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Abstract

This article discusses two Maximum a Posteriori (MAP) interpretations for state-of-the-art methods used in sparse
inverse problems: the joint-MAP and the Marginal-MAP. Canonically rooted in a Bayesian framework, sparsity is
modeled by a general spike and slab distribution. The focus is on the recovery of the solution support rather than
on signal amplitudes. We study the prominent Bernoulli-Gaussian model leading to NP-hard optimization problems.
We show that a judicious re-parametrization of the joint-MAP may indeed be a nice surrogate of the marginal-MAP.
Additionally, we explore common continuous relaxations of the support and encompass them under the scope of a
parametrized distribution. Upon describing the behavior of a few relaxations, strong links are established between
the Bernoulli-Gaussian joint-MAP, marginal-MAP, and well-studied methods such as the Lasso and Sparse Bayesian
Learning. Finally, the utilization of randomized rounding for both joint-MAP and marginal-MAP problems yields
valuable insights into obtaining sparse solutions with an emphasis on support recovery.
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1. Introduction1

Inverse problems aim to extract relevant information from degraded acquisitions. The following general linear
model summarizes this framework

y = Hx + e , (1)

where y ∈ RM is the measurement vector given by the M sensors and x ∈ RN is the unknown source signal. The2

forward operator H ∈ RM×N is supposed to be known. Then, the measurements are degraded by a noise e ∈ RM , which3

is supposed to be white and Gaussian of variance σ2
e , i.e., e ∼ N(0, σ2

eIM). In many applications, the structure of H4

makes retrieving the source signal an ill-posed problem. Additional information must thus be artificially introduced,5

taking the form of knowledge of the prior source distribution. Here, the interest is laid upon sparse signals, in which6

most entries in x are equal to 0.7

Sparsity has become one of the most successful state-of-the-art approaches for solving ill-posed inverse prob-8

lems. Among optimization-based approaches for sparse reconstruction, the Lasso proposed by Tibshirani (1996) and9

variants (Argyriou et al., 2012; McDonald et al., 2016) are probably the most popular because they can be formu-10

lated as convex optimization problems. Although the Lasso is a powerful method to identify the support of x, the11

nonzero amplitudes are underestimated due to the ℓ1 regularization. In practice, debiasing has to be performed in a12

post-processing step (Bruce and Gao, 1996; Wright et al., 2009).13

On the other hand, the Bayesian framework makes it possible to model uncertainties in the source signal within
a probabilistic setting, based on likelihood and prior distributions. Bayesian inference then consists of optimizing
or sampling the posterior density of our variable of interest x using Bayes’rule. The Bayesian approach to decision
theory, as described for example by (Robert, 1997), aims at minimizing the Bayes’ risk, that is, the posterior expected
loss

Ex|y {L(x, x̂)} , (2)
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where x̂ is some estimator of x and L a given loss function. The Bayes estimator is then the minimizer of the Bayes14

risk. Two point estimators are of particular interest:15

1. The posterior expectation is the Bayes estimator for the squared ℓ2 loss. This estimator is often called the16

MMSE (Minimum Mean Squared Error) estimator.17

2. The Maximum A Posteriori (MAP) is the Bayes estimator for the 1 − 0 loss and discrete data.18

At first sight, a suitable solution of the inverse problem defined by Equation (1) should minimize the mean square19

error with respect to x. Then, the natural Bayes estimator should be the posterior expectation. In this case, the20

MAP is not a suitable Bayes estimator because the coefficients of x are continuous valued. Moreover, the number21

of parameters increases with the number of observations, so the equivalence between the MAP and the maximum22

likelihood estimators does not apply. This consideration of the definition of a Bayes estimator corroborates the analysis23

made by Gribonval (2011) on the interpretation of a chosen prior in an optimization framework.24

While the Lasso and its variants can be interpreted as MAP estimators with suitable priors, this Bayesian inter-25

pretation is one possible, but is not the unique as debated by Gribonval and Machart (2013). In his talk, Tibshirani26

(2010) even says humorously, but provocatively, in the “Top 7 reasons why this Lasso/L1 stuffmay have gone too far”:27

The Bayesians are getting really pissed off!. (Gribonval and Nikolova, 2021) extends the discussion on the Bayesian28

interpretation of proximity operators and shows that MMSE estimation can be formulated as a penalized least squares29

optimization problem beyond the Gaussian noise. One of the take-home message of this discussion is that the MAP30

interpretation of penalized least-square optimization problems is not always the most relevant, since the MMSE esti-31

mator can also be written as a penalized least-square optimization problem. In this article, we take a complementary32

point of view by showing that the usual MAP approaches consisting of minimizing a ℓ2 + ℓα functionnal, with α < 2,33

are good surrogates for the so-called Marginal-MAP estimator of the support of the sparse signal for which the MAP34

is the Bayes estimator.35

The starting point of this work is the statistical description of sparse signals in the form xn = qnrn, where qn = 1xn,036

is a binary process modeling the support of x, and rn refers to the nonzero coefficients of x (Mendel, 1983). Let37

us stress that the main bottleneck in sparse estimation is the reconstruction of the support q. Two classical MAP38

estimators can usually be considered to recover q, namely the joint-MAP (q and r are jointly estimated from data y)39

and marginal-MAP (q is estimated alone, while variables r are marginalized out) as discussed by Champagnat et al.40

(1996).41

Contributions. The first purpose of this article is to bring a unified view on classical approaches used for sparse42

inverse problems, including the Lasso, Sparse Bayesian Learning (SBL) and ℓ0-minimization. The links between43

marginal and joint-MAP estimators lead to a novel interpretation of these methods. These links mainly come from the44

study of continuous relaxations of the spike-and-slab model, which are less classical in the inverse problem literature.45

In Section 2, we study the joint-MAP and marginal-MAP estimators for the support of a Bernoulli-Gaussian (BG)46

model. The main results are stated in Theorem 2.1 and Theorem 2.4, which show that optimizing the joint-MAP47

criterion with an appropriate choice of hyper-parameter may help to optimize the marginal-MAP criterion. Since48

the BG model leads to challenging combinatorial optimization problems, we study a family of continuous priors49

for the support q in Section 3. Using an appropriate choice of the continuous prior, the joint-MAP reduces to the50

usual ℓ2 + ℓα optimization problem. Specifically, we show that the Laplacian prior is not the only interpretation of51

the Lasso. An alternative prior for x is proposed, which leads to the same optimization problem. Moreover, the52

marginal-MAP approach sheds new light on Sparse Bayesian Learning (Wipf and Rao, 2004) which can be viewed53

as a continuous relaxation of the Bernoulli-Gaussian model. Finally, we study in Section 4 the randomized rounding54

approach Raghavan and Tompson (1987), that is rounding a fractional solution in [0, 1] to an integer solution with55

appropriate randomization, to estimate a good Boolean solution for support the original joint-MAP and marginal-MAP56

problems.57

2. The Bernoulli-Gaussian model and the Maxima A Posteriori58

The Bernoulli-Gaussian model falls into the category of spike and slab models (Ishwaran and Rao, 2005; Yen,
2011) and is defined as follows. Let q ∈ {0; 1}N be the support of x, i.e., qn = 1 if xn , 0 and qn = 0 otherwise. In
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addition, let r ∈ RN such that xn = qnrn. When qn = 1, rn aims to model the amplitude of xn. The probabilistic model
for source signals reads

x = Qr with Q = Diag
[
q
]
∈ RN×N , (3)

where qn are independent and identically distributed (i.i.d) variables following the Bernoulli distribution of parameter
p ∈ (0, 1) (with p(qn = 1) = p), and rn are i.i.d. centered Gaussian random variables:

∀n, qn ∼ B(p) and rn ∼ N(0, σ2
r ) . (4)

To get sparsity, the parameter p of the Bernoulli distribution is assumed to satisfy 0 < p ≤ 1/2. In the following, we59

focus on estimating the support q.60

2.1. Alternative MAP formulations61

Champagnat et al. (1996) define two MAP estimators by maximizing the joint posterior log p(r,q|y) in both q62

and r, and the marginal posterior log p(q|y) with respect to the support q only. The latter is Bayes’ estimator and63

maximizes the accuracy of the estimated support.64

Joint-MAP. Up to direct calculation, one can see that maximizing the joint posterior distribution log p(r,q|y) is equiv-
alent to minimizing:

J(r,q; λ) ≜
1

2σ2
e
||y −HQr||22 +

1
2σ2

r
||r||22 + λ∥q∥0 , (5)

where ∥ · ∥0 stands for the ℓ0-“norm” or number of non-zero entries, and (see, e.g., (Soussen et al., 2011))

λ = log
(

1 − p
p

)
. (6)

Hereafter, (r̂, q̂) will refer to the MAP estimator, that is, the minimizer of (5). Furthermore, because of the sparsity65

assumption, p < 1
2 , thus λ will be treated as a non-negative hyperparameter.66

One can notice from Equation (5) that the dependency of J upon r is quadratic. Hence, (r̂, q̂) needs to satisfy the
consistency condition:

r̂(q̂) = σ2
r

(
σ2

eIN + σ
2
r QT HT HQ

)−1
Q̂T HT y , (7)

which is derived by annealing the gradient of J with respect to r. Using the Woodbury matrix identity, the latter
equation can be rewritten as:

r̂(q̂) = σ2
r Q̂T HTΓy(q̂)−1y , (8)

where matrix Γy(q) is defined for all q ∈ {0; 1}N , by

Γy(q) = σ2
eIM + σ

2
r HQQT HT . (9)

One can notice from (8) that r̂n(q̂) = 0 whenever q̂n = 0.67

As shown by Soussen et al. (2011), minimizing Equation (5) jointly in (q, r) ∈ {0, 1}N × RN is equivalent to
addressing the ℓ0-penalized least squares problem:

min
x∈RN

{ 1
2σ2

e
||y −Hx||22 +

1
2σ2

r
∥x∥2 + λ∥x∥0

}
. (10)

Another reformulation is obtained by plugging Equation (8) into Equation (5). The joint-MAP estimate q thus mini-
mizes the criterion:

J0 (q; λ) ≜ J (r̂(q),q; λ) , (11)
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which will be referred to as the joint-MAP criterion and writes (Goussard et al., 1990):

J0 (q; λ) =
1
2

ytΓy(q)−1y + λ∥q∥0 , (12)

with Γy(q) defined in (9).68

The global optimization ofJ0(q; λ) is computationally expensive, the problem being NP-hard. Recently, Hazimeh69

et al. (2021) proposed a branch and bound based mixed integer programming method to solve exactly Equation (10).70

Alternatively, local minimizers can be obtained using a proximal descent similar to the iterative (hard) thresholding71

studied by Blumensath and Davies (2009); Kowalski (2014) or the majorize-minimization procedure proposed by Yen72

(2011) to optimize the BG spike and slab model. Greedy methods inspired from the single most likely replacement of73

Goussard et al. (1990) may also be employed, see (Soussen et al., 2011).74

Marginal-MAP. Marginal-MAP estimation relies on the maximization of the posterior

p(q|y) =
∫

p(q, r|y) dr (13)

after marginalizing out r. According to Champagnat et al. (1996), the marginal-MAP estimate can be found by
minimizing

M0(q; λ) ≜
1
2

ytΓ−1
y (q)y +

1
2

log |Γy(q)| + λ∥q∥0 . (14)

Hence, using Equation (12), we have:

M0(q; λ) = J0 (q; λ) +
1
2

log
∣∣∣Γy(q)

∣∣∣ . (15)

The marginal-MAP aims to provide a Bayesian estimator of the support of the solution. Once this support is75

known, one can still estimate the non-zero coefficients using Equation (8). (Protter et al., 2010) compare this estimate76

with the MMSE estimate of the BG signal for matrices H having orthogonal columns.77

Hereafter, we study the relation between the minimizers of the marginal-MAP criterionM0(q, λ) defined in Equa-78

tion (14) and those of the joint-MAP J0(q, λ) defined in Equation (12).79

2.2. Joint-MAP vs Marginal-MAP minimizers80

In the case of orthogonal matrices H, the MAP estimators have a closed-form expression involving a thresholding81

operation on the amplitudes yn; see Appendix B. The estimated supports q related to J0 andM0 differ only by the82

thresholding value. Furthermore, Turek et al. (2011) performed a comparative theoretical and experimental analysis83

of the posterior mean estimator of x and its ”marginal-MAP” estimator x = QM r̂(qM), where qM is obtained by84

minimizing Equation (14) and the r̂ operator was defined in (8). For arbitrary (non-orthogonal) matrices H of rank85

min(M,N), these thresholds appear naturally in the following bounds of the marginal-MAP functional.86

Theorem 2.1. Suppose that the rank of H is min(M,N). Let J0(q; λ) andM0(q; λ) be the joint and marginal-MAP
criteria given by (12) and (14), respectively. Let L = ∥HHT ∥ be the largest eigenvalue of HHT , then for all λ > 0,

J0(q; λ) +
M
2

log(σ2
e) ≤ M0(q; λ) ≤ J0(q; κ(λ)) +

M
2

log(σ2
e) (16)

with

κ(λ) = λ + log


√

Lσ2
r + σ

2
e

σ2
e

 . (17)

Moreover

M0(q; λ) = J0(q; κ(λ)) +
M
2

log(σ2
e) (18)

iff the nonzero columns of HQ are orthogonal with norm
√

L.87
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All proofs are deferred to the supplementary materials. In the following, the notation κ(λ) will refer to the defini-88

tion given in Theorem 2.1. Moreover, we will always assume that rank(H) = min(M,N).89

Unfortunately, this theorem does not allows one to conclude anything about the computation of the minimizers of90

M0(q; λ) from those of J0(q; κq) when the equality (18) is not achieved. In Appendix B.1, we provide a closed form91

expression of the minimizers of the both criteria in the orthogonal case.92

Hereafter, we study how some global minimizers ofJ0(q; κ(λ)) may be related to the minimizers ofM0(q; λ). Let93

(qJ ) (resp. qM) be a global minimizer of J0(q; κ(λ)) (resp. M0(q, λ)). Using the singular value decomposition of94

HQJ (resp. HQM), we can derive necessary and sufficient conditions that must be satisfied by qJ (resp. qM). Next95

Lemma states these conditions for the JMAP.96

Lemma 2.2 (joint-MAP necessary and sufficient conditions). Suppose that the rank of H is min(M,N). Let qJ be97

a global minimizer ofM0(q; λ). Let zJk be the singular values of HQJ , such that HQJ = UJDiag
[
zJk

]
(VJ )T with98

orthogonal (unitary) matrices UJ and V. Let q be any support and let zk be the singular values of HQ, such that99

HQ = UDiag [zk] VT with orthogonal (unitary) matrices U and V. We denote by uJk (resp. uk) the columns of UJ100

(resp. U).101

Then qJ is a global minimizer of J(q; λ) iff the following conditions are satisfied for all q102

JMAP Upper Singular Conditions: If ∥q∥0 ≤ ∥qJ∥0

(
∥qJ∥0 − ∥q∥0

)
2σ2

eλ ≤

∥qJ ∥0∑
k=∥q∥0+1

 (zJk )2σ2
r

(zJk )2σ2
r + σ

2
e

 ⟨uk
J , y⟩2+

∥q∥0∑
k=1


 (zJk )2σ2

r

(zJk )2σ2
r + σ

2
e

 ⟨uJk , y⟩2 −  z2
kσ

2
r

z2
kσ

2
r + σ

2
e

 ⟨uk, y⟩2


JMAP Lower Singular Conditions: If ∥qJ∥0 ≤ ∥q∥0(
∥q∥0 − ∥qJ∥0

)
2σ2

eλ ≥

∥q∥0∑
k=∥qJ ∥0+1

 z2
kσ

2
r

z2
kσ

2
r + σ

2
e

 ⟨uJk , y⟩2+∥q∥0∑
k=1


 (zJk )2σ2

r

(zJk )2σ2
r + σ

2
e

 ⟨uJk , y⟩2 −  z2
kσ

2
r

z2
kσ

2
r + σ

2
e

 ⟨uk, y⟩2


For the MMAP, similar conditions are derived in the next Lemma.103

Lemma 2.3 (marginal-MAP necessary and sufficient conditions). Suppose that the rank of H is min(M,N). Let qM104

be a global minimizer ofM0(q; λ). Let zMk be the singular values of HQM , such that HQM = UMDiag
[
zMk

]
(VM)T

105

with orthogonal (unitary) matrices UM ∈ RMM and VM ∈ RNN . Let q be any support and let zk be the singular values106

of HQ, such that HQ = UDiag [zk] VT with orthogonal (unitary) matrices U and V. We denote by uMk (resp. uk) the107

columns of UM (resp. U).108

Then qM is a global minimizer ofM(q; λ) iff the following conditions are satisfied for all q109

MMAP Upper Singular Conditions: If ∥q∥0 ≤ ∥qM∥0

(
∥qM∥0 − ∥q∥0

)
2σ2

e

λ + log


√√

(zMk σr)
2
+ σ2

e

σ2
e


 ≤

∥qM∥0∑
k=∥q∥0+1

 (zMk )2σ2
r

(zMk )2σ2
r + σ

2
e

 ⟨uMk , y⟩2+
∥q∥0∑
k=1


 (zMk )2σ2

r

(zMk )2σ2
r + σ

2
e

 ⟨uMk , y⟩2 −  z2
kσ

2
r

z2
kσ

2
r + σ

2
e

 ⟨uk, y⟩2 + log


√

(zkσr)2 + σ2
e

σ2
e




MMAP Lower Singular Conditions: If ∥qM∥0 ≤ ∥q∥0

(
∥q∥0 − ∥qM∥0

)
2σ2

e

λ + log


√√

(zMk σr)
2
+ σ2

e

σ2
e


 ≥

∥q∥0∑
k=∥qM∥0+1

 z2
kσ

2
r

z2
kσ

2
r + σ

2
e

 ⟨uk, y⟩2+

∥q∥0∑
k=1


 (zMk )2σ2

r

(zMk )2σ2
r + σ

2
e

 ⟨uMk , y⟩2 −  z2
kσ

2
r

z2
kσ

2
r + σ

2
e

 ⟨uk, y⟩2 + log


√

(zkσr)2 + σ2
e

σ2
e



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Because for all k we have

λ + log


√√

(zMk σr)
2
+ σ2

e

σ2
e

 ≤ λ + log


√

Lσ2
r + σ

2
e

σ2
e

 = κ(λ) and log


√

(zkσr)2 + σ2
e

σ2
e

 > 0 ,

it is worth noting that if a support q satisfies the JMAP Upper Singular Conditions for J(q; κ(λ)), then q also satisfies110

the MMAP Upper Singular Conditions forM(q; λ). Conversely, if q satisfies the MMAP Lower Singular Conditions111

forM(q; λ), then q satisfies the JMAP Lower Singular Conditions forJ(q; κ(λ)). Thanks to the two previous Lemmas,112

this remark allows one to directly state the following Theorem113

Theorem 2.4. Suppose that the rank of H is min(M,N). Let q∗ be a support and let Let z∗k be the singular values of114

HQ∗, such that HQ∗ = U∗Diag
[
z∗k

]
(V∗)T with orthogonal (unitary) matrices U∗ ∈ RMM and V∗ ∈ RNN . Let q be any115

support and let zk be the singular values of HQ, such that HQ = UDiag [zk] VT with orthogonal (unitary) matrices U116

and V. We denote by u∗k (resp. uk) the columns of U∗ (resp. U).117

If q∗ satisfies the JMAP Upper Singular Conditions for J(q; κ(λ) and the MMAP Lower Singular Conditions for118

M(q; λ), then q∗ is a global minimizer of J(q; κ(λ)) and a global minimizer ofM(q; λ).119

That is, minimizing the JMAP with the right value of the hyper-parameter κ(λ) may lead to a minimizer of the120

MMAP with hyper-parameter λ. The difficulty comes to identify when the set of support satisfying both the Upper121

Singular Conditions for J(q; κ(λ)) and the MMAP Lower Singular Conditions forM(q; λ) may be empty or not.122

In their study, Argyriou et al. (2012) proved that the Lasso and the k-support norm are the most effective convex123

relaxations of the ℓ0 penalty and the ℓ2-constrained ℓ0 penalty, respectively. These convex relaxations enable one to124

design efficient and guaranteed optimization solvers. In the following section, the discrete Bernoulli distribution is125

replaced with a continuous distribution, which allows the former relaxations to be recovered as special cases. The126

joint-MAP and marginal-MAP estimators are further modified to accommodate such continuous priors. In Barbault127

et al. (2023), we proposed an EM approach to obtain a suboptimal solution to the marginal-MAP problem, and showed128

some improvement in support estimation when the operator H is highly correlated. Moreover, in Section 4, we will129

explain why the marginal-MAP approach may be particularly effective for highly correlated operators H.130

3. Continuous relaxation of the Bernoulli prior131

Back to the spike and slab model, we may consider a continuous model for q. We consider the following family
of continuous priors parametrized by ρ ≥ 0

p(q) = C(ρ, α) exp

−ρ N∑
n=1

qαn

1B(q) , (19)

where α > 0, B = [0, a]N with a > 0, or B = [0,+∞[N , and C(ρ, α) is a normalizing constant in order to have a unit132

mass. When B = [0,+∞[N , we set a = +∞. Similar to Section 2, r is a Gaussian process independent of q, with133

r ∼ N(0, σ2
r IN).134

Some special cases will be of particular interest. If α = 1 and B = [0, 1]N , one recovers the continuous Bernoulli135

distribution studied by Loaiza-Ganem and Cunningham (2019), while if B = [0,+∞[N we have a simple exponential136

distribution. If α = 2 and B = [0,+∞[N , one recovers the half-normal distribution or the truncated half-normal137

distribution as soon as a < +∞.138

3.1. Continuous joint-MAP139

Similar to Section 2, joint-MAP estimation can be stated as the joint minimization problem

min
r∈RN ,q∈B

Jα(r,q; ρ) , (20)
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with, still by using Q = Diag
[
q
]
,

Jα(r,q; ρ) ≜
1

2σ2
e
||y −HQr||22 +

1
2σ2

r
||r||22 + ρ∥q∥

α
α . (21)

As in the discrete BG case studied in Section 2, we can rewrite the joint-MAP estimator of q as the minimizer of

Jα (q; ρ) ≜ Jα (r̂(q),q; ρ) , (22)

with r̂(q) defined in (8) (by replacing q̂ and Q̂ by q and Q therein). Then, this joint-MAP criterion can also be written
as:

Jα (q; ρ) =
1
2

ytΓy(q)−1y + ρ∥q∥αα , (23)

with Γy(q) defined in (9). One can remark that, when α→ 0, then Jα (q; ρ)→ J0 (q; ρ) with J0 as defined in (11).140

Notice that for binary maps q ∈ {0, 1}N ,Jα(q; ρ) = J0(q; ρ) with functionalJ0 defined in Equation (5). Moreover,
when a ≥ 1, it is clear that {0, 1}N ⊂ B and then:

min
q∈B
Jα(q; ρ) ≤ min

q∈{0,1}N
J0(q; ρ) . (24)

This lower bound was exploited for α = 2 and a = 1 within the so-called perspective relaxation of the BG joint-MAP141

studied by Pilanci et al. (2015).142

The next theorem states that the joint minimization in (r,q) is equivalent to minimizing an appropriate functional143

in x = Qr ∈ RN .144

Theorem 3.1. Let α > 0. Define

Jα(x; ρ) ≜
1

2σ2
e
||y −Hx||22 +

1
2

N∑
n=1

ϕα,a(xn;σ2
r ; ρ)

with

ϕα,a(x;σ2
r ; ρ) =


(

1
ασ2

r

) α
α+2 (α + 2) ρ

2
α+2 |xk |

2α
α+2 if |x| ≤ a

α+2
2

√
αρσ2

r ,
x2

σ2
r a2 + 2ρaα if |x| > a

α+2
2

√
αρσ2

r .

Then

min
q∈B
Jα(q; ρ) = min

x∈RN
Jα(x; ρ).

Specifically, if (r∗,q∗) is a global minimizer of Jα, then x∗ = Q∗r∗ is a global minimizer of J̃α. Conversely, let x∗ be
a global minimizer of J̃α. Define for all k,

q∗k =


(

1
αρσ2

r

) 1
α+2
|x∗k |

2
α+2 if |x∗k | ≤ a

α+2
2

√
αρσ2

r ,

a if |x∗k | > a
α+2

2
√
αρσ2

r ,

and r∗k =
x∗k
q∗k

if q∗k , 0, and 0 otherwise. Then, (q∗, r∗) is a global minimizer of Jα.145

This theorem states that the joint minimization of Jα(r,q, ρ) can be replaced by the minimization of Jα(x, ρ).146

Then, one can recover the minimizers (q, r) of Jα from the minimizer x of J̃α. Moreover, one can remark than J̃α147

is convex as soon as α ≥ 2. Indeed, let us first notice that ϕα,a(x;σ2
r ; ρ) is continuous at both points x such that148

|x| = a
α+2

2
√
αρσ2

r , with ϕα,a(x;σ2
r ; ρ) = aαρ(α + 2). We can further notice that when α ≥ 2, 2α

α+2 ≥ 1, so ϕα,a is149

piecewise convex. At last, we check that the left and right derivatives of ϕα,a at |x| = a
α+2

2
√
αρσ2

r are equal.150
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Some special cases are of particular interest when α = 2, i.e., for a half-Gaussian distribution on q. ForB = [0, 1]N ,
we have

J2(x; ρ) =
1

2σ2
e
∥y −Hx∥22 + 2ρRhub

 x√
2ρσ2

r

 , (25)

with Rhub the reverse Huber function Pilanci et al. (2015) defined componentwise by:

Rhub(x) =

|x| if |x| ≤ 1,
x2+1

2 if |x| ≥ 1.

Moreover, for B = [0,+∞[N , we have

J2(x; ρ) =
1

2σ2
e
∥y −Hx∥22 +

√
2ρ
σ2

r
∥x∥1. (26)

Hence, the well-known Lasso problem can be interpreted as a “continuous” spike and slap model with a half-Gaussian
prior on q. (Jiang and Nadarajah, 2019) give the characteristic function of the product of a normally distributed random
variable and an independent random variable. In the framework of continuous spike and slab model, the characteristic
function of xn = qnrn reads:

E
{
eitxn

}
=

1√
1 + σ

2
r

2ρ t2
, (27)

which does not correspond to a well-known distribution, as far as we know. More specifically, x does not follow a151

Laplacian distribution (one can remark that the characteristic function is in L2(R) but not in L1(R)).152

Still using Jiang and Nadarajah (2019), if one chooses a Rayleigh distribution of scale parameter 1
ϵ
> 0 as a prior

on qn, that is

p(qn) = 2ϵ2qne−ϵ
2q2

n , qn ≥ 0 , (28)

then xn = qnrn follows a Laplacian distribution with scale parameter
√
σ2

r
2ϵ2 . While the half Gaussian and Rayleigh153

priors on q both lead to the Lasso, it is interesting to notice that a Rayleigh distribution has a mode in ϵ > 0, and the154

half-Gaussian distribution has a mode in 0. Moreover, with the half-Gaussian prior on q, one can recover (q, r) from155

x with the closed form given in Theorem 3.1, which is not the case anymore with the Rayleigh prior on q.156

3.2. Continuous marginal-MAP157

The marginal-MAP estimator related to the continuous spike and slab model with a prior Equation (19) reads

Mα(q; ρ) ≜
1
2

ytΓy(q)−1y +
1
2

log |Γy(q)| + ρ∥q∥αα . (29)

Here again, as soon as a ≥ 1, the BG-marginal-MAP criterion in Equation (14) can be bounded from below:

min
q∈B
Mα(q; ρ) ≤ min

q∈{0,1}N
M(q; ρ) . (30)

withMα(q; ρ) =M(q; ρ) for all q ∈ {0, 1}N . Similar to the BG model, see Equation (15), we have

Mα(q; ρ) = Jα (q; ρ) +
1
2

log
∣∣∣Γy(q)

∣∣∣ (31)

where Jα (q; ρ) = Jα (r̂(q); q; ρ) with r̂(q) defined in Equation (8). The bounds of Theorem 2.1 are adapted, the158

upper-bound being looser.159
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Theorem 3.2. Let Jα(q; ρ) andMα(q; ρ) denote the continuous joint-MAP and marginal-MAP criteria, respectively.
Assume that for all n, qn ≤ a with a > 0, and let L = ∥HHT ∥ be the largest eigenvalue of HHT . Then,

Jα(q; ρ) +
M
2

log(σ2
e) ≤ Mα(q; ρ) ≤ Jα(q; ρ) +

M
2

log(σ2
e + a2Lσ2

r ).

In Appendix B.2, we give the minimizers of the continuous Joint-MAP and the marginal-MAP in the case of160

orthogonal matrices H for α = 1 and α = 2.161

The marginal-MAP approach is at the heart of the so-called Sparse Bayesian Learning (SBL) proposed by Tipping
(2001) and further studied in the sparse inverse problem context by Wipf and Rao (2004). SBL aims to maximize the
so-called Type-II likelihood:

υII = argmax
υ

p(υ|y) = argmax
υ

p(y|υ)p(υ) = argmin
υ

1
2

ytΥy(υ)−1y +
1
2

log |Υy| + R(υ) (32)

with Υy(υ) = σ2
eI + HDiag [υ] HT , R(υ) = − log p(υ). For fixed parameter σ2

r , if the prior on υ is chosen follow-
ing Equation (19), that is such that

p(υ) = C(ρσα, α) exp

−ρσα N∑
n=1

υ
α
2

 , (33)

hence we have

R(υ) = − log(p(υ)) = ρ
(
σ2

r

)− α2
∥υ∥

α
2
α + Constant. (34)

By conditioning on q, he generative prior model for signal x reads x|q ∼ N(0, σ2
r QT Q). Then, the change of variable162

υ[n] = q[n]2σ2
r for all n in Equation (29) shows that the marginal-MAP estimator related to the continuous spike and163

slab model is the type-II estimator used in the SBL.164

In most applications, SBL is applied without choosing any prior on υ and reduces to minimizing

SBL(υ) =
1
2

ytΥy(υ)−1y +
1
2

log |Υy(υ)| . (35)

It is interesting to notice that by setting ρ = 0 in Equation (19), the marginal-MAP criterionMα is lower bounded by
the SBL criterion for all α > 0:

min
υ∈RN

+

SBL(υ) = min
q∈RN

+

Mα(q; 0) ≤ min
υ∈[0,σ2

r ]N
SBL(υ) = min

q∈[0,1]N
Mα(q; 0) ≤ min

q∈{0,1}N
M0(q; 0) (36)

because the term ρ∥q∥αα vanishes within Equation (29). Furthermore, (Wipf and Rao, 2004) have shown that SBL165

leads to a sparse estimation: that is, even with no prior on q, one still gets a sparse estimation of the support q using166

the marginal-MAP approach with ρ = 0.167

4. Randomized rounding168

Randomized rounding is an optimization technique introduced by Raghavan and Tompson (1987) that connects169

continuous and discrete domains. When dealing with solutions that exist in a continuous space (such as [0, 1]N), we170

can use randomized rounding to convert fractional values into discrete values within {0, 1}N . This method provides171

approximation guarantees and has been applied to sparse regression models that use a Bernoulli-Gaussian prior, as172

demonstrated by Pilanci et al. (2015). Their work provided probabilistic bounds on the global solution of an ℓ0173

constrained problem, which can be seen as a ℓ0 constrained joint-MAP. We first extend their result to the regularized174

ℓ0 problem, which corresponds to the joint-MAP explained in Section 2. We then use the randomized rounding175

strategy to solve the marginal-MAP problem as well.176

In the following, we make the hypothesis that the matrix H as normalized columns.177
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4.1. Randomized rounding for the joint-MAP178

Building upon (Pilanci et al., 2015), we adapt the randomized rounding approach to generate a Boolean solution
q̃ ∈ {0, 1}N from a fractional solution q̂ ∈ [0, 1]N as follows

∀k, P(q̃[k] = 1) = (q̂[k])2 . (37)

Hence, by construction, q̃ is a vector of i.i.d. random variables and we have:

E {∥q̃∥0} = ∥q̂2∥1 (38)

Where, with a slight abuse of notation, we denote by q̂2 the vector q̂ where all the elements are squared. Furthermore,
we observe the straightforward relationship, for all q̃ ∈ {0, 1}N , for all α > 0

Jα(q̃, ρ) = J0(q̃, ρ) (39)

where criteria J0 and Jα have been defined in (11) and (22), respectively.179

We first introduce the following key lemma that is essential in providing bounds for both the joint-MAP and the180

marginal-MAP.181

Lemma 4.1. Let q̂ ∈ [0, 1]N . Let q̃ be a N-sample of independent Bernoulli distributed random variables such that
for all k, P(q̃[k] = 1) = (q̂[k])2 . Let r = # {k s.t. q̂[k] ∈ (0, 1)}. Suppose that α ≤ 2. Then, with probability at least
1 − 2/min{r,N}c1 , we have

J0(q̃, ρ) − Jα(q̂, ρ) <
√

c

√
r log min{r,N}
σ2

r

where c1 and c are constants (see Appendix A.6 for the details).182

When α ≤ 2, sparse solutions are ensured. Conversely, for α > 2, J̃α(x) becomes differentiable everywhere, lead-183

ing to non-sparse minimizers in general. Decreasing α is expected to yield sparser minimizers with fewer fractional184

coefficients.185

This lemma allows us to directly state the following theorem, akin to the work by Pilanci et al. (2015, Theorem186

3), but adapted to the regularized form of the ℓ0 joint-MAP problem instead of its constrained variant and extended to187

any Jα relaxation with α ≤ 2, minimized with respect to q ∈ [0, 1]N .188

Theorem 4.2. Let α ≤ 2. Let qJ
α = argminJα(q, ρ) and let q̃J

α be a N-sample of independant Bernoulli distributed
random variables such that for all k, P(q̃J

α[k] = 1) = (qJ
α[k])2

. Let qJ
0 = argminJ0(q, ρ) . Then, with probability at

least 1 − 2
min{n,r}cJ , we have

J0(q̃J
α, ρ) − J0(qJ

0; ρ) <
√

c

√
rJ log min{rJ ,N}

σ2
r

with rJ = #
{
k s.t. qJ

α[k] ∈ (0, 1)
}
.189

This theorem is a direct consequence of Lemma 4.1. Indeed, since qJ
α is by definition a global minimizer of Jα

and Jα is a continuous relaxation of J0 we have that Jα(qJ
α, ρ) ≤ J0(qJ

0 , ρ). Moreover, qJ
0 being a global minimizer

of J0, we have that J0(qJ
0 , ρ) ≤ J0(q̃J

α, ρ). Hence,

Jα(qJ
α, ρ) ≤ J0(qJ

0 , ρ) ≤ J0(q̃J
α, ρ) . (40)
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4.2. Randomized rounding for the marginal-MAP190

We extend the results provided in Theorem 4.2 for the joint-MAP to the marginal-MAP in next Theorem. We still
have the natural relationship for all q̃ ∈ {0, 1}N , for all α > 0

Mα(q̃, λ) =M0(q̃, λ) . (41)

Theorem 4.3. Let α ≤ 2. Let qM
α = argminMα(q, λ) and let q̃M

α be a N-sample of independent Bernoulli dis-
tributed random variables such that P(q̃M

α [k] = 1) = (qM
α [k])2

∀k . Let qM
0 = argminM0(q, λ) . Then, denoting by

γ2 = var log |Γy(q̃M
α )|, with probability at least max

{
1 − γ

2

δ
, 1 − 2

min{r,N}cM

}
, we have

M0(q̃M
α , λ) −M0(qM

0 ; λ) <
√

c

√
rM log min{rM ,N}

σ2
r

+ δ

with rM = #
{
k s.t. qM

α [k] ∈ (0, 1)
}
.191

The part of the bound relative to δ comes from the Chebychev inequality (see the proof for the details), which
is then inherently loose but serves as a valuable lens. The non-convex nature of Mα(q, λ) makes finding a global
minimizer considerably more difficult compared to obtaining a minimizer of Jα(q, ρ). However, certain scenarios
allow the application of randomized rounding to a minimizer of Jα(q, κ(λ)) to yield an estimation of the minimizer of
M0(q; λ). Notably, if

Jα(qJ
α, κ(λ)) <M0(qM

0 ; λ) −
M
2

log(σ2
e) , (42)

then, as per Lemma 4.1, it directly follows that, with a probability at least 1 − 2
min{rJ ,N}cJ

J0(q̃J
α, κ(λ)) +

M
2

log(σ2
e) −M0(qM

0 ; λ) <
√

c

√
rJ log min{rJ ,N}

σ2
r

. (43)

A less stringent condition emerges as

Jα(qJ
α, κ(λ)) <M0(q̃M

α ; λ) −
M
2

log(σ2
e) . (44)

In such instances, the following relation holds

J0(q̃J
α, κ(λ)) −M0(qM

0 ; λ) +
M
2

log(σ2
e) < J0(q̃J

α, κ(λ)) −M0(q̃M
α ; λ) +

M
2

log(σ2
e) +M0(q̃M

α ; λ) −M0(qM
0 ; λ)

< J0(q̃J
α, κ(λ)) − J0(qJ

α, κ(λ)) +M0(q̃M
α ; λ) −M0(qM

0 ; λ) . (45)

Thus, with probabilty at least max
{
1 − 2

min{rJ ,N}cJ , 1 −
γ2

δ
, 1 − 2

min{rM ,N}cM

}
, we have that

J0(q̃J
α, κ(λ)) −M0(qM

0 ; λ) +
M
2

log(σ2
e) <

√
c

√
rJ log min{rJ ,N}

σ2
r

+
√

c

√
rM log min{rM ,N}

σ2
r

+ δ (46)

with rJ = #
{
k s.t. qJ

α[k] ∈ (0, 1)
}

and rM = #
{
k s.t. qM

α [k] ∈ (0, 1)
}

192

When 1
2 log |Γy(qM

0 )| closely approaches its maximum value, that is, log
(
σ2

e+Lσ2
r

σ2
e

)
∥qM

0 ∥0 +
M
2 log(σ2

e) , – implying

that HQM
0 is not ”excessively non-orthogonal” – the condition Jα(qJ

α; κ(λ)) <M0(qM
0 ; λ) − M

2 log(σ2
e) should be met,

as we have

Jα(qJ
α; κ(λ)) −M0(qM

0 ; λ) +
M
2

log(σ2
e) = Jα(qJ

α; κ(λ)) − J0(qM
0 ; κ(λ)) + log

(
σ2

e + Lσ2
r

σ2
e

)
∥qM

0 ∥0

+
M
2

log(σ2
e) −

1
2

log |Γy(qM
0 )| (47)

Hence, the uniform rounding of the minimizer of Jα(q, κ(λ)) is able to provide a reliable estimation of the minimizer193

of the original Bernoulli-Gaussian marginal-MAP estimation of the support of the solution.194
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5. Conclusion195

Inverse problems typically focus on signal recovery, but selecting the support of a sparse signal is also crucial196

and directly related to variable selection in statistics. In this context, we studied the two possible joint or a marginal-197

MAP criteria to estimate the support of a BG signal. We also introduced a continuous relaxation approach, where a198

continuous parametric model replaces the binary process that models the support. This approach shows that commonly199

used relaxations affect the posterior distribution of the solution.200

We acknowledge the effectiveness of both the LASSO (and possibly nonconvex variants) and SBL approaches.201

However, we have discovered a strong correlation between both. It should be noted that the SBL method is commonly202

used in solving Magneto/Electroencephalography inverse problems due to the high correlation of the Lead field oper-203

ator. This success can be attributed to marginal-MAP optimization, which could better identify the sources’ support204

than joint-MAP.205

By incorporating randomized rounding techniques, we efficiently minimize the convex joint-MAP with optimal206

hyper-parameters, facilitating robust estimation in the marginal case. However, high correlations in the matrix H can207

present challenges in the estimation process. Future efforts will focus on refining the bounds derived from Chebyshev’s208

inequality and exploring more efficient algorithms to minimize the marginal-MAP, whether in its continuous or binary209

form. These endeavors aim to enhance the accuracy and effectiveness of support estimation and signal recovery210

techniques in sparse signal processing applications. Finally, Bayesian methods can address uncertainty quantification,211

an important problem that should be considered in future work. A measure of uncertainty on the selected support is212

undoubtedly a key to making these methods even more appealing in some applications like medical imaging.213
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Appendix A. Proofs217

Appendix A.1. Proof of Theorem 2.1218

Hereafter, we denote Hq ∈ RM×∥q∥0 the matrix gathering the nonzero columns of HQ, i.e., the columns hi of H for
which qi = 1. We have that

M0(q; λ) = J0 (q; λ) +
1
2

log
∣∣∣Γy(q)

∣∣∣
with Γy(q) defined in (9).219

The matrices being positive semi-definite, Minkowsky’s determinant inequality implies that∣∣∣σ2
eIM

∣∣∣ ≤ ∣∣∣σ2
eIM

∣∣∣ + ∣∣∣σ2
r HQQT HT

∣∣∣ ≤ ∣∣∣Γy(q)
∣∣∣ , (A.1)

then the lower bound of Theorem 2.1 is found:

M log(σ2
e) ≤ log

∣∣∣Γy(q)
∣∣∣ . (A.2)

To prove the upper bound, let us denote by zk (k = 1, . . . ,q∥0) the singular values of Hq, sorted in descending order.
Clearly, ∥HQ∥ = ∥Hq∥ = maxk{zk}. According to the sub-multiplicative property of matrix norms, we have

∥HQ∥2 = ∥HQQT HT ∥ ≤ ∥H∥2 . ∥Q∥2 = ∥HHT ∥ . ∥Q∥2 ≤ ∥HHT ∥ = L. (A.3)

So for all k, zk ≤
√

L.220

It follows from (9) that the eigenvalues of Γy(q) are equal to σ2
e+σ

2
r z2

k (for k = 1, . . . , ∥q∥0) and σ2
e (eigenvalue with

multiplicity min(M,N)−∥q∥0). The former are upper bounded by σ2
e +σ

2
r L. Defining the matrix Ξ = Diag(ξ1, . . . , ξM)

such that ξk = L for k = 1, . . . , ∥q∥0 and ξk = 0 otherwise, we get∣∣∣Γy(q)
∣∣∣ ≤ ∣∣∣σ2

eIM + σ
2
rΞ

∣∣∣ (A.4)

and then

log
∣∣∣Γy(q)

∣∣∣ ≤ log(σ2
e + Lσ2

r )∥q∥0 + (M − ∥q∥0) log(σ2
e) = log

(
σ2

e + Lσ2
r

σ2
e

)
∥q∥0 + M log(σ2

e) , (A.5)

hence the upper bound.221

When all the nonzero columns of Hq are orthogonal with the same norm
√

L, we directly have the equality
in Equation (A.4), hence in Equation (A.5), thanks to the Sylvester determinant Theorem. Conversely, when the latter
equalities hold, we have that

∣∣∣Γy(q)
∣∣∣ = (σ2

e)M−∥q∥0
∥q∥0∏
k=1

(
σ2

e + σ
2
r z2

k

)
=

∣∣∣σ2
eIM + σ

2
rΞ

∣∣∣ = (σ2
e)M−∥q∥0

∥q∥0∏
k=1

(
σ2

e + σ
2
r L

)
. (A.6)

Therefore, for all k, z2
k = L. The eigenvalues of HT

q Hq being all equal to z2
k = L, we get

HT
q Hq = L I∥q∥0 . (A.7)

In other words, all the non-zeros columns of HQ are orthogonal with the same norm
√

L.222

Appendix A.2. Proof of Lemma 2.2223

Let q ∈ {0, 1}N be an arbitrary support such that ∥q∥0 ≤ min(M,N). Let r = r̂(q) denote the related amplitude
vector where operator r̂ was defined in Equation (7). Let Hq = HQ = UZVT with unitary matrices U ∈ RM×M ,
V ∈ RN×N and a diagonal (rectangular) matrix Z ∈ RM×N . Expanding Equation (8), we have

r(q) = σ2
r

(
σ2

r HT
q Hq + σ

2
eIN

)−1
HT

q y = σ2
r

(
σ2

r VZT ZVT + σ2
eIN

)−1
VZT UT y (A.8)

= σ2
r

(
σ2

r VZT ZVT + σ2
eIN

)−1
VZT UT y (A.9)
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Then, J0(q; λ) writes

J0(q; λ) =
1

2σ2
e
∥y −HQr∥2 +

1
2σ2

r
∥r∥22 + λ∥q∥0 (A.10)

=
1

2σ2
e

∥∥∥∥y − UZVTσ2
r

(
σ2

r VZT ZVT + σ2
eIN

)−1
VZT UT y

∥∥∥∥2
(A.11)

+
1

2σ2
r

∥∥∥∥σ2
r

(
σ2

r VZT ZVT + σ2
eIN

)−1
VZT UT y

∥∥∥∥2

2
+ λ∥q∥0 (A.12)

=
1

2σ2
e

∥∥∥∥UT y − Zσ2
r

(
σ2

r ZT Z + σ2
eIN

)−1
ZT UT y

∥∥∥∥2
+

1
2σ2

r

∥∥∥∥σ2
r

(
σ2

r ZT Z + σ2
eIN

)−1
ZT UT y

∥∥∥∥2

2
+ λ∥q∥0 (A.13)

We denote by {zk}
∥q∥0
k=1 the singular values in Z, which are all non-zeros since ∥q∥0 ≤ min(M,N) and by assumption,224

rank(H) = min(M,N). Hence225

J0(q; λ) =
∥q∥0∑
k=1

 1
2σ2

e

(
1 − σ2

r

(
σ2

r z2
k + σ

2
e

)−1
zk

2
)2
⟨uk, y⟩2 +

z2
kσ

2
r

2

(
z2

kσ
2
r + σ

2
e

)−2
⟨uk, y⟩2 + λ

 + 1
2σ2

e

M∑
k=∥q∥0+1

⟨uk, y⟩2

(A.14)

=

∥q∥0∑
k=1

1
2

σ2
e

(z2
kσ

2
r + σ

2
e)2 ⟨uk, y⟩2 +

1
2

z2
kσ

2
r

(z2
kσ

2
r + σ

2
e)2 ⟨uk, y⟩2 + λ

 + 1
2σ2

e

M∑
k=∥q∥0+1

⟨uk, y⟩2 (A.15)

=

∥q∥0∑
k=1

1
2

 1
z2

kσ
2
r + σ

2
e

 ⟨uk, y⟩2 + λ

 + 1
2σ2

e

M∑
k=∥q∥0+1

⟨uk, y⟩2. (A.16)

As U is unitary, we have ∥y∥2 = ∥UT y∥2, and then

J0(q; λ) =
∥q∥0∑
k=1

λ − 1
2σ2

e

 z2
kσ

2
r

z2
kσ

2
r + σ

2
e

 ⟨uk, y⟩2
 + 1

2σ2
e
∥y∥22. (A.17)

Let qJ be a global minizer. Suppose that for all k,

2σ2
eλ >

 (zJk )2σ2
r

(zJk )2σ2
r + σ

2
e

 ⟨uJk , y⟩2 . (A.18)

Then, we have

J0(0; λ) =
1

2σ2
e
∥y∥22 < J0(qJ ; λ) =

∥qJ ∥0∑
k=1

λ − 1
2σ2

e

 (zJk σr)2

(zJk σr)2 + σ2
e

 ⟨uJk , y⟩2
 + 1

2σ2
e
∥y∥22. (A.19)

which is impossible. Then, necessarily,

2σ2
eλ ≤ max

k∈{1,...,∥qJ ∥0}


 (zJk σr)2

(zJk σr)2 + σ2
e

 ⟨uJk , y⟩2
 . (A.20)

Now, still with qJ a global minizer, let q be any possible support. In one hand, suppose that ∥q∥0 ≤ ∥qJ∥0. Then,
we have

J0(qJ ; λ) =
∥qJ ∥0∑
k=1

λ − 1
2σ2

e

 (zJk σr)2

(zJk σr)2 + σ2
e

 ⟨uJk , y⟩2
 + 1

2σ2
e
∥y∥22. (A.21)

< J0(q; λ) =
∥q∥0∑
k=1

{
λ −

1
2σ2

e

(
(zkσr)2

(zkσr)2 + σ2
e

)
⟨uk, y⟩2

}
+

1
2σ2

e
∥y∥22. (A.22)
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Hence,

(
∥qJ∥0 − ∥q∥0

)
2σ2

eλ <

∥qJ ∥0∑
k=∥q∥0+1

 (zJk σr)2

(zJk σr)2 + σ2
e

 ⟨uk
J , y⟩2+

∥q∥0∑
k=1


 (zJk σr)2

(zJk σr)2 + σ2
e

 ⟨uJk , y⟩2 − (
(zkσr)2

(zkσr)2 + σ2
e

)
⟨uk, y⟩2


(A.23)

In the other hand, suppose that ∥q∥0 ≥ ∥qJ∥0. Then we have

(
∥q∥0 − ∥qJ∥0

)
2σ2

eλ >

∥q∥0∑
k=∥qJ ∥0+1

(
(zkσr)2

(zkσr)2 + σ2
e

)
⟨uk, y⟩2+

∥qJ ∥0∑
k=1


 (zJk σr)2

(zJk σr)2 + σ2
e

 ⟨uJk , y⟩2 − (
(zkσr)2

(zkσr)2 + σ2
e

)
⟨uk, y⟩2


(A.24)

In the other direction, if qJ satisfies Equation (A.23) for any q such that ∥q∥0 ≤ ∥qJ∥0 and Equation (A.24) for
any q such that ∥q∥0 ≥ ∥qJ∥0, then we have

J(qJ ; λ) ≤ J(q; λ) (A.25)

for any q, hence qJ is a global minimizer.226

Appendix A.3. Proof of Lemma 2.3227

As for the previous Theorem let q ∈ {0, 1}N be an arbitrary support such that ∥q∥0 ≤ min(M,N) and let HQ =
UZVT . We have

Γy(q) = σ2
eIM + σ

2
r HQQT HT = σ2

eIM + σ
2
r UZZT UT (A.26)

and then∣∣∣Γy(q)
∣∣∣ = ∥q∥0∏

k=1

((zkσr)2 + σ2
e)

M∏
k=∥q∥0+1

σ2
e = σ

2
e

M−∥q∥0
∥q∥0∏
k=1

((zkσr)2 + σ2
e) (A.27)

that is,

log
∣∣∣Γy(q)

∣∣∣ = (M − ∥q∥0) log(σ2
e) +

∥q∥0∑
k=1

log((zkσr)2 + σ2
e). (A.28)

According to Equation (15),228

M0(q; λ) = J0(q; λ) +
1
2

log
∣∣∣Γy(q)

∣∣∣ (A.29)

then (see proof of Lemma 2.2)

M0(q; λ) = J0 (q; λ) + (M − ∥q∥0) log
(√
σ2

e

)
+

∥q∥0∑
k=1

log
(√

(zkσr)2 + σ2
e

)
(A.30)

=

∥q∥0∑
k=1

{
1
2

(
1

(zkσr)2 + σ2
e

)
⟨uk, yk⟩

2 + λq∗k

}
+

∥q∥0∑
k=1

log


√

(zkσr)2 + σ2
e

σ2
e

 + M
2

log
(
σ2

e

)
+

1
2σ2

e

M∑
k=∥q∥0+1

⟨uk, yk⟩
2.

(A.31)

=

∥q∥0∑
k=1

λ + log


√

(zkσr)2 + σ2
e

σ2
e

 − 1
2σ2

e

(
(zkσr)2

(zkσr)2 + σ2
e

)
⟨uk, y⟩2

 + 1
2σ2

e
∥y∥22 +

M
2

log
(
σ2

e

)
. (A.32)

The conditions follow as in the proof of Lemma 2.2.229
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Appendix A.4. Proof of Theorem 3.1230

Let

Jα(r,q; ρ) ≜
1

2σ2
e
∥y −HQr∥22 +

1
2σ2

r
∥r∥2 + ρ∥q∥αα (A.33)

When qn = 0, the criterion reaches its minimum value when rn = 0.231

Let x = Qr in Equation (A.33). Using the reparametrization (x,q), minimizing Jα(r,q; ρ) is equivalent to mini-
mizing:

Kα(x,q) ≜
1

2σ2
e
∥y −Hx∥22 +

1
2σ2

r

N∑
k=1

x2
k

q2
k

+ ρ∥q∥αα. (A.34)

where we use the abuse of notation x2
k

q2
k
= 0 when xk = 0 and qk = 0. Indeed, we consider that rn = xn/qn for all qn and232

choose to define it as zero when qn vanishes.233

Minimizing (A.34) with respect to q leads to finding

q̂k(xk) = argmin
qk∈[0,a]

1
2σ2

r

(
xk

qk

)2

+ ρqαk . (A.35)

When xk , 0, as ρ > 0, one can easily check that the function qk 7→
1

2σ2
r

x2
k

q2
k
+ ρqαk is decreasing and then increasing on

[0,∞). Its minimum is reached when the first order derivative vanishes, that is, when

−
x2

k

σ2
r

q−3
k + ραqα−1

k = 0, (A.36)

that is, when

qα+2
k =

x2
k

αρσ2
r
. (A.37)

When minimization over qk is carried out for q̂k(xk) ∈ [0, a], the solution is given by (A.37) when

aα+2 ≥
x2

k

αρσ2
r
⇔ |xk | ≤ a

α+2
2

√
αρσ2

r (A.38)

When this condition is not met, the minimizer is q̂k(xk) = a. Summarizing,

q̂k(xk) =


(

1
αρσ2

r

) 1
α+2
|xk |

2
α+2 if |xk | ≤ a

α+2
2

√
αρσ2

r

a if |xk | > a
α+2

2
√
αρσ2

r .
(A.39)

The minimum value of the criterion in Equation (A.35) is thus equal to

1
2σ2

r

(
xk

q̂k

)2

+ ρq̂αk =
x2

k

2σ2
r a2 + ρa

α (A.40)
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when |xk | > a
α+2

2
√
αρσ2

r . When |xk | ≤ a
α+2

2
√
αρσ2

r , the minimum value reads:

1
2σ2

r

(
xk

q̂k

)2

+ ρq̂αk =
1

2σ2
r

 xk(
1
αρσ2

r

) 1
α+2
|xk |

2
α+2


2

+ ρ

( 1
αρσ2

r

) 1
α+2

|xk |
2
α+2


α

(A.41)

=
1

2σ2
r

|xk |
2− 4
α+2(

1
αρσ2

r

) 2
α+2

+ ρ

(
1
αρσ2

r

) α
α+2

|xk |
2α
α+2 (A.42)

=

(
1

2σ2
r

(
αρσ2

r

) 2
α+2
+ ρ

(
αρσ2

r

)− α
α+2

)
|xk |

2α
α+2 (A.43)

=

(
1
2

(αρ)
2
α+2 + ρ(αρ)−

α
α+2

)
(σ2

r )
− α
α+2 |xk |

2α
α+2 (A.44)

=

(
1
2
α

2
α+2 + α−

α
α+2

)
ρ

2
α+2 (σ2

r )
− α
α+2 |xk |

2α
α+2 (A.45)

=
1
2
α−

α
α+2 (α + 2) ρ

2
α+2 (σ2

r )
− α
α+2 |xk |

2α
α+2 (A.46)

=
1
2

(
1
ασ2

r

) α
α+2

(α + 2) ρ
2
α+2 |xk |

2α
α+2 (A.47)

Let us denote by X the set of indices k ∈ [1; N] such that k ∈ X if xk satisfies Equation (A.38). Re-injecting the
latter expression into (A.34) yields:

Kα(x, q̂(x)) =
1

2σ2
e
∥y −Hx∥22 +

1
2

(
1
ασ2

r

) α
α+2

(α + 2) ρ
2
α+2

∑
k∈X

|xk |
2α
α+2 +

1
2

∑
k<X

 x2
k

σ2
r a2 + 2ρaα

 (A.48)

which identifies with

J̃α(x) ≜
1

2σ2
e
∥y −Hx∥22 +

1
2

N∑
k=1

ϕα,a(xk;σ2
r ; ρ) (A.49)

with function ϕα,a defined in the statement of Theorem 3.1.234

If a = +∞, the result simplifies to

J̃α(x) =
1

2σ2
e
∥y −Hx∥22 +

1
2

(
1
αρσ2

r

) α
α+2

(α + 2)ρ
N∑

k=1

|xk |
2α
α+2 . (A.50)

Specifically, for α = 2, we get on [0,+∞[:

J̃α(x) =
1

2σ2
e
∥y −Hx∥22 +

√
2ρ
σ2

r
∥x∥1, (A.51)

and on [0, 1], that is, for a = 1:

J̃α(x) =
1

2σ2
e
∥y −Hx∥22 +

√
2ρ
σ2

r

N∑
k=1;|xk |≤

√
2ρσ2

r

|xk | +
1
2

N∑
k=1;|xk |>

√
2ρσ2

r

(
1
σ2

r
x2

k + 2ρ
)

(A.52)

=
1

2σ2
e
∥y −Hx∥22 + 2ρRhub

 1√
2ρσ2

r

x
 (A.53)

A graphical illustration of ϕα,1(x) is provided in Fig. A.1.235
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Figure A.1: Regularization functions for different α and a = 1.

Appendix A.5. Proof of Theorem 3.2236

The proof is similar to that of Theorem 2.1. By assumption, we have that for all k, qk < a, then ∥QT Q∥ ≤ a2.237

Hence, by taking Ξ = Diag
[
ξ1, . . . , ξn

]
the diagonal matrix such that ξk = a2L if zk , 0 and ξk = 0 if zk = 0, we only238

need to majorize ∥q∥0 by N in Equation (A.5).239

Appendix A.6. Proof of Lemma 4.1240

Noticing that for 0 < α ≤ 2

∥q̂∥αα = ∥q̂
2∥
α
2
α
2
≥ ∥(q̂)2∥1 = E {∥q̃∥0} , (A.54)

we have

J0(q̃, ρ) − Jα(q̂, ρ) = yT
(
Γ−1

y (q̃) − Γ−1
y (q̂)

)
y + ρ

(
∥q̃∥0 − ∥q̂∥αα

)
(A.55)

≤ yT
(
Γ−1

y (q̃) − Γ−1
y (q̂)

)
y + ρ

(
∥q̃∥0 − ∥q̂2∥1

)
(A.56)

On the one hand, since the columns of H are normalized, Pilanci et al. (2015) have shown (see the proof of (Pilanci
et al., 2015, Theorem 3)), that

P
(
yT

(
Γ−1

y (q̃) − Γ−1
y (q̂)

)
y ≤
√

rt
σ2

r

)
≥ 1 − 2 min{r,N}e−

t2
16 , (A.57)

with r = # {k s.t. q̂[k] ∈ (0, 1)} .241

And in the other hand, using the Hoeffding inequality

P
(∣∣∣∥q̃∥0 − ∥q̂2∥1

∣∣∣ ≤ δ) ≥ 1 − 2e−
2δ2
N . (A.58)

Taking t =
√

c log min{r,N} we have

1 − 2 min{r,N}e−
t2
16 = 2 min{r,N}e−

c log min{r,N}
16 = 1 − 2 min{r,N}elog(min{r,N}−

c
16 ) (A.59)

= 1 −
2

min{r,N}
c

16−1
(A.60)
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and in the other side, taking δ =
√

rt
σ2

r
=

√
c r
σ2

r
log min{r,N}, we have

1 − 2e−
2δ2
N = 1 − 2e

−2c r
Nσ2

r
log min{r,N}

(A.61)

= 1 −
2

min{r,N}
2cr

Nσ2
r

(A.62)

Then, with probability at least max

1 − 2
min{r,N}

c
16 −1 , 1 −

2

min{r,N}
2cr

Nσ2
r

 , we can conclude that

J0(q̃, ρ) − Jα(q̂, ρ) ≥
√

c

√
r log min{r,N}
σ2

r
. (A.63)

Appendix A.7. Proof of Theorem 4.3242

We have

M0(q̃M , λ) −M0(qM , λ) ≤ M0(q̃M , λ) −Mα(qM
α , λ) (A.64)

≤ J0(q̃M , λ) − Jα(qM
α , λ) +

1
2

log |Γy(q̃M)| −
1
2

log |Γy(qM
α )| . (A.65)

As q̃M[k] ∈ {0, 1}N , we get

E
{
Γy(q̃M)

}
= E

{
σ2

eI + σ2
r HDiag

[
(q̃M)2

]
HT

}
= σ2

eI + σ2
r HDiag

[
E

{
q̃M

}]
HT (A.66)

= σ2
eI + σ2

r HDiag
[
(qM
α )2

]
HT (A.67)

= Γy(qM
α ). (A.68)

By Jensen’s inequality (the logdet function being concave), we get

E
{
log |Γy(q̃M)|

}
≤ log |E

{
Γy(q̃M)

}
| = log |Γy(qM

α )| , (A.69)

hence

M0(q̃M , λ) −M0(qM , λ) ≤ J0(q̃M , λ) − Jα(qM
α , λ) +

1
2

log |Γy(q̃M)| −
1
2
E

{
log |Γy(q̃M)|

}
. (A.70)

In one hand, as |Γy(q̃M)| is upper and lower bounded by positive constants, we can apply the Bienaymé-Tchebychev
inequality. Hence

P
(∣∣∣∣log |Γy(q̃M)| − E

{
log |Γy(q̃M)|

}∣∣∣∣ ≤ δ) ≥ 1 −
γ2

δ
(A.71)

with γ2 = var log |Γy(q̃M)| < +∞.243

On the other hand, using Lemma 4.1, we have with probability at least 1 − 2
min{rM ,N}cM

J0(q̃M , λ) − Jα(qM
α , λ) ≤

√
c

√
r log min{rM ,N}

σ2
r

(A.72)

Finally, with probability at least max
{
1 − γ

2

δ
, 1 − 2

min{rM ,N}cM

}
M0(q̃M , λ) −M0(qM , λ) ≤

√
c

√
r log min{rM ,N}

σ2
r

+ δ (A.73)
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Appendix B. Joint and marginal-MAP in the orthogonal case244

The case where matrix H is orthogonal is equivalent to a denoising problem (up to the replacement of y by Hty).
Therefore, we address the denoising problem which reads (with N = M):

yn = qnrn + en, ∀n ∈ {1, . . . ,N}. (B.1)

Appendix B.1. BG model245

Joint-MAP. The joint-MAP criterion reads:

J0(q, r; λ) =
N∑

n=1

{
1

2σ2
e

(yn − qnrn)2 +
1

2σ2
r

r2
n + λqn

}
(B.2)

≜
N∑

n=1

J0(qn, rn; λ). (B.3)

Minimizing J0(qn, rn; λ) with respect to (qn, rn) implies that qn = 0 ⇒ r̂n = 0. For a given qn = 1, minimizing in rn

yields

r̂n(qn) =
σ2

r

σ2
r + σ

2
e

yn . (B.4)

If qn = 0, then

J0(0, r̂n(qn); λ) =
y2

n

2σ2
e
. (B.5)

If qn = 1 then

J0(1, r̂n(qn); λ) =
1

2σ2
e

(
yn −

σ2
r

σ2
r + σ

2
e

yn

)2

+
1

2σ2
r

(
σ2

r

σ2
r + σ

2
e

yn

)2

+ λ (B.6)

=
1
2

1
σ2

r + σ
2
e

y2
n + λ. (B.7)

We have qn = 1 if and only if

J0(1, r̂n(1); λ) < J0(0, r̂n(0); λ), (B.8)

that is, if

1
2

1
σ2

r + σ
2
e

y2
n + λ <

1
2σ2

e
y2

n (B.9)

i.e.,

λ <
1

2σ2
e

σ2
r

σ2
r + σ

2
e

y2
n. (B.10)

Marginal-MAP. The marginal-MAP criterion reads

M0(q; λ) =
1
2

yTΓy(q)−1y +
1
2

log |Γy(q)| + λ∥q∥0 (B.11)

with

Γy(q) = σ2
eI + σ2

r QQT = Diag
[
σ2

e + σ
2
r q2

n

]
(B.12)
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as qn ∈ {0, 1}. Hence,246

M0(q; λ) =
N∑

n=1

{
1
2

y2
n

σ2
e + σ

2
r qn
+

1
2

log(σ2
e + σ

2
r qn) + λqn

}
(B.13)

≜
N∑

n=1

M0(qn; λ). (B.14)

If qn = 0, then

M0(qn; λ) =
1

2σ2
e

y2
n +

1
2

log(σ2
e). (B.15)

If qn = 1, then

M0(qn; λ) =
1
2

1
σ2

r + σ
2
e

y2
n + λ +

1
2

log
(
σ2

r + σ
2
e

)
. (B.16)

Hence, qn = 1 if and only if

M0(1; λ) <M0(0; λ) (B.17)

that is

1
2

1
σ2

r + σ
2
e

y2
n + λ + log


√
σ2

r + σ
2
e

σ2
e

 < 1
2σ2

e
y2

n (B.18)

i.e.,

λ + log


√
σ2

r + σ
2
e

σ2
e

 < 1
2σ2

e

σ2
r

σ2
e + σ

2
r

y2
n. (B.19)

Appendix B.2. Continuous model247

Joint-MAP. The joint-MAP criterion reads, with α > 0:

Jα(q, r; ρ) =
N∑

n=1

{
1

2σ2
e

(yn − qnrn)2 +
1

2σ2
r

r2
n + ρq

α
n

}
(B.20)

≜
N∑

n=1

Jα(qn, rn; ρ) (B.21)

For fixed qn, minimization of Jα(qn, rn; ρ) with respect to rn is an unconstrained least squares problem (since the
dependency of Jα upon rn is quadratic). Therefore, the optimal parameter r̂n(qn) satisfies:

∂

∂rn
Jα(qn, r̂n; ρ) = −

qn

σ2
e

(yn − qnr̂n) +
1
σ2

r
r̂n = 0, (B.22)

which yields

r̂n =
σ2

r qnyn

σ2
e + σ

2
r q2

n
. (B.23)
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Now, let us find the minimum of Jα(qn, r̂n(qn); ρ). We have:

Jα(qn, r̂n(qn); ρ) =
1

2σ2
e

(
yn − qn

σ2
r qnyn

σ2
e + σ

2
r q2

n

)2

+
1

2σ2
r

(
σ2

r qnyn

σ2
e + σ

2
r q2

n

)2

+ ρqαn (B.24)

=
y2

n

2σ2
e

(
σ2

e

σ2
e + σ

2
r q2

n

)2

+
y2

n

2σ2
r

(
σ2

r qn

σ2
e + σ

2
r q2

n

)2

+ ρqαn (B.25)

=
σ2

e + q2
nσ

2
r(

σ2
e + σ

2
r q2

n
)2

y2
n

2
+ ρqαn (B.26)

=
1

σ2
e + σ

2
r q2

n

y2
n

2
+ ρqαn . (B.27)

Hereafter, we assume that the minimization with respect to qn is done for qn ∈ [0,+∞[ without loss of generality
(the extension to the case qn ∈ [0, a] with a < ∞ is straightforward). We calculate:

∂

∂qn
Jα(qn, r̂n(qn); ρ) = −σ2

r y2
nqn(σ2

e + σ
2
r q2

n)
−2
+ αρqα−1

n . (B.28)

Given that ρ > 0, this derivative vanishes when:

qα−1
n (σ2

e + σ
2
r q2

n)
2
−
σ2

r

αρ
y2

nqn = 0, (B.29)

⇔ σ4
r qα+3

n + 2σ2
eσ

2
r qα+1

n + σ4
eqα−1

n −
σ2

r

αρ
y2

nqn = 0, (B.30)

⇔ qα+3
n + 2

σ2
e

σ2
r

qα+1
n +

(
σ2

e

σ2
r

)2

qα−1
n −

1
αρ

y2
n

σ2
r

qn = 0. (B.31)

If α = 1, we get:

q4
n + 2

σ2
e

σ2
r

q2
n −

1
ρ

y2
n

σ2
r

qn +

(
σ2

e

σ2
r

)2

= 0 . (B.32)

If α = 2, we get:

q5
n + 2

σ2
e

σ2
r

q3
n +

(
σ2

e

σ2
r

)2

qn −
1

2ρ
y2

n

σ2
r

qn = qn

q4
n + 2

σ2
e

σ2
r

q2
n +

(
σ2

e

σ2
r

)2

−
1

2ρ
y2

n

σ2
r

 = 0. (B.33)

So we have either qn = 0 or

q2
n =

1√
2ρσ2

r

|yn| −
σ2

e

σ2
r

(B.34)

as soon as |yn| >
√

2ρ
σ2

r
σ2

e (to ensure positivity of the latter expression). From the sign of the derivative ofJα(qn, r̂n(qn); ρ),248

we have thatJα for α = 1 or α = 2 is decreasing for q2
n <

1√
2ρσ2

r

|yn| −
σ2

e

σ2
r

and increasing for q2
n >

1√
2ρσ2

r

|yn| −
σ2

e

σ2
r
.Thus,249

the minimizer q̂n is given by Equation (B.34).250

When |yn| ≤

√
2ρ
σ2

r
σ2

e , qn 7→ Jα(qn, r̂n(qn); ρ) with α = 1 or α = 2 is non-decreasing over R+ because its derivative
is non-negative. Overall, we get

q̂2
n =


√

1
2ρσ2

r
|yn| −

σ2
e

σ2
r

if y2
n > 2ρσ2

r

(
σ2

e/σ
2
r

)2
,

0 if y2
n ≤ 2ρσ2

r

(
σ2

e/σ
2
r

)2
.

(B.35)
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Marginal-MAP. The marginal-MAP criterion reads

Mα(q; ρ) =
1
2

yTΓy(q)−1y +
1
2

log |Γy(q)| + ρ∥q∥αα (B.36)

with

Γy(q) = σ2
eI + σ2

r QQT = Diag
[
σ2

e + σ
2
r q2

n

]
. (B.37)

Hence,

Mα(q; ρ) =
N∑

n=1

{
1
2

y2
n

σ2
e + σ

2
r q2

n
+

1
2

log(σ2
e + σ

2
r q2

n) + ρqαn

}
(B.38)

≜
N∑

n=1

Mα(qn; ρ). (B.39)

Again, we assume that qn ∈ [0,+∞[. The derivative reads

∂

∂qn
Mα(qn; ρ) = −σ2

r qny2
n(σ2

e + σ
2
r q2

n)
−2
+ σ2

r qn(σ2
e + σ

2
r q2

n)
−1
+ αρqα−1

n (B.40)

= (σ2
r qn)

(
(σ2

e + σ
2
r q2

n)
−1
− y2

n(σ2
e + σ

2
r q2

n)
−2
+ α
ρ

σ2
r

qα−2
n

)
. (B.41)

First we notice that qn = 0 is always a stationary point. The other stationary points satisfy:

(σ2
e + σ

2
r q2

n)
−1
− y2

n(σ2
e + σ

2
r q2

n)
−2
+ α
ρ

σ2
r

qα−2
n = 0. (B.42)

If α = 2, we get for ρ > 0:

(σ2
e + σ

2
r q2

n)
−1
− y2

n(σ2
e + σ

2
r q2

n)
−2
+ 2
ρ

σ2
r
= 0 (B.43)

⇔ 2
ρ

σ2
r

(σ2
e + σ

2
r q2

n)
2
+ (σ2

e + σ
2
r q2

n) − y2
n = 0 (B.44)

⇔ (σ2
e + σ

2
r q2

n) = −
σ2

r

4ρ
±
σ2

r

4ρ

√
1 + 8ρ

y2
n

σ2
r

(B.45)

⇔ q2
n = −

1
4ρ
±

1
4ρ

√
1 + 8ρ

y2
n

σ2
r
−
σ2

e

σ2
r

(B.46)

Here ρ > 0. To satisfy the positivity constraint on q2
n, we must have:

q̂2
n =

1
4ρ

√
1 + 8ρ

y2
n

σ2
r
−

1
4ρ
−
σ2

e

σ2
r
> 0. (B.47)

This condition rereads:

1
4ρ

√
1 + 8ρ

y2
n

σ2
r
>

1
4ρ
+
σ2

e

σ2
r

(B.48)

⇔ 8ρ
y2

n

σ2
r
>

(
1 + 4ρ

σ2
e

σ2
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− 1 (B.49)

⇔ 8ρ
y2

n

σ2
r
> 8ρ

σ2
e

σ2
r

(
1 + 2ρ

σ2
e

σ2
r

)
(B.50)

⇔ y2
n > σ

2
e

(
1 + 2ρ

σ2
e

σ2
r

)
(B.51)
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When the latter condition is met, it is easy to check (from the sign of the derivative of M2(qn; ρ) that q̂n defined251

in Equation (B.47) is the minimizer ofM2. Otherwise,M2 is increasing over R+ and the minimizer is equal to 0.252

Summarizing, when α = 2 and ρ > 0, the estimator is given by

q̂2
n =


1

4ρ

√
1 + 8ρ y2

n

σ2
r
− 1
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σ2

e

σ2
r

if y2
n > σ

2
e
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1 + 2ρσ

2
e

σ2
r

)
0 if y2

n ≤ σ
2
e

(
1 + 2ρσ

2
e

σ2
r

) (B.52)

In the limit case ρ→ 0, we obtain

q̂2
n =

(y2
n − σ

2
e)/σ2

r if y2
n > σ

2
e

0 if y2
n ≤ σ

2
e

(B.53)
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