin{pmatrix} \cos \theta_k \\ \sin \theta_k \end{pmatrix}$$
$$\zeta = 2(\theta_k + \overline{\phi})$$
$$\overline{V}(\zeta) = \overline{\omega} \,\zeta - \overline{\sigma} \sin \zeta$$

Simplification for single ray dynamics - Stochastic case -

We can solve the stationary Fokker-Planck for ζ ,

$$d\zeta = -\frac{\partial \overline{V}}{\partial \zeta} (\zeta(t)) dt + \sqrt{3\gamma_0} \frac{dB_t^{(4)}}{dt}$$

$$\Rightarrow \text{ Up to periodicity constraints,}$$

$$p(\zeta) \propto \exp\left(-\frac{2}{3} \frac{\overline{V}(\zeta)}{\gamma_0}\right)$$

and

anu

II. Markovian closure

II.D. Waves trapped in a jet

Sweel trapped in a jet

Sentinel 2

Idealized jet

Agulhas current Mercator current (01/01/2016) + SSHA weekly

Ray tracing with trapping + scattering Large scale 2 $\|U\|$ group velocity: 1.5 $(\overline{u}, \overline{v})$ C_g^0 1 from 0.5 forced 2D Euler 0 400 600 800 200 x(km)Wave: $h e^{i \phi}$

Swells in a jet

forced 2D Euler (U ~ 1m/s)

ω

Swells in a jet

Resolution effect & stochastic closure

$v = \bar{v} + v'$	$v = \overline{v}$	$v = \bar{v} + \sigma \dot{B}$

ω

ω

ω

Deterministic reference: wave groups in 512 x 512 flow

Deterministic benchmark: wave groups in smoothed flow \bar{v} (4 x 4)

Swells in a jet

Resolution effect & stochastic closure

$$\overline{u} \approx \overline{U}_0 - \frac{1}{2}\overline{\beta}y^2 + C_g$$
$$\overline{v} \approx 0$$

with \overline{U}_0 , $ar{eta} < 0$

Small scale group velocity: $v' = \sigma dB_t/dt$ δ -correlated in t Isotropic and homogeneous in x

Wave:

 $h e^{i \phi}$

Swells in a jet Analytic solution

Oscillating ray (x_r, y_r, k_x, k_y) $\frac{d^2 y_r}{dt^2} + \overline{\omega}_r^2 y_r = v_g^0 \sqrt{3\gamma_0} \dot{\beta}_t$ with $\overline{\omega}_r = \sqrt{|v_g^0 \overline{\beta}|}$ and $\gamma_0 = \frac{1}{8} \mathbb{E} ||\nabla (\sigma dB_t)^T||^2 / dt$

Analytic stochastic solutions for

• Ray position & wave direction

 $y_r(t) = y_r(0)\cos(\overline{\omega}_r t) + \dots + Y_{\gamma_0}\sqrt{\overline{\omega}_r} \int_0^t \sin(\overline{\omega}_r (t - t'))d\beta_{t'}$

- Wave number fluctuations
- Mean distribution of wave action and wave energy

II. Beyond Markovian closure

II.A. Waves trapped in a SQG jet

$$\bar{v} + C_g^0$$

Small scale group velocity: *v*'

Wave:

he^{i φ}

Doppler frequency:

 $\omega_0 \propto |k|^{\alpha}$

Beyond validity of GFW

Validity :

 $\epsilon = \frac{(\text{Along-ray } v' \text{ correlation time})}{(\text{characteristic time of})}$ $= \frac{l_{v'}}{l_{v}} \frac{\|v\|}{\|C_{v}^{0}\|} \ll 1$

- Limitations :
 - Fast waves $\left(\frac{\|C_g^0\|}{\|v\|} \gg 1\right)$
 - Small-scale currents $(l_{v'} \ll 1)$
 - Moderate current gradients ($\|\nabla v\| \ll 1$)

(⇒ steep spectrum ⇒ non-local current dynamics)

$$\bar{v} + C_g^0$$

Small scale group velocity: *v*'

Beyond validity of GFW

• Validity :

Wave:

 $he^{i\phi}$

Doppler frequency:

 $\omega_0 \propto |k|^{\alpha}$

 $= \frac{(\text{Along-ray } v' \text{ correlation time})}{(\text{characteristic time of})}$ $= \frac{l_{v'}}{l_{v}} \frac{\|v\|}{\|c_{g}^{0}\|} \ll 1$

• Limitations :

Sma

- Fas GFW would fail for strong local current dynamics.
 - Example : Swells in a jet with flat spectrum,
- Mod typically forced SQG with U ~ 1m/s

(⇒ steep spectrum ⇒ non-local current dynamics)

Time-correlated model for v'Forward ray tracing

wave groups in 512 x 512 **SQG** flow benchmark: wave groups in smoothed flow \bar{v} (16 x 16)

Time-correlated model for v'Forward ray tracing

Deterministic reference: wave groups in 512 x 512 SQG flow Deterministic benchmark: wave groups in smoothed flow \bar{v} (16 x 16)

Time-correlated model for v'Forward ray tracing

Deterministic reference: wave groups in 512 x 512 SQG flow

Deterministic benchmark: wave groups in smoothed flow \bar{v} (16 x 16)

Deterministic reference: wave groups in 512 x 512 **SQG** flow

Deterministic benchmark: wave groups in smoothed flow \bar{v} (16 x 16)

Deterministic reference: wave groups in 512 x 512 **SQG** flow

Deterministic benchmark: wave groups in smoothed flow \bar{v} (16 x 16)

Time-correlated model for v'Wave spectra

Time-correlated model for v'Large-scale significant wave height H_s

Deterministic reference: wave groups in 512 x 512 **SQG** flow Deterministic benchmark: wave groups in smoothed flow \bar{v} (16 x 16) Our random model wave groups in smoothed flow \bar{v} (16 x 16) + time-correlated v'

Time-correlated model for v'Large-scale significant wave height H_s

Deterministic reference: wave groups in 512 x 512 SQG flow

Deterministic benchmark: wave groups in smoothed flow \bar{v} (16 x 16) Our random model wave groups in smoothed flow \bar{v} (16 x 16) + time-correlated v'

Time-correlated model for v'Large-scale significant wave height H_s

Deterministic reference: wave groups in 512 x 512 SQG flow Deterministic benchmark: wave groups in smoothed flow \bar{v} (16 x 16) Our random model wave groups in smoothed flow \bar{v} (16 x 16) + time-correlated v'

II. Beyond Markovian closure

II.B. Tests with satellite data

Estimation of the incident spectrum on SAR imagery

Estimation of the incident spectrum on SAR imagery.

Affichage

Insérer

Cellule Noyau

Python 3 C

Define Collection:

** A granule has to belong to a collection **

Entrée [349]: from SEAScope.lib.utils import create collection, init_ids
Make sure to keep the collection identifier, we will need it later
collection_id, collection = create_collection('User 4- Simulated wave rays')
print(collection_id)

Determinist model

17 dec 2015

Determinist model

Determinist model

II. Beyond Markovian closure

II.C. Callibration

Small scale group velocity:

Wave:

 $ae^{rac{i}{\epsilon}\phi}$

Time-correlated model for v': Calibration

v' = (filter) * (time-correl. noise)

Large scale group velocity:

Small scale group velocity:

ν' Wave:

 $ae^{rac{i}{\epsilon}\phi}$

Time-correlated model for v': Calibration

v' = (filter) * (time-correl. noise)

v' = (filter) * (time-correl. noise)

Conclusion

Conclusion

Generalized Fast Wave Approximation (GenFWA)

- Smallest scale turbulence decorrelates along the wave propagation
 => broader validity range compared to FWA
- Encodes both large-scale refraction and random scattering effects
- Takes into account wavenumber variation and handles strong heterogeneous flows, like localized jets with strong current gradients
- Provides both numerical and theoretical results
- Explains and quantifies ray trapping effects by jets, unlike FWA
- For strong currents with flat spectra,
 - we propose a new stochastic closure with stochastic currents multi-scale in space and time.
- Better explain satellite observations

In the future,

- we would like to use it as prior emulator of data assimilation
- Finite-size wave group with PiCIES (Tom Protin's PhD)