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Abstract13

We investigate the dimension-parametric complexity of the reachability problem in vector addition14

systems with states (VASS) and its extension with pushdown stack (pushdown VASS). Up to15

now, the problem is known to be Fd-hard for VASS of dimension 3d + 2 (the complexity class16

Fd corresponds to the kth level of the fast-growing hierarchy), and no essentially better bound17

is known for pushdown VASS. We provide a new construction that improves the lower bound for18

VASS: Fk-hardness in dimension 2d + 3. Furthermore, building on our new insights we show a new19

lower bound for pushdown VASS: Fk-hardness in dimension d
2 + 6. This dimension-parametric lower20

bound is strictly stronger than the upper bound for VASS, which suggests that the (still unknown)21

complexity of the reachability problem in pushdown VASS is higher than in plain VASS (where it is22

Ackermann-complete).23

2012 ACM Subject Classification Theory of computation → Concurrency; Theory of computation24

→ Verification by model checking; Theory of computation → Logic and verification25

Keywords and phrases vector addition systems, reachability problem, pushdown vector addition26

system, lower bounds27

Digital Object Identifier 10.4230/LIPIcs.STACS.2022.3528

Funding Wojciech Czerwiński: Supported by the ERC grant INFSYS, agreement no. 950398.29

Sławomir Lasota: Supported by the ERC project ‘Lipa’ within the EU Horizon 2020 research and30

innovation programme (No. 683080) and by the NCN grant 2021/41/B/ST6/00535.31

Jérôme Leroux: Supported by the grant ANR-17-CE40-0028 of the French National Research Agency32

ANR (project BRAVAS).33

© Sławomir Lasota;
licensed under Creative Commons License CC-BY 4.0

39th International Symposium on Theoretical Aspects of Computer Science (STACS 2022).
Editors: Petra Berenbrink and Benjamin Monmege; Article No. 35; pp. 35:1–35:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:wczerwin@mimuw.edu.p
https://orcid.org/0000-0002-6169-868X
https://orcid.org/0000-0001-8674-4470
https://doi.org/10.4230/LIPIcs.STACS.2022.35
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


35:2 New Lower Bounds for Reachability in Vector Addition Systems

1 Introduction34

Petri nets, equivalently presentable as vector addition systems with states (VASS), are an35

established model of concurrency with widespread applications. The central algorithmic36

problem for this model is the reachability problem which asks whether from a given initial37

configuration there exists a sequence of valid execution steps reaching a given final config-38

uration. For a long time the complexity of this problem remained one of the hardest open39

questions in verification of concurrent systems. In 2019 Leroux and Schmitz made a significant40

breakthrough by providing an Ackermannian upper bound [14]. With respect to the hardness,41

the exponential space lower bound, shown by Lipton already in 1976 [16], remained the only42

known for over 40 years until a breakthrough non-elementary lower bound by Czerwiński,43

Lasota, Lazic, Leroux and Mazowiecki in 2019 [3, 4]. Finally, a matching Ackermannian lower44

bound announced in 2021 independently by two teams, namely Czerwiński and Orlikowski [5]45

and Leroux [12], established the exact complexity of the problem.46

However, despite the fact that the exact complexity of the reachability problem for VASS47

is settled, there are still significant gaps in our understanding of the problem. One such gap48

is the complexity of the reachability problem parametrised by the dimension, namely deciding49

the reachability problem for d-dimensional VASS (d-VASS) for fixed d ∈ N. Currently, the50

exact complexity bounds are only known for dimensions one and two. In these cases, the51

complexity depends on the representations of numbers in the transitions, either unary or52

binary For binary VASS (where the numbers are represented in binary) the reachability53

problem is known to be NP-complete for 1-VASS [9] and PSpace-complete for 2-VASS [2].54

For unary VASS the problem is NL-complete for both 1-VASS (folklore) and 2-VASS [8].55

Much less is known for higher dimensions, and it is striking that even in the case of56

3-VASS we have a huge complexity gap. The best complexity upper bound comes from the57

above mentioned work of Leroux and Schmitz [14], where it is proved that the reachability58

problem for (d−4)-VASS is in Fd (here Fd denotes the dth level of the Grzegorczyk hierarchy59

of complexity classes, which corresponds to the fast growing function hierarchy). In particular60

this shows that the reachability problem for 3-VASS is in F7 (recall that F3 = Tower).61

The recent Ackermann-hardness results provide lower bounds for the reachability problem62

in fixed dimensions. The result of Czerwiński and Orlikowski [5] yields Fd-hardness for63

6d-VASS, while the result of Leroux [12] establishes Fd-hardness for (4d+ 5)-VASS. Lasota64

improved upon these results and showed Fd-hardness of the problem for (3d+ 2)-VASS [10].65

In [6], additional lower bound results were obtained for specific fixed dimensions: PSpace-66

hardness for unary 5-VASS, ExpSpace-hardness for binary 6-VASS and Tower-hardness67

for unary 8-VASS.68

To summarise, despite significant research efforts there are still several natural problems69

related to the VASS reachability problem that present significant complexity gaps:70

Q1: What is the complexity of the reachability problem for VASS of dimension 3? It is71

known to be PSpace-hard and in F7;72

Q2: What is highest dimension for which the complexity of the reachability problem is73

elementary? It is known to fall within the range of 2 to 8;74

Q3: What is the smallest constant C such that the complexity of the reachability problem75

for d-VASS is in FCd+o(d)? It is known to fall within the range of 1
3 to 1.76

In this work, we focus on addressing Question Q3. We present new and improved lower77

bounds, first in the standard setting of VASS, and then in the setting of pushdown VASS78

(PVASS) which extend the VASS model by incorporating a pushdown stack.79
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VASS reachability. Our first main result is a new complexity lower bound for the reachability80

problem which improves the gap:81

I Theorem 1. The reachability problem for (2d+ 3)-VASS is Fd-hard.82

A preliminary version of this result was presented in in [11]. In this revised version, we83

aim to present the result in a conceptually simple framework by using the notion of triples, a84

formalism that was originally developed in [3], and was heavily used in [5] and [10]. We view85

this contribution as an important step towards understanding the complexity of the VASS86

reachability problem parametrised by the dimension.87

PVASS reachability. The decidability of the reachability problem for PVASS has been an88

important open problem for over a decade [1]. Despite efforts of the community, it remains89

unknown even for PVASS of dimension 1 (1-PVASS), namely automata with one counter90

and one pushdown stack.91

I Conjecture 2.1. The reachability problem for PVASS is decidable.92

It is important to acknowledge that the PVASS setting is complex, and few decidability93

results are known. Some progress has been made in the study of the coverability problem, a94

variant of the reachability problem which asks whether from a given initial configuration95

there exists a sequence of valid execution steps that reaches a configuration greater than the96

given final configuration. Notably, the coverability problem has been shown to be decidable97

for 1-PVASS [15] (and mentioned to be in ExpSpace).98

Interestingly, despite the slow progress on determining upper bounds for PVASS, there is99

limited knownledge about lower bounds as well. To the best of our knowledge, the only lower100

bound that is not directly implied by the results on VASS concerns (again) the coverability101

problem for 1-PVASS, which has been established as PSpace-hard [7].102

As for our contribution, our second main result is the first complexity lower bound for103

the PVASS reachability problem that is not immediately inherited from VASS:104

I Theorem 2. The reachability problem for (bd2c+ 6)-PVASS is Fd-hard.105

Notably, Theorem 2 implies that for sufficiently large d the reachability problem for106

d-PVASS is harder than the problem for (d+ 1)-VASS (which is a subclass of d-PVASS as107

the pushdown stack can keep track of one VASS counter). Indeed the problem for d-PVASS108

is F2d−12-hard by Theorem 2, while the problem for (d+ 1)-VASS is in Fd+5 by [14].109

While our results indicate that the reachability problem for PVASS is harder than for110

VASS, some known results about PVASS hint that even higher lower bounds might be proved:111

In [13] it was shown that PVASS are able to weakly compute functions of hyper-Ackermannian112

growth rate. Based on this observation we propose the following two conjectures:113

I Conjecture 2.2. There exists a fixed dimension d ∈ N such that the reachability problem114

for d-PVASS is Ackermann-hard.115

I Conjecture 2.3. The reachability problem for PVASS is hyperAckermann-hard.116

2 Preliminaries117

Fast-growing hierarchy. Let N+ = N \ {0} be the set of positive integers. We define118

the complexity classes Fi corresponding to the ith level in the Grzegorczyk Hierarchy [18,119

STACS 2022



35:4 New Lower Bounds for Reachability in Vector Addition Systems

Sect. 2.3, 4.1]. To this aim we choose to use the following family of functions Fi : N+ → N+,120

indexed by i ∈ N:121

F0(n) = n+ 2, Fi+1 = F̃i where F̃ (n) = Fn−1(1) = F ◦ F ◦ . . . ◦ F︸ ︷︷ ︸
n−1

(1). (1)122

123

In particular, F1(n) = 2n− 1 and Fi(1) = 1 for all i ∈ N+. Using the functions Fi, we define124

the complexity classes Fi, indexed by i ∈ N+, of problems solvable in deterministic time125

Fi ◦ Fmi−1(n) for some m ∈ N:126

Fi =
⋃
m∈N

DTime(Fi ◦ Fmi−1(n)).127

Intuitively speaking, the class Fi contains all problems solvable in time Fi(n), and is closed128

under reductions computable in time of lower order Fmi−1(n), for some fixed m ∈ N+. In129

particular, F3 = Tower (problems solvable in a tower of exponentials of time or space130

whose height is an elementary function of input size). The classes Fi are robust with respect131

to the choice of fast-growing function hierarchy (see [18, Sect.4.1]). For i ≥ 3, instead of132

deterministic time, one could equivalently take nondeterministic time, or space as all these133

definitions collapse.134

2.1 Counter programs135

A counter program (or simply a program) is a sequence of (line-numbered) commands, each136

of which is of one of the following types:137

x += 1 (increment the counter x by one)
x −= 1 (decrement the counter x by one)
goto L or L′ (nondeterministically jump to either line L or line L′)
zero? x (zero test: continue if counter x equals 0)

138

Counter programs with a pushdown stack (or simply programs with stack) are enhanced139

versions of plain counter programs that incorporate a stack containing a word over a fixed140

stack alphabet S. The stack content is modified by using two additional types of commands:141

push(s) (push the symbol s ∈ S at the top of the stack)
pop(s) (pop the symbol s ∈ S if it is at the top of the stack)

142

The command pop(s) fails if the stack is empty or if the top symbol is different from s. A143

configuration of a counter program with pushdown stack consists, as expected, of a valuation144

of its counters plus a stack content.145

Counters are only allowed to have nonnegative values.146

Conventions:. We are particularly interested in counter programs without zero tests, i.e.,147

ones that use no zero test command. In the sequel, unless specified explicitly, counter148

programs are implicitly assumed to be without zero tests. Moreover, we use the syntactic149

sugar loop, which iterates a sequence of command a nondeterministic number of times (see150

Example 3). Finally, we write consecutive increments and decrements of different variables151

on a single line and we use the following shorthands:152

x += m (increment the counter x by m)
x −= m (decrement the counter x by m)
x −→ y (decrement the counter x by one and increment the counter y by one)
x m−→ y (decrement the counter x by m and increment the counter y by m)

153
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I Example 3. As an illustration, consider three different presentations of the same the154

program with three counters C = {x, y, z}:155

1: goto 2 or 6
2: x −= 1
3: y += 1
4: z += 2
5: goto 1 or 1
6: z += 1

1: loop
2: x −= 1
3: y += 1
4: z += 2
5: z += 1

1: loop x −→ y z += 2
2: z += 1

156

The program repeats the block of commands in lines 2–4 some number of times chosen157

nondeterministically (possibly zero, although not infinite because x is decreasing, and hence158

its initial value bounds the number of iterations) and then increments z.159

We emphasise that counters are only permitted to have nonnegative values. In the160

program above, that is why the decrement in line 2 works also as a non-zero test.161

Runs. Consider a program with counters X. By NX we denote the set of all valuations of162

counters. Given an initial valuation of counters, a run (or execution) of a counter program163

is a finite sequence of executions of commands, as expected. A run which has successfully164

finished we call complete; otherwise, the run is partial. Observe that, due to a decrement165

that would cause a counter to become negative, a partial run may fail to continue because it166

is blocked from further execution. Moreover, due to nondeterminism of goto, a program167

may have various runs from the same initial valuation.168

Two programs P,Q may be composed by concatenating them, written P Q. We silently169

assume the appropriate re-numbering of lines referred to by goto command in Q.170

Consider a distinguished set of counters Z ⊆ X. A run of P is Z-zeroing if it is complete171

and all counters from Z are zero at the end. Given two counter valuations r, r′ ∈ NX we say172

that the program Z-computes the valuation r from r′ if P has exactly one Z-zeroing run from173

r′ and the end configuration is r. We also say that the program Z-computes nothing from r′ if174

P has no Z-zeroing run from r′. For instance, in Example 3 the programs {x}-compute, from175

any valuation satisfying x = n ∈ N and y = z = 0, the valuation satisfying x = 0 (trivially),176

y = n and z = 2n + 1.177

Maximal iteration. The proofs of this paper often focus on the number of iterations of178

the loop construct. Consider a program P containing a flat loop, i.e., a loop whose body179

consists of only increment or decrement commands, such that each counter appears in at180

most one of these commands (like the programs in Example 3). We say that this loop is181

maximally iterated in a given run of a P if some counter that is decremented in its body is182

zero at the exit from the loop. In particular, a maximally iterated loop could not be iterated183

any further without violation of the nonnegativity constraint on the decremented counter.184

For instance, the loop in Example 3 is maximally iterated by the {x}-zeroing runs. Needless185

to say, maximal iteration needs not happen in general, for instance the program in Example 3186

has multiple complete runs that do not admit this property.187

3 Main results and structure of the paper188

Counter programs (without zero test) provide an equivalent presentation to the standard189

models of Petri nets and VASS, and the transformations between these different models are190

straightforward. For instance, a program can be transformed into a VASS by taking one191

STACS 2022



35:6 New Lower Bounds for Reachability in Vector Addition Systems

state for each line of the program, and adding an appropriate transition corresponding to192

each counter update instruction. Note that the dimension of the VASS obtained is equal to193

the number of counters of the program. In this paper, we focus solely on counter programs,194

and we prove that the following problem is Fd-hard for every d ≥ 3:195

I Problem 1. Input: A program P using 2d+ 3 counters.196

Question: Is there a complete run of P that starts and ends with all counters equal to 0?197

The equivalence between programs and VASS then directly leads to our first main result:198

I Theorem 1. The reachability problem for (2d+ 3)-VASS is Fd-hard.199

For programs with a pushdown stack, Fd-hardness can be achieved with less counters. We200

show that the following problem is Fd-hard for every d ≥ 3:201

I Problem 2. Input: A program with stack Q using bd2c+ 6 counters.202

Question: Is there a complete run of Q that starts and ends with all counters equal to 0?203

Again, the equivalence between programs and VASS yields our second main result:204

I Theorem 2. The reachability problem for (bd2c+ 6)-PVASS is Fd-hard.205

Let us now introduce the known Fd-hard problem that we will reduce to Problems 1 and 2.206

Fortunately, we do not have to search too far for it: counter programs with two counters and207

zero tests are Turing-complete [17]. This implies that the reachability problem is undecidable208

in that setting. However, similarly to Turing machines, decidability is recovered by imposing209

limitations on the executions, such as bounding their length, the maximal counter size, or the210

number of zero tests. For our purposes the latter is the easiest to use, thus, we present the211

problem that we will reduce from, a variation of the “Fk-bounded Minsky Machine Halting212

Problem” proved to be Fd-complete in [18, Section 2.3.2]:213

I Problem 3. Input: A program P with two zero-tested counters, and a bound n ∈ N.214

Question: Is there a complete run of P that starts and ends with all counters equal to 0 and215

does exactly Fd(n) zero tests?216

The rest of this section is devoted to the presentation of the tools we use to reduce Problem 3217

to Problems 1 and 2. Following the structure of similar reductions presented in [5] and [10],218

our reduction is divided into two main steps.219

In the first step, we show how a program without zero test can simulate a bounded number220

of zero tests. To achieve this we rely on the concept of triples, which are specific counter221

valuations that allow to eliminate the zero tests and instead verify whether a particular222

invariant still holds at the term of the run. However, doing so requires an initial triple223

directly proportional to the number of zero tests we aim to simulate. Since we intend to224

simulate Fd(n) zero tests, which is a rather large number, directly applying this approach225

would result in an excessively large program.226

Thus, in the second step, we construct compact amplifiers. These amplifiers are small227

programs that compute functions of substantial magnitude (such as Fd) while using a small228

number of counters (namely 2d+ 4, or bd2c+ 4 counters along with a stack).229

We now define formally the notions required for these two steps. This will allow us to230

state the main lemmas proved in this paper, and use them to construct the reduction proving231

our main result. The proofs of the lemmas can then be found in the following sections.232
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Triples. The concept of triples plays a central role in all the constructions presented within233

this paper. Given a set of counters X, three distinguished counters a, b, c ∈ X and A,B ∈ N,234

we denote by Triple(A,B, a, b, c,X) the counter valuation satisfying235

a = A, b = B, c = A · (4B − 1), x = 0 for every x ∈ X \ {a, b, c}. (2)236
237

Informally we sometimes call such valuation a B-triple, or simply a triple over the counters238

a, b, c. The interest of triples lies in their ability to establish invariants that enable the239

detection of unwanted behaviours in counter programs. For instance, in Section 4, we show240

how to use triples to replace zero tests by proving the following lemma:241

I Lemma 4. Let P be a program using two zero-tested counters. There exists a program P ′242

with six counters X such that for every B ∈ N+ the two following conditions are equivalent:243

There exists a complete run of P that starts and ends with all counters equal to 0 and244

performs exactly B zero tests;245

There exists a complete run of P ′ that starts in some configuration Triple(A,B, a, b, c,X)246

with A ∈ N+ and ends in a configuration where all the counters except a are zero.247

Amplifiers. The key contribution of this paper consists in the construction of two families248

of programs that transform B-triples into Fd(B)-triples. We formalise this type of programs249

through the notion of amplifiers. Let F : N+ → N+ be a monotone function satisfying250

F (n) ≥ n for every n ∈ N+. Consider a program P using the set of counters X, out of which we251

distinguish six counters a, b, c, b′, c′, t ∈ X, and a subset of counters Z ⊆ X \ {a, b, c, b′, t} that252

contains c′. The tuple (P, (a, b, c), (a, b′, c′), t,Z) is called F -amplifier if for all A,B ∈ N+:253

P Z-computes Triple(A · 4B−F (B), F (B), a, b, c,X) from Triple(A,B, a, b′, c′,X) if A is254

divisible by 4(F (B)−B);255

P Z-computes nothing from Triple(A,B, a, b′, c′,X) if A is not divisible by 4(F (B)−B).256

An amplifier transforms B-triples on its input counters a, b′, c′ into F (B)-triples on its output257

counters a, b, c. Remark that the counter a is involved in both input and output. The258

counters in Z, called end counters, are intuitively speaking assumed to be 0-checked after the259

completion of a run of P . The auxiliary counter t does not play a direct role apart from not260

being an input counter, an output counter nor an end counter. This will prove useful in our261

constructions. We note that no condition is imposed on the runs that start from a counter262

valuation that is not a triple on the input counters, nor on the runs that are not Z-zeroing.263

In Section 5 we construct of a family of Fd-amplifiers:264

I Lemma 5. For every d ∈ N+ there exists an Fd-amplifier of size O(d) that uses 2d+ 4265

counters out of which d are end counters.266

Furthermore, in Section 6 we extend the notion of amplifiers to programs with stack, and267

we demonstrate how using a stack in an efficient manner can replace three quarters of the268

counters used in the previous construction:269

I Lemma 6. For every d ∈ N+ there exists an Fd-amplifier of size O(d) that uses a stack270

and bd2c+ 4 counters out of which bd2c are end counters.271

Proof of the main theorems. While the proofs of our key lemmas are delegated to the272

appropriate sections, we can already show how these lemmas yield a reduction from Problem 3273

to Problems 1 and 2. Let us consider an instance of Problem 3, that is, a 2-counter program274

STACS 2022



35:8 New Lower Bounds for Reachability in Vector Addition Systems

with zero tests P and an integer d ∈ N. We transform this instance into an instance P ′′ of275

Problem 1 and an instance Q′′ of Problems 2. These two programs rely on the program P ′276

given by Lemma 4, and the Fd-amplifiers Pd and Qd given by Lemmas 5 and 6.277

Program P ′′:
1: b′ += n

2: loop a += 1 c′ += 4n − 1
3: Pd
4: P ′
5: loop a −= 1

Program Q′′:
1: b′ += n

2: loop a += 1 c′ += 4n − 1
3: Qd
4: P ′
5: loop a −= 1

278

We now prove that this is a valid reduction from Problem 3 to Problem 1. The proof for279

Problem 2 is analogous since the programs Pd and Qd have identical effect on triples.280

We need to show that P ′′ has a complete run that starts and ends with all counters equal281

to 0 if and only if P has a complete run that starts and ends with all counters equal to 0 and282

that does exactly Fd(n) zero tests. In order to prove it, let us consider the structure of a283

hypothetical run π of P ′′ that starts and ends with all counters having value zero. Starting284

from the configuration where all the counters are zero, Lines 1–2 generate an arbitrary285

n-triple: Progressing through line 1 and performing A ∈ N+ iterations of line 2 results in286

the configuration Triple(A,n, a, b′, c′,X). Next, it is important to note that the subrun287

of π involving Pd zeroes all the end counters, since these counters remain unchanged after288

the invocation of Pd and they have value zero at the end of π. Consequently, according to289

the definition of an amplifier, Pd transforms the n-triple Triple(A,n, a, b′, c′,X) into an290

Fd(n)-triple Triple(A′,Fd(n), a, b, c,X). From there, the subrun involving P ′ must end in291

a configuration where every counter except a has value zero since the final line of P ′′ can292

only decrement a. Therefore, the run π exists if and only if there exists a run of P ′ that293

bridges the gap, starting from an Fd(n)-triple Triple(A′,Fd(n), a, b, c,X) and ending in a294

configuration where all the counters except a are 0. By Lemma 4 we know that such a run of295

P ′ exists if and only if P has a complete run that starts and ends with all counters equal to296

0 and does exactly Fd(n) zero tests, which shows that our reduction is valid.297

To conclude, let us remark that, as defined here, the program P ′′ uses 2d+ 7 counters:298

the call to Pd requires 2d+ 4 counters, and while P ′ shares the output counters a, b and c of299

Pd, it uses three more counters. We now argue that four counters can be saved, so that our300

program matches the definition of Problem 1.301

The value of the input counter b′ is never incremented in the program Pd we construct.1302

Therefore, since in P ′′ the call to Pd always starts with the value b′ = n, we can get rid303

of the counter b′ by replacing the call to Pd with n consecutive copies of Pd in which304

each instruction decrementing b′ is replaced with a jump to the next copy.305

The second optimisation consists in reusing the counters of Pd. Since Pd is an amplifier,306

at the term of the run it is sufficient to check that the end counters are 0 to ensure that307

all the counters except the output counters a and c are 0. Therefore, while the call to P ′308

in P ′′ needs to keep the d end counters of Pd untouched, there are still d freely reusable309

counters (not counting a, b and c that are already reused), and we can pick any three of310

these to use in P ′ instead of adding fresh ones.311

For the program Q′′ it is not possible to save counters is that way, but one of the extra312

counters of P ′ can be loaded on the stack, which results in a program with 2d+ 6 counters.313

1 Remark that this is not stated explicitly by Lemma 5, but it is a trivial property of the corresponding
construction presented in Section 5.
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4 Triples as a replacement for zero tests314

Let P be a program with zero tests using two counters x and y. The goal of this subsection315

is to construct a program that simulates P without using zero tests.316

I Lemma 4. Let P be a program using two zero-tested counters. There exists a program P ′317

with six counters X such that for every B ∈ N+ the two following conditions are equivalent:318

There exists a complete run of P that starts and ends with all counters equal to 0 and319

performs exactly B zero tests;320

There exists a complete run of P ′ that starts in some configuration Triple(A,B, a, b, c,X)321

with A ∈ N+ and ends in a configuration where all the counters except a are zero.322

The six counters of program P ′ will consists in two counters x, y simulating the two counters323

of P, three counters a, b, c containing the initial triple, and an auxiliary counter t. The idea324

behind the construction is that we will replace the zero tests with the two gadgets Zero(x)325

and Zero(y) defined as follows:326

Program Zero(x):
1: loop a −→ t c −→ t
2: loop y −→ x c −→ t
3: loop t −→ a c −→ a
4: loop x −→ y c −→ a
5: b −= 1

Program Zero(y):
1: loop a −→ t c −→ t
2: loop x −→ y c −→ t
3: loop t −→ a c −→ a
4: loop y −→ x c −→ a
5: b −= 1

327

The functioning of these two programs revolves around the following invariant:328

Invariant: (a + x + y + t) · 4b = a + x + y + t + c and t = 0;329

Broken invariant: (a + x + y + t) · 4b < a + x + y + t + c.330
331

Remark that the broken invariant is more specific than the negation of the invariant. We now332

present a technical claim showing that Zero(x) and Zero(y) accurately replace zero tests.333

I Claim 6.1. Let z ∈ {x, y}. From each configuration of Zero(z) where b > 0, z = 0 and the334

invariant holds there is a unique complete run that maintains the invariant and preserves the335

values of x and y. All other runs starting from this configuration, as well as all runs starting336

with a broken invariant or a holding invariant with a value of z greater than 0, end with a337

broken invariant.338

Proof. We show the result for Zero(x): the proof can easily be transferred to Zero(y) by339

exchanging the roles of x and y. Let us start by observing that Zero(x) globally decrements340

the value of b by 1 and preserves the sum a + x + y + t + c since every line preserves it.341

Therefore, in order to maintain a holding invariant, Zero(x) needs to quadruple the value of342

the sum of counters a + x + y + t. Similarly, to repair a broken invariant Zero(x) needs to343

increase the value of a + x + y + t by more than quadrupling it. We now study Zero(x) in344

detail to show that the latter is impossible, and that the former only occurs under specific345

conditions that imply the statement of the claim. We split our analysis in two:346

Lines 1–2: The loop on line 1, respectively 2, increases a+x+y+t by at most a, respectively y.347

Therefore the value of a + x + y + t is at most doubled, which occurs only if initially348

t = x = 0 and if then both loops are maximally iterated, resulting in a = y = 0.349

Lines 3–4: The loop on line 3, respectively 4, increases a+x+y+t by at most t, respectively x.350

Therefore the value of a + x + y + t is at most doubled, which happens only if a = y = 0351

upon reaching line 3 and if then both loops are maximally iterated, resulting in t = x = 0.352
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Combining both parts, we get that the value of a + x + y + t is at most quadrupled through353

a run of Zero(x), which only occurs if initially t = x = 0 and all the loops are maximally354

iterated. This immediately implies that Zero(x) cannot repair a broken invariant. Moreover,355

to maintain a holding invariant it is necessary to actually quadruple this value, therefore x356

needs to be 0 at the start; the maximal iteration of the loops will cause t to be 0 at the end;357

and the content of y will be completely moved to x by line 2 and then back to y by line 4,358

remaining unchanged as required by the statement. J359

We now use Zero(x) and Zero(y) to transform P into a program P ′ satisfying Lemma 4.360

Formally, the program P ′ is obtained by applying the following modifications to P:361

We add an increment (resp. decrement) of a to each line of P featuring a decrement362

(resp. increment) of x or y so that every line preserves the value of a + x + y + t;363

We replace each zero tests “zero? x” with a copy of the program Zero(x), and each zero364

test “zero? y” with a copy of the program Zero(y);365

The first modification ensures that all the lines of P ′ except the calls to Zero(x) and Zero(y)366

maintain the invariant. We observe that for every complete run π′ of P ′ that starts in a triple367

Triple(A,B, a, b, c,X) and ends in a configuration where all counters except a are zero, the368

invariant is satisfied both at the beginning (by the definition of a triple) and at the end.369

Therefore, according to Claim 6.1 the invariant is never broken throughout π′, indicating370

that the calls to Zero(x) and Zero(y) accurately simulate zero tests. Consequently, π′ can371

be transformed into a matching run π of P with same values of x and y. In particular, π372

starts and ends with both counters equal to 0. Additionally, the value of b goes from B to 0373

along π′. Since this value is decremented by one by each call to Zero(x) or Zero(y), π′ goes374

through exactly B such calls, which translates into π performing exactly B zero tests.375

To conclude the proof of Lemma 4, remark that we can also transform every run of P376

that starts and ends with both counters equal to 0 and performs B zero tests into a matching377

run of P ′ starting from some triple Triple(A,B, a, b, c,X) and ending in a configuration378

where all counters except a are zero However, we must be cautious in choosing the initial379

value A of a to be sufficiently high. This ensures that we can increment x and y as high as380

required, despite the matching decrements of a added in P ′.381

5 Amplifiers defined by counter programs382

In this section we build amplifiers of polynomial size for the family of functions (Fd)d∈N:383

I Lemma 5. For every d ∈ N+ there exists an Fd-amplifier of size O(d) that uses 2d+ 4384

counters out of which d are end counters.385

The rest of this section is devoted to an inductive proof of Lemma 5. First we build an386

F1-amplifier P1 with 6 counters out of which one is an end counter (Lemma 7). Next we387

show how to lift an arbitrary F -amplifier with d counters into an F̃ -amplifier by adding two388

counters out of which one is an end counter (Lemma 8). Applying d− 1 times our lifting389

process to the program P1 yields an Fd-amplifier using 2d+ 4 counters, proving Lemma 5.390

Strong amplifiers. For the purpose of induction step, namely for lifting F -amplifiers to391

F̃ -amplifiers, we need a slight strengthening of the notion of amplifier. An F -amplifier392

(P, (a, b, b), (a, b′, c′), t,Z) is called strong if every run π of P satisfies the following conditions393

(let ΣZ stand for the sum of all counters in Z):394

1. The value of the sum a + c + t + ΣZ is the same at the start and at the end of π;395

2. If (a + c + t + ΣZ− c′) · 4b′ < a + c + t + ΣZ holds at the start of π, it also holds at the end.396
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5.1 Construction of the F1-amplifier P1397

Consider the following program with 6 counters X = {a, b, c, b′, c′, t}:398

Program P1:
1: loop a −→ t
2: loop t −→ a c′ −= 3 c += 3
3: b′ −= 1 b += 1
4: loop
5: loop c −→ t c′ −= 1 t += 1
6: loop a 4−→ c c′ −= 4 c += 1 t += 3
7: loop c −→ a c′ −= 1 t += 1
8: loop t −→ c c′ −= 1 c += 1
9: b′ −= 1 b += 2

399

The program consists of an initialisation step lines 1–3, and an iteration step lines 4–9.400

I Lemma 7. The program (P1,X, (a, b, c), (a, b′, c′), t, {c′}) is a strong F1-amplifier.401

As an F1-amplifier, P1 is expected to map each input Triple(A,B, a, b′, c′,X) such that402

4F1(B)−B divides A to the output Triple(A · 4B−F1(B),F1(B), a, b, c,X). Since F1(B) =403

2B − 1, transforming the initial value b′ = B into the final value b = F1(B) is easy: P1 first404

decrements b by 1 and increments b by 1 once (line 3), and then increments b by 2 whenever405

it decrements b′ by 1 (line 9). It is more complicated to transform the initial value a = A406

into the final value a = A · 4B−F1(B): we need to divide F1(B)−B = B− 1 times the content407

of a by 4. We prove that P1 does so by studying the following invariant:408

Invariant: (a + c + t) · 4b′ = a + c + t + c′ and t = 0;409

Broken invariant: (a + c + t) · 4b′ < a + c + t + c′.410
411

Notice that saying that the invariant is broken is more specific than saying that the invariant412

does not hold. We now present two technical claims describing how the invariant evolves413

along both steps of P1. The proof of the claims can be found in Appendix A.414

I Claim 7.1. From each configuration where b′ > 0, c = 0 and the invariant holds, there is415

a unique run through the initialisation step that maintains the invariant and preserves the416

value of a. All the other runs starting from this configuration, as well as the runs starting417

with a broken invariant, end with a broken invariant.418

I Claim 7.2. From each configuration where b′ > 0, a is divisible by 4 and the invariant419

holds, there is a unique run through the iteration step that maintains the invariant and420

divides the value of a by 4. All the other runs starting from this configuration, as well as421

those starting with a broken invariant or a holding invariant with a value of a not divisible422

by 4, end with a broken invariant.423

We proceed with the proof of Lemma 7. Let A,B ∈ N and let π be a {c′}-zeroing run of424

the program P1 starting from Triple(A,B, a, b′, c′,X). Initially the counters satisfy:425

a = A, b′ = B, c′ = A · (4B − 1), b = c = t = 0.426

This directly implies that the invariant holds at the beginning of π. Let us analyse the427

values of the counters at the end of π. We immediately get c′ = 0 since π is {c′}-zeroing.428

Note that this implies that the invariant cannot be broken as the counters always hold429
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non-negative integer values. As a consequence, Claims 7.1 and 7.2 imply that the invariant430

still holds at the end of π, and that π is the unique {c′}-zeroing run of of P1 starting from431

Triple(A,B, a, b′, c′,X). To conclude the proof, we now show that at the end of π all the432

counters match Triple(A · 4B−F1(B),F1(B), a, b, c,X):433

a = A · 4B−F1(B), b = F1(B), c = A · (4B − 4B−F1(B)), b′ = c′ = t = 0.434

First, the invariant directly yields t = 0, and also b′ = 0 by using the fact that c′ = 0. As b′435

starts with value B and is decremented by one along the initialisation step and each iteration436

step, we get that π visits the iteration step B − 1 times. In turn, this implies that the final437

value of b is 2B − 1 = F1(B), and by Claims 7.1 and 7.2 we also get that the final value of a438

is A
4B−1 = A · 4B−F1(B). Combining this with the fact that the initial value A · 4B of the sum439

a + c + t + c′ is preserved along π finally yields the appropriate value for c.440

Note that the run π exists if and only if 4B−F1(B) divides A, otherwise Claim 7.2 implies441

that the invariant is broken before the end of the run. This proves that P1 is an F1-amplifier.442

The fact that P1 is a strong F1-amplifier then directly follows from Claims 7.1 and 7.2.443

5.2 Construction of the F̃ -amplifier P̃ from an F -amplifier P444

Let (P,X, (a, b, c), (a, b′, c′), t,Z) be a strong F -amplifier for some function F : N+ → N+.445

We construct a strong F̃ -amplifier P̃ out of P . The program P̃ uses the counters of P plus446

two fresh input counters b′′ and c′′, and it shares the output counters of P:447

Program P̃ :
1: loop a −→ t
2: loop t −→ a c′′ −= 3 c += 3
3: b′′ −= 1 b += 1
4: loop
5: loop a −→ t
6: loop t −→ a c′′ −= 3 a += 3
7: loop c −→ c′ c′′ −= 3 c′ += 3
8: loop b −→ b′
9: P
10: b′′ −= 1

448

Similarly to P1 the program P̃ consists of an initialisation step lines 1–3 (differing from P1449

only by renaming counters), and an iteration step lines 4–10 (differing significantly from P1).450

I Lemma 8. For every strong F -amplifier (P,X, (a, b, c), (a, b′, c′), t,Z), the program ( P̃ ,X∪451

{b′′, c′′}, (a, b, c), (a, b′′, c′′),Z ∪ {c′′}) is a strong F̃ -amplifier.452

The proof of Lemma 8 can be found in Appendix B. Here, we provide an overview of453

the main intuitions behind it. As an F̃ -amplifier, P̃ is expected to map each input454

Triple(A,B, a, b′′, c′′,X∪{b′′, c′′}) such that 4 F̃ (B)−F (B) divides A to the output Triple(A·455

4F (B)− F̃ (B), F̃ (B), a, b, c,X ∪ {b′′, c′′}). The intended behaviour of P̃ is straightforward:456

Since for all n ∈ N+ the value F̃ (n) is obtained by applying the function F to 1 for n− 1457

consecutive times, we expect P̃ to apply the program P exactly B − 1 times to transform a458

1-triple into an F̃ (B)-triple. To show that P̃ behaves as expected, we study the following459

invariant:460

Invariant: (a + c + t) · 4b′′ = a + c + t + c′′ and t = 0;461

Broken invariant: (a + c + t) · 4b′′ < a + c + t + c′′.462
463
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The starting configuration Triple(A,B, a, b′′, c′′,X ∪ {b′′, c′′}) satisfies the invariant. The464

program P̃ is designed such that every run π starting from such a configuration then satisfies:465

If along π all the loops are maximally iterated and all the calls to P are Z-zeroing, then466

the invariant holds until the end of π. Moreover, π then matches the expected behaviour467

of P̃ described above. In particular, π will correctly amplify B − 1 times via P a triple468

Triple(A, 1, a, b, c,X), thus ending in Triple(A ·4F (B)− F̃ (B), F̃ (B), a, b, c,X∪{b′′, c′′}).469

However, if π fails to maximally iterate one loop, or does a call to P that is not Z-zeroing,470

then the invariant is irremediably broken, which implies that π is not (Z ∪ {c′′})-zeroing.471

This proves that P̃ is a strong F̃ -amplifier.472

6 Amplifiers defined by counter programs with a pushdown stack473

In this section, we implement more efficient Fd-amplifiers using a stack:474

I Lemma 6. For every d ∈ N+ there exists an Fd-amplifier of size O(d) that uses a stack475

and bd2c+ 4 counters out of which bd2c are end counters.476

Our construction is based on the amplifiers from Section 5. The main intuitive idea is to477

‘delegate’ some counters to the stack. The stack alphabet consists exactly of those counters478

which are delegated, and the value of each delegated counter x corresponds to the number of479

occurrences of the symbol x on the stack. Therefore, ‘delegated counters’ can be understood480

as a synonym of ‘stack symbols’ in the sequel. This idea motivates the following definition.481

Let S and X be two disjoint sets of delegated, respectively non-delegated, counters. We define482

the function483

hX,S : NX × S∗ → NX∪S
484

that maps a configuration, i.e., a valuation v of the non-delegated counters of X together with485

a stack content s ∈ S∗, to a valuation of all the counters from X∪S, as follows: hX,S(v, s) = v′,486

where v′(x) = v(x) for x ∈ X, and v′(x) is the number of occurrences of x in s for x ∈ S.487

Using this definition, we establish a notion of simulation between programs with or488

without stack. Given an F -amplifier P with set of counters X ∪ S, we say that a counter489

program with a stack Q simulates P if it satisfies the two following conditions:490

For every A,B ∈ N+ such that A is divisible by 4(F (B)−B) there exists a run of Q491

between two configurations x and y satisfying hX,S(x) = Triple(A,B, a, b′, c′,X) and492

hX,S(y) = Triple(A · 4(B−F (B)), F (B), a, b, c,X).493

For every run of Q between two configurations x and y there exists a run of P between494

hX,S(x) and hX,S(y);495

We say that such a program with stack Q is an an F -amplifier.496

The rest of this section is devoted to the proof of Lemma 6. We rely on the constructions497

of Section 5, and similarly proceed in two steps. First, we transform the F1-amplifier P1 into498

a program with stack Q1 that simulates P1 with four counters, as it delegates the two other499

counters to the stack (Lemma 9). Next, we adapt the constructions used to lift F -amplifiers500

into F̃ -amplifier. This time, we will have two constructions that can be applied alternatively:501

the first introduces one counter and one delegated counter, and the second introduces two502

delegated counters (Lemma 10). Therefore, for every d ∈ N, starting with the program Q1503

and applying alternatively our two lifting constructions yields a Fd-amplifier with bd2c+ 4504

counters (as the other counters are delegated to the stack), which proves Lemma 6.505
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6.1 Construction of the F1-amplifier Q1506

Consider the following program with 4 counters X = {a, b, c, t} and the stack alphabet507

S = {b′, c′}, which is obtained from the program P1 defined in Section 5 by replacing each508

decrement on b′ and c′ by the corresponding pop operation:509

Program Q1:
1: loop a −→ t
2: loop t −→ a pop(c′c′c′) c += 3
3: pop(b′) b += 1
4: loop
5: loop c −→ t pop(c′) t += 1
6: loop a 4−→ c pop(c′c′c′c′) c += 1 t += 3
7: loop c −→ a pop(c′) t += 1
8: loop t −→ c pop(c′) c += 1
9: pop(b′) b += 2

510

I Lemma 9. The program Q1 simulates the F1-amplifier (P1,X, (a, b, c), (a, b′, c′), t, {c′′}).511

Proof. Let h denote the function h{a,b,c,t},{b′,c′} that transforms configurations of Q1 into512

configurations of P1. The program Q1 is a constrained version of P1: every line is identical513

with the added restriction that lines 2, 3, 6 and 9 can only be fired if the appropriate symbol514

is at the top of the stack. Therefore, we immediately get the second condition required for515

Q1 to simulate P1: for every run π of Q1 between two configurations x and y, the run π′ of516

P that starts in h(x) and uses the same lines as π is a valid run of P that ends in h(y).517

To conclude, we show that we can transform the {b′, c′}-zeroing runs of P1 (thus in518

particular the runs that witness the F1-amplifier behaviour) into runs of Q1. To do so we rely519

on the fact that the counters b′ and c′ are only decreasing along the runs of P1. Formally,520

given a {b′, c′}-zeroing run π of P1 between two configurations x and y, let uπ ∈ {b′, c′}∗ be521

the word listing, in order, the occurrences of the decrements of b′ and c′ along π. We define522

a configuration x′ of Q1 as follows: the counters a, b, c, t match the content they have in the523

starting configuration x of π, and the stack content is the reverse of the word uπ so that the524

first letter of uπ is at the top of the stack. This definition guarantees that:525

We have h(x′) = x. Indeed, since π is {b′, c′}-zeroing, the value of the counters b′526

and c′ in the initial configuration x is equal to the number of times these counters are527

decremented;528

There exists a run π′ of Q1 that starts from x′ and follows the same lines as π: whenever529

a popping instruction appears the adequate symbol will be at the top of the stack. As the530

lines of P1 and Q1 are analogous, the configuration y′ reached by π′ satisfies h(y′) = y. J531

6.2 Construction of the F̃ -amplifiers Q̃ and Q from an F -amplifier Q532

In Section 5, we showed how to lift an F -amplifier P into an F̃ -amplifier P̃ . We now show533

two different manners of adapting the construction of P̃ in order to lift a program with534

stack Q simulating P into a program with stack simulating P̃ .535

I Lemma 10. Let Q be a program simulating a strong F -amplifier (P,X, (a, b, c), (a, b′, c′), t,Z)536

without delegating the counters a, b, c and t.537

If Q delegates b′ but not c′, then Q̃ simulates ( P̃ ,X∪{b′′, c′′}, (a, b, c), (a, b′′, c′′),Z∪{c′′})538

while delegating two input counters b′′ and c′′ in addition to the counters delegated by Q.539
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If Q delegates b′ and c′, then Q simulates ( P̃ ,X ∪ {b′′, c′′}, (a, b, c), (a, b′′, c′′),Z ∪ {c′′})540

while delegating only one input counter b′′ in addition to the counters delegated by Q.541
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Program Q̃ :
1: loop a −→ t
2: loop t −→ a pop(c′′c′′c′′) c += 3
3: pop(b′′) b += 1
4: loop
5: loop a −→ t
6: loop t −→ a pop(c′′c′′c′′) a += 3
7: loop c −→ c′ pop(c′′c′′c′′) c′ += 3
8: loop b −= 1 push(b′)
9: Q
10: pop(b′′)

Program Q :
1: loop a −→ t
2: loop t −→ a c′′ −= 3 c += 3
3: pop(b′′) b += 1
4: loop
5: loop a −→ t
6: loop t −→ a c′′ −= 3 a += 3
7: loop
8: loop b −= 1 push(b′)
9: c −= 1 c′′ −= 3 push(c′)
10: loop b −= 1 push(b′)
11: push(c′)
12: loop b −= 1 push(b′)
13: push(c′)
14: loop b −= 1 push(b′)
15: push(c′)
16: loop b −= 1 push(b′)
17: Q
18: pop(b′′)

542

The proof of Lemma 10 can be found in Appendix C. To convey the intuition behind it we543

analyse the differences between the two programs. The main difference concerns the counters544

delegated to the stack: If Q delegates only b′, then the starting configurations for the calls545

to Q are easy to setup as the stack simply contains a sequence of b′. Therefore Q can be546

lifted via Q̃ which delegates both b′′ and c′′. However, if Q delegates both b′ and c′, then547

the starting configurations required for the calls to Q are more complex: the stack needs to548

contain the symbols b′ and c′ in a specific order. This prevents us from delegating both b′′549

and c′′ to the stack, thus we need to lift Q via Q which delegates only b′′. and keeps c′′ as550

a standard counter. A second difference between Q̃ and Q concerns the loops updating b′551

and c′ in the iteration step. To understand what is happening here, let us have a look at552

what happens when we replace the push and pop instructions by increments and decrements:553

1: loop c −→ c′ c′′ −= 3 c′ += 3
2: loop b −→ b′

1: loop
2: loop b −→ b′
3: c −= 1 c′ += 1 c′′ −= 3
4: loop b −→ b′
5: c′ += 1
6: loop b −→ b′
7: c′ += 1
8: loop b −→ b′
9: c′ += 1
10: loop b −→ b′

554

While these two sequences of instructions are different, we can remark that their global effect555

is identical, in the sense that every counter update realisable by the left one is also realisable556

by the right one, and reciprocally. However, if b′ and c′ are delegated to the stack then557

the sequence of instruction on the right is more powerful, as it performs the same number558

of increments of b′ and c′, but in any order, which allows to create many different stack559

contents. This is required so that Q can construct the stack contents needed to call Q.560
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A Proof of Claims 7.1 and 7.2606

I Claim 7.1. From each configuration where b′ > 0, c = 0 and the invariant holds, there is607

a unique run through the initialisation step that maintains the invariant and preserves the608

value of a. All the other runs starting from this configuration, as well as the runs starting609

with a broken invariant, end with a broken invariant.610

I Claim 7.2. From each configuration where b′ > 0, a is divisible by 4 and the invariant611

holds, there is a unique run through the iteration step that maintains the invariant and612

divides the value of a by 4. All the other runs starting from this configuration, as well as613

those starting with a broken invariant or a holding invariant with a value of a not divisible614

by 4, end with a broken invariant.615

Let us recall the program and the invariant mentioned in these two statements:616

Program P1:
1: loop a −→ t
2: loop t −→ a c′ −= 3 c += 3
3: b′ −= 1 b += 1
4: loop
5: loop c −→ t c′ −= 1 t += 1
6: loop a 4−→ c c′ −= 4 c += 1 t += 3
7: loop c −→ a c′ −= 1 t += 1
8: loop t −→ c c′ −= 1 c += 1
9: b′ −= 1 b += 2

617

Invariant: (a + c + t) · 4b′ = a + c + t + c′ and t = 0;618

Broken invariant: (a + c + t) · 4b′ < a + c + t + c′.619
620

The initialisation step and the iteration step both decrement b′ by one and preserve the621

right-hand side a + c + t + c′ of the invariant as every line of P1 preserves this sum. Hence,622

to maintain the invariant the sum a + c + t needs to be quadrupled, and to repair a broken623

invariant the sum a + c + t needs to be increased by an even larger amount. We show that in624

both steps the latter is impossible, and the former only happens if all loops are maximally625

iterated, which implies the modification of the counter a required by the statements.626

Proof of Claim 7.1. The value of a + c + t is at most increased by 3 · (a + t) along the627

initialisation part, as line 1 preserves this sum and moves the content of a to t, then line 2628

increases this sum by at most 3 times the value of t. Therefore a + c + t is at most quadrupled,629

which implies that the initialisation step cannot repair a broken invariant. Moreover, to630

maintain a holding invariant the program P1 needs to quadruple this sum. This happens631

if and only if initially b′ > 0, c = 0 and c′ ≥ 3 · (a + t) (this last condition is implied by632

the invariant); and if then both loops are maximally iterated. Finally, remark that upon633

maximal iteration of the loops a and t keep their initial values, as required. J634

Proof of Claim 7.2. We divide our analysis of the iteration step in two parts:635

Lines 5–6 The loop on line 5, respectively line 6, increases a + c + t by at most the value of636

c, respectively a. Therefore the value of a + c + t is at most doubled, which occurs only if637

initially t = 0 and then both loops are maximally iterated, resulting in a = 0.638
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Lines 7–8 The loop on line 7, respectively 8, increases a + c + t by at most the value of c,639

respectively t. Therefore the value of a + c + t is at most doubled, which occurs only if640

a = 0 upon reaching line 7 and then both loops are maximally iterated, resulting in t = 0.641

Combining the two parts, we get that the value of a + c + t is at most quadrupled by the642

iteration step. This directly implies that it is not possible to repair a broken invariant.643

Moreover, to maintain a holding invariant this sum needs to be quadrupled. This happens if644

and only if at the start of the iteration step b′ > 0, a is divisible by 4, t = 0 and c′ ≥ 3 · (a + c)645

(note that the last two conditions are implied by the invariant); and if then the four loops646

are maximally iterated.2 To conclude, remark that maximally iterating lines 6–7 results in647

dividing the value of a by 4: line 6 transfers one fourth of the value of a to c, which is then648

transferred back to a by line 7. J649

B Proof of Lemma 5650

I Lemma 8. For every strong F -amplifier (P,X, (a, b, c), (a, b′, c′), t,Z), the program ( P̃ ,X∪651

{b′′, c′′}, (a, b, c), (a, b′′, c′′),Z ∪ {c′′}) is a strong F̃ -amplifier.652

The proof is structured as follows: We begin with a technical lemma implying that P̃ satisfies653

the two invariants required to be a strong amplifier (Claim 10.1). Then, to show that P̃ is an654

F̃ -amplifier, we formalise the expected behaviour of the runs of P̃ (Equations (3)–(7)), we655

show that the runs that fit this expected behaviour (Z ∪{c′′})-compute F̃ (Claim 10.2), and656

that the runs that do not fit this expected behaviour are not (Z ∪ {c′′})-zeroing (Claim 10.3).657

Invariants of P̃ . Before delving into the intricate functioning of P̃ , we show two invariants658

that hold for every run. On top of being prerequisites for P̃ to qualify as a strong amplifier,659

these invariants offer valuable assistance in proving the next results of this section.660

I Claim 10.1. The initialisation step and the iteration step of P̃ both preserve the value of661

a + c + t + ΣZ + c′′ and either preserve or decrease the value of (a + c + t + ΣZ) · 4b′′ .662

Proof. We start by observing that the sum a + c + t + ΣZ + c′′ stays constant along every run663

of P̃ : every command line preserves it, including line 9 since P is a strong F -amplifier. We664

now study the effect of the initialisation and iteration steps on the value of (a+c+t+ΣZ) ·4b′′ .665

Initialisation: The sum a + c + t + ΣZ is preserved in lines 1 and 3 and is increased in line 2666

by at most three times the value of t, thus it is at most quadrupled by the initialisation667

step. Since b′′ is decremented by 1 during the initialisation step, this proves that the668

value of (a + c + t + ΣZ) · 4b′′ is either preserved or decreased.669

Iteration: The sum a + c + t + ΣZ is increased in lines 5–6 by at most three times the value of670

a + t; it is increased in line 7 by at most three times the value of c; and it is then preserved671

in lines 8, 9 and 10 (since P is a strong amplifier). Hence the value of a + c + t + ΣZ is at672

most quadrupled by each occurrence of the iteration step. Since b′′ is decremented by 1,673

this shows that the value of (a + c + t + ΣZ) · 4b′′ is either preserved or decreased. J674

2 The fact that a is divisible by 4 is what allows line 6 to be maximally iterated: if it is not the case, the
run would eventually get stuck with a content of a smaller than four but greater than zero.
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Expected behaviour of P̃ . The intended behaviour of P̃ is straightforward. We start675

with a B-triple over the counters a, b′′, c′′. The initialisation step establishes a 1-triple over676

a, b, c. Next, in the iteration step, this 1-triple is first moved to a, b′, c′, and then P is invoked677

to transform it into a F (1)-triple over a, b, c. By repeating the iteration step B − 2 more678

times, we obtain a FB−1(1) = F̃ (B)-triple over a, b, c, as expected from a F̃ -amplifier. We679

now formalise this expected behaviour as a set of equations.680

Let π be a run of P̃ that visits the iteration step n times. Let w0(π) denote the valuation681

of the counter set X∪{b′′, c′′} at the start of π, and xn(π) denote the valuation of the counter682

set X at the end of π. Moreover, for every i = 0, 1 . . . , n−1, we use xi(π) and yi(π) to denote683

the valuation of X at the start of the (i + 1)th iteration step of π and at the start of the684

(i+ 1)th call to the program P , respectively. This notation allows us to formally express the685

expected behaviour described earlier:686

w0(π) = Triple(A,B, a, b′′, c′′,X ∪ {b′′, c′′}) (3)687

x0(π) = Triple(A, 1, a, b, c,X) (4)688

xi(π) = Triple(A · 4i+1−F i(1), F i(1), a, b, c,X) (5)689

yi(π) = Triple(A · 4i+2−F i(1), F i(1), a, b′, c′,X) (6)690

xB−1(π) = Triple(A · 4B− F̃ (B), F̃ (B), a, b, c,X) (7)691
692

The individual counter values corresponding to these equations are listed in Figure 1.693

We split the set of runs of P̃ in two parts: the good runs, for which we show that694

Equations (3)–(7) hold, and the bad runs, that we prove to be non (Z ∪ {c′′})-zeroing.695

Formally, we say that a run of P̃ is good if it goes through B − 1 iteration steps; if all696

the loops visited along it are maximally iterated; and if all its calls to the program P are697

Z-zeroing. By opposition, we describe as bad the runs that fail to satisfy at least one of these698

conditions.699

Good runs. We prove that the good runs of P̃ compute the function F̃ :700

I Claim 10.2. Let A,B ∈ N+ be two positive integers. Every good run of P̃ starting in701

Triple(A,B, a, b′′, c′′,X ∪ {b′′, c′′}) satisfies Equations (3)–(7), thus in particular it ends in702

Triple(A · 4B− F̃ (B), F̃ (B), a, b, c,X ∪ {b′′, c′′}). Moreover, there exists such a run if and703

only if 4 F̃ (B)−B divides A.704

Proof. Let π be a good run of P̃ starting in Triple(A,B, a, b′′, c′′,X). We immediately get705

that Equation (3) is satisfied. To show that π satisfies Equations (4)–(7), we prove via three706

inductive steps that Figure 1 is an accurate depictions of the valuations xi(π) and yi(π) for707

every i ∈ {0, 2, . . . , B − 1}:708

a b b′ c c′
w0(π) : A 0 0 0 0
x0(π) : A 1 0 A · 2− a 0
xi(π) : A ·4i+1−F i(1) F i(1) 0 A · 4i+1 − a 0
yi(π) : A ·4i+2−F i(1) 0 F i(1) 0 A · 4i+2 − a

xB−1(π) : A · 4B− F̃ (B) F̃ (B) 0 A · 4B − a 0

Figure 1 Individual counter values corresponding to the expressions in Equations (3)–(7).
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1. First, starting from a valuation satisfying c′′ ≥ a, the effect of the initialisation step with709

maximal iteration of the flat loops is equivalent to the following sequence of assignments:710

b′′ := b′′ − 1, b := b + 1, c′′ := c′′ − a, c := a.711

This maps the first row of Figure 1 to its second row, thus Equation (4) holds.712

2. Next, starting from a valuation satisfying c′′ ≥ a, the effect of lines 5–8 of P̃ with713

maximal iteration of the flat loops is equivalent to the following sequence of assignments:714

a := 2 · a, b′ := b, b := 0, c′′ := c′′ − (a + c), c′ := c′ + 2c, c := 0.715

This maps the third row of Figure 1 to its fourth row, thus whenever Equation (5) holds716

for some 0 ∈ {1, 2, . . . , B − 2}, so does Equation (6).717

3. Finally, as the program P is a strong F -amplifier, for all i ∈ {0, 1, . . . , B−2} it Z-computes718

Triple(A · 4i+2−F i+1(1), F i+1(1), a, b, c,X) from Triple(A · 4i+2−F i(1), F i(1), a, b′, c′,X).719

Therefore, as every call to P along π is Z-zeroing since π a good run, we get that if720

Equation (6) holds for some i ∈ {0, 1, . . . , B − 2} then Equation (5) holds for i+ 1.721

To show that the run π ends in Triple(A · 4B− F̃ (B), F̃ (B), a, b, c,X ∪ {b′′, c′′}), we still722

need to address the values of counters b′′ and c′′ (as Equation 7 only specifies the value of the723

counter set X). We directly get that the value of b′′ is 0 at the end of π: b′′ starts with value724

B and is decremented once in the initialisation step and in each of the B − 1 occurrences of725

the iteration step. Moreover, we also get that c′′ is 0 at the end of π since Claim 10.1 yields726

that the value of a + c + t + ΣZ + c′′ is constantly equal to A · 4B along π.727

Finally, concerning the existence of the run π, remark that, while the register updates728

mentioned in Item 1 and 2 can be applied irrespective of the values of A and B, the Z-zeroing729

calls to P described in Item 3 can be fulfilled if and only if A is divisible by a sufficiently730

large power of 2. More specifically, the run π described in this proof exists if and only if731

4 F̃ (B)−B divides A. J732

Bad runs. We prove that the bad runs of P̃ do not (Z ∪ {c′′})-compute anything:733

I Claim 10.3. Let A,B ∈ N+ be two positive integers. Every bad run of P̃ starting in734

Triple(A,B, a, b′′, c′′,X ∪ {b′′, c′′}) is not (Z ∪ {c′′})-zeroing.735

Proof. Let π be a run of P̃ starting in Triple(A,B, a, b′′, c′′,X). At the start of π we have:736

a = A, b′′ = B, c′′ = a · (4b′′ − 1),737

and all other counters are 0. In particular, this implies b = b′ = c = c′ = t = 0, thus738

(a + c + t + ΣZ) · 4b′′ = a + c + t + ΣZ + c′′. (8)739
740

We start by observing that Claim 10.1 implies that π is Z-zeroing if and only if Equation (8)741

holds after every step of π and b′ = 0 at the end of π: The right-hand of Equation (8) side742

is preserved, and the value of the left hand-side never increases, thus if it ever decreases it743

remains smaller than the right-hand side until the term of π, which in particular implies that744

the value of c′′ is not 0.745

Therefore we can immediately deduce that if π visits the iteration step less than B − 1746

times, then b′ > 0 at the end of π, thus π is not (Z ∪ {c′′})-zeroing by Equation (8). For the747

rest of this proof, let us suppose that π visits the iteration step B − 1 times. Whenever π748

goes through the initialisation step or the iteration step, it decrements b′ by 1, while gaining749
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the opportunity to increment the sum a + c + t + ΣZ, that we denote ΣZ′ in order to maintain750

Equation (8). As we showed when we studied the good runs, in an ideal scenario ΣZ′ is751

quadrupled, which compensates the decrement of b′, and Equation (8) still holds. We now752

show that the occurrence of a single mistake at any point results in ΣZ′ not being quadrupled753

along a step: We suppose that the run π is bad, we list all the possible errors it can commit,754

and show that each one breaks Equation (8):755

If π fails to maximally iterate one of the flat loops at lines 1 or 2 then the sum ΣZ′ is756

not quadrupled during the initialisation step: Maximally iterating both loops (that is,757

iterating both of them a times) increments ΣZ′ by 3 · a, which exactly quadruples it since758

initially the other variables occurring in S have value 0. However, since line 2 increases759

ΣZ′, not maximally iterating it results in a smaller value. Moreover, while line 1 has no760

direct effect on ΣZ′, not maximally iterating it reduces the number of times line 2 can be761

iterated, which in turn reduces the value of ΣZ′.762

If π fails to maximally iterate one of the flat loops at lines 5, 6 or 7 then the sum ΣZ′ is763

not quadrupled during the corresponding iteration step: Maximally iterating the three764

loops (that is, iterating lines 5 and 6 a times and line 7 c times) increments ΣZ′ by765

3 · (a + c), which exactly quadruples it as long as the other variables occurring in ΣZ′ had766

value 0 to start with. However, since lines 6 and 7 increase ΣZ′, not maximally iterating767

them results in a smaller value. Moreover, while line 5 has no direct effect on ΣZ′, not768

maximally iterating it reduces the number of times line 6 can be iterated.769

If π does a non Z-zeroing call to the program P, we differentiate two cases. If this770

happens in the last iteration step we get that π is not (Z ∪ {c′′})-zeroing as it is not771

Z-zeroing. If this happens in one of the previous iteration steps then the sum ΣZ′ is not772

quadrupled in the next iterations step: as we just saw the iteration step increases S by at773

most 3 · (a + c), which fails to quadruple it if there are nonzero counters in Z.774

Finally, let us consider the case where the first error committed by π is failing to maximally775

iterate the flat loop at line 8. In this case, we show that the subsequent call to P is not776

Z-zeroing, which, as we have just shown, implies that π is not (Z ∪ c′′)-zeroing. Since we777

assume that this is the first error committed by π, up to this point, π has behaved as a778

good run. To analyse this situation, let π′ be the run that behaves as π up to this point779

but then maximally iterates the flat loop at line 8. By Lemma 10.2, we know that π′ enters780

the call to P with a counter valuation matching Triple(A · 4i+2−F i(1), F i(1), a, b′, c′,X)781

for some 0 ≤ i ≤ B − 1. In particular, the following equation holds for π′:782

(a + c + t + ΣZ) · 4b′ = A · 4i+2 = a + c + t + ΣZ + c′783

However, since π did not maximally iterate line 8, b′ will be smaller in π compared to π′784

(and b will be larger - but this has no impact on the following argument since b /∈ Z).785

Consequently, π will call the program P with a counter valuation satisfying:786

(a + c + t + ΣZ) · 4b′ < a + c + t + ΣZ + c′.787

Since P is a strong amplifier, this equation still holds at the exit of P . In particular, this788

implies that c′ is not 0, thus the call to P is not Z-zeroing. J789

C Proof of Lemma 10790

I Lemma 10. Let Q be a program simulating a strong F -amplifier (P,X, (a, b, c), (a, b′, c′), t,Z)791

without delegating the counters a, b, c and t.792
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If Q delegates b′ but not c′, then Q̃ simulates ( P̃ ,X∪{b′′, c′′}, (a, b, c), (a, b′′, c′′),Z∪{c′′})793

while delegating two input counters b′′ and c′′ in addition to the counters delegated by Q.794

If Q delegates b′ and c′, then Q simulates ( P̃ ,X ∪ {b′′, c′′}, (a, b, c), (a, b′′, c′′),Z ∪ {c′′})795

while delegating only one input counter b′′ in addition to the counters delegated by Q.796

Proof. Let X and S denote the set of counters of Q, respectively its stack alphabet. Let h̃797

denote the function hX,S∪{b′′,c′′} that transforms configurations of Q̃ into configurations of798

P̃ . Similarly, let h denote the function hX∪{c′′},S∪{b′′} that transforms configurations of799

Q into configurations of P̃ . The proof is done in three steps. First, we show that we can800

easily translate the runs of Q̃ and Q into runs of P̃ with matching source and target. The801

harder part of the proof is to show the reciprocal statement: we consider the good runs of802

P̃ described in Lemma 10.2 and we show how to translate them, first into runs of Q̃ , and803

finally into runs of Q .804

Transforming runs of Q̃ and Q into runs of P̃ . The program Q̃ is a constrained version805

of P̃ : every line is identical except for the lines with a popping instruction instead of a806

decrement, which are more restrictive since the correct symbol needs to be at the top of807

the stack. As a consequence, for every run π̃ of Q̃ between two configurations x and y we808

immediately get a run π of P̃ between h̃ (x) and h̃ (y) which uses the same lines as π̃ .809

Now given a run of π of Q between two configurations x and y, translating π into a810

run of P̃ is not as direct since the lines 7–16 of Q are not exactly analogous to the lines 7–8811

of P̃ . However, as we explained in the paper, using some local reshuffling P̃ can reproduce812

any counter update corresponding to the lines 7–16 of Q . This allows us to transform the813

run π into a run of P̃ between h (x) and h (y).814

Transforming runs of P̃ into runs of Q̃ . Let us suppose that Q delegates the counter b′815

but not c′, and let π be a good run of P̃ as described in the proof of Lemma 10.2. We denote816

by x and y the starting and ending configuration of π. In order to transfer π to Q̃ , we begin817

by creating an appropriate initial configuration x′ as in the proof of Lemma 9. Formally,818

let uπ ∈ {b′, c′}∗ be the word listing, in order, the occurrences of the decrements of b′′ and819

c′′ along π. We define the configuration x′ of Q̃ by setting the values of the counters of X820

to the values they have in the starting configuration x of π, and setting the stack content821

to the reverse of the word uπ (so that the first letter of uπ is at the top of the stack). This822

definition guarantees that h(x′) = x. To conclude, we need to argue that Q̃ can simulate823

π starting from x′. First, remark that the initialisation step is easily simulated since the824

definition of the initial stack content guarantees that the appropriate symbol is at the top of825

the stack whenever needed. We now explain, step by step, how Q̃ simulates the iteration826

steps of π. First, thanks to the definition of the initial stack content the loops on lines 5–7827

can be iterated as in π. Then, we also iterate line 8 as in π. Remark that this disrupts the828

stack by adding a sequence of b′ on top of it. Next comes the call to P , and since π is a good829

run we know that this call is correct, in the sense that it starts in Triple(A,B, a, b′, c′,X)830

(Equation (6)) and ends in Triple(A · 4B− F̃ (B), F̃ (B), a, b, c,X) (Equation (5)) for some831

A,B ∈ N+. Therefore in Q̃ we can simulate this call to P by a call to Q, and since the832

value of b′ is 0 in the ending configuration this implies that the call to Q will automatically833

pop all of the b′ that were added on the stack. Therefore we are back with a stack content834

that matches a prefix of our initial stack content, and we can conclude the simulation of the835

iteration step by popping a single b′′ from the stack.836
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Transforming runs of P̃ into runs of Q . Let us suppose that Q delegates both b′ and c′,837

and let π be a good run of P̃ , as described in the proof of Lemma 10.2. We denote by x and838

y the starting and ending configuration of π. We show how to construct a run π of Q that839

simulates π. First, remark that we have a single possibility for the starting configuration of π:840

In the starting configuration of π only the values of a, b′′ and c′′ are nonzero (Equation (3)),841

and Q only delegates b′′ among these three counters. Therefore the initial stack content will842

just be a sequence of b′′ of the appropriate length. Then, simulating the initialisation step of843

π is easy: one b′′ is popped from the stack and the other counters are updated as in π.844

To conclude, we show how to simulate the iteration steps visited by π. Let π1π2π3 be845

a subrun of π corresponding to an iteration step of P̃ , where π2 stands for the call to the846

program P. As we showed in the proof of Lemma 10.2, every call to P along π is correct, in847

the sense that it starts in some configuration Triple(A,B, a, b′, c′,X) (Equation (6)) and848

ends in Triple(A · 4B− F̃ (B), F̃ (B), a, b, c,X) for some A,B ∈ N+ (Equation (5)). As a849

consequence, since Q simulates P, there exists a run π2 of Q that simulates π2, but this850

run requires a starting stack content corresponding to some specific shuffle uπ2 of the word851

(b′)B(c′)A·(4B−1). Fortunately, as we explained in the paper, the lines 7–16 of Q allow to852

push any shuffle of b′ and c′ on the stack. In particular, there exists a subrun π1 of Q853

that simulates π1 and pushes the word uπ2 on the stack. As a consequence, π1π2 simulates854

truthfully the subrun π1π2 with no impact on the stack: π1 pushes uπ2 , which is then popped855

by π2. Therefore, we can simulate the iteration step π1π2π3 by starting with π1π2, and then856

adding π3 which pops a single b from the stack to simulate the decrement of b occurring in857

π3. J858
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