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Abstract: 54 
The dramatic growth in livestock populations since the 1950s has altered the epidemiological and 55 
evolutionary trajectory of their associated pathogens. For example, Marek’s disease virus (MDV), 56 
which causes lymphoid tumors in chickens, has experienced a marked increase in virulence over the 57 
last century. Today, MDV infections kill >90% of unvaccinated birds and controlling it costs 58 
>US$1bn annually. By sequencing MDV genomes derived from archeological chickens, we 59 
demonstrate that it has been circulating for at least 1000 years. We functionally tested the Meq 60 
oncogene, one of 49 viral genes positively selected in modern strains, demonstrating that ancient 61 
MDV was likely incapable of driving tumor formation. Our results demonstrate the power of ancient 62 
DNA approaches to trace the molecular basis of virulence in economically relevant pathogens. 63 
 64 
One sentence summary: 65 
Functional paleogenomics reveals the molecular basis for increased virulence in Marek’s Disease 66 
Virus.  67 
 68 
Main Text: 69 
Marek’s Disease Virus (MDV) is a highly contagious alphaherpesvirus that causes a tumor-associated 70 
disease in poultry. At the time of its initial description in 1907, Marek’s Disease (MD) was a 71 
relatively mild disease with low mortality, characterized by nerve pathology mainly affecting older 72 
individuals(1). However, over the course of the 20th century, MDV-related mortality has risen to 73 
>90% in unvaccinated chickens. To prevent this high mortality rate, the poultry industry spends more 74 
than US$1 billion per year on health intervention measures, including vaccination(2). 75 
 76 
The increase in virulence and clinical pathology of MDV infection has likely been driven by a 77 
combination of factors. Firstly, the growth in the global chicken population since the 1950s led to 78 
more viral replication, which increased the supply of novel mutations in the population. In addition, 79 
the use of imperfect (also known as ‘leaky’) vaccines that prevent symptomatic disease but do not 80 
prevent transmission of the virus likely shifted selective pressures and led to an accelerated rate of 81 
MDV virulence evolution(3). Combined, these factors have altered the evolutionary trajectory, 82 
resulting in modern hyper-pathogenic strains. To date, the earliest sequenced MDV genomes were 83 
sampled in the 1960s(4), several decades after the first reports of MDV causing tumors(5). As a 84 
result, the genetic changes that contributed to the increase in virulence of MDV infection prior to the 85 
1960s remain unknown. 86 
 87 
Marek’s disease virus has been circulating in Europe for at least 1000 years 88 
To empirically track the evolutionary change in MDV virulence through time, we generated MDV 89 
genome sequences (serotype 1) isolated from the skeletal remains of archeological chickens. We first 90 
shotgun sequenced 995 archeological chicken samples excavated from >140 Western Eurasian 91 
archeological sites and screened for MDV reads using HAYSTAC(6) with a herpesvirus-specific 92 
database. Samples with any evidence of MDV reads were then enriched for viral DNA using a 93 
hybridisation-based capture approach based on RNA baits designed to tile the entire MDV genome 94 
(excluding one copy of each of the terminal repeats and regions of low complexity). To validate the 95 
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approach, we also captured and sequenced DNA from the feather of a modern Silkie chicken that 96 
presented MDV symptoms. As a negative control, we also included an ancient sample that displayed 97 
no evidence of MDV reads following screening (OL1214; Serbia, C14th-15th).  98 
 99 
Using the capture protocol we identified 15 ancient chickens with MDV-specific reads of ≥25bp in 100 
length. This approach also yielded a ~4× genome from a modern positive control. We found that the 101 
majority of uniquely mapped reads (i.e. 88-99%) generated from ancient samples classified as MDV-102 
positive were ≥25bp, while the majority (i.e. 53-100%) of uniquely mapped reads generated from 103 
samples considered MDV-negative were shorter than 25bp. In addition, samples considered MDV-104 
positive yielded between 308 and 133,885 uniquely mapped reads (≥25bp) while samples considered 105 
MDV-negative (including a negative control; Table S2) yielded between 0 and 211 uniquely mapped 106 
reads of ≥25bp. MDV-positive ancient samples ranged in depth of coverage from 0.13× to 41.92× 107 
(OL1385; Fig. 1a, Table S2), with seven genomes at ≥2× coverage.  108 
 109 
In all positive samples, the proportion of duplicated reads approached 100%, indicating that virtually 110 
all of the unique molecules in each library were sequenced at least once (Fig. S1). Reads obtained 111 
from MDV-positive ancient samples were characterized by chemical signatures of DNA damage 112 
typically associated with ancient DNA (Fig. S2). In contrast, reads obtained from our modern positive 113 
control did not show any evidence of DNA damage (Fig. S2). The earliest unequivocally MDV-114 
positive sample (with 4,760 post-capture reads ≥25bp) was derived from a 10th-12th century chicken 115 
from Eastern France (Andlau in Fig. 1a; Table S2). Together, these results demonstrate that MDV 116 
strains have been circulating in Western Eurasian poultry for at least 1,000 years.  117 
 118 
Ancient MDV strains are basal to modern lineages 119 
To investigate the relationship between ancient and modern MDV strains, we built phylogenetic trees 120 
based on both neighbor-joining (NJ) and maximum likelihood (ML) methods. We first built trees 121 
using 10 ancient genomes with at least 1% coverage at a depth of ≥5x, a modern positive control 122 
derived from the present study (OL1099), and 42 modern genomes from public sources (Table S3). 123 
Both NJ (Fig. 1b, Fig. S3) and ML trees (Fig. S4) match the previously described general topology(7), 124 
in which Eurasian and North American lineages were evident, along with a well-supported (bootstrap: 125 
94) ancient clade (Fig 1b). The same topology was also obtained when restricting our ML analysis to 126 
include only transversion sites (Fig. S5). Lastly, we built a tree using an outgroup (Meleagrid 127 
herpesvirus 1, accession: NC_002641.1) to root our topology (Fig. S6). We obtained a well-supported 128 
topology showing that the ancient MDV sequences form a highly supported clade lying basal to all 129 
modern MDV strains (including the modern positive control OL1099). 130 
 131 
Next, we built a time-calibrated phylogeny using BEAST (v. 1.10;(8)) that included 31 modern 132 
genomes collected since 1968 (Table S3), and four ancient samples with an average depth of coverage  133 
>5× (OL1986, Castillo de Montsoriu, Spain, 1593 cal. CE; OL1385, Buda Castle, Hungary, 1802 cal. 134 
CE; OL1389, an additional Buda Castle sample from the same archeological context as OL1385; 135 
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OL2272, Naderi Tepe, Iran, 1820 cal. CE; Table S1-S2, Fig. 1a). All of the ancient samples were 136 
phylogenetically basal to all modern MDV strains. The time of the most recent common ancestor 137 
(TMRCA) of the phylogeny was 1602 CE (95% HPD interval 1486 - 1767; Fig. 1c, Table S4).  138 
 139 
As previously reported(7) we found that, aside from a few exceptions, most Eurasian and North 140 
American MDV strains formed distinct clades (Fig. 1b), suggesting that there has been little recent 141 
transatlantic exchange of the virus. The inclusion of time-stamped ancient MDV sequences improved 142 
the accuracy of the molecular clock analysis, and pushed back the TMRCA of all modern MDV 143 
sequences, from 1922-1952(7) to 1881 (95% HPD interval 1822 - 1929; Table S4). Our mean 144 
TMRCA of modern MDV is concordant with a recent estimate that incorporated 26 modern MDV 145 
genomes from East Asian chickens (1880, 95% HPD 1772-1968;(9)). This phylogenetic analysis 146 
implies that the two major modern clades of MDV were likely established before the earliest 147 
documented increases in MDV virulence in the 1920s. Furthermore, since birds infected with highly 148 
virulent MDV would not have survived a transatlantic crossing, a TMRCA of 1938 (95% HPD 1914 - 149 
1958) for the clade containing the earliest North American sample (CU2, 1968; accession: 150 
EU499381.1) could be consistent with the virus having been transmitted prior to the most significant 151 
virulence increases leading up to the 1960s. These results are also consistent with the hypothesis that 152 
Eurasian and North American MDV lineages independently evolved towards increased virulence(7).   153 
 154 
Virulence factors are among positively selected genes in the modern MDV lineage 155 
The rapid increase in MDV virulence could potentially have been driven by gene loss or gain which 156 
would have substantially altered the biology of the virus(10, 11). Analysis of a Hungarian, high 157 
coverage, MDV genome (OL1385; >41x) from the 18th - 19th century indicated that it possessed the 158 
full complement of genes present in modern sequences. This indicates that there was no gene gain or 159 
loss in either ancient or modern lineage (Fig. 2). We also found that all MDV miRNAs, some of 160 
which are implicated in pathogenesis and oncogenesis in modern strains(12), were intact and highly 161 
conserved in ancient strains (Table S5). Together, these results indicate that the acquisition of 162 
virulence most likely resulted not from changes in MDV genome content or organization, but from 163 
point mutations.  164 
 165 
In fact, considering sites at which we had coverage for at least two ancient genomes, we identified 166 
158 fixed single nucleotide polymorphism (SNPs) between the ancient and modern samples, of which 167 
31 were found in intergenic regions and may be candidates for future study of MDV regulatory 168 
regions (Table S6). To assess the impact of positive selection on point mutations we performed a 169 
branch-site analysis in PAML(13) (ancient sequences as background lineage, modern sequences as 170 
foreground lineage) on open reading frames (ORFs) using four ancient MDV genomes (OL1385, 171 
OL1389, OL1986 and OL2272). After controlling the false discovery rate using the Benjamini-172 
Hochberg procedure(14), this analysis identified 49 ORFs with significant evidence for positive 173 
selection (Fig. 2; Table S7). 174 
 175 
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Several positively selected loci identified in this analysis have previously been associated with MDV 176 
virulence in modern strains. Some of these are known immune modulators or potential targets of a 177 
protective response. This includes ICP4, a large transcriptional regulatory protein involved in innate 178 
immune interference. Interestingly, ICP4 appears to be an important target of T cell-mediated 179 
immunity against MDV in chickens possessing the B21 Major Histocompatibility Complex (MHC) 180 
haplotype(15), and it is plausible that sequence variation in important ICP4 epitopes could confer 181 
differential susceptibility to infection.  182 
 183 
We also identified signatures of positive selection in several genes encoding viral glycoproteins (gC, 184 
gE, gI, gK and gL). Glycoproteins are important targets for the immune response to MDV(16). In 185 
fact, the majority of MDV peptides presented on chicken MHC class II are derived from just four 186 
proteins(17), of which two were glycoproteins found to be under selection in our analysis (gE and gI). 187 
This result indicates that glycoproteins are likely under selection in MDV because they are immune 188 
targets. The limited scope of immunologically important MDV peptides presented by MHC class II 189 
may have important implications for vaccine development.  190 
  191 
Positive selection was also detected in the viral chemokine termed viral interleukin-8 (considered a 192 
functional ortholog of chicken CXC ligand 13;(18)). Viral IL-8 is an important virulence factor that 193 
recruits B cells for lytic replication and CD4+ CD25+ T cells that are transformed to generate 194 
lymphoid tumors. Viruses that lack vIL-8 are severely impaired in the establishment of infection and 195 
generation of tumors through bird-to-bird transmission(19), so sequence variation in this gene could 196 
plausibly impact transmission.  197 
 198 
The key oncogene of MDV has experienced positive selection and an ordered loss of tetraproline 199 
motifs 200 
Our selection scan also identified Meq, a transcription factor considered to be the master regulator of 201 
tumor formation in MDV(20). In fact, the Meq coding sequence had the greatest average pairwise 202 
divergence between ancient and modern strains across the entirety of the MDV genome (Fig. 2), 203 
implying there were numerous sequence changes along the branch leading to modern samples. 204 
Animal experiments have demonstrated that Meq is essential for tumor formation(20) and 205 
polymorphisms in this gene, even in the absence of variants elsewhere in the genome, are known to 206 
confer significant differences in strain virulence or vaccine breakthrough ability(21).  207 
 208 
Meq exerts transcriptional control on downstream gene targets (both in the host and viral genome) via 209 
its C-terminal transactivation domain. This domain is characterized by PPPP (tetraproline) repeats 210 
spaced throughout the second half of the protein, and the number of tetraproline repeats is inversely 211 
proportional to the virulence of the MDV strain(22). The difference in the number of tetraproline 212 
repeats in most strains is the result of point mutations rather than deletion or duplication; these strains 213 
are considered ‘standard length’-Meq (339 amino acids). In some strains, however, tetraproline 214 
repeats have been duplicated (‘long’-Meq strains, 399 amino acids) or deleted (‘short’-Meq strains, 215 
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298 amino acids, or ‘very short’-Meq, 247 amino acids). These mutations have led to varying 216 
numbers of tetraproline repeats between strains.   217 
 218 
We did not find any evidence of duplication or deletion in ancient Meq sequences, indicating that 219 
there are ‘standard length’-Meq. We then identified point mutations in a database containing four 220 
ancient Meq sequences (OL1385, OL1389, OL1986 and OL2272) along with 408 modern ‘standard 221 
length’-Meq sequences (Table S8). This analysis demonstrated that ancient Meq possessed six intact 222 
tetraproline motifs while all modern ‘standard length’-Meq sequences had between two and five. All 223 
ancient Meq sequences had a unique additional intact tetraproline motif at amino acids 290-293.  This 224 
tetraproline motif was disrupted by a point mutation – causing a Proline to Histidine change – in the 225 
recent evolutionary history of ‘standard length’-Meq MDV strains.  226 
 227 
To further explore the virulence-related disruption of tetraprolines in modern Meq sequences, we 228 
constructed a phylogeny of Meq sequences (Fig. 3a). Mapping the tetraproline content of each 229 
sequence on the phylogeny indicated that tetraprolines have been lost in a specific order. Following 230 
the universal disruption of the 6th tetraproline through a point mutation (at amino acids 290-293) at the 231 
base of the modern MDV lineage, the 4th tetraproline was disrupted at the base of two major lineages 232 
(amino acids 216-219). Disruption of the 4th tetraproline was followed in seven independent lineages 233 
by the disruption of the 2nd tetraproline (amino acids 175-178), and then by the loss of either the 1st 234 
(amino acids 152-155) or the 5th tetraproline (amino acids 232-235) in six lineages (Fig. 3a-b). 235 
 236 
Interestingly, our analysis indicated that the 2nd and 4th tetraprolines (codons 176 and 217) were under 237 
positive selection (Table S7). Although there were some observations of virus lineages exhibiting an 238 
alternative loss order (e.g. the occasional loss of the 3rd tetraproline (amino acids 191-194) following 239 
the loss of the 4th), such lineages are not widespread, suggesting that they may become stuck in local 240 
fitness peaks and are outcompeted by lineages following the order described above. The independent 241 
recapitulation of this pattern in different lineages suggests loss of tetraproline motifs acts as a ratchet, 242 
whereby each subsequent loss results in an increase in virulence, and once lost, motifs are unlikely to 243 
be regained.  244 
 245 
Ancient Meq is a weak transactivator that likely did not drive tumor formation 246 
The initial description of MD in 1907 did not mention tumors(1). Given the degree of sequence 247 
differentiation observed between ancient and modern Meq genes, it is possible that ancient MDV 248 
genotypes were incapable of driving lymphoid cell transformation. To test this hypothesis 249 
experimentally, we assessed whether ancient Meq possessed lower transactivation capabilities, 250 
compared to modern strains, in a cultured cell-based assay.  251 
 252 
To do so, we synthesized an ancient Meq gene based on our highest coverage ancient sample 253 
(OL1385; Buda Castle, Hungary; 1802 cal. CE) and experimentally tested its transactivation function. 254 
We also cloned ‘very virulent’ modern pathotype strains (RB1B and Md5), which each differ from 255 
ancient Meq at 13-14 amino acid positions (Fig. 3c; Table S9). All the Meq proteins were expressed 256 
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in cells alongside a chicken protein (c-Jun), with which Meq forms a heterodimer, and a luciferase 257 
reporter containing the Meq binding (AP-1) sequence.  258 
 259 
Relative to the baseline signal, the transactivation of the ‘very virulent’ Meq strains RB1B and Md5 260 
were 7.5 and 10 times greater, respectively (Fig. 3d). Consistent with previous reports(23), removal of 261 
the partner protein, c-Jun, from RB1B resulted in severe abrogation of the transactivation capability 262 
(Fig. 3d). Ancient Meq exhibited a ~2.5-fold increase in transactivation relative to the baseline, but 263 
was substantially lower (3-4-fold) than Meq from the two ‘very virulent’ pathotypes (Fig. 3d). The 264 
ancient Meq was thus a demonstrably weaker transactivator than Meq from modern strains of MDV.  265 
 266 
Given that the transcriptional regulation of target genes (both host and virus) by Meq is directly 267 
related to oncogenicity(20, 23), it is likely that the weaker transactivation we demonstrate is 268 
associated with reduced or absent tumor formation. These data indicate that ancient MDV strains 269 
were unlikely to cause tumors, and were less pathogenic than modern strains. Ancient MDV likely 270 
established a chronic infection characterized by slower viral replication, low levels of viral shedding 271 
and low clinical pathology, which acted to facilitate maximal lifetime viral transmission in pre-272 
industrialized, low-density settings.   273 
 274 
Conclusion 275 
Overall, our results demonstrate that Marek’s Disease Virus has been circulating in Western Eurasia 276 
for at least the last millennium. By reconstructing and functionally assessing ancient and modern 277 
genomes, we showed that ancient MDV strains were likely substantially less virulent than modern 278 
strains, and that the increase in virulence took place over the last century. Along with changes in 279 
several known virulence factors, we identified sequence changes in the Meq gene – the master 280 
regulator of oncogenesis – that drove its enhanced ability to transactivate its target genes and drive 281 
tumor formation. The historical perspective that our results provide can form the basis on which to 282 
rationally improve modern vaccines, and track or even predict future virulence changes. Lastly, our 283 
results highlight the utility of functional paleogenomics to generate insights into the evolution and 284 
fundamental biological workings of pathogen virulence.  285 
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 286 

 287 
Fig. 1. Locations of MDV-positive samples and time-scaled phylogeny. (A) Map showing the 288 
locations of screened archeological chicken samples that were positive for MDV sequence. Colored 289 
circles indicate sample dates (either from calibrated radiocarbon dating or estimated from 290 
archeological context; Table S1). Average sequencing depth following capture is given in parentheses 291 
under sample names. If more than one sample was derived from the same site, this is indicated by a 292 
list of sample identifiers (beginning ‘OL’) and sequencing depths in parentheses. (B) Unrooted 293 
neighbor-joining tree of 42 modern and 10 ancient genomes. Only the four high-coverage ancient 294 
samples used in our BEAST analysis were labeled in this tree (Table S2). Nodes with bootstrap 295 
support of >90 are indicated by red dots. (C) Time-scaled maximum clade credibility tree of ancient 296 
and modern MDV sequences using the uncorrelated lognormal relaxed clock model (UCLD) and the 297 
general time-reversible (GTR) substitution model. Gray bars indicate the 95% highest posterior 298 
density (HPD) for the age of each node. The ‘cal’ suffix for ancient samples indicates that samples 299 
were radiocarbon dated and these date distributions were used as priors for the molecular clock 300 
analyses(24). 301 
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 302 
Fig. 2. Branch-site selection analysis of MDV genomes. The MDV genome is represented as a 303 
circular structure with gross genomic architecture displayed on the innermost track (track V) and 304 
genomic coordinates shown on the outermost track (units: ×103 kb; track I). Since the long terminal 305 
repeat (TRL) and short terminal repeat (TRS) are copies of the long internal repeat (IRL) and the 306 
short internal repeat (IRS), respectively, selection analysis excluded the TRL and the TRS regions, 307 
leaving only the unique long (UL) and unique short (US) regions along with the two internal repeats. 308 
Results of the positive selection analysis are displayed on track II, where open reading frames (ORFs) 309 
are shaded according to the strength of statistical support (corrected P-values) for positive selection. 310 
Sliding window average pairwise divergence between ancient and modern samples is shown on track 311 
III, and ORF orientation is shown on track IV. 312 
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313 
Fig. 3. Meq has undergone ordered loss of tetraproline repeats and increased transactivation 314 
ability. (A) Phylogenetic analysis of 412 Meq sequences of standard length (1017 bp). The outermost 315 
track shows the integrity of each tetraproline motif (purple squares = intact; yellow squares = 316 
disrupted). The mutations that disrupt the tetraproline motif are linked by dotted blue lines (e.g. ‘4 317 
PAPP’ indicates that the 4th tetraproline motif is disrupted by a proline-to-alanine substitution in the 318 
second proline position. ‘3 PP..P’ denotes a deletion of the 3rd proline in the 3rd tetraproline motif). For 319 
a complete version of this figure, see Fig. S7. (B) Proposed model for the most common ordered loss 320 
of tetraproline motifs in Meq. Purple and green boxes indicate presence and absence of an intact 321 
tetraproline, respectively. The gray box on the third row indicates that the 3rd tetraproline is 322 
occasionally lost after the 6th, but typically only in terminal branches. The two gray boxes in the 323 
bottom row indicate that it is either the 1st or 5th tetraproline that is lost at this point. (C) Positions of 324 
amino acid differences between the ancient Hungarian MDV strain (OL1385) and the two modern 325 
strains (RB1B and Md5). Positions that were also found to be under positive selection are highlighted 326 
in red. (D) The transactivation ability of Meq reconstructed from an ancient Hungarian MDV strain 327 
(OL1385) was compared to the transactivation abilities of modern strains: RB1B and Md5 (‘very 328 
virulent’ pathotype). To show the effect of the partner protein c-Jun on transactivation ability, the 329 
strongest transactivator RB1B was tested with (+) and without (–) c-Jun. Transactivation ability is 330 
expressed as fold activation relative to baseline signal from an empty vector (EV). Error bars are 331 
standard deviation, and statistical significance was determined using Dunnett’s test for comparing 332 
several treatment groups with a control. *, P < 0.05; **, P < 0.01; ***, P < 0.001.  333 
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