
HAL Id: hal-04782335
https://hal.science/hal-04782335v1

Preprint submitted on 14 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Where prior learning can and can’t work in
unsupervised inverse problems

Benoît Malézieux, Florent Michel, Thomas Moreau, Matthieu Kowalski

To cite this version:
Benoît Malézieux, Florent Michel, Thomas Moreau, Matthieu Kowalski. Where prior learning can
and can’t work in unsupervised inverse problems. 2024. �hal-04782335�

https://hal.science/hal-04782335v1
https://hal.archives-ouvertes.fr


1

Where Prior Learning Can and Can’t Work in
Unsupervised Inverse Problems

Benoı̂t Malézieux, Florent Michel, Thomas Moreau and Matthieu Kowalski

Abstract—Linear inverse problems consist of recovering a
signal from its noisy and incomplete (or compressed) observation
in a lower dimensional space. Many popular resolution methods
rely on data-driven algorithms that learn a prior from pairs of
signals and observations to overcome the loss of information.
However, these approaches are difficult, if not impossible, to
adapt to unsupervised contexts – where no ground truth data are
available – due to the need for learning from clean signals. This
paper studies necessary and sufficient conditions that do or do not
allow learning a prior in unsupervised inverse problems. First,
we focus on dictionary learning and point out that recovering
the dictionary is unfeasible without constraints when the signal
is observed through only one measurement operator. It can,
however, be learned with multiple operators, given that they
are diverse enough to span the whole signal space. Then, we
study methods where weak priors are made available either
through optimization constraints or deep learning architectures.
We empirically emphasize that they perform better than hand-
crafted priors only if they are adapted to the inverse problem.

Index Terms—Inverse problems, unsupervised learning, dictio-
nary learning

I. INTRODUCTION

Linear inverse problems are ubiquitous in observational
science such as imaging [1], neurosciences [2], or astro-
physics [3]. They consist in reconstructing signals X ∈ R n×N

from remote and noisy measurements Y ∈ Rm×N which
are obtained as a linear transformation A ∈ Rm×n of X ,
corrupted with noise B ∈ Rm×N : Y = AX + B. Here,
m and n denote the dimension of the measurements and
the signals respectively, and N is the number of problems
that need to be solved. As the dimension m of Y is usually
much smaller than the dimension n of X , these problems
are ill-posed, and several signals could lead to a given set of
observations. The measurement uncertainty due to noise also
increases the number of signals that could generate some given
measurements. To select the inverse problem’s most plausible
solution among all possible ones, practitioners rely on prior
knowledge of the data.

Hand-crafted priors relying on sparsity in a basis produce
satisfying results on specific data, such as wavelets in imaging
or Gaborlets in audio [4]. However, the complexity and
variability of the signals often make ad hoc priors inade-
quate. Alternatively, methods leveraging sparsity also allow

B. Malézieux, Florent Michel and T. Moreau are with Inria, Université
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summarizing the signal’s structure [5]. In particular, dictionary
learning [6]–[8] is efficient on pattern learning tasks such as
blood cell detection [9] or MEG signals analysis [10]. Finally,
the prior can be learned from ground truth data when available.
For instance, frameworks based Deep Learning [11]–[13]
propose to integrate a pre-trained denoiser in an iterative
algorithm to solve the problem using the Plug-and-Play [14]
(PnP) approach.

Recently, there has been a notable surge in interest towards
the unrolling approach for dictionary learning techniques [15],
[16]. Nevertheless, these methods require to have access to
clean signals, which are sometime available in audio and
imaging but often not accessible in fields like neuroimaging
or astrophysics.

While data-driven methods have been extensively studied
in the context of supervised inverse problems, recent works
have focused on unsupervised scenarios and provided new
algorithms to learn from corrupted data only [17]–[19]. The
authors of [20] and [21] demonstrate that a necessary condition
for the identifiability of the signals from their measurements
is either to measure them with multiple operators spanning
the whole space or to introduce weak prior knowledge such
as group structures and equivariance in the model when
only one operator is available. Other works based on Deep
Learning have leveraged successful architectures to recover
images without access to any ground truth data. In particular,
Deep Image Prior shows that CNNs contain enough prior
information to recover an image in several inverse problems,
such as denoising or inpainting [22]. Finally, a few works
have demonstrated that it is possible to learn dictionaries from
incomplete data, especially in the context of missing values
or inpainting in imaging [23]–[25]. Another line of work
studied online factorization of large matrices by aggregating
partial information randomly selected from the data at each
iteration [26], [27]. This is equivalent to learning a dictionary
from incomplete data, except that one sample can be looked at
multiple times from different angles, which is hardly possible
in an inverse problem context.

Contributions. This article explores unsupervised prior
learning for solving inverse problems and identifies practical
limitations in this domain. More specifically, assuming that
the signal is sparse in some dictionaries and building on the
idea that ”seeing the whole space” is necessary for accurate
signal identification [21], we examine the specific challenge of
unsupervised dictionary learning for signal recovery in inverse
problems. To our knowledge, only sufficient conditions have
been discussed in [28]. The proposed necessary conditions
complement how to blindly learn a prior in inverse problems.

We first show in Section II-A that, in an unsupervised
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setting, dictionary learning can only learn a dictionary in
ker(A)

⊥. We study in Section II-B the possibility of dictionary
learning through multiple operators. We show that the previous
result extends straightforwardly, and in this case, seeing the
whole space is insufficient because the measurement operators
make the problem more challenging.

In a second contribution, we investigate the effectiveness
of convolution-based techniques in signal recovery tasks. We
conduct an extensive experiment in Section III to assess the
practical behavior of three popular methods: (i) Convolutional
Dictionary Learning to demonstrate our previous findings on
dictionary learning, (ii) Deep Image Prior where the prior is its
deep convolutional architecture, and (iii) Plug-and-Play meth-
ods (PnP), which uses a convolutive neural network denoiser
as a proximal operator in variational methods. Our results
reveal that while these methods are effective for inpainting,
they require additional prior information for deblurring. In
other words, this weak convolution prior must be adapted for
deblurring while remaining suitable for inpainting tasks.

II. THE MAIN BOTTLENECK OF PRIOR LEARNING IN
INVERSE PROBLEMS

When dealing with inverse problems, it is common for the
dimension of the signal to be larger than the dimension of the
measurements. This means that some of the information about
the signal is lost during the observation process, particularly
in the null space of the operator A. To address this issue,
we investigate the impact of this dimension reduction on
dictionary learning, which involves learning a set of basis
vectors that can be used to reconstruct the signal. In Propo-
sition II.2, we present a theoretical analysis of the impact of
this degradation on dictionary learning for a single operator,
and we demonstrate that this necessary condition extends to
multiple operators and what are the practical implications.

A. Dictionary learning with a single measurement operator

Dictionary learning assumes that the signal can be decom-
posed into a sparse representation in a redundant basis of
patterns – also called atoms. In other words, the goal is to
recover the signals X ∈ Rn×N as DZ where Z ∈ RL×N

are sparse codes and D ∈ Rn×L is a dictionary with L
atoms. Taking the example of Lasso-based dictionary learning,
recovering X would require solving a problem of the form

min
Z∈RL×N ,D∈C

1

2
∥ADZ − Y ∥22 + λ ∥Z∥1 , (1)

where λ is a regularization hyperparameter and C is a set of
constraints, typically set so that columns of D have a norm
smaller than 1.

We first aim to see the impact of A on the algorithm’s ability
to recover a proper dictionary. In Proposition II.1, we focus on
inpainting where the measurement operator is a binary mask
or equivalently a diagonal matrix with m non-zeros elements.

Proposition II.1. Consider a diagonal measurement matrix
A = diag(a1, . . . , am, 0, . . . , 0) ∈ Rn×n where m < n and
a1 ≥ · · · ≥ am > 0 . Let D0 ∈ Rn×L and D′ be such that

D′ =

(
∥D0,j∥

∥D0,j,m∥D0,j,m

0n−m

)
1≤j≤L

, where D0 =

(
D0,m

D0,n−m

)
Then

min
Z

1

2
∥AD′Z − Y ∥22 + λ ∥Z∥1

≤ min
Z

1

2
∥AD0Z − Y ∥22 + λ ∥Z∥1 .

All proofs are deferred to Appendix A. In this simple case,
our proposition shows that the optimal dictionary must be 0
in the null space of A. The core idea behind the proof is that
due to invariances, the optimal solution for dictionary learning
is contained in an equivalence class {PSD′ +V } where P is
a permutation matrix, S is a scaling matrix, D′ is a matrix of
rank at most m and V is a matrix of rank at most n−m such
that PSD′ ∈ ker(A)

⊥ and V ∈ ker(A). Given a dictionary
PSD′ + V in this equivalence class, the dictionary PSD′ is
always a better minimizer after proper rescaling. Therefore,
the solver puts to 0 all directions from which A loses the
information and increases the norm of the other rows while
reducing the corresponding value in Z and therefore reducing
the ℓ1 norm. Proposition II.2 generalizes Proposition II.1 to
the case of rectangular matrices.

Proposition II.2. Let A ∈ Rm×n be a measurement matrix
where m < n, and let Y ∈ Rm×N be the observed data. If a
dictionary D ∈ R n×L is a solution to

min
Z∈RL×N ,D∈C

1

2
∥ADZ − Y ∥22 + λ ∥Z∥1 .

then D ∈ ker(A)
⊥.

In essence, if we use only one measurement matrix, we
can only anticipate to acquire a dictionary of rank that does
not exceed m. According to [21], when the signal space is
assumed to have no further constraints, a single operator with
m < n cannot recover the signal. Here, we complement this
result by showing that one can only learn a dictionary within
the range of the operator. In [28], it has been shown that the
dictionary can be uniquely identified under specific constraints
on the operator. Proposition II.2 shows that it is impossible
to identify anything outside the range space of the operator.

Dimension reduction makes dictionary learning harder
in the range space. Even in the range space of the signal, a
good dictionary cannot always be learned reliably. Guarantees
of identifiability or local recovery are strongly based on the
accurate estimation of the sparse code Z [29]–[31]. As the
dimension of the measurement m becomes smaller than the
dimension of the signal n, this estimation becomes less stable.
As an example, if D is a Gaussian random dictionary, the
theory of compressed sensing states that n ≥ 2s ln(Ls ), s being
the sparsity of Z, is a sufficient condition to be able to recover
Z with high probability [32]. When the dictionary is degraded
by a matrix A, this constraint becomes m ≥ 2s ln(Ls ) and the
sparse code that can be reliably recovered needs to be much
sparser, with a ratio close to m

n , to compensate for the loss
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Fig. 1: Recovery score for Gaussian dictionaries 100 × 100,
after degradation by a single compressed sensing operator
m × 100. When the dimension m decreases, the part of the
dictionary not contained in the null space can be recovered
only with sparse signals.

of information. This implies that recovering the part of the
dictionary not contained in the null space of A becomes harder
with the corruption of the data.

To demonstrate the challenges of retrieving a dictionary in
inverse problems, we conducted an experiment as follows. We
created a 100× 100 random Gaussian dictionary and a sparse
signal using the typical Bernoulli-Gaussian model. Then, we
generated the measurement by applying a compressed sensing
operator. After that, we estimated the dictionary and the signal
by solving Eq. (1).

We evaluate the quality of the dictionary, based on the
Pearson correlation of their columns. To make the metric sign
and permutation invariant, we use a best linear sum assignment
S(C) = maxσ∈Sn

1
n

∑n
i=1 |Cσ(i),i|, where Sn is the group

of permutations of [1, n] and C is the cost matrix whose entry
i, j compares the atom i of the first dictionary and j of the
second. This metric can be computed using the Hungarian
algorithm [33]. It is equal to 1 when the dictionary is perfectly
recovered. We compare the score obtained for various sparsity
levels and for varying measurement sizes m to the perfect
score that can be achieved by taking the projection of the
original dictionary in ker(A)

⊥. Fig. 1 shows the recovery
score depending on the size of the measurements and on the
sparsity of the Bernoulli Gaussian signal. The recovery score
drops when the dimension m decreases and small values of
m require a high sparsity level to recover the dictionary in the
range of A.

B. Seeing the data through multiple operators

Even though it is not possible to recover the whole dic-
tionary from a single measurement operator, the situation
changes when the measurement matrix is sample-dependent.
Indeed, several operators may span different parts of the
signal space and make it possible to recover a meaningful
prior for the missing part of the signal. In this section, we

focus on cases where the signals are observed through a set
of Nm measurement matrices (Ai)1≤i≤Nm

, and consider the
task of learning a dictionary with the associated lasso-based
optimization problem

min
D∈C

F (D)

≜
1

2

Nm∑
i=1

∥AiDZAi(D)− Yi∥22 + λi ∥ZAi(D)∥1 ,
(2)

with

ZAi(D) = argminZ
1

2
∥AiDZ − Yi∥22 + λi ∥Z∥1 (3)

Here ZA(D) = (ZA1(D), . . . ZANm
(D)) denotes the sparse

codes related to each operator.
This problem is non-convex and usually solved through

gradient descent, to find a local minimum. In the following,
we highlight cases when the local minima of Eq. (2) are also
local minima for the problem without observation operators
and provide an empirical analysis in different scenarios. With
multiple measurement operators, the gradient of Eq. (2) is
given by

∇DF (D) =

Nm∑
i=1

AT
i (AiDZAi(D)− Yi)ZAi(D)

T
. (4)

The main difficulty in studying this quantity is that the
sparse codes estimate ZAi

(D) depends on D and Ai. Each
operator provides measurements from a limited number of
samples in the dataset, and the sparse codes are different
with and without A. Thus, we consider the simplest case
where Ai = I . This is an easier problem than the general
formulation in Eq. (2), as if this is not feasible, then the
original formulation is not feasible either. In this case, we
have

∇DF (D) = (
∑
i

AT
i Ai)∇DF (D) . (5)

KKT conditions imply that the gradient ∇DF (D) must
vanish at local minima. Whenever

∑
i A

T
i Ai is injective,

∇DF (D) vanishes if and only if ∇DF (D) vanishes. Thus,
local minima of Eq. (2) are also local minima for the original
problem where Ai = I . This means that when

∑
i A

T
i Ai spans

the entire space, the dictionary from the original problem can
be recovered. This case boils down to the case previously stud-
ied in Section II, as

∑
i A

T
i Ai is full rank whenever the rank of

the matrix obtained by stacking the operators (AT
1 , · · · , AT

Nm
)

is equal to n. Otherwise, local minima of F (D) are not
necessarily local minima of F (D). This result stresses again
that seeing the whole space through the measurement operators
is necessary. It is however important to note that this is only a
necessary condition to recover the dictionary, as sparse coding
guarantees may not be met when the dimension m is too small.

We present in the following two examples of inverse prob-
lems with multiple operators to illustrate the challenge of
unsupervised dictionary learning.

Example II.3 (Compressed sensing (CS)). Consider the case
where all Ai are random matrices with independent Gaus-
sian entries. In this case, (AT

1 , · · · , AT
Nm

) is also a random
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Fig. 2: Recovery score for Gaussian dictionaries 100 × 100,
after degradation by Nm compressed sensing operators m ×
100 of Bernoulli Gaussian signals with sparsity s = 0.1. A
necessary condition to recover the dictionary is Nm ≥ ⌊ n

m⌋+1
but it is not sufficient when m is too small.

Gaussian matrix of dimension n × Nmm. Therefore, it is of
rank n with probability 1 if Nm ≥ ⌊ n

m⌋+1. Fig. 2 illustrates
that it is a necessary condition to recover D, but it is not
sufficient when m is too small, possibly because the sparse
coding becomes inefficient. See [34]–[36] for more theoretical
insight on multiview compressive dictionary learning.

Example II.4 (Inpainting). Now consider the case where
all Ai are binary masks with coefficients following
Bernoulli distributions of parameters p1, · · · , pn, i.e. Ai =
diag(a1i , · · · , ani ) where each aji is equal to 1 with probability
pj . The rank of (AT

1 , · · · , AT
Nm

) is equal to n if for each
coordinate j there exists an index i such that aji = 1. This
happens with probability

∏
j(1 − (1− pj)

Nm). Fig. 3 shows
that similar to CS, this is a necessary but insufficient condition
to recover a proper dictionary. Even when the number of
samples compensates for missing values, the sparsity of the
data plays a great role in the ability of the algorithm to recover
the proper dictionary after heavy dimension reduction.

To illustrate what happens with real data, we consider
the example of image inpainting. Let A ∈ {0, 1}h×w be a
binary mask used to observe an image X ∈ [0, 1]

h×w and
Y = A ⊙ X be the observed image. While the operator is
unique when we consider the whole image at once, learn-
ing a dictionary from patches of size n from the image is
equivalent to learning a dictionary with multiple operators
in Eq. (2). Denoting Aij = diag(Ani:n(i+1),nj:n(j+1)) and
Yij = vect(Yni:n(i+1),nj:n(j+1)) the i, j-patch, patch-based
dictionary learning solves

min
Zij ,D∈C

∑
i,j

1

2
∥AijDZij − Yij∥22 + λ ∥Zij∥1 (6)

The dictionary should be recovered if the image is large
enough and if there are not too many masked pixels. In Fig. 4,
we show the PSNR (Peak Signal to Noise ratio) and the

recovery score depending on the proportion of missing values
in a grey-level 256×256 image with a binary mask containing
a given level of missing pixels. Then we split this image into
10 × 10 patches and we learn a dictionary of size 100 on
these patches, with λ = 0.1. We compute the recovery score
by comparing dictionaries obtained with and without the mask,
and we weight the costs by the average of sparse activations
Z in absolute value for a given atom

W = (
∑N

i=1 |Z1,i|,··· ,
∑N

i=1 |ZL,i|)
T

/
∑

i,j |Zi,j | (7)

C = DT
0 (D

T ⊙W )
T

. (8)

This score better reflects the usefulness of the atoms, and
allows to take into account the fact that dictionaries learned
on natural signals may contain irrelevant atoms that are rarely
used. We repeat this experiment 10 times. The recovery score
drops when the proportion of missing values is larger than
50%. Otherwise, the image is successfully recovered even
when the dictionary is learned from the degraded observa-
tion. This is why dictionary learning led to good results in
unsupervised inpainting in the literature [23]–[25].

Proposition II.2 shows that dictionary learning won’t operate
in the null space of the measurement matrix. Using multiple
operators can mitigate this issue, as the whole signal space is
seen through different matrices Ai, reducing the effective null
space. However, our experiments with synthetic and real data
also show that this is only a necessary condition to learn a good
dictionary. In some cases, the sparse codes cannot be recovered
as the information is too degraded. Reducing the dimension
of the observations could then be a hard limit to dictionary
learning. In the following, we show that well-chosen weak
prior knowledge can lift the problem and allow the recovery
of the information from the kernel space of a single operator
through the example of convolutions in imaging.

III. WEAK PRIOR KNOWLEDGE THROUGH CONVOLUTIONS

The usage of convolutions in Deep Learning [37] has
encountered tremendous success in a broad range of tasks from
image classification to reconstruction. Convolutional neural
networks efficiently analyze translation invariant data while
reducing the number of parameters.

This section aims to explain the effectiveness and limitations
of convolutions as weak prior knowledge for unsupervised
image reconstruction. After briefly discussing the methods
involved, we conduct a comprehensive experimental study
of prior learning based on convolutions for deblurring and
inpainting problems.

All computations have been performed on a GPU NVIDIA
Tesla V100-DGXS 32GB using PyTorch [38].1

A. Prior learning methods based on convolutions

We study three methods based on prior learning: Convolu-
tional Dictionary Learning [39], Plug and Play [11] and Deep
Image Prior [22]. Convolutional dictionary learning (CDL)
consists in learning convolutional kernels of relatively small

1Code is available at https://github.com/bmalezieux/dl inv prob.

https://github.com/bmalezieux/dl_inv_prob
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Fig. 3: We generate the data from a Gaussian dictionary of size 100× 100 and Bernoulli Gaussian sparse codes of sparsity s
(average rate of non-zero coordinates). Then, we degrade the data with a binary mask of variable rates of available coordinates
p. We learn a dictionary of size 100 × 100 over several values of λ. We show the ability of the algorithm to recover the
dictionary, depending on p, the number of training samples, and the level of sparsity in the data. Dictionary recovery is defined
as obtaining a recovery score of at least 0.95. We display the results from three different perspectives: (left) Minimal number
of samples necessary to recover the dictionary depending on sparsity and rate of available coordinates in the data. A number
of samples larger than 104 means no recovery possible. (center) Maximal level of sparsity s (maximal proportion of non
zero coordinates) to recover the dictionary depending on the number of samples and the rate of available coordinates. A level
equal to 0 means no recovery possible. (right) Minimal rate of available coordinates for recovery depending on the number of
samples and the level of sparsity. A level equal to 1 means no recovery possible. These figures show that there is a hard limit
to what can be learned depending on the proportion of missing values and sparsity, regardless the number of training samples.
Having access to the whole signal space is not a sufficient condition to recover the dictionary.
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Fig. 4: For inpainting, PSNR (left) and weighted recovery score (right) depend on the proportion of missing values in
dictionary learning on patches from a natural image. When the dimension of the measurement space is large enough, the
algorithm successfully recovers the image and the supervised dictionary.

dimensions from a signal Y to sparsely reconstruct the signal.
The ℓ1-based formulation reads

min
zk,dk∈C

1

2

∥∥∥∥∥A∑
k

dk ∗ zk − Y

∥∥∥∥∥
2

2

+ λ
∑
k

∥zk∥1 . (9)

Deep Image Prior (DIP) takes advantage of CNN architectures
to project the observed image into a well-suited range space

by drawing a random code vector z in the latent space and
optimizing the parameters of the network f as follows

min
θ

∥Y −Afθ(z)∥22 . (10)

Plug and Play (PnP) is an iterative algorithm inspired by
proximal gradient descent, which recovers images from an
observation Y with steps of the form

Xn+1 = fθ (Xn − τA∗(AXn − Y )) ∀n ≥ 1 , (11)
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where X0 = 0, τ is a step size and fθ is an image denoiser.
CDL and DIP are unsupervised methods that can be applied

to a single observation, as the prior is learned directly from
the degraded data or fixed without requiring a training set. In
contrast, PnP usually resorts to a deep denoiser for fθ, which
is generally trained on a database of clean images. As we
focus on the unsupervised setting, we adapt PnP by training
the denoiser on degraded data instead. Note that here, we
depart from the classical PnP literature, as fθ is amenable to a
reconstructor and not a denoiser, in line with the recent results
extending PnP with more complex restoration operation [40].
In this case, we consider that we have access to a dataset
(Yi)1≤i≤N where each Yi = AXi + ϵi is an observation of
an original image Xi degraded by the same operator A and
a Gaussian noise ϵi. We generate noisy images (Y ′

i )1≤i≤N

from our dataset of observations Y ′
i = Yi + ϵ′i, and we train a

DnCNN [41] to recover Yi from Y ′
i in the range space of A

by minimizing

min
θ

1

N

∑
i

∥A(fθ(Y
′
i )− Yi)∥

2
2 . (12)

where X and Y have the same dimension (up to well-chosen
boundary conditions). The idea is to check in which case the
architecture can compensate for the lack of information in
the kernel of A by learning from the information in the range
space of A. To point out the limits of these prior learning algo-
rithms, we will compare them to two reconstruction methods
based on Total Variation (TV) [42] and sparse wavelets [4].

The purpose is to highlight the hard limits of unsuper-
vised methods in various contexts. Therefore, we evaluate the
performance reached by each algorithm over oracle hyper-
parameters, namely hyper-parameters leading to the best per-
formances. While evaluating hyper-parameter sensitivity is
necessary when comparing different methods, it is orthogonal
to our study, which considers the difference between super-
vised and unsupervised training of similar methods.

B. Why convolutions are likely to work on tasks like inpainting

Works on prior learning in unsupervised inverse problems
often evaluate the performance of the methods they propose
on an inpainting task [20], [22] and achieve very good perfor-
mance compared to supervised learning techniques. Here, we
provide elements to understand why this task is feasible when
using convolutional dictionaries or neural networks without
access to ground truth data.

a) Learning convolutional dictionaries from incomplete
data: To understand what happens in inpainting, let’s consider
a simple one-dimensional signal example. Let Xt be a wide
sense stationary (WSS) random process, and let At be an i.i.d
Bernoulli process of mean ρ. The observed signal Yt = AtXt

is also a WSS random process and its auto-correlation function
RY (τ) is

RY (τ) = E[AtXtAt+τXt+τ ] = RX(τ)E[AtAt+τ ] (13)

= ρ2RX(τ)1τ ̸=0 + ρRX(τ)1τ=0 . (14)

Then, the Wiener-Khintchine theorem assures that the power
spectral density of X and Y are proportional. This shows
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Fig. 5: The recovery score of convolutional dictionaries de-
pends on the image size and the rate of available pixels ρ.
Increasing the size improves the quality at high enough rates.

that with sufficient samples in the signal, the masking pro-
cess won’t affect the spectrum of the original signal X ,
and translation invariant priors can take advantage of the
information from all frequencies. This means that the orig-
inal signal is completely observed, as all frequencies can
be recovered, and the task can thus be solved. Intuitively,
when learning parameters of small convolution kernels on
translation-invariant signals, sub-parts of the signal act as
different observations, with potentially different measurement
operators. For sufficiently large signals, as the missing pixels
are distributed randomly, the sub-parts of the signal are fully
observed, making the inverse problem feasible.

b) Dictionary recovery: We illustrate the practical impli-
cation of this observation on the ability of CDL to recover a
dictionary composed of 10 digits from an image, depending
on the size of the image and the rate of available pixels ρ in
Fig. 5. As expected, the recovery of the dictionary used to
generate the image increases with the size of the image when
ρ is not too low (> 0.5). This shows that when the signal is
large enough, learning the dictionary from the degraded image
is possible when using convolution to leverage the translation
invariance of the image. It is essential to note that having
access to all frequencies is only a necessary condition to
learn a good dictionary, as sparse coding assumptions are not
met when there are too many missing values. Note that these
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(a) PSNR depending on the proportion of missing pixels and noise for CDL, DIP, TV, and wavelets based reconstruction on a 256 × 256
grey-level image. Unsupervised prior learning works only when the noise is not too high.
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high, unsupervised PnP fails to recover the image both in the kernel and the range space of A.

Fig. 6: PSNR of unsupervised, self-supervised, and supervised methods for inpainting



8

Original Observed (33.2 dB) CDL (34.8dB) DIP (34.1 dB) Wavelets (34.7 dB) TV (34.3 dB)

Fig. 7: Reconstruction, PSNR, and PSD of a 256 × 256 RGB image with 50% missing pixels in a noiseless scenario. The PSD
reveals the presence of ringing artifacts in the reconstruction by CDL. Unsupervised algorithms recover the whole spectrum
of the original image and do as well as hand-crafted methods.

observations would not stand for non-stationary signals, which
would not be translation-invariant.

c) Unsupervised reconstruction: Similar effects can be
observed for image reconstruction. Natural images are stable
enough to allow convolution-based algorithms to learn from all
frequencies that are present in the signal. Fig. 6a presents an
example where a single natural image is degraded by a random
binary mask and Gaussian noise and reports the PSNR of the
reconstruction in the mask kernel space and range space for
CDL, DIP, and methods based on TV and sparse wavelets
for different rates of missing pixels with various levels of
SNR: noiseless, 20dB, 12dB, 6dB. The reconstruction error
is decomposed between the range space and the kernel space
which have different behaviors. For low noise levels, we see
that unsupervised approaches match the performance of the
supervised approach, showing that the algorithms behave as
if they were seeing the complete data. Note that the global
loss in PSNR is also mostly driven by the PSNR decrease in
the kernel space, as this space gets larger when the number
of missing pixels increases. When the noise is too high,
unsupervised prior learning methods fail to learn a proper prior
even in the range space of A, leading to poor overall results.

Similar observations can be made with PnP methods. Here,
supervised PnP refers to a PnP reconstruction algorithm with
a denoiser learned on the clean signal, whereas unsuper-
vised PnP means that the prior is learned directly from the
observation with (12). In both cases, we train a DnCNN-
based denoiser with images from the dataset Imagenette2 and
plug it into an iterative reconstruction algorithm. The results
are shown in Fig. 6b for several values of SNR and the
proportion of missing pixels. As for the single image example,
unsupervised PnP can recover information in the kernel space
of A from what is learned in the range space of A and performs
closely to its supervised counterpart as long as the rate of
masked pixels and the noise are not too large, i.e., when

2The data are available at https://github.com/fastai/imagenette

SNR ≥ 20 and the rate of missing pixels stays below 50%.
With higher noise levels, the performance of unsupervised PnP
degrades in the range space, hence in the kernel space.

The experiments highlight that unsupervised methods work
as well as supervised CDL and are better than hand-crafted
priors in the kernel of A when the noise level is not too high
(SNR ≥ 20). They succeed in learning in the range space of A
and generalizing in the kernel space. TV and wavelets tends to
be more robust when the noise increases, as it becomes more
challenging to learn the signal’s structure. Fig. 7 provides a
visual example in the noiseless case. Unsupervised algorithms
successfully recover the original image after degradation by a
binary mask with 50% pixels missing. The PSD shows that low
and high frequencies are retrieved, despite ringing artifacts in
the case of CDL. However, CDL and DIP are sensitive to noise
and fail to recover relevant frequencies from the observations
in noisy scenarios.

C. The pitfall of convolutions in deblurring

Fig. 8: 40 atoms of a dictionary learned with CDL (λ = 0.1,
atoms of size 20 × 20) for inpainting (left) and deblurring
(right) on the image of Figure 7. High frequencies are put to
0 in the case of deblurring, leading to blurry atoms.

https://github.com/fastai/imagenette
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Original Observed (32.4 dB) CDL (31.9 dB) DIP (31.4 dB) Wavelets (32.7 dB) TV (34.6dB)

Fig. 9: In a noiseless scenario, reconstruction, PSNR and PSD of a 256 × 256 RGB image blurred by a normalized 10 × 10
Gaussian kernel with standard deviation 0.3. The PSD clearly shows that nothing is learned in high frequencies compared to
what was obtained in inpainting.

Convolutions work well when all frequencies are preserved,
as shown for inpainting. However, several inverse problems
involve recovering a signal where part of the spectrum is
missing. In super-resolution, all odd frequencies in the signal
are lost. In deblurring, the signal is observed after degradation
by a low-pass filter. As mentioned in Section II-B, learning
from the degraded observation leads to failure in this case. And
unlike with inpainting, the range space of such Fourier-based
operators stays the same after composition with a translation
operator. Thus, these problems do not benefit from convolutive
priors since they do not allow to complete the spectrum and
a part of the signal space is left unseen. We will focus on the
example of deblurring in the following.

Using the Parseval equality, the CDL problem can be re-
written in the Fourier domain

min
zk,dk

1

2

∥∥∥∥∥Â∑
k

d̂kẑk − Ŷ

∥∥∥∥∥
2

2

+ λ
∑
k

∥zk∥1 , (15)

with x̂ denoting the Fourier transform of a signal x. For deblur-
ring, as the spectrum Â is low-pass, all information about the
is high frequencies are lost. Thus, optimal dictionaries contain
atoms (dk)k with high frequencies set to 0, for the same reason
as pointed out in Proposition II.1. This is illustrated in Fig. 8
where we can see that the atoms learned on blurred images
do not contain high frequencies (they appear blurry) whereas
atoms learned on inpainted images contain high frequencies.

For a blurred image, Fig. 9 displays its reconstructions and
their PSD for various methods. These results indicate that
neither CDL nor DIP recover information outside the span
of the blur, i.e., in high frequencies. While CDL puts all high
frequencies to 0, DIP adds noise. We also see that Wavelets are
able to better recover high frequencies due to their particular
structure that links the low and high frequencies. Fig. 10a
shows the performances of these methods for various blur
sizes, decomposed between the kernel and range spaces.
All methods show a rapid decrease in performance, due to
bad reconstruction in the kernel space. We also notice that

supervised CDL does not improve over unsupervised CDL.
We conjecture that this is because the learned dictionary does
not allow to as it does not link the information from the kernel
space and the range space.

The same phenomenon appears with PnP in Fig. 10b: there
is a performance gap between supervised and unsupervised
learning in the kernel space. This shows that the performance
loss from unsupervised learning are again mostly driven by
the loss in the kernel space. However, unlike with inpainting,
even for low blur sizes, the loss between unsupervised and
supervised learning is significant at all noise level, showing
that this problem is intrinsically harder than inpainting, in the
sense that we need a prior with a structure adapted to recover
high frequencies, such as scale invariance proposed in [43].

IV. CONCLUSION

To solve unsupervised inverse problems, it is important
to have multiple operators that cover the entire space or
appropriate constraints in the model to take advantage of the
data’s structure and invariance. However, when the operator is
too ill-conditioned, such as in deblurring, the prior knowledge
must compensate for the lack of information. Relying solely
on convolutions is insufficient, even in supervised settings with
access to clean data.

Current approaches have limitations, highlighting the need
for innovative strategies capable of learning dictionaries that
are robust to operator degradation and versatile enough to
adapt to a wide range of inverse problems. Such methods
would be a significant step forward in our ability to effec-
tively reconstruct signals in the presence of complex, ill-
conditioned operators. Developing robust, operator-resistant
dictionaries requires a multifaceted approach that integrates
advanced machine-learning techniques with deep insights into
the problems’ structure and physics.
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(b) PSNR depending on the size of the blur in the full space, kernel space, and range space for PnP-based reconstruction on 160 × 160
grey-level images with several values of SNR. This time, unsupervised prior learning methods fail to recover information in the kernel space.
More surprisingly, supervised PnP also struggles in the kernel space.

Fig. 10: PSNR of unsupervised, self-supervised, and supervised methods for deblurring
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APPENDIX

A. Proof of Proposition II.1

Let Z0 ∈ argminZ
1
2 ∥AD0Z − Y ∥22 + λ ∥Z∥1. Let Z ′

j =
∥D0,j,m∥
∥D0,j∥ Z0j . Then

∥AD′Z ′ − Y ∥2 = ∥AD′
0Z

′
0 − Y ∥2 (16)

∥Z ′∥1 ≤ ∥Z0∥1 (17)

The result follows.

B. Proof of Proposition II.2

Let A ∈ Rm×n, Y ∈ Rm×T . We aim to solve

min
D∈C,Z

1

2
∥ADZ − Y ∥22 + λ ∥Z∥1 (18)

Performing a SVD on A leads to

A = UΛV ∗ such that U ∈ Rm×m, V ∈ Rn×n

and UU∗ = Im, V V ∗ = In

Λ =


a1 0 · · · 0 · · · 0
0 a2 · · · 0 · · · 0
...

...
. . .

...
...

...
0 0 · · · am · · · 0


Then,

min
D∈C,Z

1

2
∥ADZ − Y ∥22 + λ ∥Z∥1 (19)

= min
D∈C,Z

1

2
∥UΛV ∗DZ − Y ∥22 + λ ∥Z∥1 (20)

= min
D∈C,Z

1

2
∥ΛV ∗DZ − U∗Y ∥22 + γ ∥Z∥1 (21)

= min
D̃∈C,Z,D=V D̃,Ỹ=U∗Y

1

2

∥∥∥ΛD̃Z − Ỹ
∥∥∥2
2
+ γ ∥Z∥1 (22)

Adding zeros to Λ to make it square, and adding zeros at the
end of the measurement vector U∗Y to respect dimensions,
the problem reduces to

min
D∈C,Z

1

2

∥∥∥ΛD̃Z − Ỹ
∥∥∥2
2
+ λ ∥Z∥1

s.t. Λ = diag(a1, · · · , am, 0, · · · , 0), Ỹ =

(
U∗Y
0n−m

)
.

(23)

Then, Proposition II.1 applies and an optimal dictionary is
contained in ker(A)

⊥.
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