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Abstract 

Behavioral adaptation to changing contextual contingencies often requires the rapid inhibition 

of planned or ongoing actions. Inhibitory control has been mostly studied using the stop–signal 

paradigm, which conceptualizes action inhibition as the outcome of a race between 

independent GO and STOP processes. Inhibition is predominantly considered to be independent 

of action type, yet it is questionable whether this conceptualization can apply to stopping an 

ongoing action. To test the claimed generality of action inhibition, we investigated behavioral 

stop–signal reaction time (SSRT) and scalp electroencephalographic (EEG) activity in two 

inhibition contexts: Using variants of the stop–signal task, we asked participants to cancel a 

prepared–discrete action or to stop an ongoing–rhythmic action in reaction to a STOP signal. 

The behavioral analysis revealed that the discrete and rhythmic SSRTs were not correlated. The 

EEG analysis showed that the STOP signal evoked frontocentral activity in the time and 

frequency domains (Delta/Theta range) in a task–specific manner: The P3 onset latency was the 

best correlate of discrete SSRT whereas N2/P3 peak-to-peak amplitude was the best correlate of 

rhythmic SSRT. These findings do not support a conceptualization of inhibition as action–

independent but rather suggest that the differential engagement of both components of the 

N2/P3–complex as a function of action type pertains to functionally independent inhibition 

subprocesses. 
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Highlights 

• Inhibitory control was investigated in two stop–signal tasks that differed in the type of 

motor response to inhibit. 

• Frontocentral EEG markers of inhibition differed between cancelling a prepared–

discrete action and stopping an ongoing–rhythmic action. 

• STOP–signal ERP components were distinctively related to inhibition in prepared–

discrete (P3 onset) and ongoing–rhythmic (N2/P3 peak-to-peak amplitude) actions. 

• Inhibitory control is not a generic process; its underpinning neural subprocesses are 

modulated as a function of action type. 



1. Introduction 1 

Inhibitory control is generally conceived of as a core executive function involved in the control of 2 

attention, thought, emotion, and action (Bari & Robbins, 2013; Diamond, 2013; Miyake et al., 3 

2000). In particular, people are apt to cancel actions rapidly when unanticipated events or 4 

contextual changes occur. Some situations call for the inhibition of prepared actions, a case 5 

thoroughly studied by experiments using the stop-signal paradigm: some GO stimuli are 6 

unpredictably followed by a STOP signal requiring the cancellation of the prepared response 7 

(Logan & Cowan, 1984; Verbruggen et al., 2019). Other situations call for the abrupt cessation of 8 

ongoing actions during execution (Alegre et al., 2008; Lofredi et al., 2021). In this regard, 9 

previous experimental findings strongly suggest that the behavioral inhibition latency  in the two 10 

situations are unrelated (Hervault et al., 2019). Still, it is unclear whether the neural processing 11 

of action inhibition relies on a single set of processes, that is, whether it is action–independent 12 

or action–specific. The present study addressed this issue by investigating behavioral stopping 13 

latency and scalp neural activity through EEG when participants inhibited either prepared–14 

discrete or ongoing–rhythmic actions. 15 

Based on the prevalent horse–race model (Logan & Cowan, 1984; Verbruggen et al., 2019), 16 

inhibition can be evaluated in stop–signal tasks as the outcome of a race between independent 17 

GO and STOP processes: it fails when the GO process finishes the race before the STOP process 18 

and succeeds otherwise. The grounding statistical model provides an elegant way to estimate 19 

the duration of the covert action inhibition process, the stop–signal reaction time (SSRT). The 20 

model remains silent, however, about the underlying neural processes. The stop–signal 21 

paradigm was developed as a tool to evaluate a presumably action–independent process of 22 

inhibition (Band & van Boxtel, 1999; Logan & Cowan, 1984). Logan and Cowan (1984, p. 318) 23 

could have been hardly more explicit about the presumption of generality when they stated that 24 



“The model developed so far is addressed to discrete tasks with discrete responses. It would 25 

seem to be relatively straightforward to generalize the model to continuous responses”. Yet, for 26 

an ongoing–continuous action, the assumed race between the GO and STOP processes 27 

underlying the stop–signal paradigm cannot apply, since the GO (action initiation) process has 28 

long run to its completion at the time of the STOP Signal occurrence. This argument motivates 29 

our challenging the assumption that action inhibition is generic by comparing cancelling a 30 

prepared–discrete action and stopping an ongoing–rhythmic action. In addition, the 31 

investigation of ongoing–rhythmic action inhibition has been conceived as crucial in establishing 32 

the real–world generalizability of inhibitory control (Hannah & Aron, 2021). Studying ongoing–33 

rhythmic action inhibition also provides the opportunity to measure the SSRT without relying on 34 

race–model assumptions (Lofredi et al., 2021; Morein-Zamir et al., 2006; Schultz et al., 2021). 35 

Inhibitory control is indispensable in everyday life to stop either type of action. Discrete actions, 36 

like grasping, are delimited by moments without movement (i.e., with zero velocity and 37 

acceleration). That is, a discrete action unit refers to a movement that is preceded and followed 38 

by a non-negligible period in which the position of the moving limb does not change. In contrast, 39 

rhythmic actions, like walking, are continuous and periodic and lack such recognizable endpoints 40 

(Hogan & Sternad, 2007). The neural structures associated with controlling discrete and 41 

rhythmic actions differ considerably (Schaal et al., 2004; Spencer et al., 2003; Wiegel et al., 42 

2020), due to differing timing and initiation mechanisms (Huys et al., 2008; Spencer et al., 2003). 43 

Thus, various lines of evidence persuasively suggest that discrete actions require additional 44 

control processes, involving supplemental brain activation as compared to rhythmic actions. 45 

Therefore, since discrete and continuous movements tap into distinct neural mechanisms of 46 

action control, they provides an excellent window to test whether inhibition is the action–47 



independent process that is often claimed to be (Logan & Cowan, 1984; Schall et al., 2017; 48 

Verbruggen & Logan, 2009a). 49 

As of yet, only few studies have investigated whether the same inhibition process underwrites 50 

cancelling a prepared action or stopping an ongoing action. Morein–Zamir et al. (2004) found a 51 

correlation between the inhibition latencies (SSRTs) associated with cancelling a prepared action 52 

and stopping an ongoing (yet) isometric action in a rather peculiar task: Participants tracked the 53 

speed of a target that rotated along an imaginary circle on the screen by varying the pressure on 54 

a force sensor. Therefore, while the perceptual task was clearly continuous, there was hardly 55 

any movement to inhibit at all, since there was no limb displacement or trajectory to speak of. 56 

In contrast, a recent investigation showed that the SSRTs associated with cancelling a prepared–57 

discrete key–pressing action (the classic stop–signal task) and stopping an ongoing–rhythmic 58 

drawing action were unrelated across participants (Hervault et al., 2019). This finding 59 

contradicts the assumption that a single mechanism is involved in inhibiting prepared and 60 

ongoing actions. 61 

Regarding the electroencephalographic (EEG) neural activity related to action inhibition in the 62 

stop–signal paradigm, event–related potential (ERP) studies have linked inhibition to 63 

pronounced frontocentral negativity around 200–300 ms after the STOP–signal onset (N2), 64 

followed by a distinct positive activity about 150 ms later (P3) with a frontocentral to 65 

centroparietal topography (Huster et al., 2013). Suggestive of their functional relevance, the 66 

amplitude and latency of both waves differ between successful and failed STOP trials (e.g., 67 

Bekker et al., 2005; Kok et al., 2004). In addition, P3 onset latency correlates strongly with SSRT 68 

(e.g., Wessel & Aron, 2015). Finally, both N2 and P3 predict individual differences in inhibition 69 

performances (Chikara & Ko, 2019; Vahid et al., 2018). In the frequency domain, STOP trials 70 

reveal  augmented power in the Delta (0–3 Hz) and Theta (4–8 Hz) frequency bands compared 71 



to GO trials (e.g., Chikara et al., 2014; González–Villar et al., 2016; Lavallee et al., 2014; Wessel & 72 

Aron, 2013). This difference is reliably discernible between 200 and 500 ms post stimulus 73 

presentation, that is, within the time range of the N2/P3–complex (Huster et al., 2013).  74 

These ERP and time–frequency patterns correlate significantly with action inhibition and proved 75 

to change with the loss of inhibitory control due to various disorders (Bekker et al., 2005; 76 

Kusztor et al., 2019; Lansbergen et al., 2007; Tschuemperlin et al., 2019; Van Voorhis et al., 77 

2019). Whereas such correlations between inhibition performance and N2/P3 ERPs and the 78 

related time-frequency patterns are robust and reproducible, similar correlations have also been 79 

reported between these EEG indices and multiple other behavioral measures, thus questioning 80 

their specificity in indexing inhibitory processes per se  (Huster et al., 2020). Hence, EEG 81 

correlates could either truly reflect a, say, “pure” inhibitory process (Hynd et al., 2020; Wessel & 82 

Aron, 2015), or the processing of the conflict required to inhibit action (Enriquez-Geppert et al., 83 

2010), or a contextual update of the situation requiring an sporadic action revision (Waller et al., 84 

2019). Thus, studying inhibition–related EEG patterns in tasks known to differ in the engaged 85 

action–control processes, as it is the case for discrete and rhythmic actions, may provide 86 

additional information to a functional interpretation of these EEG correlates. 87 

Apart from classical stop–signal experiments, only two studies, to our knowledge, report that 88 

components of the N2/P3 complex are linked to the intentional termination of ongoing actions: 89 

The P3 wave was associated with ending sustained isometric elbow contraction (Hatta et al., 90 

2003), while the N2 wave was related to the reactive cessation of an ongoing drawing action 91 

(Sosnik et al., 2015). In view of their presumed functional relevance, EEG correlates of inhibition 92 

constitute suitable candidates to address whether inhibitory processes are involved similarly in 93 

cancelling and stopping action. Indeed, EEG correlates of inhibition were modulated in 94 

amplitude and latency when the inhibitory requirement is varied by using stop–signal tasks, 95 



stop–change tasks, and GO/NoGO tasks (e.g., Krämer et al., 2011; Raud et al., 2020). 96 

Nonetheless, these studies reported EEG modulations when cancelling one action type only, 97 

again, discrete action, while there is, to our best knowledge, no study investigating modulations 98 

of inhibition EEG for continuous action. Therefore, no comparison across the two action types is 99 

possible in terms of neural inhibition modulations. 100 

To sum up, the present study probes the assumption that action inhibition generalizes across 101 

action types by using tasks involving movements associated with distinct kinematics, dynamics, 102 

as well as neural control mechanisms. Therefore, we recorded EEG in participants who had 103 

either to cancel a prepared–discrete action or to stop an ongoing–rhythmic action performed on 104 

a digitizing tablet, while keeping the movement effector and the plane of motion the same. We 105 

investigated the frontocentral N2/P3–complex and Delta/Theta band activity as neural 106 

correlates of inhibitory action control.  107 



2. Materials and Methods 108 

2.1. Participants 109 

Twenty-three participants volunteered in the experiment. For three participants, behavioral and 110 

EEG artifacts warranted their exclusion from the final analysis, which was therefore restricted to 111 

twenty participants (12 males; 8 females, mean age 25 ± 2.4 (SD) years). All participants were 112 

healthy and had normal or corrected–to–normal vision. Participants’ handedness was 113 

determined using the Edinburgh handedness inventory (Bryden, 1977) and only participants 114 

with a homogeneous pattern of right–hand preference were included. The study was conducted 115 

according to the principles stated in the Declaration of Helsinki and the procedures were 116 

approved by the local research ethics committee (ID–RCB: 2020–A03215–34). In order to be 117 

able to detect a difference interpreted as large (Cohen’s d = 0.80, Cohen, 1988; Sawilowsky, 118 

2009) between discrete and rhythmic inhibition latencies, and by accepting a Type 1 risk α of .05 119 

and a statistical power 1 – β of .90, the required number of participants for a repeated measures 120 

t-tests was minimally estimated as 15 (using G*power software, Faul et al., 2009) . 121 

2.2. Apparatus and Stimuli 122 

Participants were seated in front of a graphic tablet (WACOM Cintiq 15X, 1280×800–pixel 123 

resolution). As an initial position, they put the stylus between two vertical yellow bands (1 mm 124 

wide) plotted at the center of the digitizing black screen (10 mm distant). Stimuli were green or 125 

blue 50 ms flashes displayed on the whole screen. Participants were requested to react to these 126 

stimuli by initiating swiping movements to the right or left direction in the discrete task and by 127 

continuous ongoing swiping oscillations in the rhythmic task. Occasionally, and unexpectedly 128 

(see Procedure), a red 50 ms flash followed the main stimulus, indicating the participants to stop 129 

the action. The x and y coordinates of the performed motions were digitized at a sampling 130 



frequency of 143 Hz as long as the stylus touched the tablet. The program controlling the tablet 131 

was custom-made. A hook-and-loop fastener was used to fix the participant’s forearm to the 132 

table in order to restraint the movement to the wrist articulation, thereby avoiding large 133 

muscular noise in the EEG signal due to an intense contraction of the biceps and deltoid 134 

muscles. 135 

2.3. Procedure 136 

2.3.1. Discrete task 137 

The discrete task (Fig. 1) was designed following guidelines to capture the ability to inhibit 138 

actions in stop–signal tasks (Verbruggen et al., 2019). The primary task was a two–choice 139 

reaction time task. When a green versus blue flash appeared, participants were instructed to 140 

reach to the right versus left half–side of the tablet screen, respectively, with the stylus (green 141 

and blue stickers were visible on the right and left tablet sides). On 75% of the trials (GO trials), 142 

only this main stimulus was presented, and the participants had to respond to the stimulus as 143 

fast and accurately as they could. On 25% of the trials (STOP trials), a red flash appeared shortly 144 

after the main stimulus as a STOP signal, which indicated to the participants to cancel their 145 

response (secondary task). This experiment consisted of one practice block and 30 experimental 146 

blocks, each consisting of 20 trials. Each trial began when the participant positioned the stylus 147 

between the two centered vertical lines, and the GO stimulus occurred after 1500 ms. The time 148 

interval between GO stimuli of two subsequent trials was randomized between 3500 and 4000 149 

ms. In STOP trials, the GO stimulus was followed by the STOP signal after a delay (SOA; stimulus 150 

onset asynchrony). The SOA, initially set to 200 ms, was dynamically adjusted in 50 ms 151 

increments to achieve a probability of responding p(respond|signal) of .50. When the 152 

participant crossed a vertical line, the STOP trial was considered as a stop failure and the SOA 153 



was shortened; when the participant kept the stylus between the two lines, the STOP trial was 154 

considered successful and the SOA was prolonged. Participants were asked to focus on the 155 

primary GO task requiring as fast as possible swiping movements while minimizing errors. They 156 

were also instructed that in some STOP trials they would fail to cancel the response but that 157 

they should not be troubled by these failures.  158 

2.3.2. Rhythmic task 159 

The apparatus of the rhythmic task was similar, but the task design differed from the discrete 160 

task (Fig. 1). As a main task, participants were not engaged in a GO task but in a CONTINUE task. 161 

They were instructed to rhythmically oscillate the stylus between the two sides of the screen at 162 

a spontaneous frequency. A minimal and consistent oscillation amplitude was guaranteed by 163 

imposing the constraint that the oscillations’ extrema had to fall outside the two centered 164 

vertical lines. The main task was to pursue the action without interruption when the green or 165 

blue CONTINUE stimuli appeared. In infrequent STOP trials, a red flash signal occurred after the 166 

main stimulus with a fixed SOA (see below). The participants were instructed to stop their 167 

ongoing–rhythmic action as soon as the STOP signal occurred and to wait for the next stimulus 168 

to restart the oscillation. The repartitioning between frequent CONTINUE trials (75%) and 169 

improbable STOP trials (25%) was similar to the discrete task, as well as the inter-trial duration. 170 

The task was also administered in 30 blocks of 20 trials.  171 

For both tasks, the main stimulus was randomly a green or blue flash but with an equal 172 

probability within blocks. Participants had to maintain contact between the stylus and the tablet 173 

screen during the whole block. Participants were free to choose the rest time duration between 174 

the blocks (from 20s to 120s). They completed the discrete task in a first session and the 175 

rhythmic task in a second session one week later. This task order was chosen as it allowed us to 176 



set the fixed SOA between CONTINUE stimulus and STOP signal in the rhythmic task as the mean 177 

of the SOAs between GO stimuli and STOP signal obtained by each participant in the discrete 178 

task. This procedure ensured that the average delay between the main (GO/CONTINUE) 179 

stimulus and the secondary (STOP) signal were similar in both tasks, and so was the perceptual 180 

neural activity. 181 

2.4. EEG recording and preprocessing 182 

Scalp–EEG signals were acquired with 64 Ag/AgCl active pin electrodes at 2048 Hz (Biosemi 183 

Active Two 10/20 system). Data were referenced online with a CMS/DRL feedback loop and 184 

online low–pass filtered. Electrode offsets (difference in mV of each channel from the CMS 185 

electrode) were examined after electrode application, which was adjusted if the absolute value 186 

exceeded 15 mV. Three additional face electrodes recorded the vertical and the horizontal 187 

electrooculograms. Digital markers (event codes) were inserted into the continuous EEG via a 188 

DB25 cable through a parallel port interface. Continuous EEG data were imported and 189 

preprocessed in bespoke scripts using functions from the EEGLAB Matlab plugin (Delorme & 190 

Makeig, 2004).  Data were downsampled to 500 Hz, high–pass filtered at 0.1 Hz, and low–pass 191 

filtered at 50 Hz with a linear finite impulse response filter.  EEG epochs corresponding to task 192 

trials were generated by extracting data from –1000 to 2000 ms around each main stimulus 193 

event (GO or CONTINUE stimulus onset for the discrete and rhythmic task, respectively). After 194 

epoching, the recording was visually inspected for non-stereotypical artifacts (such as muscle 195 

activation or intermittent electrode artifacts) and any epoch found to contain an artifact was 196 

removed from the data. EEG was finally re–referenced to the average of all channels. 197 

Independent component analysis (Infomax ICA; Bell & Sejnowski, 1995) was applied to 198 

continuous EEG data (concatenation of the EEG epochs) to identify neural components 199 

contributing to the observed scalp data. In the original scalp 64-channel data, each row of the 200 



data matrix represents voltage, summed between source projections to one data channel. After  201 

decomposition (64 components), each row of the data matrix gives the time course of the 202 

activity of one component process spatially filtered from the channel data (Delorme & Makeig, 203 

2004). Using the ICLABEL classifier (Pion-Tonachini et al., 2019) over the 30 first components, 204 

components identified as artifactual, i.e., with less than 5% chance to account for neural activity, 205 

were removed from the EEG data structure, thus removing their contributions to the observed 206 

EEG. Rejection was systematically checked by visual inspection of component properties (time 207 

series, spectra, topography) according to ICLABEL guidelines (ibid.), leading to an average 208 

number of 7 components rejected by participant (min = 4 ICs, max = 9 ICs). Across all 209 

participants, these procedures led to the omission of 8.8 % of the STOP trials in the discrete task 210 

(SD = 1.6 %) and 4.1 % of the rhythmic STOP trials (SD = 1.7 %). 211 

2.5. Behavioral measures 212 

Data analyses were performed using MatlabTM software (Mathworks 2013). 213 

2.5.1. Discrete stop task 214 

Reaction times (RTs) were computed for both action initiation and inhibition. For each GO trial, 215 

GoRT was calculated as the time between the GO stimulus onset and the response onset, the 216 

latter being defined as the moment the swipe had exceeded 5% of the Euclidean distance 217 

between the initial and furthest (i.e., end) position of the movement response. The discrete 218 

stop–signal reaction time (SSRTd) was computed using the integration method with 219 

replacement of GO omissions, which entails selecting the nth GoRT, where n equals the number 220 

of RTs in the GoRT distribution multiplied by the overall p(respond|signal). The SSRTd is then 221 

obtained by subtracting the mean SOA from the nth GoRT (Verbruggen & Logan, 2009a) (Fig. 2). 222 

The SSRTd could be estimated for all of the 20 participants as their p(respond|signal) did not 223 



differ significantly from .50 (see Results). Fail–STOP RT was computed as the reaction time 224 

measured in failed STOP trials (FsRT). 225 

2.5.2. Rhythmic stop task 226 

In each STOP trial, the SSRT (SSRTr) was computed using the methodology developed in a 227 

previous study (Hervault et al., 2019). Briefly, stop time was calculated as the latency between 228 

the STOP signal onset and the end of the action, identified when the motion velocity reduced to 229 

null following the STOP signal. Within the stop time, SSRTr was calculated as the latency 230 

between the STOP signal onset and the onset of the response adjustment (Fig. 2). This time 231 

point was defined as the moment the ongoing trajectory in phase space (i.e., the space spanned 232 

by x and dx/dt) deviated relative to movements without a STOP signal according to statistical 233 

criteria based on a sample's position in phase space, and the angle and magnitude of its 234 

corresponding velocity vector (Hervault et al., 2019). 235 

2.6. Scalp activity measures 236 

The neural network engaged in inhibitory control (Aron, 2007; Lofredi et al., 2021) has been 237 

mainly associated to ERPs and time-frequency power visible at frontocentral sites, when 238 

investigated using EEG (Chikara et al., 2014; González-Villar et al., 2016; Huster et al., 2013; 239 

Lavallee et al., 2014; Wessel & Aron, 2013, 2015). According to this literature, the following 240 

analyses were performed using the three FCz, Cz and CPz EEG channels. In addition, the occipital 241 

Oz channel was added to the ERP analysis to evaluate the potential contribution of the attention 242 

in our task comparison. Especially, the visual N1 wave reflects the operation of a discrimination 243 

process within the focus of attention. Indeed, N1 appears to be larger when participants are 244 

performing discrimination tasks than when they are performing detection tasks (Vogel & Luck, 245 

2000). 246 



2.6.1. Event–related potentials 247 

For the main task’s ERP, we averaged the EEG time series locked to the main stimulus onset (GO 248 

or CONTINUE) following the subtraction of a −200 to 0 ms pre–stimulus period as baseline. As 249 

STOP trials contained both the main stimulus (GO or CONTINUE) and the subsequent STOP 250 

signal, the STOP–signal–locked ERP cannot be directly and reliably computed as it may be 251 

contaminated by residual main–stimulus related activity (if not removed by the averaging 252 

process; Woldorff, 1993). For the rhythmic task, this overlapping problem was overcome by 253 

computing the neural activity difference of the main–stimulus locked ERP between STOP trials 254 

and CONTINUE trials, and then re-locking the STOP trial ERP to the STOP signal onset. This 255 

procedure, however, cannot be used for the discrete task, where the SOA delay (duration 256 

between GO stimulus and STOP signal) was adjusted across trials. To assess differences in the 257 

STOP–signal–processing irrespective of differences in the GO–stimulus processing, we 258 

computed, for the discrete task, the difference EEG activity separately for successful and failed 259 

STOP trials, in a similar manner as in previous studies (see Krämer et al., 2011; Ramautar et al., 260 

2004, 2006). Specifically, GoRTs associated with the GO trials were rank–ordered, and then split 261 

into two parts. According to the horse–race model the fast and slow tails of the GoRTs 262 

distribution corresponded to the proportion of failed and successful STOP trials, respectively 263 

(Verbruggen & Logan, 2009a). Thus, ERPs were averaged across slow GO trials. This “virtual” 264 

GO–trials–ERP was then subtracted from successful STOP trials EEG data. STOP trials ERP was 265 

then computed and re-locked to the STOP–signal–onset accounting for the SOA delay of the 266 

successful STOP trials. 267 

2.6.2. Time–frequency analysis 268 



The EEG signals were convolved with complex 3 to 8–cycle–long Morletʼs wavelets. Their central 269 

frequencies were changed from 0.5 to 50 Hz in 0.5 Hz steps. From the wavelet transformed 270 

signal, ����, ��, of trial k at time t (2 ms time resolution) and with frequency f, the 271 

instantaneous power spectrum ����, �� = 
�����, ���
 + ������, ���

 and instantaneous 272 

phase ����, �� = arctan�� �����, ��� 
⁄ �����, ���� were extracted (
 and � symbolize the real 273 

and imaginary parts of a complex number, respectively). Using the instantaneous power 274 

spectrum, ����, ��, the average power spectrum was computed for each participant in the GO, 275 

CONTINUE, and STOP conditions as follow:  276 

����� = 1
� ∙  ����, ��

!

�"#
, �� = $%&'�� �� ��)*+,�. 277 

As for the ERPs computation, GO and CONTINUE Power was subtracted from its respective STOP 278 

trials results (see above). Power was then normalized with respect to a −500 to -200 ms pre–279 

stimulus baseline and transformed to decibel scale (10 ⸱ log10 of the signal). 280 

2.6.3. Statistical analysis 281 

To assess differences in the STOP-signal related neural activity between discrete and rhythmic 282 

action stopping, we subjected the individual ERP vectors and Power matrices to a non–283 

parametric permutation procedure (Maris & Oostenveld, 2007). For this purpose, the 0 to 800 284 

ms time window of the participants’ STOP-signal locked ERP was used. Regarding the individuals’ 285 

Power matrices, we used a similar time-window associated with a 2 to 8 Hz frequency-window. 286 

These windows contains both the time (N2/P3) and frequency ranges (Delta/Theta) of interest 287 

to investigate inhibitory processes (Huster et al., 2013). A 0 to 300 ms window was used for the 288 

occipital Oz ERP permutation testing. 289 



ERPs of a given EEG channel were subjected to a non-parametric permutation procedure, at the 290 

group level (Maris & Oostenveld, 2007). The 20 participants' windowed ERPs were pooled over 291 

the two STOP conditions (20 by conditions). Two sets of 20 ERPs each were then drawn 292 

randomly from this pool, and the differential grand-average ERP was computed between the 293 

two sets. This procedure was repeated 10 000 times, thus producing a distribution of these ERPs 294 

based on shuffled data under the null hypothesis. For each time point, a p-value was computed 295 

as the proportion of these pseudo-differential ERPs that exceeded the observed participants' 296 

average differential ERP. This p-value thus indicates at which time point the observed power 297 

distribution for the two conditions is more divergent than expected for random data (p = .05 298 

threshold). To correct for multiple comparisons, we analyzed the resulting distributions of p-299 

values to compute p-thresholds corresponding to the 2.5th percentile of the smallest, and the 300 

97.5th percentile of the largest p-values distribution (Cohen, 2014). This permutation analysis 301 

was similarly applied to each time-frequency point to assess the Power matrices significance 302 

between the two STOP conditions. 303 

Next, brain-behavior correlations were computed. For each of the three frontocentral channel 304 

ERPs, N2 peak amplitude was computed by searching for the local peak with the minimal value 305 

in the 100–300 ms time range. N2 onset latency was defined as the time when half of the N2 306 

peak amplitude value was reached (Lopez-Calderon & Luck, 2014). Peak amplitude and onset 307 

latency were computed in the same way for the P3 wave but now by searching for the maximal 308 

value in the 200–500 ms range. ERP peak and onset detection were visually checked for each 309 

participant and each channel. In addition, the N2/P3 peak-to-peak amplitude was computed. 310 

Each of these five measures was then subject to a Pearson correlation test with the behavioral 311 

SSRT value. Resulting p-values were corrected using Bonferroni correction, that is, by multiplying 312 



each p-value by the number of tests (i.e., five). Similarly, time-frequency Power peak amplitude 313 

and peak latency were computed and correlated to SSRT using the same correction (two tests). 314 



3. Results 315 

3.1. Behavior 316 

Main behavioral results are reported in Table 1. Importantly, FsRT (M = 424 ms, SD = 51 ms) was 317 

significantly shorter than GoRT (M = 474 ms, SD = 58 ms) for each single participant (paired-t-318 

tests, p < .01). The participants’ p(respond|signal) (M = .53, SD = .08) was not significantly 319 

different from .50 (t(19) = 0.33, p = .74, CI95[.44, .61], Cohen’s d = 0.37) , and this probability 320 

increased sigmoidally with the SOA (i.e., the inhibition function). These analyses confirm the 321 

validity of the race–model between GO and STOP processes in the discrete task, validating the 322 

computation of the SSRTd in accordance with the model. In the rhythmic task, the spontaneous 323 

oscillation frequency was 1.60 Hz on average (SD = 0.55 Hz). Previous studies have shown that 324 

movement performed at this frequency were continuously rhythmic (Hermes et al., 2012; 325 

Seeber et al., 2016; Toma et al., 2002) and that the stopping latencies computed in the same 326 

task was not dependent of the movement phase (Hervault et al., 2019). The participants’ mean 327 

Stop Time (M = 399, SD = 34 ms) and mean SSRTr (M = 268, SD = 24 ms) correlated strongly 328 

(Pearson r(18) = .78, p < .001, CI95[-.52, .91]), which underlines the contribution of the inhibition 329 

process in the final stopping performance. Across the 20 participants, the SSRTd (M = 268 ms, 330 

SD = 52 ms) pertaining to the discrete task and the SSRTr (M = 270 ms, SD = 24 ms) pertaining to 331 

the rhythmic one did not differ (paired t-test, t(19) = -0.08, p = .93, CI95[-23 ms, 21 ms], d = 0.05). 332 

Crucially though, the inhibition times of both tasks were unrelated across participants (r(18) = -333 

.04, p = .86, CI95[-.47, .41], Fig.5). As a validity check, we next verified whether for the rhythmic 334 

task the SSTRr values measured in the first 15 blocks of trials versus the second 15 blocks of 335 

trials were correlated, and found a positive significant correlation (r(18) = .81, p < .001, CI95[-.56, 336 

.92]). To ensure that participants did not proactively anticipate the STOP signal occurrence, we 337 

tested whether the rhythmic movement was slow down at the SOA latency (Schultz et al., 2021). 338 



Including all the rhythmic STOP trials of our participants, we compared the movement mean 339 

velocity of the 100 ms time window surrounding the STOP signal occurrence (-50 ms to + 50 ms) 340 

to the movement mean velocity of the 100 ms time window surrounding the CONTINUE 341 

stimulus occurrence. This comparison (paired t-test) failed to show a significant difference 342 

between the two time windows for both the x-velocity (t(2709) = -0.10, p = .92) and y-velocity 343 

(t(2709) = 0.47, p = .64), indicating that the participants did not proactively adapt their movements 344 

in either movement dimension. 345 

3.2. EEG time domain 346 

The ERP analysis showed that both N2 and P3 waves were evoked in the two stop–signal tasks, 347 

yet with clear differences between the discrete and rhythmic actions (Fig. 3). Indeed, the 348 

permutation analysis identified a significantly higher voltage in the discrete STOP condition as 349 

compared to the rhythmic STOP condition in the 218 - 458 ms time window at FCz, in the 204 - 350 

450 ms time window at Cz and in the 202 - 254 ms time window at CPz (p < .05, corrected). The 351 

topographies of the ERP plotted at N2 and P3 peak latency (Fig. 3) confirmed the frontocentral 352 

locus of the evoked activity, excepted for the N2 discrete STOP condition for which the small 353 

amplitude was associated to a less focused activity. In contrast, the Oz site showed a lower 354 

voltage in the discrete STOP condition, as compared to the rhythmic one, which was significant 355 

in the 228 - 280 ms time window. This difference was present after the early, negative, N1 wave 356 

(Fig. 3), probably occurring later than perceptual detection of the STOP signal (Hillyard et al., 357 

1998; Luck, 2014). 358 

The N2 and P3 peak values and onset latencies, as well as the N2/P3 peak-to-peak value were 359 

computed for each of the three frontocentral channels (FCz, Cz, CPz) and correlated to behav-360 

ioral inhibition latencies. Mainly, at FCz site P3 onset latency was significantly correlated to SSRT 361 



in the discrete STOP condition (r(18) = .69, corrected p < .01, CI95[.35, .87], Fig. 5) but not in the 362 

rhythmic one (r(18) = .15, p = .52, CI95[-.31, .55]). In contrast, the N2/P3 peak-to-peak latency was 363 

significantly correlated to SSRT in the rhythmic STOP condition (r(18) = -.57, corrected p = .04, 364 

CI95[-.81, -.17]) but not in the discrete one (r(18) = -.21, p = .37, CI95[-.59, .25]). SSRT correlation 365 

with P3 onset latency was also significant at the Cz site in the discrete STOP condition (r(18) = .50, 366 

corrected p = .02, CI95[.08, .77]). No other ERP-behavior correlation was significant. 367 

3.3. EEG time–frequency domain 368 

The grand average Delta/Theta–window STOP-signal locked power maps are displayed in Fig. 4. 369 

A clear frontocentral power increase was present in the Delta/Theta range after STOP signal 370 

occurrence, with differences between discrete and rhythmic conditions. Indeed, the permuta-371 

tion analysis identified a significantly higher power in the discrete STOP condition as compared 372 

to the rhythmic STOP condition for time-frequency points included in a 3.5 - 6.5 Hz / 128 - 368 373 

window at FCz, in a 4.5 - 7 Hz / 268 - 382 window at Cz and a 4 - 7.5 Hz / 212 - 376 window at 374 

CPz (p < .05, corrected, Fig. 4). 375 

The Power peak values and latencies were computed for each of the three frontocentral chan-376 

nels (FCz, Cz, CPz) and correlated to behavioral inhibition latencies. Power peak latency was 377 

significantly correlated to SSRT in the discrete STOP condition when computed at FCz (r(18) = .52, 378 

corrected p = .04, CI95[.10, .79]) and Cz sites (r(18) = .60, corrected p = .01, CI95[.20, .83]), whereas 379 

Power peak amplitude was significantly correlated to SSRT in the rhythmic STOP condition at FCz 380 

(r(18) = -.53, corrected p = .04, CI95[-.79, -.09]). No other Power-behavior correlation was signifi-381 

cant.  382 



4. Discussion 383 

Prior work has investigated the scalp activity evoked by the successful cancellation of a 384 

prepared–discrete action (Huster et al., 2013). As inhibitory processes are supposed to 385 

generalize across action types, we tested whether EEG correlates of action cancellation were 386 

also observed when stopping an ongoing–rhythmic action. Comparing discrete and rhythmic 387 

movements, which are fundamentally distinct in terms of their dynamics (Hogan & Sternad, 388 

2007) and engage distinct brain areas (Schaal et al., 2004), proved a fruitful strategy to 389 

investigate the assumption that action inhibition is an action–independent process. 390 

4.1. About unitary of action inhibition 391 

The behavioral analysis indicated that the SSRTs did not differ between the discrete and 392 

rhythmic tasks and were within the range found in previous studies, including various discrete 393 

responses (e.g., Boucher et al., 2007; Kok et al., 2004; Krämer et al., 2011; Montanari et al., 394 

2017). Critically, the absence of a correlation between the 20 participants’ inhibitory 395 

performances in the discrete and rhythmic tasks, a finding consistent with previous work 396 

(Hervault et al., 2019), challenges the notion that the processes inhibiting actions are 397 

fundamentally task–independent. This finding is strengthened by the strong positive correlation 398 

between blocks of rhythmic tasks, emphasizing that the absence of a correlation between the 399 

discrete and rhythmic task does not simply reflect weak performance reproducibility. It rather 400 

signifies that genuinely distinct processes, at least partly so, are implicated in the inhibition of 401 

discrete and rhythmic actions. The EEG analysis corroborated this conclusion: Although the 402 

STOP signals evoked a distinctive N2/P3–complex in the time domain and, concurrently, a 403 

Delta/Theta power increase in the frequency domain in both tasks, these inhibition–related EEG 404 

patterns differed significantly between tasks and, crucially, did so in a functionally relevant 405 

manner.  406 



N2 and P3 waves were both evoked in the two tasks. Strikingly though, a later P3 onset latency 407 

was associated with a longer SSRT in the discrete task, but not in the rhythmic task. In contrast, 408 

a larger N2/P3 peak-to-peak amplitude was associated with a shorter SSRT in the rhythmic task, 409 

but not in the discrete one. For the discrete task, these findings confirm the P3 – SSRT 410 

correlation previously reported, with an earlier SSRTs being associated with higher P3s (e.g., 411 

Huster et al., 2014), as well as earlier P3s (Anguera & Gazzaley, 2012; Wessel, 2018; Wessel & 412 

Aron, 2015);  the reported correlation values were more inconsistent for the N2 – SSRT relation 413 

(e.g., Anguera & Gazzaley, 2012; Raud & Huster, 2017; Senderecka, 2016). Thus, N2 and P3 may 414 

act as partially dissociated correlates of inhibition processes, their importance varying as a 415 

function of the type of movement to revise. Such functional partial dissociation between 416 

discrete–task conditions was previously advocated by isolating the neural generators underlying 417 

the occurrence of two ERP waves in a combined GO/NoGO – stop–signal task. The anterior part 418 

of the mid–cingulate cortex was identified as the origin of the N2 differences between 419 

conditions (GO, NoGO, STOP), whereas the inferior frontal gyrus as well as the posterior part of 420 

the mid–cingulate cortex were identified as at the origin of the P3 differences (Enriquez–421 

Geppert et al., 2010; Huster et al., 2010). In another framework, an fMRI frontocentral 422 

dissociation between discrete and continuous action generation has been reported in the mid–423 

cingulate area (Schaal et al., 2004). While further investigation is needed to interpret these 424 

activations in the context of action inhibition, this dissociation may play a role in the differential 425 

involvement of N2 and P3 waves in action inhibition. 426 

Our results also indicate that time–frequency elicited by the STOP signal in the Delta/Theta 427 

frequency range differed between the two tasks, this power increase being significantly related 428 

to inhibitory performance in both situations. Therefore, a STOP–signal–related Delta/Theta 429 

power increase can be viewed as more generically engaged in inhibitory processes. Indeed, a 430 



Delta/Theta power increase has been associated with the conflictual/decisional requirement of 431 

tasks in various situations (Cavanagh et al., 2012; Harmony, 2013). Our findings are thus in line 432 

with the idea that action inhibition pertains to a conflict management between the regular main 433 

stimulus (GO or CONTINUE) and the occasional STOP signal. Taken together, the present findings 434 

demonstrate that SSRTs and related frontocentral EEG patterns differed between cancelling a 435 

prepared–discrete action and stopping an ongoing–rhythmic action, suggesting that the neural 436 

processes underlying inhibitory control are modulated as a function of action type. 437 

4.2. Different inhibitory subprocesses 438 

The STOP–related Delta/Theta power increase was visible in the two STOP conditions whereas 439 

the N2 and P3 ERP waves were more specifically engaged in rhythmic action stopping and 440 

discrete action cancelling, respectively. This dissociation between the STOP–signal evoked ERPs 441 

allows for different interpretations following different conceptualizations of cognitive 442 

functioning in inhibitory control. 443 

First, this dissociation may indicate differences in conflict processing between the two tasks. N2 444 

and P3 waves are classically observed in conflictual situations, such as action inhibition 445 

(Ramautar et al., 2004), interference monitoring (Groom & Cragg, 2015), or task switching (Kopp 446 

et al., 2020). In GO/NoGO and stop–signal tasks, conflict arises whenever infrequent responses 447 

are required in the face of frequent responses (Braver et al., 2001; Mirabella, 2014). More 448 

specifically, high conflict occurs when infrequent STOP responses have to overcome the 449 

prepotency of frequent responses. In discrete inhibition tasks, previous work has shown that N2 450 

indicates the occurrence of the conflict in information processing, whereas P3 relates to the 451 

resolution of the conflict by inhibiting the action (Enriquez–Geppert et al., 2010; Randall & 452 

Smith, 2011). Interpreting our results along this line, conflict detection might be more crucially 453 



engaged in stopping an ongoing action (as reflected by a larger N2 negativity), while conflict 454 

resolution would be so in cancelling a preplanned action (as reflected by a higher P3 wave). Still, 455 

the overall balance between the two conflict–related subprocesses may result in similar 456 

inhibition latencies, as reflected by the statistically indistinguishable SSRTs. The analysis of the 457 

occipital Oz channel revealed no significant difference between the tasks regarding the early 458 

visual N1 wave, suggesting that the two tasks did not differ regarding early attentional 459 

processes, but did so for later cognitive control engagement. The higher P3 amplitude observed 460 

in the discrete task may reflect the allocation of more resources in resolving the conflict, when 461 

the GO vs. STOP response is more conflictual than the CONTINUE vs. STOP response. This 462 

functional dissociation can find support in prior work requiring prepared–discrete actions 463 

(Enriquez–Geppert et al., 2010; Randall & Smith, 2011). To extend its plausibility in the context 464 

of ongoing–continuous actions, further investigation is needed manipulating the requirement 465 

associated to the infrequent signal (i.e., STOP, CONTINUE). 466 

Second, the observed EEG dissociation between discrete movement cancellation and rhythmic 467 

movement stopping may reflect task–specific differences in brain predictive processing. 468 

Assuming that the brain is a predictive organ, cortical responses can be seen as transient 469 

expressions of prediction error (Friston, 2005). The P3 wave, which commonly follows low–470 

probability signal occurrence, would index the update of a mental representation of the 471 

environment (Polich, 2007). Comparably, motor control has been modeled as a dual–472 

representation system comparing the predicted and the actual states of the effector (Synofzik et 473 

al., 2008). Thus, P3 would reflect prediction error processing that is common to both 474 

sensorimotor and cognitive functions. In the case of movement generation, multiple studies 475 

have distinguished discrete and rhythmic continuous actions on the basis of the engaged 476 

representation of time (Ivry & Spencer, 2004; Zelaznik et al., 2002). Briefly, the timing control of 477 



discrete actions requires an explicit process, that is, it depends on an explicit representation of 478 

the passage of time. In contrast, the timing of continuous actions is implicit as the temporal 479 

properties of the action are presumably emergent (i.e., an explicit representation of time does 480 

not directly guide performance). This fundamental distinction between the two action types 481 

may, in the present experiment, result in distinct mental predictions accompanying the 482 

processing of the GO and the CONTINUE stimuli (e.g., related to the temporal dimensions of the 483 

movement, Krigolson et al., 2008). The unexpected STOP signal causes a prediction error being 484 

indexed by P3 occurrence. Given that the STOP signal probability (25 %) was the same between 485 

the two tasks, as was the mean SOA, the differences in P3 measures may imply a prediction 486 

error modulation due to the discrete or continuous type of the action. Indeed, the explicit 487 

representation of time in the discrete task is plausibly accompanied by a “strong” prediction 488 

related to the movement execution. In contrast, the implicit timing processing in the rhythmic 489 

task can be accompanied by a “weak” prediction. Thus, the prediction violation evoked by the 490 

STOP signal might be extended in the discrete STOP trial as compared to the rhythmic STOP trial, 491 

as suggested by a higher P3 amplitude in the discrete condition. To further investigate this 492 

hypothesis, future EEG studies might manipulate the “prediction level” by varying the 493 

probability of the STOP signal (Dimoska & Johnstone, 2008) and/or by varying the SOA between 494 

the main stimulus and the STOP signal, in the two action types. 495 

Third, another account on inhibitory control posits that performance in a stop–signal task 496 

encompasses both “reactive inhibition” and “proactive inhibition”. Thus, participants may adjust 497 

the response speed to the main stimulus when anticipating the occurrence of the improbable 498 

STOP signal (Verbruggen & Logan, 2009b). In the discrete task, these strategic adaptations allow 499 

adjusting the preparation of the response to the GO stimulus. In the rhythmic task, such 500 

adaptation appears unlikely, as there is no response preparation to adjust when the CONTINUE 501 



stimulus appears while the movement is ongoing. In addition, no proactive slowing of the 502 

ongoing rhythmic movement was shown in the present study. Thus, action inhibition might 503 

involve both reactive and proactive processes in the discrete cancellation, whereas only reactive 504 

processes would be engaged in the rhythmic stopping. The proactive process, which modifies 505 

the neural implementation of inhibitory control (Kenemans, 2015; Leunissen et al., 2016), could 506 

thus cause the observed differences in  brain activity engaged in the two tasks. To examine this 507 

tentative explanation, further EEG studies should manipulate cued–based proactive 508 

engagement (Verbruggen & Logan, 2009b) or capture the proactive/reactive balance through a 509 

kinematic movement analysis (Benedetti et al., 2020; Schultz et al., 2021). 510 

4.3. Implications 511 

Inhibitory control is known to rely on a fronto–basal ganglia brain network (Aron, 2011; Lofredi 512 

et al., 2021). Recent studies found this network to become active when facing various 513 

unexpected events, leading to a “unified theory” of inhibition (Wessel & Aron, 2017). Our 514 

findings are incompatible with the view of action inhibition as a unitary construct but are readily 515 

accommodated in a framework holding that different components of a unique fronto–basal 516 

ganglia inhibition network are implicated in inhibition in an action–type dependent manner. 517 

Thus, given a potential dissociation within the cingulate cortex enrollment (see also section 518 

4.1.), the relative engagement of different parts of the inhibitory network may vary as a function 519 

of the action type. Along this line, the fronto–basal ganglia brain network was recently shown to 520 

be differentially engaged depending on the task constraints, such as facing STOP or NoGO 521 

signals (Raud et al., 2020). 522 

The activation of different neural subprocesses depending on action type has two important 523 

implications. The first is technological. Devices such as a wheelchair, a robotic arm, or a drone 524 



can be controlled through different kinds of movements via brain–computer interfaces (BCI). 525 

Chikara and Ko (2019) suggested that the neural activity related to inhibition, particularly the P3 526 

wave, can be used as a stop signal. However, given the assumption of dissociate processes of 527 

action inhibition, cancelling a prepared–discrete response (e.g., grasping the wrong object) and 528 

stopping an ongoing–continuous action (e.g., wheelchair displacement) might require dissociate 529 

neural command based on P3 and N2/P3 peak-to-peak amplitude, respectively. The second is 530 

methodological and clinical. While the “discrete” procedure for SSRT estimation leads classically 531 

to a single across-trials SSRT per participant, ongoing–continuous actions offer a way of 532 

measuring single–trial SSRTs that would not depend on an inhibition function inferred 533 

statistically. This within–trial variability would be of particular interest for assessing (action) 534 

inhibition in troubles such as Attention–Deficit / Hyperactivity Disorder (ADHD) (Morein–Zamir 535 

et al., 2008). This disorder has been associated with longer SSRT and specific ERP signatures in 536 

discrete–response cancellation tasks (Bekker et al., 2005). Nonetheless,  given the temporal 537 

variability characteristic of ADHD, a more variable inhibition latency might be a singular 538 

characteristic of the ADHD population, rather than a longer latency (Castellanos et al., 2006; 539 

Lijffijt et al., 2005). Consequently, tasks allowing for within–trial SSRT determination, such as the 540 

rhythmic task used here, could be instrumental in revealing an inhibitory deficiency in ADHD. 541 

4.4. Conclusion 542 

The present article raises a key question about inhibitory control: Are the neural mechanisms 543 

underlying inhibition action–independent or action–specific? We addressed this issue by 544 

comparing cancelling a prepared–discrete response and stopping an ongoing–rhythmic action. 545 

Behavioral analysis provided a first indication that inhibition of the two action types is controlled 546 

differently. Consistent therewith, EEG analysis further revealed that the components of the 547 

frontocentral N2/P3–complex are implicated in inhibition in an action–type dependent manner. 548 



Extending our understanding of inhibition requires the identification of the task constraints that 549 

set inhibition “types” apart versus those that do not, and to spell out principles allowing for an 550 

unambiguous delineation of such types in neural space. 551 
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Fig.1: Discrete and rhythmic tasks design 

Participants responded to the main stimulus by initiating a discrete movement (in the discrete GO condition; 

upper panel) or continuing a rhythmic movement (in the rhythmic CONTINUE condition; lower panel). In 25 % of 

the trials, the main stimulus was unexpectedly followed by a STOP signal after a SOA, which was dynamically 

adjusted in the discrete task but fixed in the rhythmic one (see text). 

  



 

Fig.2: Stop–signal reaction time (SSRT) computation in the discrete and rhythmic tasks 

Discrete task (upper panel): graphic representation of the assumptions of the independent race model, indicating 

how the probability of responding or cancelling the response depends on the SOA, GoRT and SSRTd. Rhythmic 

task (lower panel): graphic representation of the stopping time course. The SSRTr is computed in each STOP trial 

by identifying the onset of the movement deviation relative to movements without a STOP signal (see text). 

  



 
 
 

Fig.3: EEG time–domain analysis of STOP trials 

Grand average STOP–signal locked ERPs in the discrete (STOP-D) and rhythmic (STOP-R) STOP conditions with 

associated topographies averaged across participants at FCz ERPs peak latencies. ERPs are displayed for three 

frontocentral (FCz, Cz, CPz) and one occipital (Oz) midline channels. In grey, the regions of significant difference 

(according to the nonparametric permutation analysis) between discrete (successful) and rhythmic STOP 

conditions (p < .05, corrected). 

  



 

 

Fig.4: FCz time–frequency analysis of STOP trials 

Grand averaged STOP–signal locked Power maps for the discrete and rhythmic STOP conditions. The differential 

Power maps thresholded after the permutation procedure (p < .05, corrected) are associated to different 

frequency (2 to 8 Hz) and time (0 to 800 ms) ranges that correspond to the time-frequency window included in 

the permutation statistical analysis. Red indicates significantly increased activity (two–sided p, upper tail) in the 

discrete compared to the rhythmic task. 

  



 

 

Fig.5: Correlation analysis 

Main ERP-behavior correlations reported across participants for the FCz site (see main text for statistical values). 

The right panel shows the non-significant correlation between SSRT values computes in the discrete and rhythmic 

STOP tasks. 

* p < .05, ** p < .01 (after correction for multiple comparisons), NS p > .05 

  



 Discrete Task Rhythmic Task 

GoRT 474 ms (58) / 

GO omission rate .99 (.01) / 

GO error rate .03 (.05) / 

Movement frequency / 1.6 Hz (0.55) 

SOA 206 ms (73) 206 ms (73 

p(respond|signal) .53 (.08) / 

FsRT 424 ms (51) / 

Stop Time / 400 ms (31) 

SSRT 268 ms (52) 270 ms (24) 

 

 

Tab.1: Main Behavioral measures of the two tasks (Mean and SD values) 

 




