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|. Wave refraction due
to turbulence



Numerical example of wave (swell)
traveling inside turbulence
(oceanic surface currents)
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Numerical example of wave (swell)
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Current
velocity:

Doppler
frequency:
wo < |k|*

Dispersion ratio
At the first order in steepness (=||Vo||a)

¢

at

+ v - qu— —wy (k)

0P

ot

=k

=w(k) =v-k+ wy(k)

10



Current
velocity:

Doppler
frequency:
wo < |k|*

Dispersion ratio
At the first order in steepness (=||Vo||a)

Wave phase transport
with a current velocity v

¢
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Current
velocity:

Doppler
frequency:
wo X |k|*

Dispersion ratio
At the first order in steepness (=||Vo||a)

Wave phase transport Frequency without currents
with a current velocity v

ot

= w(k) =v- -k + wy(k)
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Total group
velocity ug:
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Wave:
hel®

Group velocity
without current

C; == Vk(l)o
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Total group
velocity ug:

racing / method of characteristic

s Non-linear
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Fonction | § contribution £
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Group velocity
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Total group
velocity ug:

0
v R

racing / method of characteristic

: Main
contribution

of k
T

Non-linear
coupling

Group velocity
without current

C; == Vk(l)o

Change
orientation
of C;

Refraction & contraction/dilatation

V=V,
Wave-vector
Doppler Fonction
frequency:
wo o« |k|*

Conservation of action spectral density N

dN 0 B h? A
E — — w0 (k) mplitude




Numerical example of wave (swell)
traveling inside turbulence
(oceanic surface currents)
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Numerical example of wave (swell)
traveling inside turbulence
(oceanic surface currents)

Medium-scale
eddy %

- Large-scalé
eddy
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Numerical example of wave (swell)
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Numerical example of wave (swell)
traveling inside turbulence
(oceanic surface currents)

Part 1.
v’ multi-scale in space
& white in time
=> Markovian wave
dynamics

Medium-scale
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Numerical example of wave (swell)

traveling inside turbulence

(oceanic surface currents)

Partl1l
v’ multi-scale in space
& white in time
=> Markovian wave

dynamics
QQ
N
Ny
QQb A—O\. : _—
Medium-scale o
™~ .“ »‘ QQ

eddy %

—

Part I11.
For strong currents with local dvn.:

v’ multi-scale in space
& multi-scale in time
=> non-Markovian wave dynamics
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ll. Markovian closure

II.A. Generalized fast

wave approximation
(GenFWA)



Large scale
group velocity:

. Generalized fast wave approx.
Smal SC " Smallest scale turbulence v’ decorrelates
group velocity: along the wave propagation
AEFEE- . \alidity
Ly
= i&i° df . = (Along—ray v .co.rre.lation time) _ (||ch>
characteristic time of ( 1 )
Wave: wave group properties evolution vl
het® Ly v « 1
Doppler L Icg |
frequency:
wo < |k|® - Limitations :

0
Fast waves (||”ch(]”|| > 1)

Ly
Small-scale currents (IL K 1)

1%

Moderate current gradients (||Vv]| « 1)

. (= steep spectrum = non-local current dynamics)



Large scale
group velocity:

7 Stratonovich dispersion ratio

SINEl | ; ' _
o velosity: At the first order in steepness (=||V¢||a)
/ dBy
UV = 0go—
dt
:Zi€i°?
(6-correlated in t)
0 dB
_ t
WEWES | V+ oo ) v¢: _wO(k)
hei 6 ot dt —
Group velocity =k

without current
Cg — Vk (UO

V=V,

Doppler

frequency:

wo X |k|*
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Large scale
group velocity:

= 0

:
Small scale
group velocity:

Stratonovich dispersion ratio
At the first order in steepness (=||V¢||a)

dB
I t
UV = go—
dt

= 2iSio—,

(6-correlated in t)

Wave phase transport
with a current velocity v

a6 [ dB,
w E +|V+ 0o P

Group velocity
without current

Cg — vkwo

Wave:

V=V,

Doppler

frequency:

wy X |k|*
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Large scale
group velocity:

= 0

:
Small scale
group velocity:

Stratonovich dispersion ratio
At the first order in steepness (=||V¢||a)

dB
I __ t
UV = 0go—

dt
_ : Wave phase transport
= D50 ° dt

(6-correlated in t)

Frequency without
currents

with a current velocity v

0J0) - dB;
E +|v+oo 77

= —wq (k)

Group velocity
without current

Cg — vka)o

V=V,

Doppler

frequency:

wy X |k|*
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Large scale
group velocity:

= 0

:
Small scale
group velocity:

dB
I __ t
UV = 0go—

dt
:2i€i°

awy
dt
(6-correlated in t)

Wave:
he'®

Group velocity
without current

Cg — kaO

V=V,

Doppler

frequency:

wy X |k|*

Stratonovich stochastic ray tracing

Refraction & Contractio?/dilatation

dBt)
k | Wave-vector

Amplitude
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Large scale
group velocity:

= 0

:
Small scale
group velocity:

dB
v =o—
dt
dw}
=Didi° dtt
(6-correlated in t
homogenous
& isotropic)
Wave:

he'®

Group velocity
without current

Cg — kaO

V=V,

Doppler

frequency:

wy X |k|*

It0 stochastic ray tracing

Refraction & Contracti9n/dilatation

dk _ dB;
= —VIv+o—] k | wave-vector

dt dt

Conservation of action spectral density N
dN

dt

=0 Amplitude
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Time-uncorrelated model for v':
Method of characteristic

V=v+vVv
=
Q
<
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(@]
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Q
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c
o
0]
I buoyancy

Deterministic
reference:
wave groups in
512 x 512 flow

V=7
=
Q
<
@
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o
(o
©
Q
3
2
c
o
®
Ibuoyancy

Deterministic
benchmark:
wave groups in

smoothed flow 7 (16 X 16)

14

v=1v+0B
:
P @
Our random
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+ time-uncorrelated v’



Time-uncorrelated model for v':
Method of characteristic

Deterministic
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Time-uncorrelated model for v':
Method of characteristic

1 day

0.6 anem
QJﬁ 9ABM
010 anem

ob
'
=

Duoyancy
600 700 800 900

0
x(|m)

Deterministic Deterministic Our random
reference: benchmark: model
wave groups in wave groups in wave groups in
512 x 512 flow smoothed flow ¥ (16 X 16) smoothed flow v (16 x 16)
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ll. Markovian closure

|.B. Calibration

15



Large scale
group velocity:

I3 | Time-uncorrelated model for v':
v +Cg | .
Small scale Calibration

group velocity:

dB
I t
V = o—

dt

awy

— 5 o)

Yidio g

(6-correlated in t
homogenous

& isotropic)

v' = o B = (filter) * (white noise)

38



Large scale
group velocity:

= 0
e

Small scale
group velocity:

dB
I t
V = o—

dt

awy

— . . O

Yidio g

(6-correlated in t
homogenous

& isotropic)

v' = o B = (filter) * (white noise)

Time-uncorrelated model for v';
Calibration

| KE Spectrum E (k) o
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Large scale
group velocity:

I3 Time-uncorrelated model for v':
v +Cg | .
Small scale Calibration

group velocity:

dB
I t
V = o—

dt
=2;ié;°

dw;
dt
(6-correlated in t

) I KE Spectrum E (k)

| ADSD A(x)

E(x)

v' = o B = (filter) * (white noise)
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Large scale
group velocity:

I3 Time-uncorrelated model for v':
v +Cg | .
Small scale Calibration

group velocity:

/ dBy
V = oc— e
“at Absolute Diffusivity Correlation time along ray
_ o Aw Spectral Density 1/x
= LiSi° T(K) = Tray (1) = 5
(5-correlated in t A(Kj) — E(}c) T(K) “Cg I
homogenous 4 =
& isotropic) . |KESpectrumE() | ] _|ADSD A(1) | | Residual I
' | ADSD

v' = ¢ B = (filter) * (white noise) ‘

Reference:
A1 Resseguier, Pan & Fox-Kemper 2020




Large scale
group velocity:

v

Small scale

group velocity:
dB,

U'=a—

dt
=i o

AW}
dt
(6-correlated in t
homogenous

& isotropic)

E(x)

Time-uncorrelated model for v':

Calibration

Absolute Diffusivity
Spectral Density

A(x) = E(k) 1(k)

Correlation time along ray

| KE Spectrum E (k) o

1/k
T(k) = Tray(K) —
Icg |
]
—[ADSD A() || Residual |-
ADSD

v' = ¢ B = (filter) * (white noise) ‘

42

Reference:
Resseguier, Pan & Fox-Kemper 2020




Il. Markovian closure

[.C. Simplification
for single ray dynamics



Large scale

group velocity: Simplification for single ray dynamics
> 0
’ only 4 Brownian motions needed

5, w, ¢ related to Vol

Small scale
group velocity:

(6-correlated in t
homogenous
& isotropic)

ay = 5 EllodB,|1?/dt
Yo ==E||V(edB)"|" /dt
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Large scale

group velocity: Simplification for single ray dynamics
> 0
’ only 4 Brownian motions needed

5, w, ¢ related to Vol

Small scale
group velocity:

dB
r t
UV = oc—

dt

(6-correlated in t
homogenous
& isotropic)

ay = 5 EllodB,|1?/dt

Yo ==E||V(edB)"|" /dt
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Large scale

grouip veloely Simplification for single ray dynamics
N +Cy only 4 Brownian motions needed

g, w, ¢ related to Vo'

Small scale
group velocity:

v = g2k Refraction & contraction/dilatation
dt (3)
dIn k(t) dBt
(5-correlated in t dt = —0sin ((t) TYo TY Wave-vector
homogenous dB(4) cos 0
&|sotrop|c) d@k(t) _ _ 27 (((t))dt 1+ /3-,, k =k (sin 9;:)

ao = *EllodB,||%/dt
Vo = _[E”V(O.dBt)T” /dt with { = 2(9k + @) and potential V(() =w{—0sin(
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Large scale

grouly velloeltyt Simplification for single ray dynamics
N +Cy only 4 Brownian motions needed

g, w,  related to Vo'

Small scale
group velocity:

. Refraction & contraction/dilatation
dt (3)
dIn x(t) dBt
(5-correlated in t dt = —0 sin ((t) TYo TVY Wave-vector
homogenous dB(4) cos 0
&|sotrop|c) dgk(t) _ _ 27 (((t))dt 1+ /3)’ k =k (sin Qlk()

ap = —ElladBtll /dt
Vo = _[E”V(O.dBt)T” /dt with { = 2(0k + @) and potential V(() =w{—0sin(

Conservation of action spectral density N
EN(x, k, t) = j J dx2dkONO(x2, k%) p(x, k|x2, k°, t)
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Large scale

grouip veloely Simplification for single ray dynamics
N +Cy only 4 Brownian motions needed

g, w,  related to Vo'

Small scale
group velocity:

Refraction & contraction/dilatation

(3)
dIn k(t) dBt
(6-correlated in t dt = —0sin ((t) T Yo T VYV \Wave-vector
homogenous dB(4) _ . (cos®8
& |sotroplc) d@k(t) = —— (((t))dt + +/3Y0 k=K (Sirl 9;:)

ap = —ElladBtll /dt
Vo = _[E”V(O.dBt)T” /dt with { = 2(9k + @) and potential V(() =w{—0sin(

Conservation of action spectral density N
EN(x, k, t) = j f dx2dkONO(x2, k%) p(x, k|x2, k°, t)

We can get analytic solutions !




Large scale

grouip veloelty Simplification for single ray dynamics
v - Deterministic case -
g, w, ¢ related to Vo'
assumed fo be cst. it Refraction & contraction/dilatation
dt _av_a sin ¢(£) Wave-vector
d¢ = =57 (C®)dt le= e (S o)

with { = 2(0, + @) and potential V({) = @ { — G sin{

w<o W >0

U.4\
0211

8 k (t) o \

2
20
40
0 A s
neKlt) . neK(t)«
—08F | [
N -1 W ¥ o
—10 =12
0 20 4 0
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Large scale

group velerity: Simplification for single ray dynamics
’ - Stochastic case -
g, w, P related to VT We can solve the stationary Fokker-Planck for ¢,
assumed to be cst. a7 ag@®
d{ = —g(((t))dt + /37 -
Small scale _ = Up to periodicity constraints,
group velocity: 2 7(0)
o P(()OCGXP( gy())
el and
(5-correlated in t k(t) = k(0) exp (_ fot 7 sing(t’) dt’) €Xp (yot + \/V_OBEB))

homogenous
& isotropic)

ag = ;EllodB,|1?/dt
Yo
= 2E||V(edB)"|" /dt

{=2(6 + ¢)
V) =wl—asin




Large scale

group velerity: Simplification for single ray dynamics
> .
- Stochastic case -
ag,, QB related to Vo! We can solve the stationary Fokker-Planck for ¢,
assumed to be cst. ag®
d{ = ——(((t))dt + /37,
Sl seele = Up to per10d1c1ty constralnts
group velocity: _
. an p(0) o< exp (- 252)
V = g— 3 Yo
e and

(5-correlated in t k(t) = k(0) exp (_ fot 7 sin{(t) dt’) €Xp (yot + \/V_OBt(S))

homogenous . oL

& isotropic) i |

ag = 5 EllodB,|1?/dt
Yo 1
= 2E||V(cdB)"||" /dt

0.5

. unstable
“  stable

15 «— Nno fixed point for ¥V

{ =206k + )
Vi)=w{—asin

’ 9k+lp‘l‘ﬂ'/4
20



Large scale

group velerity: Simplification for single ray dynamics
’ - Stochastic case -
g, w, ¢ related to VT We can solve the stationary Fokker-Planck for ¢,
assumed to be cst. ag®
d{ = ——(((t))dt + /37,

Sl seele = Up to per10d1c1ty constralnts
group velocity: 2 7(0)
o P(()OCGXP( 5)/0)

s and
(6-correlated in't k(t) = k(0) exp (— fot g sin¢(¢t') dt') exp (Vot T \/V_oBt(S))

homogenous
& isotropic)

ay =~ EllodB,||?/dt

Yo ,
= ~E[V(edB)"|"/dt

p(¢) o =001

Stochastic

. | shortening
o F unstable |
“  stable

{ =20k + )
Vi)=w{—asin

= 0, + lﬁ + /4 : 108()’0/5)
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Il. Markovian closure

1.D. Waves trapped
N a jet



Sweel trapped

et

J

1N a

Sentinel 2
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|[dealized |et

Our simulation

r 16"
+}» Display Lattings

A S3HA ALTIKA (ISRO,CNES)

04 03 02 -0 [ 01 02 03 04
SSHA Jason 2 (NASA,CNES)

~ o» Geostrophic surface current vector
(Globcurrent)

[= Surface current Mercator 1/12°
[CMEMS)

Agulhas current

Mercator current (01/01/2016)
+ SSHA weekly
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Swells in a jet

forced 2D Euler
(U~ 1m/s)

Ray tracing with
trapping + scattering

Large scale
group velocity:

200 400 600 800
x(km)

56



Swells in a jet

forced 2D Euler
(U~ 1m/s)

Ray tracing with
trapping + scattering

Large scale
group velocity:

forced 2D Euler

200 400 600 800
x(km)

Wave:

hel®
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Swells in a jet
Resolution effect & stochastic closure

— , — — d
v=v+4+v V=7 v=v+ 0B
0, 00, 0,
Deterministic Deterministic Our random
reference: benchmark: model
wave groups in wave groups in wave groups in
512 x 512 flow smoothed flow v (4 x 4) smoothed flow v (4 x 4)

- + time-uncorrelated v’



y(Km)

Swells in a jet
Resolution effect & stochastic closure

— , — — hd
v=v+uv V=V v=v+o0oB
x 10 x 10 x107
-1.4 0 1.4 -1.4 0 1.4 1.4 0 1.4
B » m , B © m
[ t = 0.0 day h o [ t = 0.0 day h - § =010 dai h O
1000 b — 1000 1000 ! -
800 2 800 800
s = ~ 600 ~ 600
0 Ty o o) ! =2 1 |1
400 e = > 400 > 400
200 e 200 200
o F—— | 0] | 0 1 0.9
0 500 0 500 0 500
x(km) x(km) x(km)
Deterministic Deterministic Our random
reference: benchmark: model
wave groups in wave groups in wave groups in
512 x 512 flow smoothed flow v (4 x 4) smoothed flow ¥ (4 x 4)

- + time-uncorrelated v’



Large scale

Swells in a jet
A Analytic solution

with Uy, B < 0

Oscillating ray (x;., ¥, ky, k)

Small scale
group velocity:
v' = odB,;/dt

o-correlated in t

with @, = /|vgﬁ‘| and yo = ~E||V(adB,)"||?/dt

Isotropic and
homogeneous in x Analytic stochastic solutions for

* Ray position & wave direction

Y () = y,(0)cos(@,t) + -+ + Y, /@, [ sin(@,(t — t'))dB,

e Wave number fluctuations

* Mean distribution of wave action and wave energy

60



l. Beyond Markovian
closure

[.A. Waves trapped
N a SQG et



Large scale
group velocity:

A +C; 1
v Beyond validity of GFW
Small scale
group velocity:
v’ - Validity :
()
Wave: B (Along—ray v correlation time) RN [
he'? € = characteristic time of B (VL)
Doppler wave group properties evolution vy
frequency: Lt vl
=2 "« 1
wo o K| by ||Cgl
Limitations :

0
Fast waves (””(’;f”” > 1)

Small-scale currents (1,,; «< 1)
Moderate current gradients (||Vv]| « 1)
6 (= steep spectrum = non-local current dynamics)



Large scale
group velocity:

A +C; 1
v Beyond validity of GFW
Small scale
group velocity:
v’ - Validity :
(1)
Wave: . (Along—ray v correlation time) _ I ]|
he' ® ~ characteristic time of (”‘7—1”)
Doppler wave group properties evolution v
: Ly
frequency: _ ||UO|| « 1
wy X |k|* Ly ”Cg”
Limitations :
Fas| GFW would fail for strong local current dynamics.
Sm4 Example : Swells in a jet with flat spectrum,
Mo« typically forced SQG with U ~ 1m/s

53 (= steep spectrum = non-local current dynamics)
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Time-correlated model for v’
Forward ray tracing

% V=T 4 V¢or

Deterministic Deterministic Our random
reference: benchmark: model
wave groups in wave groups in wave groups in
512 x 512 SQG flow smoothed flow 7 (16 X 16) smoothed flow v (16 X 16)

29 + time-correlated v’



Time-correlated model for v’
Wave spectra

Deterministic Deterministic Our random
reference: benchmark: model
wave groups in wave groups in wave groups in
512 x 512 SQG flow smoothed flow 7 (16 X 16) smoothed flow v (16 X 16)
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Time-correlated model for v’
Wave spectra

Deterministic Deterministic Our random
reference: benchmark: model
wave groups in wave groups in wave groups in
512 x 512 SQG flow smoothed flow 7 (16 X 16) smoothed flow v (16 X 16)

68 + time-correlated v’



Time-correlated model for v’
Wave spectra
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Time-correlated model for v’

Wave spectra
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Time-correlated model for v’
Wave spectra
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Time-correlated model for v’
Wave spectra
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Time-correlated model for v’
Large-scale significant wave height H

V=" vV =7+ Vcor

Deterministic Deterministic Our random
reference: benchmark: model
wave groups in wave groups in wave groups in
512 x 512 SQG flow smoothed flow ¥ (16 X 16) smoothed flow ¥ (16 X 16)
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Time-correlated model for v’
Large-scale significant wave height H

= / = /
V=V+V UV =7V Vcor

Deterministic Deterministic Our random
reference: benchmark: model
wave groups in wave groups in wave groups in
512 x 512 SQG flow smoothed flow ¥ (16 X 16) smoothed flow ¥ (16 X 16)
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Time-correlated model for v’
Large-scale significant wave height H

vzﬁ‘l'v(l:or

Deterministic Deterministic Our random
reference: benchmark: model
wave groups in wave groups in wave groups in
512 x 512 SQG flow smoothed flow ¥ (16 X 16) smoothed flow ¥ (16 X 16)

31 + time-correlated v’
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Tests with Sentinel-1 and
Jason-2 satellite gdata
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Tests with Sentinel-1 and
Json—g_ satellite dat
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B T e
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-
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29

34



Tests with Sentinel-1 and
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Tests with Sentinel-1 and
Jason-2 satellite gdata
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Fstimation of the Incident
spectrum on SAR imagery

S1_swell ow

ST—

B ¢ ¢ PO |mCw» . v .
#? Lood do
from SEASCope. )
extractions

acted data

for &, dats #a o
T

ITEATIAAS - 000200 003413 -0 5 - 1CH

Compute spectrum

prasule urt = neatl v for 1, v In esumeratedextractions. heysi)) 4F §
extraction » extractionsigranele wi
1tary = extra sota’ |1 start")

Tleatrw " . n

[*sea surfate roughness” |

Type Markgown and LaTeX o

Jomslgrans

211" sea }

1
Jinterpalation Caaps'gray )

pit.f
21 howd numpy
olt.colardart)
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wavenumber [rad/m]

Estimation of the incident
spectrum on.SAR imagery.

(mogine)

8 + &K * ¥ PEwcur B C » ~
Absolut I B e SO B AR e A s S S ST ST A TP :
solute value numpy . clip(numpy. flipud(uf: :15]).,-2,2),
numpy .clip(numpy. flipud(v|: 15]).-2,2))
qk = plt.quiverkey(Q, 6.5, 0.98, 2, r's2 {m}{s5}%', labelpos='W',
-0.13 fontpropertiess{ weight bold'})
for ¢ in range(nseed):
plt.plot(y[:,c),-x[:,c],color="w", linewidth=1.5)
010
-0.05
000
005
010
01%

010 015 Export wave rays to SEAScope

-015 -0.10 -0.05 000
wavenumber [rad/m]

o
=3
"

Define Collection:
** A granule has to belong to a coliecoon **

Entrée [349]: from SEAScope.lib.utils import create collection, init ids

¥ Make

collection id, collection = create collection('User 4- Simulated wave rays')
print{collection id)
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Determinist model
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tochastic model with homogeneous and
time-correlated
small-scale velocities

2007
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Stochastic model
with heterogeneous and time-correlated
small-scale velocities

2016 2017

November

21 22 23 24 25 26
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17 dec 2015

Determinist model

%
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Stochastic model with homogeneous and
time-correlated
small-scale velocities
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Stochastic model
with heterogeneous and time-correlated
small-scale velocities
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Determinist model

wavenomder [todim)

Absolute value

Sentinel-1 spectrum

210
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010

010 ~005 e 00s 010
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Stochastic model
with heterogeneous and time-correlated
small-scale velocities

Absolute value

wavenomder [todim)
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Stochastic model
with heterogeneous and time-correlated
small-scale velocities

Absolute value
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Stochastic model
with heterogeneous and time-correlated
small-scale velocities

Absolute value

wavenomder [todim)
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Stochastic model
with heterogeneous and time-correlated
small-scale velocities

Absolute value

wavenomder [todim)
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Il. Beyond Markovian
closure

1.C. Callibration



Large scale

group velocity:

= 0
e

Small scale

group velocity:

/

D
Wave:

ae<?

Time-correlated model for v':
Calibration

v' = (filter) * (time—correl. noise)
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Large scale

group velocity:

= 0
e

Small scale

group velocity:

/

D
Wave:

ae<?

Time-correlated model for v':
Calibration

Kinetic energy spectrum E (k)

£ = oI

v' = (filter) * (time—correl. noise)
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Large scale
group velocity:

i Time-correlated model for v':

v . '
Small sc. Physical scale symmetry \Ca“brathﬂ

group Ve On-line fit : A || k||~

(Similar to fractional Brownian motion in space)

B2 = Ak — |3? |

Kinetic energy spectrum E (k) Residual
| ! T spectrum

£ = lIell

v' = (filter) * (time—correl. noise)

J
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Large scale
group velocity:

i Time-correlated model for v':

v . '
Small sc. Physical scale symmetry \Ca“brathﬂ

group Ve On-line fit : A || k||~

Similar to fractional Brownian motion in space ~ -
| P29 [The = ke — 1512 |

Kinetic energy spectrum E (k) Residual
| ! T spectrum

£ = lIell

v' = (filter) * (time—correl. noise)
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Large scale
group velocity:

i Time-correlated model for v':

v . '
Small sc. Physical scale symmetry \Ca“brathﬂ

group Ve On-line fit : A || k||~

(Similar to fractional Brownian motion in space)

B2 = Ak — |3? |

Kinetic energy spectrum E (k) Residual
| ! T spectrum

£ = lIell

Filter h

v' = (filter) * (time—correl. noise)

J
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Large scale

SRS Time-correlated model for v’
Small sc: Physical scale symmetry Ca|lbratIOﬂ

group Ve On-line fit : 4 ||k||~H

Similar to fractional Brownian motion in space ~ ~
P29 [The = ke — 1512 | -
, Current correlation time
Kinetic energy spectrum E (k) Resutjual 00 0 1/k 1/k
SR ( — spectrum T(K) = T (K) = =
S | P T o T e EGo

£ = lIell

Filter h

v' = (filter) * (time—correl. noise)
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Large scale

SO Time-correlated model for v’

Small sc: Physical scale symmetry Ca|lbratIOﬂ
group Ve On-line fit : A ||kl ~H

(Similar to fractional Brownian motion in space)/[

B2 = Ak — |3? |

: Current correlation time
Kinetic energy spectrum E (k) Resutjual 00 0 1/k 1/k
: 1 spectrum T(K) = Teyr (k) = =
C p cur vk » E(K)

v

Multiscale noise B¢

£ = lIell

From Bf(x) = [[ Bf (k)e***dx,

Ornstein—Uhlenbeck process in time,
with correlation time (k) at the spatial scale k:

_— 2
d Bf (k) = ——= (k) Bf (k)dt + / 0 (dBy) (k)

and dB;/dt “spatiotemporal white noise”
(cylindrical Wiener Process)

Filter h

<

' = (filter) * (time—correl. noise)

102



Conclusion



Conclusion

Generalized Fast Wave Approximation (GenFWA)
Smallest scale turbulence decorrelates along the wave propagation
=> proader validity range compared to FWA
Encodes both large-scale refraction and random scattering effects
Takes into account wavenumber variation and handles strong heterogeneous flows,
like localized jets with strong current gradients
Provides both numerical and theoretical results
Explains and quantifies ray trapping effects by jets, unlike FWA

For strong currents with flat spectra,
we propose a new stochastic closure with stochastic currents multi-scale in space and time.
Better explain satellite observations

In the future,
we would like to use it as prior emulator of data assimilation
Finite-size wave group with PiICIES (Tom Protin’s PhD)

>0 ‘ Ressequier, Hascoet, Chapron (2024). JFM
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