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Rapid and Noise-Resilient Mapping of Photogenerated
Carrier Lifetime in Halide Perovskite Thin Films

Guillaume Vidon, Gabriele Scrivanti, Etienne Soret, Nao Harada, Emilie Chouzenoux,
Jean-Christophe Pesquet, Jean-François Guillemoles, and Stefania Cacovich*

Halide perovskite materials offer significant promise for solar energy and
optoelectronics yet understanding and enhancing their efficiency and stability
require addressing lateral inhomogeneity challenges. While
photoluminescence imaging techniques are employed for the measurement of
their opto-electronic and transport properties, going further in terms of
precision requires longer acquisition times. Prolonged exposure of
perovskites to light, given their high reactivity, can substantially alter these
layers, rendering the acquired data less meaningful for analysis. In this paper,
a method to extract high-quality lifetime images from rapidly acquired, noisy
time-resolved photoluminescence images is proposed. This method leverages
concepts of the field of constrained reconstruction and includes the Huber
loss function and a specific form of total variation regularization. Through
both simulations and experiments, it is demonstrated that the approach
outperforms conventional pointwise methods. Optimal acceleration and
optimization parameters tailored for decay time imaging of perovskite
materials, offering new perspectives for accelerated experiments crucial in
degradation process characterization are identified. Importantly, this
methodology holds the potential for broader applications: it can be extended
to explore additional beam-sensitive materials, and other imaging
characterization techniques and employed with more complex physical
models to treat time-resolved decays.
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1. Introduction

Local quantitative luminescence analyses
of semiconductor materials play a pivotal
role in elucidating critical insights into both
their intrinsic properties and their perfor-
mance within devices.[1,2] These analyti-
cal techniques, which include optical mi-
croscopy and spectroscopic methods, offer
a profound understanding of charge car-
rier recombination and transport phenom-
ena, spanning a broad spectrum of length
scales, from the micro to macro domains.[3]

In particular, time-resolved photolumines-
cence analysis has emerged as a widely em-
ployed characterization method, serving as
a powerful tool for investigating the com-
plex dynamics of carriers within a semicon-
ductor absorber.[4,5] It permits the quantifi-
cation of key transport parameters, includ-
ing carrier diffusion length, and surface or
bulk recombination rates.[6–8] One critical
physical parameter in semiconductor char-
acterization is the carrier characteristic de-
cay time, often denoted as carrier lifetime
in the scientific literature. It is imperative to
note that the term “lifetime” might be mis-
leading, as it does not represent an intrinsic

property of the material but it depends on several parameters re-
lated to the excitation such as laser fluence or repetition rate.[9] To
prevent misinterpretation, it is thus crucial to clearly define this
parameter within the specific experimental conditions. On a gen-
eral basis, the assessment of local material properties remains a
substantial challenge due to the inherent limitations arising from
the low signal-to-noise ratio (SNR) of individual pixels when us-
ing imaging techniques.

Numerous physical models have been proposed to quanti-
tatively assess and differentiate the location of non-radiative
recombination within a semiconductor.[10–13] Specifically, these
models seek to distinguish the bulk lifetime (𝜏bulk) from the sur-
face recombination rate (Stop). In this work, we have adopted a
model based on the work of Gaubas and colleagues,[14] adapting
it for an intrinsic semiconductor and applying it to imaging
methods.[15] This method stands out as a powerful tool that
eliminates the need for conducting multiple experiments involv-
ing varying laser power[16–18] or excitation wavelengths[19,20] to
determine bulk and surface recombination rates. In the pursuit
of addressing these limitations, our approach extends beyond
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conventional methodologies by integrating regularization tech-
niques into the analysis of low-fluence decay images. The
necessity to operate at low fluences (i.e., with a carrier density
of 1015 cm−3, the expected carrier density of 1 sun equivalent
illumination[21]) is an essential condition as it is representative
of the operating conditions of a solar cell.

Moreover, reducing acquisition time and limiting the number
of experiments is essential when investigating beam-sensitive
materials,[22] such as organic semiconductors[23] or hybrid per-
ovskite thin films and devices. Indeed, the interaction of lasers,[24]

X-ray sources,[25,26] or electron beams[27,28] where the sample can
cause temporary or permanent changes in fragile materials. The
active layers of the current state-of-the-art perovskite solar cells
exhibit notable spatial heterogeneity.[29] This non-uniformity in
the composition of the absorber is a feature shared with other
materials in the solar photovoltaic field, such as Copper Indium
Gallium Selenide (CIGS).[30] However, perovskite materials stand
out due to their unique characteristic of ion motion occurring at
the timescale of tens of minutes and at scales of approximately
one micron, both laterally[31–33] (x, y) and in-depth (z-axis).[34,35]

This ion motion is related to electrochemical reactions involving
components within the perovskite layer, interactions with the sur-
rounding atmosphere, exposure to light, and interactions with
neighboring layers. This dynamic behavior leads to phenomena
like self-healing[36,37] and light soaking.[38,39]

To obtain more precise imaging, a common strategy involves
averaging out noise by repeating experiments over extended pe-
riods of time. However, as previously noted, this can potentially
induce modifications in the layer under examination. An alterna-
tive method is to enhance signals by increasing excitation power.
Nevertheless, not only does this amplify chemical reactions but
also induces a shift in the response regime of the layers—from a
linear response to more intricate and complex behaviors. There-
fore, methods to eliminate noise after the acquisition are needed.

In that regard, post-processing data treatment may signifi-
cantly help in recovering local information on noisy datasets,[40]

allowing the identification of new features in the reconstructed
maps[41] by fitting physical models that contain a description
of the noise statistics. With this aim, several approaches have
been used in the literature to treat multidimensional datasets
and extract local chemical or physical information, ranging from
Principal Component Analysis[42,43] to variational regularization
models.[44] At the core of this second group of approaches is the
idea of minimizing a function that is defined as the combina-
tion of two fundamental elements: a data fidelity term, which con-
trols the fitting of the modeled data to the measured ones, and a
regularization term which encompasses the available a priori in-
formation on the sought-for solution. Among the most common
forms of regularization, we mention Tikhonov regularization,[45]

Sparse Regularization, and Total Variation regularization.[46] More-
over, in the field of fluorescence analysis, which is extensively
used in biological studies, alternative approaches for handling
lifetime maps have recently been proposed. These include lever-
aging Gaussian process priors,[47] adopting a Bayesian nonpara-
metric (BNP) framework,[48] or employing faster photon count-
ing methods.[49]

In this study, we integrate cutting-edge time-resolved lumines-
cence imaging techniques with physical modeling and a specific
form of total variation regularization to extract high-quality local

maps of decay times on beam-sensitive materials. The method-
ology is validated on synthetic datasets and applied to various ex-
perimental datasets. Notably, our framework allows for the ac-
quisition of high SNR images, even in the context of fast acquisi-
tions. To demonstrate the versatility of our technique, we employ
different acquisition times, leading to varying levels of noise. In
summary, this paper makes two primary contributions. The first
introduces an experimental technique enabling the acquisition
of data cubes with high SNR images, albeit with extended experi-
mental durations. The second contribution involves the introduc-
tion of a fitting and regularization framework. This framework
facilitates rapid experimental acquisition while ensuring the re-
covery of data cubes with high SNR. Additionally, it enables the
mapping of key physical parameters, offering a robust method
for extracting meaningful information from rapidly acquired ex-
perimental data.

2. Results

2.1. Experimental Setup and Frameworks

We first present the time-resolved fluorescence imaging (TR-
FLIM) acquisition technique, and how we adapted it to obtain
high SNR acquisitions. In Figure 1a, we describe the experi-
mental TR-FLIM setup employed for spatially time-resolved data
acquisition.[50] The illumination source is a 532 nm pulsed laser.
To ensure uniformity, the laser light undergoes homogenization
through a rotating diffuser, effectively mitigating laser speckle.
Lenses are used to de-collimate the laser, enabling wide-field il-
lumination. Subsequently, the laser light passes through a beam
splitter and an objective lens before reaching the sample. The
emitted light from the sample is then imaged using the same
objective lens. The laser reflection is filtered out, allowing only
the photoluminescence (PL) to reach the TR-FLIM camera. The
TR-FLIM camera is a gated camera, an imaging system that em-
ploys a gating mechanism to control time and capture images at
specific time intervals within a repetitive experimental cycle.

The fact that the camera is gated allows us to keep the SNR
of the acquisition high enough throughout the decay. Indeed, a
gated camera allows for the selection of a time delay, tdecay, after
each laser pulse, along with a gate width in the temporal domain,
referred to as tgw, during which a static image is recorded. As tdecay
increases, there is a corresponding decrease in the light emission
from the sample, giving rise to the term “decay”. Throughout the
study, the experimental SNR corresponds to the ratio between
the mean value and the standard deviation of the values acquired
throughout the tgw at a specific tdecay, and it is expressed in arbi-
trary units (a.u.). An example of decay is presented in Figure 1b,
where the x-axis is tdecay. If, a constant gate width is used for all the
points of the decay, the decrease of the signal with tdecay leads to a
concomitant reduction in the SNR. Therefore, to prevent that, we
use for each point of the decay of Figure 1b, a different gate width,
meaning that each point corresponds to a different value of tgw.
A second factor denoted here as experimental time, texp, can be
tuned to reach high SNR even for points of decay with low signal.
Indeed, as previously mentioned, when working with fragile ma-
terials, it becomes crucial to take into account the total duration of
the experiment. Therefore, this experimental approach involves
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Figure 1. a) Schematic of the time-resolved fluorescence imaging set-up employed in this study. b) Decay averaged at a specific x–y location and at
different times after the laser pulse (blue dots). For t = 3000 ns, the differences between high, low, and medium SNR are shown in the inset. They
correspond to a change in the number of exposures per frame, set at 10 000, 100 000, and 200 000 for the low, medium, and high SNR acquisitions,
respectively. c) High SNR framework depiction with data acquisition, data processing, and model fitting. In this framework, multiple repetitions are
averaged out in order to obtain a smooth high SNR set of images. The individual decay of each pixel is then independently fitted. d) Regularized
framework. In this framework, less experimental time is required but the fitting procedure involves pixel–pixel interaction.

two distinct but parallel temporal axes, the decay time tdecay, and
the experimental time texp.

One of the key parameters of a gated camera is the number
of repetitions of an acquisition. The impact of increasing repeti-
tions is displayed in the inset of Figure 1b, where we varied the
number of exposures per captured frame, showing the local decay

for a small matrix of 2 × 2 pixels. In particular, we consider three
different numbers of exposures at tdecay = 3000 ns. High SNR cor-
responds to 2 × 105 exposures per frame (red dots), medium SNR
to 105 (green dots), and low SNR to 104 (blue dots). As expected,
a higher number of exposures leads to a narrower distribution
of the photoluminescence intensity values. We note that the
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average value of the low SNR points is slightly lower than that
of the high and medium SNR points—a pattern that we attribute
to a camera artifact to date. A study of the SNR for each time de-
lay for the three experimental conditions is reported in Table S2
(Supporting Information). The high SNR framework enables ac-
curate layer characterization but entails a prolonged acquisition
time, typically around texp = 20 min per data cube. More details on
the exact procedure are provided in the Supporting Information.

Therefore, we are able to tune the experiments to obtain higher
SNR at the cost of having longer experiments. However, the sam-
ples might react and thus evolve during such a long experimental
time texp, potentially introducing artifacts in the measurements.
Additionally, long acquisition time prevents accessing the evo-
lution of physical parameters occurring within this time scale,
for instance during operando studies where real-time analysis is
required. Those reasons pushed us to search for an alternative
acquisition framework that could be used to monitor fast evolu-
tions.

We thus conducted a comparative analysis of two frameworks,
as sketched in Figure 1c (high SNR framework) and Figure 1d
(regularized framework). Each framework comprises three dis-
tinct stages: i) data acquisition, characterized by a specific texp;
ii) data processing, wherein all exposures per frame are aver-
aged; and iii) model fitting to the experimental data, yielding out-
comes such as lifetime maps. The principal difference between
the two frameworks lies in the reduced texp in the case of a reg-
ularized framework. The achievement of such reduction is ob-
tained through the incorporation of post-processing data anal-
ysis, based on data modeling and total variation regularization
methods. In the following sections, we apply and compare the
two frameworks on both simulated and experimental datasets.

2.2. Data Modeling

The simplest model that can be used to interpret a decay is
based on a mono-exponential law.[51,52] At a certain time after the
laser impulse, the evolution of the time-resolved photolumines-
cencethe intensity (Pi) for every pixel i ∈ {1,… , n} can be approx-
imated as a function of time by the exponential decay model

Pi (t) = 𝛿i e
(
− t

𝜏i

)
(1)

where 𝛿 = (𝛿i)1≤i≤n is the set of pre-exponential factors and 𝜏 =
(𝜏i)1≤i≤n is the set of lifetime values, which is referred to as the
“lifetime map”. This model is classically transformed into a lin-
ear one by taking the logarithm of the equation above:

p̄i (t) = ai + bit (2)

where a = (a1,… , an) ∈ ℝn, b = (b1,… , bn) ∈ ℝn, p̄ =
(p̄1,… , p̄n) ∈ ℝn and for every i ∈ {1,… , n} we define
p̄i(t) = log(Pi(t)), ai = log(𝛿i) and bi = −1∕𝜏i.

To work with a simpler model, we assume that the PL data
measured during the k-th acquisition window, or “gate”, [tk, tk +
Δk] are acquired at a single instant tk for every k ∈ {1,… , T}.

For every pixel i ∈ {1,… n}, Pk
i represents the mean intensity

value of the acquisitions at pixel i over the acquisition window
[tk, tk + Δk]

Pk
i =

1
Δk

tk+Δk

∫
tk

Pi (t) dt (3)

In accordance with the notation introduced above, we define
for every k ∈ {1,… , T}

pk
i = log

(
Pk

i

)
(4)

and assuming that Δk → 0, the model described by Equation (2)
reduces to the following discrete model for every k ∈ {1,… , T}
and for every i ∈ {1,… , n}

pk
i = ai + bitk (5)

We discuss the validity of this approximation in the Supporting
Information. In a regular framework, each pixel is fitted indepen-
dently as sketched in Figure 1c. This is the case in the high SNR
framework presented above. On the contrary, in the case of the
regularized framework, a link is introduced between neighboring
pixels during the fitting stage, as shown in Figure 1d.

2.3. Principle and Description of the Regularization Framework

In the regularized framework, the fitting stage undergoes two
primary changes: simultaneous fitting of all pixels and the in-
tegration of a regularization term into the model function. The
so-called “fidelity” term gives the price of having the estimated
and the experimental data far from one another. In order to re-
duce the sensitivity of the model to outliers, we adopt the robust
Huber loss function[53] for the fidelity term, which is defined as
follows:

(∀u ∈ ℝ) H𝜇
(u) =

{ 1
2𝜇

u2 if |u| ≤ 𝜇|u| − 𝜇

2
otherwise

(6)

where 𝜇 > 0 can be adjusted according to the magnitude of the
data. The data fidelity term is then expressed as:

 (a, b) :=
T∑

k = 1

n∑
i = 1

H𝜇

(
pk

i − ai − tkbi

)
(7)

Notably, the use of Huber’s loss makes the model well-suited to
the cases when the noise affecting the data corresponds to the re-
alization of a Gaussian mixture model, which is a possible cause
of outliers in the observed data.[54]

The second term is called the regularization term. The aim of
this term is to use a priori information that we assume the model
respects. The main assumption behind the regularization model
is the following: the samples under study have a structure, and
the local lifetimes are not randomly spatially distributed but do
depend on the neighboring environment. Therefore, the lifetime
of an individual pixel is expected to exhibit minimal variation in
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comparison to the one of adjacent pixels. In addition, the com-
ponents a and b (see Equation 2) should be correlated in terms
of spatial information. Following this idea, we introduce a Struc-
ture Tensor Total Variation regularization function[55] (STV) in
our fitting model: this function offers the advantage of effectively
smoothing regular portions of the data while preserving sharp
discontinuities within the image. As a result, piecewise constant
images are included in the solution set. The regularization term
is written as:(
∀ (a, b) ∈ ℝn×2

) (a, b) = STV (a, b) (8)

Thus, the proposed regularized regression model is cast as a
constrained optimization (minimization) problem in the spirit
of the work of Combettes et al.,[56] where the cost function brings
the estimated solution closer to the experimental data points and
the constraint prevents too large variations inside the fitted map.
We write it as:

minimize
(a,b)∈(ℝn)2

 (a, b) such that  (a, b) ≤ 𝜂 (9)

where 𝜂 > 0 is an upper bound for the STV of the sought-for so-
lution, which plays the role of a regularization parameter. Follow-
ing the work in[57] we cast the problem as a convex non-smooth
optimization problem and we address it by means of the Primal
Dual optimization algorithm proposed in.[58,59] The technical de-
tails related to the definition of the STV regularization model and
the optimization algorithm are included in the Supporting Infor-
mation. Therefore, the regularized framework consists of using
the proximity between neighboring pixels in order to reduce the
number of repetitions required to get an interpretable lifetime
image.

2.4. Proof of the Noise Tolerance on Synthetic Data

To prove that the regularized framework is tolerant to noise, we
use simulated data onto which we add Gaussian noise of varying
amplitude. It is important to note that the application of Huber’s
loss function can also be applied to noise models beyond Gaus-
sian, but such extensions are beyond the scope of this study.

In this study, we use a physical interpretation model previously
described in the literature by Gaubas and co-workers.[14] This
method allows the estimation of both the bulk recombination co-
efficient 𝜏bulk and the top surface recombination velocity, referred
to as Stop. The core concept behind this approach involves mea-
suring the intercept, denoted as 𝛿, of the long-time scale decay, as
depicted in Figure 2a. This intercept, under certain hypotheses,
can be employed to estimate Stop, thereby distinguishing between
contributions from the bulk and the surface. However, in order
to be able to quantify Stop, it is necessary to have previously de-
termined the values of the diffusion coefficient D, of the sample
thickness L and of the absorption coefficient 𝛼. Additional details
about this model can be found in the Supporting Information.

First, synthetic data was generated using the drift–diffusion
physical model, and an artificial imaging dataset was created, as
shown in Figure 2b, to depict two different regions. These re-
gions are distinguished by specific values of log(𝛿) and 𝜏 (that
correspond to different values of the drift–diffusion parameters).

The central circle is characterized by log(𝛿) and 𝜏 values of −0.77
(a.u.) and 117 ns, respectively. In contrast, the remaining square
area exhibits log(𝛿) and 𝜏 values of −2.15 (a.u.) and 197 ns. Then,
different levels of additive Gaussian noise were added to the syn-
thetic PL data, varying from 10−4 to 10−2. In this simulation study,
a wider range of noise values was tested in comparison to experi-
mental data depicted in Figure 1, aiming to determine the “theo-
retical limits” of this approach with respect to noise tolerance. To
validate our framework, we intend to extract the values of log(𝛿)
and 𝜏 fitted after the noise was added with our algorithm. As a
quality metric of the fit, we use the sum of the normalized mean
squared error (NMSE) between the estimated and the original
data of the two components a ∈ ℝn and b ∈ ℝn. The NMSE is a
metric that assesses the accuracy of a regression model by mea-
suring the average squared difference between the predicted and
actual values, normalized by the mean of the actual values. In
Figure 2c we report the NMSE obtained by the pointwise model
(blue) and by the regularized model (orange) for five increasing
levels of noise. On average, we gain one-half order of magnitude
of precision in terms of NMSE with the regularized model as
compared to the pointwise fitting. This means that it can be used
to treat experimental data with higher levels of noise, for instance,
obtained by performing faster experiments. Moreover, we com-
pared against four additional frameworks involving the simple
use of filters to assess their impact on noise reduction, specifically
a Gaussian filter, a median filter, a non-local means filter and cu-
bic smoothing splines. Notably, the regularized approach leads to
lower values in terms of NMSE. This indicates that our proposed
framework is the most effective method among the tested meth-
ods to treat this kind of multidimensional dataset, contributing
to enhanced precision in the reconstruction of data.

We then report 1D profiles of the reconstructed synthetic data
against their original configuration, both for the pointwise and
the regularized model, to show the effect of the regularization
on the solutions in Figure 2d,e for the two extracted parameters
log(𝛿) and−1∕𝜏. We observe that the regularized model performs
better in estimating the mean values of the two regions and that
it has a smaller variance around it, at least for the lowest levels of
noise. For the two highest levels of noise (see Figure S4, Support-
ing Information), both the regularized and the pointwise models
fail to estimate the original values, but the regularized model is
still able to differentiate the two regions.

One key impact of the noise onto linear fitting is that it intro-
duces correlations between the fitted slope and intercept, there-
fore, in the case under scrutiny, between the lifetime map and
log(𝛿) map. In Figure 2f–h we show this induced correlation on
the artificial imaging dataset. This is illustrated as a 2D histogram
where the log(𝛿) values lie on the horizontal axis and the 𝜏 val-
ues on the vertical one. The color map illustrates the number of
occurrences (pixels) of a certain (log(𝛿), 𝜏) pair in the map. The
original configuration is composed of two distinct regions, result-
ing in two correlation points in the (log(𝛿), 𝜏) space, as shown in
Figure 2f. In the correlation plot for the pointwise reconstruction
(Figure 2g), the presence of noise in the simulated data makes the
two points spread out one from the other, rendering their distinc-
tion difficult. However, with the solution obtained with the use of
regularization, it is easier to distinguish two main correlation re-
gions, as illustrated in Figure 2h, proving again that this approach
results in a more accurate data reconstruction.
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Figure 2. a) Sketch of the physical model employed for fitting time-resolved decays b) Synthetic dataset for log(𝛿) and 𝜏. c) Reconstruction error as a
function of noise level for the pointwise and regularized algorithms and Gaussian, median, non-local means filters, and cubic splines. 1D profiles of
the reconstructed synthetic data (blue lines) against the ground truth (orange lines) for log(𝛿) and −1∕𝜏 for both pointwise d) and regularized e) data
treatments. Each row corresponds to a different noise level (10−4, 3 × 10−4, and 10−3). Correlation plots (expressed as 2D histograms) between the
reconstructed log(𝛿) (horizontal axis) and 𝜏 (vertical axis) on the simulated data set with noise level 0.001 for the synthetic data f), pointwise g) and
regularized h) reconstruction.

2.5. Experimental Validation

We then validate our approach on experimental datasets, ac-
quired with exposures per frame in the order of 104 (low SNR
regime of Figure 1). The results are presented in Figure 3,
wherein we compare the pointwise and regularized frame-
work in terms of log(𝛿) (Figure 3a,b) and lifetime maps

(Figure 3d,e). The samples under investigation consist of
double cations, double halide perovskites thin films, specifically
MA0.3FA0.7Pb(I0.84,Br0.16)3 which were deposited using a two-
step evaporation/slot-die coating method as detailed in prior
work.[60] We can observe the presence of local inhomogeneities
on the samples, having the shape of globular structures. These
might arise from a not uniform crystallization process over the

Adv. Funct. Mater. 2024, 2402343 2402343 (6 of 10) © 2024 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH
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Figure 3. Maps of physical parameters extracted from experimental datasets. log(𝛿) maps of halide perovskite thin films reconstructed by pointwise a,
b) regularized approaches. Lifetime maps reconstructed by pointwise d, e) regularized approaches. In c, f) a detail of pointwise and regularized lifetime
maps, respectively are shown. Correlation plots (expressed as 2D histograms) between the reconstructed log(𝛿) (horizontal axis) and 𝜏 (vertical axis)
on the simulated data set pointwise g) and regularized h) reconstruction. i) 1D profile of the lifetime maps (red line) shown in Figure 3c (pointwise) and
Figure 3d (regularized).

substrates resulting in local differences in terms of thickness
or chemical composition. However, determining their nature is
beyond the scope of this work.

The introduced regularization model effectively mitigates
noise in the estimated maps, particularly in the context of life-
time. This reduction in noise contributes to enhanced consis-
tency among pixel values in neighboring regions. Additionally,
the regularization model facilitates a higher level of discernible
details. The heightened level of detail is particularly noteworthy
when contrasted with pointwise reconstructions. To better evi-
dence this aspect we show in Figure 3c,f the zoomed lifetime
maps of one globular structure on the perovskite thin films, for
a pointwise and regularized reconstruction, respectively. The 1D
profile corresponding to the red dashed line is then reported in
Figure 3i. We can notice a reduction of the noise along with an
improved definition of the outline of the globular structure. Anal-
ogous to the approach adopted for synthetic data, we generated a
plot illustrating the correlation between lifetime and log(𝛿) values
for each pixel (Figure 3g,h). The results align with those observed
in the simulation analysis, showing a more widely dispersed dis-
tribution in the case of pointwise reconstruction.

Finally, we compare the results of the two frameworks with the
use of filters, applied after pointwise analysis. The log(𝛿), lifetime
maps and correlation graphs between the two parameters are re-
ported in Figure S5 (Supporting Information). While the appli-
cation of filters actually improved the quality of the pointwise re-
constructed images, the regularization still led to better results.
Moreover, employing a regularized framework allows to directly
integrate the a priori information into the fitting model and not
just smoothing the final maps. In particular, the tensorial reg-
ularization we employed is designed to better promote the spa-
tial consistency between the different channels of the data, rep-

resenting a more rigorous, and probably less biased, approach to
treat multi-dimensional datasets. These findings underline the
efficiency of our proposed framework in improving the robust-
ness and precision of lifetime and 𝛿 maps also on experimen-
tal datasets, thereby advancing the quality and reliability of time-
resolved imaging analysis.

2.6. Influence of the Noise on Experimental Datasets

Moreover, to test the robustness of the regularization method, we
explore the impact of changing the number of accumulations on
experimental data in the same sample location, leading to acqui-
sitions with different noise levels. In this case, we analyse a dif-
ferent sample, namely a formamidinium lead tri-iodide (FAPbI3)
perovskite thin film, deposited by flash infrared annealing.[61]

In Figure 4a–c, we report the results of the pointwise method
data treatment, while in Figure 4d–f we show the lifetime maps
obtained with the regularized method. First, it is crucial to em-
phasize the lack of a ground truth for the experimental datasets.
Moreover, a high number of repetitions may introduce additional
artefacts in the time-resolved images. These artefacts could arise
from factors such as the rotating diffuser or the camera itself. An
example is the texture in the regularized high SNR (Figure 4c), a
feature not detected through optical or electron microscopy char-
acterization methods employed in the analysis of analogous sam-
ples in previous studies.[61] The reconstructed lifetime maps di-
verge significantly from each other with the pointwise approach.
However, in the case of regularized lifetime maps, they exhibit re-
markable similarity: in the case of a low-noise situation, the two
frameworks coincide, as one would expect. In order to quantita-
tively gauge the similarity between the obtained lifetime maps,

Adv. Funct. Mater. 2024, 2402343 2402343 (7 of 10) © 2024 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH
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Figure 4. Pointwise a–c) and regularized d–f) lifetime maps for three maps acquired with different camera parameters. The variation of the camera
parameters led to three levels of SNR, denoted as low, medium, and high corresponding to 4, 7, and 15 min of acquisition time, respectively.

we use the Root Mean Square Error (RMSE) and the Structure
Similarity Index Measure (SSIM),[62] which provides a measure
of the perceived change in structural information. SSIM takes
into account three main components of perceived image qual-
ity: luminance, contrast, and structure. The SSIM index ranges
between 0 and 1, with values close to 1 indicating high similar-
ity. We highlight that the obtained figures do not provide a mea-
sure of the quality of the solutions, but only a quantitative as-
sessment of the “closeness” of the lifetime maps we can estimate
with the same method for different acquisition processes. Both
for the computation of RMSE and SSIM, the values of the esti-
mated lifetime maps were cropped between 470 and 540 ns and
then linearly scaled to the interval [0,1] ns.

As illustrated in Table 1 for the regularized maps and in Table 2
for the pointwise maps, the estimated maps are more similar to
each other (higher SSIM, lower RMSE) when the regularized ap-
proach is considered.

Table 1. SSIM (upper-left corner, underlined) and RMSE (lower-right cor-
ner, italic) scores between the regularized Lifetime maps.

Low Medium High

High 0.795 0.919

Low 0.859 1.7 × 10−4

Medium 8.7 × 10−5 1.2 × 10−4

Table 2. SSIM (upper-left corner, underlined) and RMSE (lower-right cor-
ner, italic) scores between the pointwise Lifetime maps.

Low Medium High

High 0.022 0.096 –

Low 0.06 – 3.7 × 10−4

Medium – 3.5 × 10−4 4.6 × 10−4

Moreover, in order to have a quantitative measure of over-
and under-regularization and identify an optimal regularization
parameter 𝜂 > 0 in the absence of a reference distribution, we
adopted the L-curve principle,[63,64] which was introduced in
the case of Tikhonov regularization and then extended to Total
Variation-based regularization models.[65–67] Further details and
examples on this analysis can be found in the Supporting Infor-
mation.

In this example, the effect of the regularization in improving
the quality of the decay time maps is evident. This enhancement
holds significant potential for refining the experimental design,
as evidenced by a reduction in terms of acquisition time by a fac-
tor of more than three when going from low SNR maps (4 min)
to high SNR maps (15 min). Furthermore, considering the good
quality of the regularized low SNR maps, there is potential for ad-
ditional reduction in acquisition time. These findings are particu-
larly relevant in the case of beam-sensitive specimens or operando
experiments, where it is crucial to distinguish the effects arising
from the various aging conditions (temperature, atmosphere, il-
lumination) from the possible damaging effects induced by the
experiment itself.

3. Conclusion

In this work, we present a novel methodology for mapping the
lifetime of semiconductor materials. Our approach integrates
advanced photoluminescence time-resolved imaging analysis,
modeling techniques, and the application of total variation reg-
ularization methods. This effectively mitigates local SNR limi-
tations, granting access to a greater level of detail and features
in the results. The analysis can be easily extended to determine
the surface recombination rate, a parameter closely linked to
𝛿. The determination of these key parameters can offer valu-
able insights into the advancement and optimization of halide
perovskite materials. Indeed, the mitigation of bulk and interfa-
cial recombination stands as a central focus within the solar cell

Adv. Funct. Mater. 2024, 2402343 2402343 (8 of 10) © 2024 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH
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research community. This challenge, which has not yet been fully
resolved, holds the potential to yield enhanced device efficiency
and stability. Importantly, this approach can be further extended
to precisely determine other physical parameters extracted from
time-resolved analysis. These include mapping diffusion coeffi-
cient, carrier mobility, carrier diffusion length, radiative and non-
radiative rates, as well as Auger recombination rates by employ-
ing more complex physical models. Moreover, our method offers
the advantage of reducing the experimental acquisition time by
at least a factor of three. This reduction is particularly noteworthy
in the context of materials that are highly sensitive to beam expo-
sure, such as absorbers utilized in various optoelectronic appli-
cations like halide perovskites or organic semiconductors. Con-
sequently, our study not only contributes to the fundamental un-
derstanding of semiconductor behavior but also offers practical
tools in the context of time-efficient data collection for the de-
velopment of cutting-edge materials for optoelectronic applica-
tions. Finally, this method exhibits versatility in its applicability to
operando experiments, facilitating the real-time monitoring and
identification of degradation products arising from diverse age-
ing conditions.

4. Experimental Section
TR-FLIM Experimental Details: The Time-Resolved-FLuorescence

IMaging (TRFLIM) setup recorded photoluminescence along three
dimensions {x, y, time}. A Princeton Instruments PiMAX4 gated ultrafast
camera was used. Photoluminescence decays were collected at different
delays with gate time in the range of 3–7 ns. The illumination was
performed with a Coherent Laser (𝜆 = 532 nm, pulse width 15 ps),
defocused, and homogenized on a 4.5 mm2 area using a rotating diffuser
to obtain a flat and homogenous wide field excitation. The repetition rate
of the laser was set to 40 kHz. A × 10 objective or a ×100 objective was
used both for excitation and collection, and the laser was filtered out with
a DMLP605R beam splitter as well as with a FEL0610 filter.

MA0.3FA0.7Pb(I0.84,Br0.16)3 Perovskite Deposition: The perovskite layer
was deposited via a two-step evaporation/slot-die coating method.[60] In
the first step, a 260 nm thick PbI2 layer was evaporated at 3 × 10−7 mbar
high vacuum pressure using MBraun-ProVap-5G equipment. Deposition
rates were kept at 1 ± 0.1 Å s−1. In the second step, the substrates with
PbI2 film were quickly transferred onto the slot-die coater (from nTact)
for conversion. An organic solution containing 450 mg FABr, 290 mg FAI,
380 mg MAI, and 100 mg MACl prepared in 30 mL isopropanol (IPA) was
pumped into the slot-die coating head with a constant dispense rate of
3.5 μL s−1. The coating gap and the coating speed were kept at 60 μm and
2.5 mm s−1, respectively. The organic solution infiltrated into the PbI2 pre-
cursor film and reacted with it to form a wet perovskite film. To crystallize
the perovskite, the substrates were annealed at 150 °C for 30 min. The final
composition of perovskite was MA0.3FA0.7Pb(I0.84,Br0.16)3.

FAPbI3 Perovskite Deposition: The mixed A-cation hybrid perovskite
precursor solution was deposited from a precursor solution containing FAI
(1.2 m), PbI2 (1.4 m), and CsI (0.21 m) in anhydrous DMF:DMSO (from
Merck) 3:1 (v:v). All the organic salts were acquired from Greatcell Solar,
while TCI provided lead halides and Merck provided DMSO and DMF sol-
vents. The perovskite precursor solutions were deposited from a solution
containing FAI and PbI2 (1.5 m), in anhydrous DMF/DMSO 3:1 (v/v). The
films made by the FIRA method included spin-coating of the perovskite
solution in a single step at 4000 rpm for 10 s. The substrates were then
IR irradiated with a 640 ms pulse in the FIRA oven, pulling them out im-
mediately after the heating. The films were then placed onto a hotplate at
100 °C for 15 min to complete the solvent removal. FIRA processing was
carried out in a glove box filled with an N2 atmosphere.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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