
HAL Id: hal-04782498
https://hal.science/hal-04782498v2

Submitted on 25 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Networked microcontrollers for accessible, distributed
spatial audio

Thomas Albert Rushton, Romain Michon, Stefania Serafin, Tanguy Risset,
Stéphane Letz

To cite this version:
Thomas Albert Rushton, Romain Michon, Stefania Serafin, Tanguy Risset, Stéphane Letz. Networked
microcontrollers for accessible, distributed spatial audio. Frontiers in Virtual Reality, 2024, Interactive
Audio Systems and Artefacts within Extended Reality: Innovation, Creativity and Accessibility, 5,
�10.3389/frvir.2024.1391987�. �hal-04782498v2�

https://hal.science/hal-04782498v2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Networked microcontrollers for
accessible, distributed spatial
audio

Thomas Albert Rushton1*, Romain Michon1, Stefania Serafin2,
Tanguy Risset1 and Stéphane Letz3

1Inria, INSA Lyon, CITI, EA3720, Villeurbanne, France, 2Department of Architecture, Design and Media
Technology, Aalborg University, Copenhagen, Denmark, 3GRAME-CNCM, INSA Lyon, Inria, CITI, EA3720,
Villeurbanne, France

State-of-the-art systems for spatial and immersive audio are typically very costly,
being reliant on specialist audio hardware capable of performing computationally
intensive signal processing and delivering output tomany tens, if not hundreds, of
loudspeakers. Centralised systems of this sort suffer from limited accessibility due
to their inflexibility and expense. Building on the research of the past few decades
in the transmission of audio data over computer networks, and the emergence in
recent years of increasingly capable, low-cost microcontroller-based
development platforms with support for both networking and audio
functionality, we present a prototype decentralised, modular alternative.
Having previously explored the feasibility of running a microcontroller device
as a networked audio client, here we describe the development of a client-server
system with improved scalability via multicast data transmission. The system
operates on ubiquitous, commonplace computing and networking equipment,
with a view to it being a simple, versatile, and highly-accessible platform, capable
of granting users the freedom to explore audio spatialisation approaches at vastly
reduced expense. Though faced by significant technical challenges, particularly
with regard to maintaining synchronicity between distributed audio processors,
the system produces perceptually plausible results. Findings are commensurate
with a capability, with further development and research, to disrupt and
democratise the fields of spatial and immersive audio.

KEYWORDS

spatial audio, networked audio, distributed systems, wave field synthesis,
microcontroller, accessibility

1 Introduction

Recent developments in virtual and augmented reality technologies and object-based
audio have led to an acceleration in interest in the synthesis of virtual sound fields via
approaches such as Wave Field Synthesis (WFS) and Higher Order Ambisonics (HOA)
(Berkhout et al., 1993; Ahrens et al., 2008; Daniel et al., 2003; Frank et al., 2015). These
techniques call for the deployment of large numbers of loudspeakers, and in situ
installations of dedicated hardware and software. The costs associated with such
installations have seen them largely restricted to the preserve of concert venues,
cinemas, and institutions with the means to purchase and operate large-scale systems
of this sort.

Advancements in embedded computing mean that there now exist an assortment of
small, low-cost devices with support for audio Digital Signal Processing (DSP). These

OPEN ACCESS

EDITED BY

Alessandro Pozzebon,
University of Padua, Italy

REVIEWED BY

Sven Ubik,
Czech Education and Scientific Net work,
Czechia
Jozef Papán,
University of Žilina, Slovakia

*CORRESPONDENCE

Thomas Albert Rushton,
thomas.rushton@inria.fr

RECEIVED 26 February 2024
ACCEPTED 07 October 2024
PUBLISHED 08 November 2024

CITATION

Rushton TA, Michon R, Serafin S, Risset T and
Letz S (2024) Networked microcontrollers for
accessible, distributed spatial audio.
Front. Virtual Real. 5:1391987.
doi: 10.3389/frvir.2024.1391987

COPYRIGHT

© 2024 Rushton, Michon, Serafin, Risset and
Letz. This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Virtual Reality frontiersin.org01

TYPE Technology and Code
PUBLISHED 08 November 2024
DOI 10.3389/frvir.2024.1391987

https://www.frontiersin.org/articles/10.3389/frvir.2024.1391987/full
https://www.frontiersin.org/articles/10.3389/frvir.2024.1391987/full
https://www.frontiersin.org/articles/10.3389/frvir.2024.1391987/full
https://crossmark.crossref.org/dialog/?doi=10.3389/frvir.2024.1391987&domain=pdf&date_stamp=2024-11-08
mailto:thomas.rushton@inria.fr
mailto:thomas.rushton@inria.fr
https://doi.org/10.3389/frvir.2024.1391987
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org/journals/virtual-reality#editorial-board
https://www.frontiersin.org/journals/virtual-reality#editorial-board
https://doi.org/10.3389/frvir.2024.1391987

devices are relatively easy to program with open-source APIs and
libraries, and may provide support for communication over
ubiquitous computer networking equipment and protocols, an
important capability in light of the rise of high-speed ethernet as
a standard for multichannel audio transmission (Bakker et al., 2014).
A network of such devices could be used to distribute the problem of
audio spatialisation, permitting a modular, scalable approach that
could lower the barrier to entry to what is otherwise a comparatively
exclusive branch of audio research. This could in turn pave a more
accessible path to research in a variety of domains in which sound
field synthesis is a desirable component, including auditory scene
personalisation (Geier et al., 2010), auralization and
archaeoacoustics (Berger et al., 2023), telepresent
videoconferencing (de Bruijn, 2004), and immersive networked
music performance (Turchet and Tomasetti, 2023). Further, for
implementations such as virtual acoustics, where computationally
expensive impulse response convolutions play a part, a distributed
system could afford an overall increase in available DSP resources.

In this article we describe the development of a distributed system for
spatial and immersive audio. In Section 2we discuss the technological and
scholarly background to this project, including developments in
networked audio and embedded hardware platforms, spatial audio
techniques, and distributed audio systems. Building upon this
background, and prior work on a microcontroller-based networked
audio client (Rushton et al., 2023), Section 3 details the development

of the proposed system, an overview of which is depicted in Figure 1.
With a view to optimising accessibility and interoperability with existing
audio tools, the system’s server component is encapsulated in an audio
plugin suitable for use in aDigital AudioWorkstation (DAW). The server
delivers audio and control data to a network of microcontroller-based
clients via a local area network, and clients, programmed with a
parallelised spatial audio algorithm, use the audio and control data to
perform their part of the distributed signal process. Minimising inter-
client asynchronicity in a distributed audio context is the most significant
technical problem, and the network client implementation incorporates
strategies for addressing this challenge.

The previous system was not formally evaluated, but, anecdotally,
provided support for the holophonic effect of wave field synthesis. A
perceptual evaluation of the new system was conducted, and this is
described, along with a technical evaluation, in Section 4. Finally, in
Section 5, we give an overview of our findings to date and describe our
ambitions for future work.

2 Background

2.1 Networked audio

The transmission of audio data has been a topic of research
interest since the earliest days of computer networking as it is

FIGURE 1
Overview of the proposed distributed, networked audio system. A general purpose computer runs DAW software, which in turn runs an instance of
an audio plugin that encapsulates servers for audio and control data. The computer is physically connected, via a network switch, to microcontroller-
based clients. The clients receive the audio and control data, which are delivered to a distributed audio spatialisation algorithm, and return an audio
stream to the server (perhaps via some manner of signal processor). Clients deliver the output signals produced by their instance of the distributed
algorithm to loudspeakers.

Frontiers in Virtual Reality frontiersin.org02

Rushton et al. 10.3389/frvir.2024.1391987

https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://doi.org/10.3389/frvir.2024.1391987

recognised today, i.e., over packet-switched networks, whereby data
to be transmitted is grouped into packets—or “datagrams” — each
consisting of a header and a payload. Voice transmission over
ARPANET was being conducted as early as 1974 (Schulzrinne,
1992) and the first standard for voice communication over packet-
switched networks—the Network Voice Protocol (NVP) — was
released in 1977 (Cohen, 1977).

The NVP standard, with control messages for ‘calling’ and
‘ringing’, was clearly intended for digital telephony, and
communication was the primary focus of networked audio
research well into the 1990s. Efforts on supporting real-time
voice communication over wide area networks (WAN) centred
on quality of service (QoS), particularly with regard to the
perennial issues of latency, packet loss, and jitter—inconsistencies
in the rate of packet transmission (Hardman et al., 1995; 1998).
Work at this time dealt with streams of compressed audio data, and
speech coding algorithms to overcome the deleterious effects of
dropped packets over unreliable network paths and low-bandwidth
connections.

Whereas the priority for digital telephony, and later voice over
IP (VoIP) systems, is intelligibility, for musical purposes fidelity is of
greater concern. The late 1990s, with the increasing availability of
high-speed internet connections, saw the beginning of research into
transmitting uncompressed audio data over the internet (Chafe
et al., 2000; Xu et al., 2000). Work of this sort was spearheaded
by the SoundWIRE project, developed by researchers at McGill
University and Stanford University, and took the form of a wide
variety of experiments with high quality audio transmission over
both WAN and local area networks (LAN). These experiments
included LAN-based real-time musical performances (Chafe
et al., 2000), concert streaming over WAN (Xu et al., 2000; Chafe
et al., 2000), and sonification of QoS via a distributed digital
waveguide dubbed the Network Harp (Chafe et al., 2000; 2002).

2.1.1 Protocols and systems
VoIP research in the 1990s focused on audio codecs and data

compression (Turletti, 1994; Hardman et al., 1998), seeking a
compromise with the best-effort nature of internet service. The
SoundWIRE project, in search of high audio quality, turned its
attention directly to the basic transport layer protocols of the
Internet Protocol suite: Transmission Control Protocol (TCP)
and User Datagram Protocol (UDP). Chafe et al. characterised
their compression-free system as taking a “simplified approach”
to networked audio (Chafe et al., 2000), emphasising the importance
of delivering multichannel audio of at least CD quality (16-bit,
44.1 kHz) with as little latency as possible.

SoundWIRE experiments included TCP-based concert
streaming. TCP’s connection-oriented, one-to-one design enables
packet flow control mechanisms that guarantee packet ordering and
protect against packet loss (Schiavoni et al., 2013; AL-Dhief et al.,
2018); at the expense of increased latency, these mechanisms
safeguard quality of service, and thus audio fidelity; ideal for a
remote concert scenario. UDP by comparison provides no such
safeguards, but equally none of the associated computational or
temporal overhead. Further, due to its connectionless model, many-
to-many (multicast) and one-to-many (broadcast) modes of
transmission are possible via address spaces reserved as part of
the internet protocol standard (Meyer et al., 2010). Via UDP,

SoundWIRE was able to run as a distributed digital waveguide
over a WAN spanning around 4,500 km (Chafe et al., 2000).

From the SoundWIRE project emerged JackTrip (Cáceres and
Chafe, 2010a; Cáceres and Chafe, 2010b), a hybrid system that
couples a TCP handshake with audio transmission over UDP, thus
sidestepping the overhead of TCP packet flow control. Rather than
relying on TCP’s built-in mechanisms for stream integrity, JackTrip
supplements UDP with a selection of optional buffering strategies
that aim to optimise its operation in various network conditions. In
this sense it is more flexible than TCP, but in effect JackTrip moulds
UDP transmission into something akin to the connection-oriented
model of TCP, and, in its ‘hub server’ mode, into a kind of multiple
one-to-one design—multicast transmission is not possible.

UDP has emerged as the protocol of choice for platforms
enabling remote musical collaboration, serving as the basis for
NetJACK (Carôt et al., 2009), part of the JACK Audio
Connection Kit (a cross-platform audio host), the audiovisual
performance streaming platform LOLA (Drioli et al., 2013),
Jamulus (Fischer, 2015), Soundjack (Renaud et al., 2007), and
other jamming-focused platforms, plus more recent entrants, the
closed-source, but ultimately UDP-based networking component of
Elk Audio OS (Turchet and Fischione, 2021), for instance. UDP also
plays a fundamental role in networked media streaming, being the
typical transport-layer protocol behind the Real-time Transport
Protocol (RTP), and it features in proprietary networked audio
systems such as Dante (Digital Audio Network Through Ethernet)
(Dante, 2022).

2.1.2 AoE in the audio industry
In parallel with the work being carried out in academia on

SoundWIRE, JackTrip and NetJACK, audio industry bodies—the
IEEE (Institute of Electrical and Electronics Engineers) and AES
(Audio Engineering Society) standards groups, and companies like
Audinate, the creators of Dante—were taking an interest in
networked audio. Traditional large-scale audio systems such as
those used in broadcast, concert venues and recording studios
rely on the installation of unwieldy combinations of analogue
hardware and cabling, with many potential points of failure.
Seeking literally to lighten the load posed by “hundreds of
kilograms” (Bakker et al., 2014) of cabling in analogue audio
installations, in the 2000s audio companies were looking to high
speed ethernet as a means to simplify the provision of high-quality,
multichannel audio in industry settings.

Key to these efforts was the release, in 2002, of the IEEE
1588 standard for the Precision Time Protocol (PTP), a means
by which networked computer systems can achieve clock
synchronicity (Edison et al., 2002). PTP (another protocol that
typically uses UDP for transport) superseded the lower-resolution
Network Time Protocol (NTP), and, under ideal conditions, can
achieve synchronisation accuracy of sub-microsecond order
(Tongzhou and Lunhui, 2022). Synchronisation is achieved via
the exchange of timestamped packets, coupled with precise
estimates for send and receive times. Precision is best when
timestamps can be calculated at the physical layer—layer 1 of the
Open Systems Interconnection (OSI) model, of which the
aforementioned transport layer (layer 3) is a component—i.e., by
dedicated timers at the level of the physical network interface.
Legacy and low-cost networking equipment do not typically

Frontiers in Virtual Reality frontiersin.org03

Rushton et al. 10.3389/frvir.2024.1391987

https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://doi.org/10.3389/frvir.2024.1391987

possess support for hardware timestamping, however (Correll and
Barendt, 2005), and devices that do offer such support are markedly
more expensive.1 PTP can be deployed as a software-only
implementation (Correll and Barendt, 2005), albeit with impaired
accuracy and a protracted clock-convergence period.

Dante, with its promise of low-latency, highly-multichannel
audio over wired LAN, and device synchronisation via hardware
PTP, has become the de facto industry standard in networked audio
(Bakker et al., 2014). Bakker et al. refer to Dante as an “open” system,
which is true, perhaps, in the sense that companies can incorporate
the Dante system into their products under licence from Audinate;
from the perspective of the academic community, however, Dante is
very much a closed-source initiative and not a suitable platform
for research.

In 2011, IEEE released the Audio Video Bridging (AVB, IEEE
802.1) standard (IEEE, 2011), and AES67 followed in 2013
(Hildebrand, 2014). These open technical standards describe
suites of protocols for tasks such as media transmission, device
discovery and synchronisation, and interoperability with other
systems. Both use PTP for device synchronisation; AES67 uses
RTP for media transmission, whereas AVB uses the data-link
layer (layer 2) Audio Video Transport Protocol. Open
implementations of AVB and AES67 exist, but, being complex
standards featuring many components, such implementations
may not be complete, support for embedded platforms is
limited,2 and a reliance on PTP raises the barrier to entry.
Ultimately, if an accessible solution is sought, attention must be
turned back to the transport layer, and to UDP directly.

2.1.3 Challenges posed by networked audio
Time, especially when dealing with the fine margins posed by

real-time audio processing, represents the principal source of
difficulty in a networked audio setting.

Jitter refers to fluctuations in the rate of transmission or
processing. In a networked audio setting, jitter gives rise to a
situation whereby the arrival of audio data does not correspond
with the moments at which it is needed, and may be caused by a
number of factors: packet prioritisation rules in the firmware of an
ethernet switch, the timing of hardware interrupts for a computer’s
audio or networking subsystems, and software design decisions
relating to network transmission or reception to name but three.
In a naive implementation, jitter may result in a recipient either
halting processing until it receives the expected data, or simply
continuing without any data. In either case, the result is likely to be
disruption of the integrity of the audio signal at the recipient in the
form of audible discontinuities.

Clock drift arises as an inevitable consequence of no source of
time in a system of computation being perfectly uniform, and no two
sources of time being identical. The timing of a computer system is

typically governed by a crystal oscillator, whose operating frequency
is subject to manufacturing tolerances, and whose stability is affected
by factors such as ambient temperature, and computational load on
the system it governs (Marouani and Dagenais, 2008). Relative drift,
or skew, is the difference in clock rates between two or more systems.
Whereas jitter is a transient phenomenon, clock drift is continuous,
and as two distinct systems of time move in and out of phase with
each other over the longer term, drift may indeed give rise to jitter.

In professional audio settings, devices may be synchronised via
an authoritative clock source such as word clock, or, in a networked
setting, via PTP. In the absence of such an authoritative source, e.g.,
over a wide area network, or if using hardware that does not support
such measures, buffering strategies are typically employed, coupled
with delay-locked loops and resampling (Adriaensen, 2005;
Adriaensen, 2012).

2.2 Hardware platforms

The notion of taking a distributed approach to DSP is reliant on
the identification of a suitable supporting hardware platform. For an
accessible, distributed audio application, the ideal computing
platform should be small and inexpensive, plus easily and rapidly
programmable; of course, it should also provide audio and
networking hardware, and, ideally, well-documented APIs for
programming and interacting with this hardware.

Recent years have seen the emergence of a number of small, low-
cost platforms for embedded systems development, perhaps best
known amongst these being the Arduino family of microcontroller
development boards,3 whose open-source Software Development
Kit (SDK), software libraries, and Integrated Development
Environment (IDE) have greatly improved the accessibility of
development on embedded systems (Michon et al., 2020).
Though support for audio is limited via Arduino devices, a
number of audio-specific systems, programmable with the
Arduino SDK and IDE, and operable with many Arduino-
compatible add-ons (sensors, displays, etc.), have been produced;
these include various ESP32 and STM32 models, and the Daisy and
Teensy microcontroller ranges. These platforms benefit from the
wealth of tools, documentation and support associated with Arduino
and the surrounding D.I.Y. and maker communities. Also worthy of
consideration are the Raspberry Pi and Bela platforms. Though these
are Embedded Linux Systems rather than microcontrollers, they are
small-footprint devices, suitable for embedded applications. Bela in
particular has been designed with a focus on audio development and
interaction via sensors; it can be programmed via a web-based IDE,
and the user need not interact with the underlying Linux operating
system. Raspberry Pi is less accessible as platform for embedded
audio development, and tends to be operated as more of a general-
purpose small computer, though support for treating the platform
like a microcontroller—taking a bare metal approach—is offered via
the Circle development environment.4

1 Consumer-grade, eight-port ethernet switches can cost as little as €20;

The cheapest equivalent devices with PTP support cost, at the time of

writing, on the order of €150–200, e.g., https://www.fs.com/de-en/

products/148180.html — All URLs verified 12/01/2024.

2 See, for example, https://github.com/tschiemer/aes67 and https://github.

com/adiknoth/Open-AVB

3 https://arduino.cc/

4 https://github.com/rsta2/circle

Frontiers in Virtual Reality frontiersin.org04

Rushton et al. 10.3389/frvir.2024.1391987

https://www.fs.com/de-en/products/148180.html
https://www.fs.com/de-en/products/148180.html
https://github.com/tschiemer/aes67
https://github.com/adiknoth/Open-AVB
https://github.com/adiknoth/Open-AVB
https://arduino.cc/
https://github.com/rsta2/circle
https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://doi.org/10.3389/frvir.2024.1391987

The above systems are typically programmed in C++, with
support for audio development provided by libraries such as
Daisy’s DaisySP and Teensy’s Teensy Audio Library, which each
provide audio APIs and a selection of pre-made algorithms for audio
synthesis and DSP. Bela, as an alternative to its C++ audio API, can
be programmed with the graphical programming language
PureData, and Teensy, as a complement to its Audio Library,
offers a web-based Audio System Design Tool, via which the user
may describe an audio system diagrammatically and export the
result to C++.

This profusion of tools and platform-specific APIs can render
embedded audio development somewhat difficult to approach. A
concerted effort has been made, however, by the community behind
the Faust programming language,5 to provide support for embedded
platforms. Faust is a functional paradigm, audio domain-specific
language, that was created to serve as a “viable and efficient
alternative to C/C++” (Orlarey et al., 2009) for the development
of audio applications on a variety of platforms. In Faust, a user can
write high level sound synthesis or DSP code and export the result to
C++ that meets the requirements of the audio API on a given target
platform. This is achieved via a series of platform-specific
“architecture files” and Faust’s faust2[. . .] tools,6 which
include faust2bela, faust2teensy, etc. (Michon et al.,
2019; 2020). Developers are thus able to focus on writing audio
code, rather than being concerned with the peculiarities of the device
or system upon which they wish to deploy their program; further,
Faust’s support for a variety of embedded platforms facilitates
testing and rapid prototyping.

A comparison of selected devices can be found in Table 1. Bela is
significantly more powerful than the microcontroller systems, but it is

commensurately costly. The Raspberry Pi is also very capable, and a
model with 1 GB RAM may cost as little as €30; its operating system
stands as an impediment, however, to implementations that seek to
prioritise audio functionality above all. Support for bare metal
development on Raspberry Pi is not comprehensive, and there is no
Faust tool to produce code that is compatible with Circle. Daisy Seed is
well-appointed with memory (which is important for DSP algorithms
featuring long delay-lines, for example,), but does not provide ethernet
support. Teensy 4.1, and the selected ESP32 and STM32 devices support
networking via ethernet add-ons, but the ESP32’s CPU is
underpowered, and the STM32 is unfavourably-priced. Though
lacking in memory, Teensy’s processor, low price, and networking
support make it an attractive candidate platform for a distributed,
networked audio implementation. Further, thanks to the presence of a
vibrant developer community, utilities such as TyTools14 exist, and can
be used to program multiple Teensy devices in a single
command—useful for a system distributed amongst many such devices.

One respect in which Teensy is found wanting is audio fidelity.
By default, its audio add-on (or shield) produces CD quality output
(16-bit, 44.1 kHz), falling short of modern requirements for high-
quality audio, such as offered by Daisy Seed (24-bit, 96 kHz). While
Teensy’s sampling rate can be increased, sample resolution is fixed at
the level of the device’s audio codec. In spite of this shortcoming, and
in light of its other, more advantageous qualities, Teensy was
selected as the platform upon which to conduct development.

2.3 Audio spatialisation

Audio spatialisation is, plainly put, the practice of distributing
sound in space. The spatialisation of primary sound sources, e.g.,
sound captured by microphones, stored as digital audio files, or
synthesised in real-time, can be achieved simply by delivering those
primary sources to secondary sound sources, i.e., loudspeakers or
headphones. Exploiting auditory cues, and the nature of the
propagation of sound, it is possible to suggest the presence of
primary sources at arbitrary locations, independent of the
secondary source distribution. The motivation behind audio
spatialisation, then, is to create (or indeed recreate) sonic
environments for creative and immersive purposes, such as for

TABLE 1 Comparison of selected embedded audio development platforms. Prices as of January 2024.

Platform Processor Memory Price

Teensy 4.17 ARM Cortex-M7 600 MHz 1 MB SDRAM €32

Daisy Seed8 ARM Cortex-M7 480 MHz 64 MB SDRAM €28

ESP32-LyraTD9 Dual core Xtensa LX6 240 MHz 8 MB PSRAM €19

STM32H747I10 ARM Cortex-M7 480 MHz + M4 240 MHz 1 MB RAM €94

Bela11 ARM Cortex-A8 1 GHz12 512 MB SDRAM €190

Raspberry Pi 413 ARM Cortex-A72 1.8 GHz 1 GB–8 GB SDRAM €30–100

5 https://faust.grame.fr/

6 https://faustdoc.grame.fr/manual/tools/

7 https://pjrc.com/store/teensy41.html

8 https://electro-smith.com/daisy/daisy

9 https://espressif.com/en/products/devkits/esp-audio-devkits

10 https://st.com/en/evaluation-tools/stm32h747i-disco.html

11 https://shop.bela.io/products/bela-starter-kit

12 https://beagleboard.org/black

13 https://www.raspberrypi.com/products/raspberry-pi-4-model-b/ 14 https://koromix.dev/tytools

Frontiers in Virtual Reality frontiersin.org05

Rushton et al. 10.3389/frvir.2024.1391987

https://faust.grame.fr/
https://faustdoc.grame.fr/manual/tools/
https://pjrc.com/store/teensy41.html
https://electro-smith.com/daisy/daisy
https://espressif.com/en/products/devkits/esp-audio-devkits
https://st.com/en/evaluation-tools/stm32h747i-disco.html
https://shop.bela.io/products/bela-starter-kit
https://beagleboard.org/black
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/
https://koromix.dev/tytools
https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://doi.org/10.3389/frvir.2024.1391987

virtual reality experiences, in cinematic settings, for music
production or art installations, to give but a handful of examples.

A number of techniques exist for what is termed sound field
synthesis (Ahrens, 2012; Nicol, 2017), all of which essentially take the
form of applying some manner of driving function to an input audio
signal to generate an appropriate driving signal to be delivered to a
secondary sound source in the listening environment (Ahrens,
2012). For a loudspeaker at position x � [x y z]T, the time-
domain driving signal d̂(x, t) can be expressed as a convolution
of the input signal ŝin(t) and the driving function d(x, t):

d̂ x, t() � ŝin t() p d x, t(), (1)
where t denotes time.

Commonly-employed approaches to sound field creation can be
grouped into two broad categories: amplitude- and time-based
panning techniques, and physical sound field recreation approaches.

2.3.1 Periphony and binaural reproduction
The former, periphonic, types encompass stereophony and

surround-sound systems, consisting of secondary sources in a
planar arrangement equidistant from the listening position. These
techniques exploit the interaural level difference (ILD) cue, i.e., the
difference in perceived amplitude relative to the listener’s ears
(Pulkki, 1997; Verheijen, 1998; Ziemer, 2020), to encourage the
listener to localise sound to a position on the circumference of an arc
or circle around the listening position. For systems of this sort, the
driving function is a constant scalar value, or, for a moving phantom
source, a time-varying function that returns a scalar value. Such
periphonic approaches can extend to three dimensions in the case of
vector base amplitude panning (VBAP) (Pulkki, 1997), which uses
trios of speakers to position phantom sources on the surface of a
sphere with the listening position at its origin.

Time-based panning effects, by contrast, make use of the interaural
time difference (ITD) cue to give the impression of a phantom source
located toward the loudspeaker producing the signal at the earliest time
(Pulkki, 1997; Verheijen, 1998). Thus the driving function for a time-
based panning system is a delay of the form:

d x, t() � δ t − τ(), (2)
where τ is the duration of the delay.

The effects of ILD and ITD cues transfer to headphone-based
listening, in which case, rather than periphonic, they form a sort of
in-head localisation (Ahrens, 2012). For a significantly more
naturalistic auditory outcome, ILD and ITD cues, when
combined with filters describing the dispersive and absorptive
effects of the head, torso and outer ears, constitute a Head-
Related Transfer Function (HRTF), the key component in what
is termed binaural reproduction. Binaural recordings are taken
either with a dummy head or ear-mounted microphones, and
thus the signal for each ear is coloured by the head used during
recording, or HRTF measurements can be taken and used to
describe filters to be applied to arbitrary signals at playback.
Binaural sound is suited to headphone-based listening but may
be achieved with loudspeakers if suitable cross-talk cancellation is
applied (Kaiser, 2011).

Periphonic approaches are subject to the phenomenon of an ideal
listening position, or sweet-spot (Nicol, 2017), that is a listening position

away from which the spatialisation effect is significantly degraded.
Binaural reproduction, if not coupled with head motion tracking, is
similarly afflicted by an ideal position and orientation (Verheijen, 1998);
further, for faithful reproduction, HRTFs should be individualised (De
Poli and Rocchesso, 1998). As such, these techniques are not suited to
collective and immersive auditory experiences whereby multiple
participants may move freely about their environment.

2.3.2 Physically-inspired techniques
Physical approaches fall into two main types: wave field

synthesis (WFS) (Berkhout et al., 1993) and ambisonics (and
higher-order ambisonics—HOA) (Frank et al., 2015). Rather than
directly manipulating sound localisation cues, these types seek to
trigger those cues indirectly by synthesising a sound field as if it had
been created by “true” acoustic sources.

In the case of ambisonics, the sound field is decomposed into
“spherical harmonics”, spatial functions described by linear sums of
directional components of increasing order (Nicol, 2017). Like
periphonic approaches, ambisonics suffers from a sweet-spot effect
which worsens with attempts to reproduce sounds of higher frequency,
but can bemitigated by reproducing higher-ordermodes and increasing
the density of the distribution of secondary sources.

WFS is based upon Huygens’ principle, originating in the field of
optics, which states that a propagating wavefront can be recreated by a
distribution of secondary point sources (Mueller, 1971; Berkhout et al.,
1993; Belloch et al., 2021) (see Figure 2).WFS is variously termed a form
of acoustic holography or holophony (Berkhout, 1988; Ahrens, 2012).
Effectively, by timing the reproduction of an input signal at an array of
secondary sources, a wavefront associated with a virtual sound source
can be synthesised. To simulate auditory cues related to perceived
distance, a filter can be applied to model losses to the virtual medium of
acoustic propagation. The principle assumes a continuous array of
secondary sources but of course in practice it is necessary to use a
discrete array of loudspeakers, which, much as is the case with HOA,
has consequences for spatial resolution; to mitigate the issue of spatial
aliasing, whereby sounds of higher frequency cannot be recreated
unambiguously (Winter et al., 2018), secondary sources should be
placed very close together. Consequently, to serve a large listening area,
many speakers, and thus many audio channels, are required.

Via appropriate timing of the delivery of a primary sound source
to the secondary source array, it is possible to synthesise virtual
sound sources, plane waves, and focused sound sources,
corresponding with concave, flat, and convex synthesised
wavefronts respectively; the latter, dependent on the location of
the listener, appear to emanate from within the real sound field,
rather than its virtual counterpart.

Focusing on the former kind, however, form virtual sources, the
time-domain driving signal d̂ for the secondary source at x may be
expressed as a sum of input-signal driving-function convolutions
(see Equation 1):

d̂ x, t() � ∑m−1

k�0
ŝin,kpdk x, t(), (3)

where the driving function dk is (Ahrens, 2012):

dk x, t() � yk

rk
f t()pδ t − rk

c
(). (4)

Frontiers in Virtual Reality frontiersin.org06

Rushton et al. 10.3389/frvir.2024.1391987

https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://doi.org/10.3389/frvir.2024.1391987

This is, in effect, a physically-informed extension of Equation 2.
The WFS prefilter f(t) is a function that simulates the
absorption of energy into the simulated medium of acoustic
propagation. The delta function δ has the effect of delaying the
prefilter, and thus ŝin,k, by the time of propagation for a medium
with propagation speed c (typically modelled as 343 m/s for
sound in air). The components of the driving function are
depicted in Figure 3.

2.3.3 State of the art spatial audio installations
As described, for optimal spatial resolution, systems

implementing ambisonics and WFS require many output
channels; in effect, the more channels, and the greater the
loudspeaker-density, the better.

The Multisensory Experience Lab at Aalborg University (AAU),
Copenhagen, hosts a 64-channel, square-arrayWFS system covering
an area of 4 m × 4 m (Grani et al., 2016). It is driven by a Mac Pro
desktop computer, connected, via a USB MADI (Multichannel
Audio Digital Interface) interface, to two 32-channel MADI to
analogue converters. Though this system’s WFS engine is
provided by open-source WFSCollider software,15 being a
centralised system, the computer that co-ordinates its operation
is powerful— 12-core CPU, 64 GB RAM—and was costly at the time
of purchase; likely on the order of several thousand Euros. With
further regard to cost, the current equivalent MADI to analogue

FIGURE 2
Holophony. Huygens’ principle states that the propagation of a wavefront can be recreated by a collection of secondary point sources. The bottom
of the figure represents a virtual sound field, and the top a real sound field, separated by a row of secondary point sources (loudspeakers). The small circle
represents a virtual sound source and the dashed arcs are virtual wavefronts associated with that sound source; the small solid arcs are wavefronts
produced by the array of secondary point sources; the large solid arcs represent the propagation of a reconstructedwavefront in the real sound field.

FIGURE 3
The driving signal for the WFS secondary source at position x, for virtual primary source ŝin,k , is dependent on the distance rk of the primary source
from the secondary source. This corresponds with a propagation delay via the simulatedmediumof propagation, coupled with a filter describing losses to
that medium.

15 https://github.com/GameOfLife/WFSCollider

Frontiers in Virtual Reality frontiersin.org07

Rushton et al. 10.3389/frvir.2024.1391987

https://github.com/GameOfLife/WFSCollider
https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://doi.org/10.3389/frvir.2024.1391987

converter models are priced at roughly €5,000 apiece. Excluding the
cost of loudspeakers (and the gantry upon which they are mounted)
one may reasonably place an estimate of €250 per output channel on
this system.

The world’s largest dedicatedWFS system, at TU Berlin, features
over 800 output channels served by a distributed cluster of fifteen
computers acting as audio nodes and two additional control
computers (Baalman et al., 2007).16 The fifteen audio nodes of
the TU Berlin system are each equipped with a MADI audio
interface, connected to a MADI to ADAT bridge; these can, at
the time of writing, be purchased for around €1,400 and €4,500 each,
respectively, for a total of €88 500. Imagining €2000 per computer, a
conservative estimate of €150/channel may be reached, however the
expense associated with this system is difficult to assess as it is tied to
the concert hall space in which it resides. Indeed, one thing besides
expense that unites the systems at AAU and TU Berlin, plus the 339-
speaker hybrid WFS/ambisonics system at IRCAM (Paris)17, the
512-channel WFS system at the Rensselaer Polytechnic Institute
(NY, United States)18, and the behemoth installation at the Sphere
(Las Vegas, United States)19 is their in-situ nature; these are site-
specific systems with, at best, limited flexibility.

What one is afforded by WFS installations of this scale and
expense, however, is high quality audio reproduction with
tantamount to perfect output synchronicity; the integrity of the
holophonic effect of WFS is, unavoidable matters of spatial aliasing
aside, guaranteed.

2.4 Distributed audio systems

As alluded to earlier in this section, our aim is to distribute the
problem of audio spatialisation, and it is worthwhile to revisit why
this is the case. In the broadest terms, a distributed system is “a
collection of independent entities that cooperate to solve a problem
that cannot be individually solved” (Kshemkalyani and Singhal,
2011). An ideal distributed system is characterised by:
modularity, being comprised of separate, interchangeable entities;
scalability, being extensible without incurring a performance penalty
to the system as a whole, and; improved performance/cost ratio, since
it can be constructed to meet the proportion that circumstances
require, with the minimum degree of redundancy. Additionally, for
algorithms that can be effectively parallelised, a distributed system
may provide more aggregate computational power than its
centralised counterpart.

Where a distributed systemmay suffer, by contrast, is in terms of
reliability. Nodes in a distributed computational system must be
served with power and access to the data they require in order to

operate, which entails a proliferation of potential points of failure.
The other side to the coin of modularity is a concern regarding the
programmability of such a system; ensuring that all entities possess
up-to-date instructions for operation may not be trivial. Further,
some algorithms may be better suited to parallelisation than others;
efficient use of increased computational resources is not guaranteed.

Distributed audio processing is by no means a matter without
precedent. (Indeed, the WFS installation at TU Berlin described in
Section 2.3.3 is of course a distributed system, albeit not an especially
accessible one.) A selection of prior work in distributed DSP and
audio spatialisation, plus systems incorporating microcontrollers
and single-board computers is detailed below.

2.4.1 State of the art distributed audio systems
Applications of SoundWIRE to what its creators termed Internet

Acoustics (Chafe et al., 2002) clearly stand as examples of distributed
audio processing. These include a network reverberator (Chafe,
2018), or “transcontinental echo chamber” (Chafe et al., 2000),
plus the aforementioned Network Harp. Experiments of this sort
were intended initially as sonifications of QoS—a characteristic of
network systems that is difficult to represent in real time in graphical
or textual form due to the ephemeral nature of the phenomena of
jitter and packet loss—but stand as fascinating applications in their
own right of digital audio in the age of computer networking.
Subsequent work on JackTrip has focused on optimising
networked audio less as a creative tool in itself, and more in
service of the social and communal aspects of music participation
and appreciation in a networked world, topics that came to the fore
in computer music research during the COVID-19 pandemic (Bosi
et al., 2021; Sacchetto et al., 2021). That being said, more recent work
on Internet Acoustics in an embedded context has yielded a port of
JackTrip to the Raspberry Pi (Chafe and Oshiro, 2019).

Examples of distributed music production systems include the
work of Lago and Kon (Lago and Kon, 2003), whose UDP-based
system featured clients that acted as delegates for audio processing,
and Gabrielli et al. (2012), who demonstrated a wireless relay of
audio and control-data processors. Latency was an important metric
for the latter system, and the authors measured latency via
transmission round-trip times using a low frequency sawtooth
wave as a timer (see Section 4.1 for an application of this technique).

Distributed approaches to audio spatialisation include Lopez-
Lezcano’s “network sound card” (Lopez-Lezcano, 2012), and
embedded implementations as described by Devonport and Foss,
(2019) and Belloch et al. (2021). The latter two address aims closely
aligned with the work described here, but are based on costly
computing platforms. Devonport and Foss used AVB, and thus
PTP, for synchronisation; Belloch et al. employed a GPU-based
hardware platform, reporting client synchronisation to the
millisecond range—likely not sufficient for timing-critical audio
spatialisation effects.

Also of interest is the OTTOsonics project (Mitterhuber et al.,
2022); its emphasis on a fully-costed, flexible, do-it-yourself alternative
to conventional spatial audio systems is pertinent to this work, though it
diverges in its use of AVB, and associated hardware for audio
transmission. A full 24-channel OTTOsonics system, including
speakers and audio interface, is costed at around €2,600 (€108.33/
channel), however, which certainly places it favourably when compared
with state-of-the-art spatialisation systems.

16 See also https://tu.berlin/en/ak/research/projects/wellenfeldsynthese-

fuer-einen-grossen-hoersaal and WFS speaker module produced by

Four Audio for installation at TU https://four-audio.com/en/

products/wfs/

17 https://www.ircam.fr/article/connaissez-vous-lespace-de-projection

18 https://empac.rpi.edu/about/building/venues

19 https://holoplot.com/insights/case-studies/msg-sphere-case-study

Frontiers in Virtual Reality frontiersin.org08

Rushton et al. 10.3389/frvir.2024.1391987

https://tu.berlin/en/ak/research/projects/wellenfeldsynthese-fuer-einen-grossen-hoersaal
https://tu.berlin/en/ak/research/projects/wellenfeldsynthese-fuer-einen-grossen-hoersaal
https://four-audio.com/en/products/wfs/
https://four-audio.com/en/products/wfs/
https://www.ircam.fr/article/connaissez-vous-lespace-de-projection
https://empac.rpi.edu/about/building/venues
https://holoplot.com/insights/case-studies/msg-sphere-case-study
https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://doi.org/10.3389/frvir.2024.1391987

3 Methods

As illustrated in Figure 1 (page 2), the proposed system is
distributed across distinct computing platforms (a general
purpose computer; a network of microcontrollers), and software
elements serving a variety of purposes (server and client instances
for transmission and reception of networked audio and control data,
plus a DSP algorithm). In the subsections that follow, these elements
are described in detail; finally, in Section 3.4, an overview of the
system and its operation is provided.

3.1 The networked audio server

TCP is, as described in Section 2.1.1, a connection-based, one-
to-one protocol, so the JackTrip connection model enforces a sort of
pseudo-connectionfulness on the otherwise connectionless UDP.
The result is a system which permits only unicast UDP transmission,
and, for multiple clients, must send a duplicate of the outgoing
stream of audio datagrams to each connected client. A JackTrip
server creates a sender and a receiver task for each client that
connects (Cáceres and Chafe, 2010a); notionally this entails,
should enough clients connect, exhaustion of all available
network bandwidth; as such, a unicast system does not meet the
requirement of scalability as described in Section 2.4.

A multicast NetJACK server was considered, but creating a
client implementation on what is essentially a bare-metal platform
in the shape of the Teensy, was not practical. Further, due to a break
in compatibility with Mac OS X systems, JACK-based approaches
are not truly cross-platform.20 Prioritising simplicity, in the form of
an audio server with minimal dependencies and a very specific task
to achieve, we embarked upon the design of a bespoke multicast
networked audio server.

3.1.1 Designing a networked audio protocol
Dependent on the intended application, and if assumptions can

be made about matters such as sampling rate and bit resolution, a
no-protocol approach, such as described by Lopez-Lezcano (Lopez-
Lezcano, 2012), may be a viable one. To improve the flexibility of the
system and render it somewhat future-proof, however, a simple
packet header was devised. Its structure is given in Listing 1.

The resulting six-byte header comprises a two-byte (unsigned
16-bit integer) packet sequence number, to be incremented by the
sender, plus four further bytes describing the structure of the audio
data in the packet. Commonly-encountered sampling rates, and
buffer sizes greater than 255, cannot be represented by unsigned
eight-bit integers, so these are supported by enumerations inspired
by those used by JackTrip.21

Listing 1. Packet header structure.
BufferSize describes the number of audio frames per

packet22 as the nth power of 2; for example, the enumeration
BufferSizeT features a member BufferSizeT::BUF16;
16 being the fourth power of 2, this member is assigned the
number 4. The BitResolution field could be used to
transmit one of 8, 16, 24, or 32 as-is; there is a utility, however,
when decoding a packet, in knowing the number of bytes per audio
sample, so this is the number that is represented, e.g.,
BitResolutionT::BIT16 takes the value 2, the number of
bytes in a 16-bit integer.

For well-formed packets, BufferSize could be inferred from
the size of the packet (minus its header), divided by NumChannels
and BitResolution. To permit scope for the detection of
malformed packets, however, the expense of an additional byte in
the header was deemed a reasonable one. Finally, the sequence
number is intended as a means for a recipient to identify the
occurrence of packet loss, and will wrap around to zero every
65,536 packets.

One piece of information that is not stated in the packet
header is the manner in which audio samples in the packet should
be interleaved. The assumption taken—indeed, the same
assumption used by JackTrip—is that audio data is channel-
interleaved, i.e., audio data consists of a contiguous block of
samples for one channel, followed by a block for the next channel,
and so on.

3.1.2 Server design
The networked audio server was written in C++ using utility

classes provided by the JUCE framework for the development of
audio applications23 and is encapsulated as a class called
NetAudioServer. Initial development was conducted on a
basic console application, and later work targeted a DAW plugin
comprising a consolidated audio server and wave field synthesis
controller.

The NetAudioServer instance expects to receive blocks of
multichannel audio from an audio application’s main processing
loop. It sets up network sender and receiver execution threads,
and assigns a network socket to each; a socket is essentially a
numerical identifier for an “endpoint for [network]
communication” (Kerrisk, 2023) to which a type—on Linux

20 A successor to the defunct CoreAudio/JACK bridge has been proposed

but remains unrealised: https://github.com/jackaudio/jack-router/blob/

main/macOS/docs/JackRouter-AudioServerPlugin.md. This issue of

course also affects the viability of the JackTrip-based approach.

21 https://github.com/jacktrip/jacktrip/blob/v1.6.8/src/

AudioInterface.h\#L56

22 Often used interchangeably with the word sample, a frame represents

the samples for all channels for a given sample instant; thus the number

of frames in a network packet or audio buffer is the number of samples

divided by the number of channels.

23 JUCE 7.0.5 https://github.com/juce-framework/JUCE

Frontiers in Virtual Reality frontiersin.org09

Rushton et al. 10.3389/frvir.2024.1391987

https://github.com/jackaudio/jack-router/blob/main/macOS/docs/JackRouter-AudioServerPlugin.md
https://github.com/jackaudio/jack-router/blob/main/macOS/docs/JackRouter-AudioServerPlugin.md
https://github.com/jacktrip/jacktrip/blob/v1.6.8/src/AudioInterface.h\#L56
https://github.com/jacktrip/jacktrip/blob/v1.6.8/src/AudioInterface.h\#L56
https://github.com/juce-framework/JUCE
https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://doi.org/10.3389/frvir.2024.1391987

systems, SOCK_STREAM for TCP, SOCK_DGRAM for UDP—can
be assigned. To avoid potentially blocking the audio application’s
main processing thread with networking operations, upon
receiving an audio block the server writes it to an
intermediate buffer—a first-in-first-out (FIFO) structure—and
signals the sender thread that a block is ready for transmission.
The sender thread, which as been awaiting such a signal, then
requests samples from the FIFO; these are stored as
contiguous channels of 32-bit floating point samples and
converted, when requested, to the bit resolution specified in a
packet header created when NetAudioServer is
initialised. Byte order, or endianness (Cohen, 1981), is also
specified as part of this conversion. Though network byte
order is typically big-endian, or Most Significant Byte (MSB)
first, it was found that little-endian transmission meant
that samples could be decoded trivially at the client side.24

Upon receiving the requested samples, the sender thread
writes these to its socket, which has been configured to
connect to a UDP multicast group. This process is illustrated
in Figure 4.

Listing 2. Network capture: ethernet frame containing a
UDP audio packet.

Listing 2 shows an example network capture of an outgoing
audio packet. Bytes 0x0000 to 0x0029 comprise the headers for
the data link (ethernet), network (IPv4), and transport (UDP) OSI
layers including the destination address: at position 0x001e, the
bytes 0xe004e004, or 224.4.224.4, a valid (and unassigned)
UDP multicast address from the second ad hoc address block as
specified in the IANA multicast address assignment guidelines
(Meyer et al., 2010). The six subsequent bytes are the header
inserted into the packet by NetAudioServer. In Listing 2
these are:

• 0x1cdf: a sequence number (little-endian) of 739110;
25

• 0x04: buffer size 4 corresponding with
BufferSizeT::BUF16;

• 0x02: sampling rate 2 corresponding with
SamplingRateT::SR44;

• 0x02: bit resolution 2 corresponding with
BitResolutionT::BIT16;

• 0x02: 2 audio channels.

Audio data begins at byte 0x0030. Since the header indicates
that there are two channels of 16-bit audio, and a buffer size of
16 frames, it is clear that the data for channel 1 encompasses the
32 bytes from 0x0030 to 0x004f, and channel 2 the
remaining bytes.

Here, channel 1 is a test signal, a unit amplitude-increment
unipolar sawtooth wave, i.e., a signal whose amplitude starts at
zero, and increments by 1 at each sample until it reaches the
maximum value that a signed 16-bit integer may take— 32 76710
— at which point it wraps around to zero and repeats. This test
signal serves two important purposes. First, its impulse-like
behaviour once every 32,768 samples (roughly .74 s at a
sampling rate of 44.1 kHz) is useful for taking basic
synchronicity measurements, e.g., involving connecting two
clients’ audio outputs to an oscilloscope. Second, this
numerically-predictable signal serves as a means to inspect the
integrity of the audio server algorithm, and to verify that the

FIGURE 4
Overview of operation of the networked audio server. The network sender awaits notification of readiness to read samples from a first-in-first-out
buffer of audio samples. The audio processor receives audio channels from amultichannel source (e.g., a DAW); at each iteration of its processing loop, it
writes samples to the FIFO; uponwrite-completion, the FIFO sends a signal to the network sender that a block of samples is ready. Samples are converted
to the desired bit resolution and byte order and bundled into a UDP packet which is then written to the network.

24 Endianness is a thorny issue—just consider Danny Cohen’s . . .Plea for

Peace (Cohen, 1981). To appeal momentarily to authority, JackTrip too

transmits audio data (and port numbers, etc.) little-endian, “network byte

order” notwithstanding. 25 Subscript 10 is employed here to indicate a decimal number.

Frontiers in Virtual Reality frontiersin.org10

Rushton et al. 10.3389/frvir.2024.1391987

https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://doi.org/10.3389/frvir.2024.1391987

expected sample interleaving and endianness is employed.
Inspecting the first sixteen samples of the first audio channel
it is evident that the amplitude values increment on a per-sample
basis, and, since it is the first byte that increases with each sample,
that samples are transmitted little-endian.

The purpose of the server’s receiver thread is to poll its
socket for traffic reaching the multicast group from
connected clients. Clients are programmed to return a stream
of packets of audio data to the multicast group, and the receive
thread uses the existence of a such a stream, with a given origin IP
address, to indicate the presence of a client at that address. If a
client fails to return a packet for more than 1 s it is
considered disconnected. Clients could announce their
presence with any periodic UDP transmission, but the
possibility of returning audio data facilitates the measurement
of client synchronicity via transmission round trip times
(see Section 4.1).

3.1.3 Transmission considerations
Ethernet frames, and UDP datagrams by extension, are

subject to size limitations. The maximum transmissible unit
(MTU) of a transport medium is the limit on the size of a
packet that can be sent without fragmentation,
i.e., without being split into multiple sub-packets. Two bytes
are allocated to the ‘Total Length’ field of the IPv4 header,
which suggests an MTU of 216 − 1 � 65,535 bytes; in practice,
however, the data link layer imposes a basic limit of 1,500 bytes
on the payload of an ethernet frame (Schiavoni et al., 2013;
IEEE, 2018).

With the headers for the data link (Ethernet), network
(IPv4), and transport (UDP) layers accounted for, plus the
audio header described above, in principle 1,452 bytes
remain in each packet for audio data. Assuming 16-bit
resolution, and the transmission of one UDP packet per
audio buffer, data for up to 90 audio channels can be
transmitted at a buffer size of 16 frames without
fragmentation, or up to 45 channels at 32 frames.

3.2 The networked audio client

Unlike the networked audio server, which runs on a general
purpose computer and has access to threads of execution, which it
can use to conduct related but separate tasks that rely on some
central resource (the FIFO buffer alluded to above), the client
implementation is designed to operate on a microcontroller
platform that has no operating system, and no native notion
of threads.26

The task of the clients is threefold in nature:

1. To retrieve packets of audio data from the UDP
multicast group;

2. To send a stream of audio data back to the multicast group,
primarily to announce their connectivity;

3. To maintain, as far as possible, synchronous operation with the
server, and (by extension) each other.

To address the first two requirements, the client sets up a socket,
which it uses to both read from and write to the UDP
multicast group.

The client was created as a C++ class named NetJUCEClient,
an implementation of the Teensy Audio Library class
AudioStream. AudioStream descendents must implement a
method named update(); this method is called at each audio
hardware interrupt, and is where an audio library class should
perform operations on the current audio buffer. Networking
operations are conducted from the method NetJUCEClient::

loop. Avoiding conflicts with audio functionality, this method is
called from Teensy’s top level loop() function. A valid Teensy
program must define a function by this name, and it is called
repeatedly from the body of a non-terminating while loop
throughout operation.

The two sets of operations are linked by way of an intermediate
buffer, similar to the FIFO employed by the server. The client
attempts to receive packets from, and, if it has generated a
packet’s worth of audio data, send a packet to, the multicast
group on each call to loop(), with audio samples from
incoming packets written to the intermediate buffer (see Listing
3). The client also performs a periodic check for the presence of the
server, and, as described in Section 3.2.1, makes adjustments to its
audio clock. When multiple clients are present, there are
consequently multiple streams of audio packets reaching the
multicast group. To avoid ambiguity and unnecessary packet
reads at the client side, server and clients transmit audio data to
the group on differing port numbers.

Listing 3. Loop method of the networked audio client
implementation.

Listing 4. Update method of the networked audio client
implementation.

26 There is in fact a non-core library, TeensyThreads, that provides

thread-like functionality. It was experimented with during

development, but found to be incompatible with the interrupt-driven

nature of the Teensy audio and networking libraries.

Frontiers in Virtual Reality frontiersin.org11

Rushton et al. 10.3389/frvir.2024.1391987

https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://doi.org/10.3389/frvir.2024.1391987

On each audio interrupt, the client reads from the intermediate
buffer to produce samples for audio output. It also takes samples
reaching its audio inputs and adds those to a packet to be sent to the
multicast group at the earliest subsequent call to
NetJUCEClient::loop (Listing 4). The client’s inputs can
receive samples from any Teensy Audio Library object to which
it has been connected programmatically; for round-trip time
measurements the client’s audio outputs were routed back to its
inputs. An illustrative timeline of client-server interaction is
depicted in Figure 5.

3.2.1 Synchronicity with the server
Due to the influence of clock drift and transmission jitter, and

since the clients constitute a distributed system, with no direct
knowledge of each other and no authoritative source of time, their
third task posed the greatest challenge. A two-pronged strategy was
developed for addressing server-client and inter-client timing
discrepancies:

3.2.1.1 Jitter compensation
Similar to the approach taken in prior work (Rushton et al.,

2023), clients monitored their intermediate buffer for the difference
between its write and read positions, using a delay-locked loop to
keep this difference within an interval of one audio buffer’s worth of
frames. This was achieved by way of setting thresholds for the read-
write difference, and adjusting the read-position increment if the
difference fell beyond those thresholds; increasing the increment if
the difference exceeded the high threshold; decreasing it should the
difference fall short of the low threshold. This in turn entailed
employing a fractional read-position, and interpolating around it to
achieve an appropriate sample value; essentially a form of adaptive
resampling. For this purpose a cubic Lagrange interpolator was used;
sample values for the interpolator were converted from their 16-bit
signed integer representation to floating point numbers,
interpolation conducted, and the resulting value rounded to the
nearest integer for output.

3.2.1.2 Clock drift compensation
In the absence of an authoritative source of time, clients were set

up to infer the difference in rate between their own internal clock
and that of the server by comparing the rate of packet reception from
the network to their internal audio interrupt rate. This was achieved
by taking the ratio, over thirty-second intervals, of packets written
from the network to the intermediate buffer to blocks read from the
intermediate buffer for audio output. This ratio was then used to
calculate appropriate divisors to apply to the 24 MHz master clock
generated by a crystal oscillator on the Teensy, adjusting the audio
clock’s phase locked loop (PLL) to produce an adjusted audio
sampling rate. The aim of this approach was to minimise
reliance on the adaptive resampler described above, and
ultimately encourage all clients to run at the same audio rate as
the server.

3.3 The audio spatialisation algorithm

WFS was chosen for implementation due to the comparative
ease with which the WFS algorithm can be parallelised. Equations 3

and 4 (page 10) illustrate that the driving signal for a given secondary
point source is dependent only on the signals and relative positions
of the virtual primary sources, and is independent of the driving
signals for the other secondary sources.

With some modifications, e.g., the possibility to specify speaker
spacing parametrically, the WFS algorithm from (Rushton et al., 2023)
was reused. This algorithm, facilitating the simulation of virtual primary
sound sources, was written in Faust and compiled to a C++ class
compatible with the Teensy Audio Library via Faust’s
faust2teensy utility. Hardware modules were connected to a
general purpose computer via a USB hub and the tycmd utility
from the TyTools suite (see Section 2.2) was used to ensure that all
modules were programmed with the same instructions.

As illustrated in Figure 3, producing the driving signal for aWFS
secondary source at position x entails applying a delay to an audio
signal ŝin,k, representing the kth virtual primary source. This delay is
based on the distance rk between x and the desired virtual position of
ŝin,k. In its distributed form, the WFS algorithm, informed of the
position in the array of the two loudspeakers for which it is
responsible, computes only the delays for each primary source
with respect to those two loudspeakers, i.e., for the kth virtual
source, the nth hardware module computes rk,x2n and rk,x2n+1. To
reduce the computational burden placed on the hardware modules,
specifically with regard to memory, the length of the delay lines was
reduced by discarding the longitudinal component of rk, leaving
only the relative inter-speaker delay.

For the WFS prefilter, rk was mapped to an inverse square law
for frequency-independent amplitude loss to the virtual medium of
propagation, and to the cutoff frequency of a two-pole lowpass filter
defined by Faust’s fi.lowpass function.27 Adopting a modified
version of Equation 4, the driving function becomes:

dk x, t() � f t, rk()pδ t − rk − yk

c
(). (5)

3.3.1 Modularity and maximum delay
The reduction in the maximum delay length represented by the

subtraction of the longitudinal distance component in Equation 5 is
essential for the viability of the system. As capable a platform as
Teensy 4.1 is, as described in Section 2.2, it is limited in terms of
memory. This in turn places limits on the lengths of delay lines that
it can compute, a matter exacerbated if there are many such delays to
consider, such as in the case of a WFS implementation with
numerous virtual sound sources. Each hardware module must
compute two delay lines for each virtual source, one for each of
its output channels, the maximum length of which (depending on
the position of a given module in the speaker array) corresponds,
after removal of the longitudinal component, to the width of the
speaker array. It was observed that, for eight virtual sources and
eight hardware modules, the maximum speaker spacing permissible
lay at around .4 m, corresponding with a speaker array of maximum
width 15 × 0.4 = 6 m, equating to a maximum delay of ~17 ms or
approximately 795 samples at a sampling rate of 44.1 kHz. The
matter has not been rigorously tested, but nonetheless the

27 https://faustlibraries.grame.fr/libs/filters/\#filowpass

Frontiers in Virtual Reality frontiersin.org12

Rushton et al. 10.3389/frvir.2024.1391987

https://faustlibraries.grame.fr/libs/filters/\#filowpass
https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://doi.org/10.3389/frvir.2024.1391987

presumption is that this places significant limits on the modularity
of the system. Teensy’s memory capacity can be extended by
attaching up to two inexpensive PSRAM chips for a further
16 MB of memory. These chips must be soldered onto the
Teensy board, however, and the suitability of such additional
memory for rapid access, such as is required in an audio DSP
algorithm, remains to be investigated.

3.3.2 Controlling the WFS algorithm
Parameter values are delivered to the Faust algorithm in the form of

Open Sound Control (OSC) messages. OSC control data, describing
virtual sound source positions, speaker spacing, and informing clients of
their position in the speaker array, is bundled into UDP packets and
delivered by the server to the multicast group for all clients to consume.
Source positions are described as coordinates in a two-dimensional plane,
with x and y components, each normalised to the range [0,1],
transmitted separately. The width of the speaker array is inferred
from the speaker spacing (in metres), multiplied by the number of
speaker-intervals in the array, i.e., one fewer than the number of speakers.
For the proposed implementation, the number of speakers is known to
the server and clients at compile time; with further development this
could bemade specifiable at runtime. Similarly, at the time of writing, the
longitudinal depth of the virtual sound field is hard-coded into the clients
and will be generalised in a future iteration of the system.

Listing 5 demonstrates an example control data packet, an OSC
bundle containing one message. This message has address/source/
0/x, indicating that it refers to the x-coordinate of the zeroth sound
source, providing a value in the form of a big-endian 32-bit floating
point number, 0x3d1b5fa2, approximately 0.03810.

Listing 5. Network capture: ethernet frame containing a
UDP control data packet.

3.4 System overview

3.4.1 Hardware setup
The networked audio server runs on a general purpose

computer. Throughout development, testing and evaluation, that
computer was an ASUS G513R Notebook PC, with an AMD Ryzen
7 6800H processor with a clock speed of 3.2 GHz. For the majority of
development, the computer’s internal sound card was used; for
testing and evaluation, it was connected to a Steinberg UR44C USB
audio interface, the hope being that external hardware would
provide more consistent audio interrupt timing, thus minimising
jitter originating at the server.

The computer was connected via CAT6 ethernet cable to an
eight-port ethernet switch (D-Link DGS-108GL). For evaluation,
and to support a total of eight networked audio clients, this switch
was daisy-chained to an additional switch (D-Link DES-1008D).
Teensy 4.1 hardware modules, assembled as per Figure 6, were
connected via CAT6 ethernet cables to available ports on the
ethernet switches. Hardware modules were powered by a
combination of a seven-port USB hub, plus, for the eighth
module, a USB mains socket. The two audio outputs of each
hardware module were connected to M-Audio BX5 loudspeakers.

3.4.2 Software system
Server-side, the software system consists of a VST plugin

running in Reaper digital audio workstation software.28 The
plugin comprises the networked audio server, receiving
monophonic audio sources in the form of audio or instrument
tracks in the DAW, plus a control data server, commanded either by

FIGURE 5
Example timeline of interaction between the server and a client, via the UDP multicast group. Solid arrows indicate audio data being sent from the
server to themulticast group; arrows with open heads indicate audio data being sent from the client back to themulticast group; arrows with dotted tails
represent control data. Note that the server transmits to the multicast group irrespective of the presence of any client.

28 https://reaper.fm/

Frontiers in Virtual Reality frontiersin.org13

Rushton et al. 10.3389/frvir.2024.1391987

https://reaper.fm/
https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://doi.org/10.3389/frvir.2024.1391987

parameter automation via the DAW, or manually via a graphical
user interface (see Figure 7). The audio and control data servers send
streams of UDP packets to a UDP multicast group.

Client-side software connects to the multicast group and reads
UDP packets containing audio and control data from the server.

These streams are delivered to the Faust-based WFS algorithm, with
audio streams processed according to the control parameters of
virtual sound source positions and speaker spacing. The WFS
algorithm produces driving signals for each of the two output
channels of the hardware module on which it is running.

FIGURE 6
A hardware module consisting of Teensy 4.1 microcontroller (labelled with the last 2 bytes of its serial number-derived IP address), connected via
headers to an audio shield and via ribbon cable to an ethernet shield.

FIGURE 7
User interface for the WFS controller DAW plugin, with modal settings window visible. The interface consists of an X/Y control surface, with eight
nodes representing the coordinates, normalised to x, y ∈ [0, 1], of sound sources in a virtual sound field. Dropdownmenus at the bottom of the interface
correspond with hardware module positions in the loudspeaker array; there are eight such menus in total, each associated hardware module producing
output for two loudspeakers. The settings window facilitates specifying the speaker spacing, and shows a list of connected network peers.

Frontiers in Virtual Reality frontiersin.org14

Rushton et al. 10.3389/frvir.2024.1391987

https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://doi.org/10.3389/frvir.2024.1391987

Additionally, the client-side networked audio client returns a stream
of audio data to the multicast group, to be consumed by the server.

Code for the server and client software components can be
found at https://github.com/hatchjaw/netjuce and https://github.
com/hatchjaw/netjuce-teensy respectively.

4 Results

Possessing technical underpinnings, but ultimately being
designed to serve immersive auditory ends, it was important to
consider the performance of the system described and developed in
Section 3 in terms of both its technical capabilities and the quality of
the perceptual effects it was able to support. The success of the
system as a platform for audio spatialisation techniques is
contingent on it being composed of effective solutions to the
challenges posed by distributing audio processing across a local
area network. It is of limited worth, however, as a technical exercise
in isolation; the subjective assessment of listeners may help identify
the most critical aspects of the technical implementation and guide
future development.

4.1 Technical evaluation

Of most pressing technical concern is the matter of
synchronicity between the hardware modules. To assess this, a

similar approach was taken to that found in (Rushton et al.,
2023; Gabrielli et al., 2012).

4.1.1 Round trip time
To measure transmission round trip time (RTT), the server

transmitted a unipolar sawtooth wave of unit amplitude increment
to the multicast group, and each client, upon receiving the signal
simply returned it immediately to the group to be read by the server.
At the server side, the return signal, xret, was subtracted from the
outgoing signal, xout, at the time of reception, with round trip time
found as:

RTT � xout +maxint16 − xret, xout < xret,
xout − xret, otherwise,

{ (6)

where maxint16 is the maximum value representable by a signed 16-
bit integer, 0x7fff (32 76710).

The resulting value is the number of samples elapsed between
transmission and reception (see Figure 8). Since there is one source
of transmission, for multiple clients, comparing RTT offers a means
to assess inter-client synchronicity. Server-to-client latency cannot
be measured in this way, but that can be inferred to be around half
of, and, of course, certainly not greater than, the RTT.

4.1.2 Clock drift/skew
A unipolar sawtooth wave of unit amplitude increment was

generated on the clients, subtracted from the incoming sawtooth
wave from the server, and the difference (found as per Equation 6)

FIGURE 8
Illustration of the use of a test signal, a unipolar sawtooth wave, to measure round trip time. Subtracting the return signal from the outgoing signal
gives the time (in samples) between transmission and reception.

Frontiers in Virtual Reality frontiersin.org15

Rushton et al. 10.3389/frvir.2024.1391987

https://github.com/hatchjaw/netjuce
https://github.com/hatchjaw/netjuce-teensy
https://github.com/hatchjaw/netjuce-teensy
https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://doi.org/10.3389/frvir.2024.1391987

returned to the multicast group for consumption by the server. The
incoming signal and the one being generated on a given client
should, under ideal conditions, be out of phase by some constant
value; if this value changes then relative drift has occurred between
server and client. The client-side clock-adjustment strategy was
designed to minimise the reliance on the adaptive resampling
approach that it complements; low drift would be indicative of
the effectiveness of that strategy.

Initial RTT and relative drift measurements for eight clients are
shown in Figure 9. Mean RTT spread, describing the average
temporal interval over which clients were distributed over the
course of the test, is promising, the 12.43 sample interval
corresponding with approximately 282 µs. RTT is clustered
around a respectable 190 samples (~4.3 µs).

That visual clustering, coupled with the apparent tendency for
RTT spread to lie at around 16 samples (i.e., precisely one buffer),
suggest, however, a certain over-aggressiveness in the resampling
strategy, perhaps resulting in a polarisation of clients to the temporal
extremes of the interval between their audio interrupts. What
Figure 9 does not show, and, given the short timescales involved,
is not easily represented in such a diagram, is the rate of relative
inter-client movement, i.e., the rate of change of asynchronicity.
Subjective assessment of the system’s audible output revealed that,
given the rapid rate of relative movement between clients, in this
state it would not stand up to perceptual testing.

Transmitting a white Gaussian noise signal to the clients and
delivering this to their audio outputs without further
processing—seeking, essentially, to sonify QoS—an aggressive
phasing, or time-varying comb-filter effect was clearly audible.
This effect is visualised in Figure 10A; ideally (subject to the
frequency response of the microphone used) an ambient
recording of a white noise source would correspond with a
magnitude spectrogram exhibiting equal intensity across the

frequency range at all times; clearly, though, there are regions of
greater and lesser intensity, and these regions shift and change
rapidly over time. In addition to the above, tests involving the
reproduction of signals containing steady-state harmonic content
revealed obtrusive audible artefacts.

A buffer size of 16 frames had been selected in an attempt to
minimise the duration of the window of inter-client synchronicity,
and to maximise the number of channels that could be transmitted
over the network, subject to restrictions posed by the MTU (see
Section 3.1.3). Recalling, however, that previous work (Rushton
et al., 2023) had employed a 32-frame audio buffer, equivalent
measurements were taken for the larger buffer size, the results of
which are depicted in Figures 10B, 11.

Again, visually, there is an apparent clustering in the RTT
recordings, with clients spending large periods separated by
around one buffer’s worth of samples (~726 µs), seemingly
often grouped at either extreme of the interval of one audio
buffer. The mean RTT spread, equating to ~626 µs, is comparable
with results from prior work. Importantly, however, and as
demonstrated in Figure 10B, the rate of relative inter-client
temporal movement was much improved by the switch to a
32-frame buffer. Although exhibiting similar visual striations
to the spectrogram for the test at 16 frames, fluctuations occur
less frequently, and seemingly more gradually. Indeed,
subjectively-speaking, the disruption caused by the phasing
effect that afflicted the 16-frame buffer implementation was
significantly reduced, as was the presence of audible artefacts
affecting harmonic signals. Thus it was the version of the system
employing a buffer size of 32 frames that was exposed to
perceptual evaluation.

Clock drift measurements in Figures 9, 11 exhibit comparable
trends. Increasing negative drift over time is indicative of the clients
running faster than the server. Visually, there is evidence that client

FIGURE 9
Round-trip time, RTT spread, and clock drift measurements for eight networked audio clients, for a networked audio session of 8minutes’ duration.
Audio buffer size, 16 frames, sampling rate 44.1 kHz. The legend in the bottommost plot applies also to the upper plot. Round-trip time, in samples,
measured at the server, and found as the difference between an outgoing sawtooth wave and its returning counterparts from each of eight connected
clients. Round-trip time spread found as the range (RTTmax − RTTmin), in samples, at each point in time, of round-trip times reported for all eight
clients. Mean spread is the arithmetic mean of RTT spread values taken across the entire test. Drift, in samples, found as the difference between an
outgoing sawtooth wave and a sawtooth wave generated on each client, that difference returned to the multicast group for consumption by the server.

Frontiers in Virtual Reality frontiersin.org16

Rushton et al. 10.3389/frvir.2024.1391987

https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://doi.org/10.3389/frvir.2024.1391987

clocks adjust to approximate parity with the server for periods of
time, perhaps falling slightly slower (e.g., the drift plot in Figure 9,
between 90 and 160 s), but intermittently demonstrate leaps, the
largest of which are in the negative direction.

4.1.3 Discussion
The temporal clustering and polarisation seen in Figures 9, 11 is

indicative of two points for improvement with regard to technical
implementation: the read-write difference threshold strategy may be
insufficiently forgiving, forcing the read position into rapid changes
in response to periods of jitter; and without an authoritative clock to
indicate to the clients when each block of audio data should be
output, even if clock rates were perfectly aligned, there is nothing to
guarantee agreement of the timing of audio interrupts at the
client side.

The steps seen in the drift plots in Figures 9, 11 appear
(particularly in Figure 11) to occur in multiples of the audio

buffer size. This suggests either packet loss or, more likely,29

moments of pronounced jitter, causing clients to rapidly reduce
(or, less commonly, increase) their read-position increment to
maintain the read-write delta. One may expect such a
phenomenon to be followed by an immediate rebound, but this
appears to be a more gradual process. The overall trend, for
thiscombination of server and clients at least, is for clients to run
faster than the server; the clock adjustment strategy employed relies
on inferring time from the rate of packet transmission, which may
not offer sufficient temporal resolution for accurate drift
compensation.

FIGURE 10
Magnitude spectrograms of ambient, monophonic recordings of a reproduction of white Gaussian noise by a group of eight networked audio clients
driving an array of fifteen loudspeakers spaced at intervals of .175 m. Capacitor microphone placed ~ 2 m from the speaker array. Audio buffer size (A)
16 frames; (B) 32 frames.

FIGURE 11
Round-trip time, RTT spread, and clock drift measurements for eight networked audio clients, for a networked audio session of 8minutes’ duration.
Audio buffer size, 32 frames.

29 During many hours of testing, no instance of packet loss was reported by

any of the clients.

Frontiers in Virtual Reality frontiersin.org17

Rushton et al. 10.3389/frvir.2024.1391987

https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://doi.org/10.3389/frvir.2024.1391987

4.2 Perceptual evaluation

The WFS system was subjected to an informal perceptual
evaluation, a localisation experiment of a similar form to that
presented by Verheijen (Verheijen, 1998, ch. 6), albeit with the
inclusion of simulated distance as well as lateral position.
Participants were presented with a virtual sound source at
various locations and asked to indicate, on a diagram of the
virtual sound field, the point from which they estimated the
sound had emanated. The informality of the experiment arose in
part as a consequence of the listening environment not being
acoustically treated, and there being sources of ambient sound in
the laboratory in which the WFS system was installed. Furthermore,
the speaker array (Figure 12) consisting of fifteen speakers, but each
hardware module producing two audio output channels, the
second channel of the right-most module was not used; for
eight modules, however, the WFS plugin assumed a virtual
sound field spanning sixteen speakers, thus it was possible to
position a virtual sound source horizontally beyond the
rightmost extent of the speaker array. Ultimately the aim of
the experiment was to draw some preliminary, guiding
conclusions as to the effectiveness of the distributed WFS
system in triggering listeners’ localisation cues, its technical
and installation shortcomings notwithstanding.

It was felt that listeners would be most comfortable localising a
naturalistic sound, so, rather than use bursts of white noise as in
(Verheijen, 1998), and wishing to minimise the potential effects of

frequency-dependent localisation interference due to spatial
aliasing, a broadband stimulus was selected in the form of a
close-mic recording of a snare drum. The recorded sample was
repeated three times in succession at intervals of .125 s, and, again in
the interests of adding a natural quality to the sound, with slight
variations in amplitude (the second iteration of the sample was
played marginally quieter than the first; the third slightly louder).

The system was presented to eight participants; a mixture of
masters and PhD students aged between 22 and 38, with knowledge
of audio and interactive computer systems. Participants were given a
brief description of the system under evaluation, and informed that
they should expect to hear sounds that appeared to emanate from
‘behind’ the speaker array, from which they stood at a distance of
~2 m. Eight different virtual source positions were specified via
automation of the x (lateral) and y (longitudinal distance)
components of the position of a node in the WFS plugin
interface. The range of the x component corresponded with the
distance from the centre of the driver of the leftmost speaker to that
of the missing 16th loudspeaker; drivers lay at intervals of .175 m,
giving a horizontal axis spanning 2.625m. Longitudinal position was
mapped to a range from 0m (i.e., lying directly on the speaker array)
to 10 m “behind” the array.

For each position, the auditory stimulus was played, and
repeated at the participant’s request. Each participation was five
to 10 minutes in duration. Details of the source positions for each
test, and responses for the eight participants, are displayed
in Figure 13.

FIGURE 12
System configuration for technical and perceptual evaluation. Eight hardware modules connected to fifteen loudspeakers—seven of the modules
produced output for two loudspeakers each; the final module used only its first output channel.

Frontiers in Virtual Reality frontiersin.org18

Rushton et al. 10.3389/frvir.2024.1391987

https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://doi.org/10.3389/frvir.2024.1391987

FIGURE 13
Results of a localisation experiment based on WFS virtual primary sources produced by the proposed system. Lateral (horizontal axis) and
longitudinal (vertical axis) components are normalised to [0, 1]. Each plot represents the virtual sound field; the horizontal axis (i.e., longitudinal
component equalling 0) corresponds with the location of the speaker array. Participants stood at a distance of approximately 2 m from the array. Each
plot shows the intended position of the virtual sound source as specified by parameters to the WFS plugin interface (cross) and estimated sound
source positions as reported by participants (dots). Each plot is labelled with the mean Euclidean error μϵ between intended position and reported
positions. Legend in plot (A) also applies to plots (B) to (H).

Frontiers in Virtual Reality frontiersin.org19

Rushton et al. 10.3389/frvir.2024.1391987

https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://doi.org/10.3389/frvir.2024.1391987

As can be seen, although demonstrating significant outliers
(e.g., the position reported by the fifth participant for test (D)),
certain trends do appear to emerge from the results. Firstly,
responses loosely track the intended positions, with reported
positions most closely corresponding with intended ones for
virtual source locations lying close to the speaker array. Indeed,
tests (B), (D), and (G) exhibit the lowest mean error values
between the intended and reported positions. The results for
tests (C) and (H), exhibit the greatest mean error, and
ambiguity regarding the lateral position of distant sound
sources is perhaps to be expected; as the distance of a sound
source from the listener increases, rk − yk tends towards zero,
and thus the ITD (and ILD) also approaches zero; thus, with
increased distance the wavefront produced by a sound source
(be it a real sound source or one synthesised under ideal
conditions) approximates more and more closely a plane
wave. In any case, despite this inherent, physical ambiguity,
there is a tendency in results (C) and (H) toward the lateral
location of the most longitudinally distant intended virtual
source positions. Particularly for test (C), participants seem
to have had greater difficulty in estimating the depth of the
virtual sound field; this may simply be as a function of their
developing a familiarity with that aspect of it over the course of
what was only a brief experiment.

Participants were asked for any anecdotal observations they
had, based on their experience of the experiment. One
participant noted, for the first position in particular, that the
amplitude variations between the snare drum strikes gave the
impression of a sound source that was advancing upon the
listening position; for the lack of any visual cue as to the
position of the sound source, this is a reasonable conclusion
to draw; it did not, however, ultimately prevent them from
reaching a decision with regard to their estimate for the position
of the sound source. Another, likely hearing the time-varying
comb-filter effect, asked whether the “phasing” they were
hearing was intentional. A third, also perceiving a similar
phenomenon, suggested that they felt that the sound sources
were moving. Finally, a participant with prior experience
working with WFS systems, remarked that the distance effect
(i.e., the WFS prefilter) was perhaps a little extreme, and not
altogether realistic.

4.2.1 Discussion
The phasing effect noted by one participant is a consequence

of the approach taken to combating jitter and keeping the
clients close, temporally, together, and as close to the server
as possible. The current approach is likely too aggressive to be
viable for high-quality audio output across a broad array of
source signals. A transient, unpitched sound source like a snare
drum, though perhaps audibly susceptible to the time-varying
comb-filter effect described, masks other artefacts caused by
phenomena such as rapid fluctuations in the clients’ buffer read
position increment, and sudden, comparatively large audio
clock adjustments.

The above being said, the perceptual test indicates that the
system produces virtual sound sources that listeners are, at least
to some extent, able to localise. Further, it achieves this at a
significantly lower cost-per-channel than any of the systems

discussed in sections Section 2.3.3, and, speakers and cables
excepted, compares favourably with the OTTOSonics system
referred to in Section 2.4, particularly as channel-count
increases, i.e., in terms of cost, it has the potential to scale
better. The most costly component of the system is the
computer, but this could be exchanged for any interested
user’s personal machine, so long as it is able to run a DAW
and has an ethernet interface. The Teensy modules, including
audio shield, cost around €45; eight-port ethernet switches can be
purchased for as little as €20–30. Assuming a computer costing
€1,500, at 16 channels we can estimate around €120/channel,
dropping to €50/channel for 64 channels.

5 Conclusion

In this article we have described the development of a novel,
distributed system for audio spatialisation. The proposed
networked audio system, featuring low-cost, microcontroller-
based clients, represents a milestone on the road towards an
accessible alternative to state of the art spatial and immersive
audio installations. Evaluation of the system exposed the extent
of the technical challenges that confront it in its current form,
but revealed that it may offer performance sufficient to support
timing-critical sound field synthesis techniques.

Client asynchronicity may affect the integrity of the spatial audio
algorithm and give rise to audible artefacts, and the strategies
presented here for mitigation of asynchronicity call for further
refinement. Ultimately, an authoritative source of time should be
sought, either in the form of a shared physical clock or a PTP
implementation; in light of the disruptive potential of the system,
care should be taken, however, to find a solution that is cost-effective
and easy to replicate.

Plans for future research include an exploration of other
potential hardware platforms for the network client. A
successor to Teensy 4.1 may provide more memory or
support higher-quality audio, for example. Only briefly
considered here, the Raspberry Pi family of embedded Linux
systems is priced comparably with the Teensy and supports
audio breakout boards capable of 24-bit audio, with the added
benefit of significantly greater memory. Further, the Raspberry
Pi Compute Module 4 is capable of physical layer timestamping
and thus may facilitate the creation of a system synchronised via
hardware PTP.

A basic, linear, wave field synthesis algorithm has been
demonstrated, implementing virtual primary sound sources; the
client implementation and control software should be generalised to
support nonlinear speaker arrays, plane and focused sources, and
better models for energy absorption. A self-calibrating system,
whereby clients discover their position in an installation rather
than needing to be informed of it, would represent an additional
boost to accessibility. Higher order ambisonics, subject to an
assessment of its suitability to parallelisation, remains as a
worthy target for implementation in future work. Further,
convolution-heavy DSP algorithms, such as those supporting
virtual acoustics and auralization, may be well-served by the
extent of the computational resources afforded by our
distributed system.

Frontiers in Virtual Reality frontiersin.org20

Rushton et al. 10.3389/frvir.2024.1391987

https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://doi.org/10.3389/frvir.2024.1391987

Data availability statement

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

Ethics statement

Ethical approval was not required for the studies involving
humans because participants gave their age, but no other
identifying information, and their participation was not filmed
or otherwise recorded. The studies were conducted in accordance
with the local legislation and institutional requirements. The
participants provided their written informed consent to
participate in this study.

Author contributions

TR: Conceptualization, Investigation, Methodology, Software,
Visualization, Writing–original draft, Writing–review and editing.
RM: Conceptualization, Resources, Supervision, Writing–review and
editing. SS: Resources, Supervision, Writing–review and editing. TR:
Resources, Supervision, Writing–review and editing. SL: Supervision,
Writing–review and editing.

Funding

The author(s) declare that financial support was received forthe
research, authorship, and/or publication of this article. This project
was funded by the FAST ANR project (ANR-20-CE38-0001) and the
“moyens incitatifs” program of the Lyon Inria center.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

The author(s) declared that they were an editorial board
member of Frontiers, at the time of submission. This had no
impact on the peer review process and the final decision.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

References

Adriaensen, F. (2005). “Using a DLL to filter time,” in Linux audio conference
(Karlsruhe, Germany).

Adriaensen, F. (2012). “Controlling adaptive resampling,” in 10th International Linux
Audio Conference Stanford, CA, USA: CCRMA (Stanford University), 145–151.

Ahrens, J. (2012). Analytic Methods of sound field synthesis. T-labs series in
telecommunication services. Springer Science and Business Media.

Ahrens, J., Rabenstein, R., and Spors, S. (2008). The theory of wave field synthesis
revisited. Amsterdam, Netherlands: Audio Engineering Society.

AL-Dhief, F. T., Sabri, N., Latiff, N. A., Malik, N., Abbas, M., Albader, A., et al. (2018).
Performance comparison between TCP and UDP protocols in different simulation
scenarios. Int. J. Eng. and Technol. 7, 172–176. doi:10.14419/ijet.v7i4.36.23739

Baalman, M. A. J., Hohn, T., Schampijer, S., and Koch, T. (2007). “Renewed
architecture of the sWONDER software for Wave Field Synthesis on large scale
systems,” in Proceedings of the 5th int. Linux audio conference (Berlin, Germany).

Bakker, R., Cooper, A., and Kitagawa, A. (2014). An introduction to networked audio.
Rellingen, Germany: White Paper, Yamaha Commercial Audio Team.

Belloch, J. A., Badía, J. M., Larios, D. F., Personal, E., Ferrer, M., Fuster, L., et al. (2021).
On the performance of a GPU-based SoC in a distributed spatial audio system.
J. Supercomput. 77, 6920–6935. doi:10.1007/s11227-020-03577-4

Berger, J., Farzaneh, N., Murakami, E., and Valentin, L. (2023). “Exploring the past
with virtual acoustics and virtual reality,” in 2023 Immersive and 3D audio: from
Architecture to automotive (bologna, Italy: IEEE).

Berkhout, A. J. (1988). A holographic approach to acoustic control. J. Audio Eng. Soc.
36, 977–995.

Berkhout, A. J., de Vries, D., and Vogel, P. (1993). Acoustic control by wave field
synthesis. J. Acoust. Soc. Am. 93, 2764–2778. doi:10.1121/1.405852

Bosi, M., Servetti, A., Chafe, C., and Rottondi, C. (2021). Experiencing remote classical
music performance over long distance: a JackTrip concert between two continents
during the pandemic. J. Audio Eng. Soc. 69, 934–945. doi:10.17743/jaes.2021.0056

Cáceres, J.-P., and Chafe, C. (2010a). JackTrip: under the hood of an engine for
network audio. J. New Music Res. 39, 183–187. doi:10.1080/09298215.2010.481361

Cáceres, J.-P., and Chafe, C. (2010b). JackTrip/SoundWIRE meets server farm.
Comput. Music J. 34, 29–34. doi:10.1162/comj_a_00001

Carôt, A., Hohn, T., and Werner, C. (2009). “Netjack – remote music collaboration
with electronic sequencers on the Internet,” in Proceedings of the 7th Linux audio
conference (Parma, Italy).

Chafe, C. (2018). I am streaming in a room. Front. Digital Humanit. 5. doi:10.3389/
fdigh.2018.00027

Chafe, C., and Oshiro, S. (2019). “Jacktrip on Raspberry Pi,” in Proceedings of the
Linux audio conference 2019 (Stanford, CA, USA: CCRMA: Stanford University).

Chafe, C., Wilson, S., Leistikow, R., Chisholm, D., and Scavone, G. (2000). “A
simplified approach to high quality music and sound over IP,” in Proceedings of
the COST G-6 Conference on digital audio effects (DAFX-00) (Verona, Italy).

Chafe, C., Wilson, S., and Walling, D. (2002). “Physical model synthesis with
application to Internet acoustics,” in 2002 IEEE international Conference on
acoustics, speech, and signal processing (Orlando, FL, USA: IEEE), IV–4056–IV–4059.

Cohen, D. (1977). Specifications for the network voice protocol (NVP). Tech.
Rep. RFC0741.

Cohen, D. (1981). On holy wars and a plea for Peace. Computer 14, 48–54. doi:10.
1109/c-m.1981.220208

Correll, K., and Barendt, N. (2005). “Design considerations for software only
implementations of the IEEE 1588 precision time protocol,” in Proceedings of the
IEEE 1588 conference (Winterthur, Switzerland).

Daniel, J., Moreau, S., and Nicol, R. (2003). “Further investigations of high-order
ambisonics and wavefield synthesis for holophonic sound imaging,” in 114th convention
of the, 114. Amsterdam, Netherlands: Audio Engineering Society.

Dante (2022). What is Dante? Audinate | Dante Pro Av. Netw. Available at: https://
www.audinate.com/meet-dante/what-is-dante (Accessed November 01, 2024).

de Bruijn, W. (2004). Application of wave field synthesis in videoconferencing. Delft,
Netherlands: Technische Universiteit Delft. Ph.D. thesis.

De Poli, G., and Rocchesso, D. (1998). Physically based sound modelling. Organised
Sound. 3, 61–76. doi:10.1017/s1355771898009182

Devonport, S., and Foss, R. (2019). “The distribution of ambisonic and point source
rendering to ethernet AVB speakers,” in Proceedings of ICSA 2019 (ilmenau, Germany).

Drioli, C., Allocchio, C., and Buso, N. (2013). “Networked performances and natural
interaction via LOLA: low latency high quality A/V streaming system,” in Conference
proceedings of the second international conference on information technologies for
performing arts, media access and entertainment, ECLAP (Porto, Portugal: Springer),
240–250.

Edison, J. C., Fischer, M., and White, J. (2002). “IEEE-1588 standard for a precision
clock synchronization protocol for networked measurement and control systems,” in
Proceedings of the 34th annual precise time and time interval systems and applications
meeting (Reston, VA, USA).

Frontiers in Virtual Reality frontiersin.org21

Rushton et al. 10.3389/frvir.2024.1391987

https://doi.org/10.14419/ijet.v7i4.36.23739
https://doi.org/10.1007/s11227-020-03577-4
https://doi.org/10.1121/1.405852
https://doi.org/10.17743/jaes.2021.0056
https://doi.org/10.1080/09298215.2010.481361
https://doi.org/10.1162/comj_a_00001
https://doi.org/10.3389/fdigh.2018.00027
https://doi.org/10.3389/fdigh.2018.00027
https://doi.org/10.1109/c-m.1981.220208
https://doi.org/10.1109/c-m.1981.220208
https://www.audinate.com/meet-dante/what-is-dante
https://www.audinate.com/meet-dante/what-is-dante
https://doi.org/10.1017/s1355771898009182
https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://doi.org/10.3389/frvir.2024.1391987

Fischer, V. (2015). Case study: performing band rehearsals on the internet with
Jamulus

Frank, M., Zotter, F., and Sontacchi, A. (2015). “Producing 3D audio in ambisonics,”
in Audio engineering society 57th international conference (Hollywood, CA, USA).

Gabrielli, L., Squartini, S., Principi, E., and Piazza, F. (2012). “Networked
Beagleboards for wireless music applications,” in Proceedings of the 5th European
DSP Education and research conference (amsterdam, The Netherlands), 291–295.

Geier, M., Ahrens, J., and Spors, S. (2010). Object-based audio reproduction and the
audio scene description format. Organised Sound. 15, 219–227. doi:10.1017/
s1355771810000324

Grani, F., Di Carlo, D., Madrid Portillo, J., Girardi, M., Paisa, R., Banas, J. S., et al.
(2016). “Gestural control of wavefield synthesis,” in Sound and music computing
conference proceedings (hamburg, Germany).

Hardman, V., Sasse, M. A., Handley, M., and Watson, A. (1995). “Reliable audio for
use over the internet,” in Proceedings of INET’95 (Honolulu, Hawaii: The Internet
Society), 171–178.95

Hardman, V., Sasse, M. A., and Kouvelas, I. (1998). Successful multiparty audio
communication over the Internet. Commun. ACM 41, 74–80. doi:10.1145/274946.274959

Hildebrand, A. (2014). “AES67-2013: AES standard for audio applications of
networks - high-performance streaming audio-over-IP interoperability,” in
Proceedings of the NAB broadcast engineering conference (Las Vegas, NV, USA).

IEEE (2011). “IEEE Std 802.1BA-2011, IEEE standard for local and metropolitan area
networks—audio Video bridging (AVB) systems,” in Tech. rep. IEEE.

IEEE (2018). “IEEE standard for ethernet (IEEE Std 802.3™-2018 revision of IEEE Std
802.3-2015),” in Tech. rep. IEEE.

Kaiser, F. (2011). “Transaural Audio - the reproduction of binaural signals over
loudspeakers,” in Universität für Musik und darstellende Kunst. Graz, Austria: Graz/
Institut für Elekronische Musik und Akustik/IRCAM. Ph.D. thesis.

Kerrisk, M. (2023). socket(2) - Linux manual page. Available at: https://man7.org/
linux/man-pages/man2/socket.2.html (Accessed November 01, 2024).

Kshemkalyani, A. D., and Singhal, M. (2011). Distributed computing: principles,
algorithms, and systems. Cambridge University Press.

Lago, N. P., and Kon, F. (2003). “A middleware system for distributed real-time
multimedia processing,” in Proceedings of the IX Brazilian symposium on multimedia
systems and the WEB.

Lopez-Lezcano, F. (2012). “From Jack to UDP packets to sound and back,” in 10th
International Linux Audio Conference (Stanford, CA, USA: CCRMA, Stanford
University).

Marouani, H., and Dagenais, M. R. (2008). Internal clock drift estimation in computer
clusters. J. Comput. Netw. Commun. 2008, e583162. doi:10.1155/2008/583162

Meyer, D., Cotton, M., and Vegoda, L. (2010). IANA Guidelines for IPv4 multicast
address assignments. Request for comments RFC 5771. Internet Engineering Task Force.

Michon, R., Orlarey, Y., Letz, S., and Fober, D. (2019). “Real time audio digital signal
processing with faust and the teensy,” in Proceedings of the Sound and music
computing conference (SMC-19) (malaga, Spain).

Michon, R., Orlarey, Y., Letz, S., Fober, D., and Roosenburg, D. (2020). “Embedded
real-time audio signal processing with faust,” in Proceedings of the international faust
conference (IFC-20) (paris, France).

Mitterhuber, M., Sharafi, R., and Tomás, E. (2022). Ottosonics. Tangible Music Lab.
Available at: https://tamlab.kunstuni-linz.at/projects/ottosonics/(Accessed November
01, 2024).

Mueller, R. K. (1971). Acoustic holography. Proc. IEEE 59, 1319–1335. doi:10.1109/
proc.1971.8407

Nicol, R. (2017). “Sound field,” in Immersive sound (NY, USA: Routledge), 276–310.

Orlarey, Y., Fober, D., and Letz, S. (2009). FAUST: an efficient functional approach to
DSP programming. New Comput. paradigms Comput. music, 65–96.

Pulkki, V. (1997). Virtual sound source positioning using vector base amplitude
panning. J. Audio Eng. Soc. 45, 456–466.

Renaud, A., Carôt, A., and Rebelo, P. (2007). “Networked music performance: state of
the art,” in 30th AES international Conference on intelligent audio environments
(saariselkä, Finland).

Rushton, T. A., Michon, R., and Letz, S. (2023). “A microcontroller-based network
client towards distributed spatial audio,” in Proceedings of the Sound and music
computing conference (SMC-23) (stockholm, Sweden).

Sacchetto, M., Servetti, A., and Chafe, C. (2021). “JackTrip-WebRTC: networked
music experiments with PCM stereo audio in a Web browser,” in Proceedings of the
International web audio Conference (Barcelona, Spain: UPF). WAC ’21.

Schiavoni, F. L., Queiroz, M., and Wanderley, M. M. (2013). “Alternatives in network
transport protocols for audio streaming applications,” in Proceedings of the
international computer music conference (perth, Australia).

Schulzrinne, H. (1992). “Voice communication across the Internet: a network voice
terminal,”. Amherst, MA, USA: University of Massachusetts at Amherst, Department of
Computer and Information Science.

Tongzhou, W., and Lunhui, D. (2022). “Research and implementation of high
precision clock synchronization of network audio system based on FPGA and
10-gigabit ethernet,” in Proceedings of the 5th international conference on
information systems and computer aided education (ICISCAE) (China: IEEE:
Dalian), 154–161.

Turchet, L., and Fischione, C. (2021). Elk audio OS: an open source operating system
for the internet of musical things.ACMTrans. Internet Things 2 (12), 1–18. doi:10.1145/
3446393

Turchet, L., and Tomasetti, M. (2023). “Immersive networked music performance
systems: identifying latency factors,” in 2023 Immersive and 3D audio: from
Architecture to automotive (bologna, Italy: IEEE).

Turletti, T. (1994). The INRIA videoconferencing system (IVS). ConeXions 8.

Verheijen, E. N. G. (1998). Sound Reproduction by wave field synthesis. Ph.D. Thesis.
Delft, Netherlands: Technical University Delft.

Winter, F., Ahrens, J., and Spors, S. (2018). “A geometric model for spatial aliasing in
wave field synthesis,” in Proceedings of the German annual conference on acoustics
(DAGA) (Munich, Germany).

Xu, A., Woszczyk, W., Settel, Z., Pennycook, B., Rowe, R., Galanter, P., et al. (2000).
Real-time streaming of multichannel audio data over internet. J. Audio Eng. Soc. 48,
627–641.

Ziemer, T. (2020). “Wave field synthesis,” in Psychoacoustic music sound field
synthesis Current Research in Systematic Musicology. Publishing Springer
International, 203–243.

Frontiers in Virtual Reality frontiersin.org22

Rushton et al. 10.3389/frvir.2024.1391987

https://doi.org/10.1017/s1355771810000324
https://doi.org/10.1017/s1355771810000324
https://doi.org/10.1145/274946.274959
https://man7.org/linux/man-pages/man2/socket.2.html
https://man7.org/linux/man-pages/man2/socket.2.html
https://doi.org/10.1155/2008/583162
https://tamlab.kunstuni-linz.at/projects/ottosonics/
https://doi.org/10.1109/proc.1971.8407
https://doi.org/10.1109/proc.1971.8407
https://doi.org/10.1145/3446393
https://doi.org/10.1145/3446393
https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://doi.org/10.3389/frvir.2024.1391987

	Networked microcontrollers for accessible, distributed spatial audio
	1 Introduction
	2 Background
	2.1 Networked audio
	2.1.1 Protocols and systems
	2.1.2 AoE in the audio industry
	2.1.3 Challenges posed by networked audio

	2.2 Hardware platforms
	2.3 Audio spatialisation
	2.3.1 Periphony and binaural reproduction
	2.3.2 Physically-inspired techniques
	2.3.3 State of the art spatial audio installations

	2.4 Distributed audio systems
	2.4.1 State of the art distributed audio systems

	3 Methods
	3.1 The networked audio server
	3.1.1 Designing a networked audio protocol
	3.1.2 Server design
	3.1.3 Transmission considerations

	3.2 The networked audio client
	3.2.1 Synchronicity with the server
	3.2.1.1 Jitter compensation
	3.2.1.2 Clock drift compensation

	3.3 The audio spatialisation algorithm
	3.3.1 Modularity and maximum delay
	3.3.2 Controlling the WFS algorithm

	3.4 System overview
	3.4.1 Hardware setup
	3.4.2 Software system

	4 Results
	4.1 Technical evaluation
	4.1.1 Round trip time
	4.1.2 Clock drift/skew
	4.1.3 Discussion

	4.2 Perceptual evaluation
	4.2.1 Discussion

	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References

